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Abstract. We study a simple model of a forager as a walk that modifies a relaxing substrate. Within it
simplicity, this provides an insight on a number of relevant and non-intuitive facts. Even without memory
of the good places to feed and no explicit cost of moving, we observe the emergence of a finite home range.
We characterize the walks and the use of resources in several statistical ways, involving the behavior of the
average used fraction of the system, the length of the cycles followed by the walkers, and the frequency
of visits to plants. Preliminary results on population effects are explored by means of a system of two
non directly interacting animals. Properties of the overlap of home ranges show the existence of a set of
parameters that provides the best utilization of the shared resource.

PACS. 87.23.Cc Population dynamics and ecological pattern formation – 87.10.-e General theory and
mathematical aspects

1 Introduction

Animals usually exhibit complex patterns of movement
which arise arise from the interaction between the indi-
vidual and the environment [1]. The motivations for move-
ment depend on the animal’s internal state (satiation, re-
serves, etc.), on the interactions with members of their
own or other species and on previous experiences [2,3].
Importantly, the way animals move affects how individ-
uals redistribute themselves over space and thus has the
potential to affect many ecological processes [4,3].

A broad group of animals move around in order to
collect food from patches of renewable resources such as
fruits, nectar, pollen, seeds, etc. For these animals we ex-
pect that their movement trajectories will depend strongly
on the spatial arrangement of such patches [5,6]. Often
these animals play an important ecological role as part of
mutualistic interactions, as they pollinate or disperse the
seeds of the plants they visit. For seed dispersal in par-
ticular, empirical and theoretical studies show that the
spatial distribution of plants contributes to the seed de-
position patterns through its effect on animal movement
[7,8,9,10,11,12,13,14,15]. Understanding the emergence
of space use of animals foraging for renewable resources,
besides being an interesting theoretical topic, can allow us
to build better studies of animal-plant interactions.
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Previous studies considering systems of animals forag-
ing on renewable resources have focused on finding optimal
search strategies under different assumptions of animal
perception and memory [16,17,18]. It is clear that some
animals are capable of finding profitable routes without a
lot of computational power [19]. Also, much discussion has
been devoted to animals’ search paths and whether Lévy
walks or flights are predominant in nature [20,21,22,23,
24].

However, less attention has been paid to the emer-
gence of space use patterns as the result of an interaction
between the behavioral rules used by an organism and
the spatial structure of the environment. In this work we
use a simple model of foraging animals while traversing
a territory populated by their source of sustenance. It is
effectively a walker on a dissordered substrate, which is
an interesting mathematical problem even in simple for-
mulations, whose statistical properties has only recently
been subject of investigation [25,26,27]. Our main goal
is to understand the emergent properties of simple move-
ment rules of animals foraging for patchy and renewable
resources.

2 Model definition and dynamics

2.1 The substrate

We consider a finite spatial domain, within which there
are N patches of vegetation, that the animal can visit to
get food. These patches, which we may refer to informally
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as “plants” below, do not overlap and each one is endowed
with a load of fruit fi(t), which is the only resource for
the animals to consume in the system. Initially the plants
have fi(0) = ki ∈ (0, 1), with uniform distribution.

We assume that the time scale of the vegetation dy-
namics is much slower than that of animal foraging and re-
source renewal. Thus, the number and position of patches
remain constant. We have used two distinct distributions:

– The space is the unit square, and the plants are set at
uniformly distributed points on the square.

– The space is of undefined size, on which a first plant
is set at random. The rest of the plants are set se-
quentially, at a distance from the previous one which
is randomly drawn from a lognormal distribution (and
uniformly distributed in azimuth).

The lognormal distribution produces hierarchically clus-
tered substrates, compared to the Poissonian distance be-
tween plants resulting from the uniform one. For the sake
of brevity we will show mainly the results corresponding to
uniform substrates, with a few mentions to the differences
arising in the lognormal ones.

The only dynamics of the vegetation substrate is a
continuous replenishment of the fruitload of each plant,
according to an exponential growth that saturates to the
initial value ki. This simple relaxation dynamics can rep-
resent a ripening process, for example, in such a way that
the fruit load available to the animals is only the ripe fruit.
Since we are, at the present stage, only interested in the
short time scale of the dynamics, we consider no season-
ality nor density dependence in this dynamics. If the time
of the most recent visit of an animal to plant i is tv, the
fruit at any time t > tv (before a new visit) grows as:

fi(t) = ki + (fi(tv)− ki) e
−(t−tv)/τ . (1)

All plants relax with the same ripening time τ , which is
one of the major control parameters of the system.

2.2 The walker

An animal behaves as a foraging walker on the vegetation
substrate which, being closed and finite, effectively works
as an enclosure. It browses from plant to plant eating fruit.
This dynamics is kept as simple as possible, without any
transit time between plants nor perching time while feed-
ing. When the animal gets to a plant it reduces the fruit-
load an amount of b. Immediately after eating it chooses
the next plant and goes there. Furthermore, we consider
no satiation and no rest. The next plant is chosen ac-
cording to a stochastic rule of proximity and fruitload, as
described below.

Our main assumption about the movement is that the
main factor of the movement is proximity of the food. This
is in fact the case in many foraging species, in particular
when the distribution of the food resource is not hetero-
geneous in the extreme. It is, however, unreasonable to
suppose that the animal will visit any site only because it
is nearest, disregarding its food availability. We assume,

then, that it will take that step only if it perceives that the
plant has enough food. Also, we assume that the walker
does not exhaust the available resource at a site. This is
also reasonable because animals have a limited gut capac-
ity, they might not want to stay at a site too long for
fear of predation, etc. Rather, after taking a fraction of
the available fruitload, it moves on to the next chosen site
[11,13].

These ingredients take the following mathematical form
in the model. The animal checks the distances from the
plant it’s occupying, and chooses where to go next with
an exponentially decaying probability depending on their
order of distance. If the probability to visit the nearest
plant is P (1) = r, then the animal chooses the n-th plant
in order of distance with probability P (n) = r(1 − r)n−1.
Observe that if r = 1 the probability of visiting the near-
est plant is 1, and the rule becomes deterministic. In this
case, the animal always chooses the nearest plant. If r < 1
there is a finite probability of visiting any plant in the sys-
tem, with closer ones being favorites. Note, also, that the
probability does not depend on the distance, but on the
order of distances. The rationale behind this is that the
animal needs to go somewhere to get its food, disregard-
ing the distance. So, it doesn’t matter if the n-th patch
is close or far away: the animal will choose it with the
same probability. A probability distribution that depends
on the distance (associated with a cost of reaching it, for
example) could give a different phenomenology. This will
be explored elsewhere.

After the animal chooses a plant according to the geo-
metric distribution just explained, it checks whether this
plant has enough food. If the current fruitload of the plant
exceeds a threshold u, the animal moves to it. If the fruit-
load is less than u it regards the plant as worthless, and
chooses the next in the order of distance, checking again
whether this next plant has enough fruit.

In summary, the random walk rules are:

1. Choose the next plant according to the geometric dis-
tribution of their order of distance.

2. Check the fruitload of the chosen plant and:
(a) If the load is greater than u, keep this choice.
(b) If the load is smaller than u, choose the next plant

in order of distance. Go to 2.
3. Go to the chosen plant and reduce its load by b.

The parameters b and u affect weakly the properties
of the walk (results not shown), and have been kept con-
stant in our simulations. Considering that the maximum
fruitload is f = 1, which can be interpreted as a cluster
of fruit, we have used b = 0.1 and u = 0.2 throughout.
The parameter r affects the walk in a stronger way, and
we have used it as the second (besides the relaxation time
τ) relevant control parameter of our analysis.

3 A single animal

Let us consider first a single animal in the system. In the
deterministic version of the rule, we observe that a pe-
riodic cycle arises (an example is shown in Fig. 1, where
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Fig. 1. Stationary track (i. e., discarding the transient) of a
single animal on a uniform substrate. The stationary pattern
is a cycle with period 553 steps.

the transient part of the walk has been discarded). Bear in
mind that the walker has no memory, at variance with re-
lated models whith periodic behavior, such as the Tourist
Walker of Ref. [26]. If stochasticity is allowed in the rule
(so the animal can explore farther plants) the strict pe-
riodicity is broken, but some aspects of it persist, as will
be discussed below. Let us exemplify these behaviors in
different situations.

Consider the uniform random substrate shown in Fig. 1.
The size of the circles corresponds to the fruitload of
each plant (in the relaxed state). A deterministic walker
(r = 1), after a short transient sets on a complex but cyclic
track with a well defined home range. The black lines in
the same panel show the steps of the walk, which has a
period of 553 steps (of course, much less than 553 plants
are visited during a cycle). Additionally, Fig. 2 shows the
plants visited by the walker, indicating with the size of
the circles the frequency of visit. It is clear that the use
of the resource is very heterogeneous, both in space and
in time. As this example shows, the frequency of visits is
not simply correlated with the fruiload. It arises not only
from the fruitload but also from the spatial context of the
visited patch.

Having a single animal in the system provides a probe
to reveal topological properties of the substrate. It is re-
markable that the simple rules of this model, which do
not consider any memory nor explicit cost in moving, are
enough to guarantee the emergence of a finite home range.

Since the memory of the walk is effectively stored in
the landscape, the relaxation time τ affects the length of
the cycles and the fraction of used space. A longer ripening

 

 

Fig. 2. Probability of occupation of space. The footprint of
the home range occupies 12% of the habitat plants. Circle size
is proportional to the frequency of visits.

time makes fruit more difficult to find, and the home range
expands considerably with correspondingly longer excur-
sions. The track is still cyclic and periodic but the home
range is traced in a very complex manner. A faster relax-
ation, in turn, has the effect of shrinking the home range
and reducing the period of the cycle. In the case of log-
normal substrates, the clustered organization of patches
has the effect of confining the animal’s home rage. In such
cases most of the space use is restricted to one subcluster.

3.1 Properties of periodic walks

Even when the attractor for a particular set of parame-
ters is periodic there is a great deal of variability in the
duration of the period due to the strong dependence on
the random substrate. Since both the period and the frac-
tion of plants visited by the animal are measures of the
use of the system we analyze here both magnitudes in a
series of simulation runs. After discarding the transient
we measure the period and the fraction of visited plants.
The procedure was repeated for 1000 realizations, each
one with a different substrate of N plants and a different
initial condition, and for a range of ripening times.

Figure 3 (left) shows the average length of the cycle,
〈T 〉, as a function of the ripening time τ . After the tran-
sient, the walk was tested for periodic behavior of period
T . With our method, the longest observable period can
be detected as a single repetition of a pattern. As a con-
sequence, the detection of longer periods can be affected
by the maximum running time. Within this limitation, we
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Fig. 3. Cycle length and fraction of visited plants as a function
of ripening time. N = 200, maximum observing times shown in
the legend as multiples of N . Averages and standard deviations
of 1000 realizations. Longest period detected: 1/2 Tmax.

have adjusted the observed time to avoid such an artifact
as best as possible.

As anticipated above, for a given value of τ there is
great variability in the distribution of periods. The shaded
areas shown above and below the mean values should be
interpreted as an inherent property of the distributions of
cycle lengths. The size of these fluctuations depends on
the system size and, consequently, may play a noticeable
role in small systems. Since these distributions are broad,
and our measurements correspond to a finite observation
time, the averages are biased towards smaller values. For
this reason we probed the paths with progressively longer
observation times (using lengths of aN with a = 10, 20,
40 and 80, as indicated in the figure). These explorations
show that there exist longer and longer periods.

The average length of the cycles grows slowly with τ ,
and also with the size of the system (not shown). In some
sense, the length of the cycle is combinatorial and it is
not surprising that, as more space or time is available,
longer cycles are possible. Interestingly, though, the num-
ber of visited plants does not share this property. Figure 3
(right) shows this home range size S as a function of τ for
the same set of runs shown in the left panel. We see that
the fraction of space used by the animal grows with τ as
does the average cycle length. But it saturates for longer
observation times (it’s already asymptotic after the short-
est observation of 10N time steps). We believe that this is
an important result of our findings. Its robustness with re-
spect to many details of a wide family of models suggests
that it may lie at the core of the origin of the existence
of home ranges in animals that forage on renewable re-
sources that are relatively fixed in space (i. e. with a slow
resource dynamics).

The periodicity of the deterministic version of the walk
can be understood as deriving from a finite set of avail-
able states in a closely related model, as follows. Assume
that b = u for simplicity, and that all plants are at their
asymptotic levels ki at t = 0. Let p(t) denote the position
of the walker at (discrete) time t, and χi ∈ {1, 0} be the
presence (1) or absence (0) at plant i, when the walker
is at p. Then the amount of fruit at plant i depends on

previous visits and can be written as:

fi(t) = ki − b

t−1∑

t′=0

χi(p(t
′)) e−(t−t′)/τ . (2)

Because of the exponential relaxation the main contribu-
tion in this sum corresponds to recent times. If t − t′ is
large, b e−(t−t′)/τ is small. In particular, for a given ǫ > 0,
choose T such that kie

−T/τ < ǫ (for all i). This puts a
bound on the contribution of the history previous than T
steps into the past:

b

t−T∑

t′=0

e−(t−t′)/τ = b e−T/τ
N∑

t′=0

e−(t−T−t′)/τ , (3)

which can be made arbitrarily small by the choice of ǫ.
Since what has be substracted from plant i at time t− T
is at most ki (its asymptotic value), the contribution of
the history previous to t− T is at time t at most ǫ:

fi(t)− ǫ < ki − b

t−1∑

t′=t−N

χi(p(t
′)) e−(t−t′)/τ ≤ fi(t). (4)

Then we can approximate:

fi(t) ≈ ki − b

t−1∑

t′=t−T

χi(p(t
′)) e−(t−t′)/τ , (5)

which tells that all that matters is the history going back
T units of time. With N plants, there are NT possible his-
tories, so the configuration space is finite, and periodicity
follows.

As can be seen, for this proof to be rigorous it is nec-
essary that ǫ is small enough that there is no difference
in what choice the walker makes at each step. Given that
the choice is made based on the rank of distances, this
can always be ensured. If the choice were, instead, a con-
tinuous probability based on the distance, the argument
would be weaker. (Still, it would be approximate and with
a valid regime of applicability.) It is also apparent that the
shape of the relaxation plays a role in this phenomenon:
on the one hand, a longer τ increases the periods—as
was already observed in the simulations above. On the
other hand, a relaxation with a functional form slower
than exponential—algebraic, for example—may hamper
the existence of periodic trajectories.

3.2 Properties of stochastic walks

A little randomness can help the animal browse its range
more thoroughly, as shown in the example of Fig. 4. Here
the same landscape and initial condition were used as in
Figs. 1 and 2, but reducing the probability of choosing the
nearest plant to r = 0.8. The path is now non periodic.
Nevertheless, the space usage is still contained within a
home range. The fraction of used plants is now 43% of
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Fig. 4. Probability of occupation of space with r = 0.8. The
home range occupies now 43% of the plants. Same substrate
and other parameters as in Figs. 1 and 2.

the total. The details are very dependent on the fluctua-
tions of the substrate (which, with N = 200 plants, are
rather strong), but statistical conclusions can be derived
nevertheless.

An important difference between these noisy walkers
and the deterministic ones shown in the previous section
is that the home range is not as well defined. The reason is
that there is a small but finite probability of migrating to
any plant in the system. As a consequence of this, there is
a slow drift away from the main track that may eventually
cover the whole system. Preliminary observations show
that the tracks behave as quasi-cycles that slowly drift in
the substrate, but the whole phenomenology of this has
not been completely explored at the present stage, and
will be addressed elsewhere.

The results presented in Fig. 5 are suggestive of the
observed behavior. We show the average home range size
〈S〉 (measured as fraction of plants used) as a function of
the randomness parameter r. For most situations of inter-
est in the foraging of animals such as D. gliroides it is to
be expected that this parameter stays near r = 1, indicat-
ing a strong preference of near plants. But since nothing
prevents the consideration of less discerning species, we
have explored the whole range from r = 0 (complete ran-
domness) to r = 1. Figure 5 shows a decaying behavior of
the home range as the rule approaches determinism. This,
in addition, is strongly affected by the relaxation time,
the fructification rate τ . When τ is large the resource is
depleted more effectively, and the animal needs to cover
more territory to feed before the maturation of new fruits
relaxes the resource to its stationary value. For this reason

0.0 0.2 0.4 0.6 0.8 1.0
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1.0

 

 

< 
S 

>

r

Uniform substrate

  = 50
  = 100
  = 500
  = 1000

Fig. 5. Average home range size (measured as fraction of
plants used) as a function of the noise parameter r (r = 1 corre-
sponds to deterministic walks, with the walker always choosing
the nearest plant; when r = 0 it goes to any plant at random
with uniform probability). Substrates of 400 plants, and runs
of 10N time steps, measured after a transient of 10N/4 time
steps. Each value of r is the average of 1000 realizations (each
with a different substrate).

the curves are higher for the longer values of τ . For these
we observe an abrupt shrinking of the home range size as
r → 1. Slower relaxation times display a very different be-
havior, with a faster transition to a confined home range
at a much smaller value of r. In other words, a fast relax-
ation time favors a small or confined home range even for
a very non-discriminating behavior in terms of the step
size of the walk.

In the case of a lognormal substrate, as expected, there
is a confinement of the movement of the animal to a smaller
range within its naturally occurring patches. The transi-
tion to confined walks occurs at a small value of r for all
relaxation times, even for very slow ones.

4 A population of non-interacting animals

If more than one animal share the same substrate, a pos-
sible mathematical formulation of the dynamics is of the
kind:

dui

dt
= F(ui, v), (6)

dv

dt
= G(u), (7)

where u = (u1, . . . ) is the distribution of the animals and
v that of the resource. Both densities evolve in time ac-
cording to appropriate evolution operators F and G. By
solving formally Eq. (7) as v(t) = v(t,u(t)) one can reduce
the system to an effectively interacting dynamics within
the animal populations, even in the absence of an explicit



6 Guillermo Abramson et al.: Space use by foragers consuming renewable resources

coupling between the equations for the ui’s:

dui

dt
= F(ui, v(t,u(t))), (8)

a situation usually called exploitation competition [28].
The situation is similar to a multispecies dynamics with a
shared common resource, even in a mean-field formulation.

In our present study the walks are self and mutually re-
pulsive through the interaction with the substrate, since
an animal avoids the plants where the resource has al-
ready been depleted. As a consequence, while not directly
interacting, the animals feel the presence of one another
through the interference mediated by the common re-
source. This produces both a repulsion and a growth of
the home ranges. Two questions are of interest as a first
step to analyze the use of a shared space under this cir-
cumstances. Firstly, how big does a system need to be to
accommodate a population with minimum overlap? Be-
sides, does a little randomness in the step rule (which
gives animals the ability to move further) help them in
keeping their home ranges apart?

To analyze the interference in a population we make
use of the distribution of space usage of each animal. This
is defined as the normalized frequency of visits to every
plant in the system. By definition, this is a vector in the
multidimensional space R

N :

f ∈ SN ⊂ R
N , (9)

that is,
∑N

k (f)k = 1, which places f in the simplex SN .
The plots shown in Figs. 2 and 4, for example, are rep-
resentations of these vectors, with the size of the blobs
proportional to the components of f . The home ranges
of two animals, then, are characterized by two of these
vectors, fi and fj (note that these subindices denote ani-
mals, while the subindices accompanied with parentheses
indicate components in R

N).
A good measure of the overlap of two home ranges is

provided by the standard scalar product in R
N :

O(fi, fj) =

N∑

k=1

(fi)k(fj)k. (10)

Besides all the good properties of a scalar product the
overlapO has the following property, which is of particular
interest in the present context: two vectors with the same
support (the same plants visited) can have different scalar
product. In other words: two home ranges with the same
plant support can have different overlaps. This is better
understood with a simple example. Suppose that we have
two animals on a substrate consisting of three plants. So
f1 = (x1, x2, x3) and f2 = (y1, y2, y3). If the two animals
share the same plant, for example plant #1:

f1 = (1, 0, 0), (11)

f2 = (1, 0, 0), (12)

then: O(f1, f2) = 1, (13)

which is the maximum possible overlap. But if the animals
share two equally frequent plants (say plants #1 and #2),
the result is different:

f1 = (0.5, 0.5, 0), (14)

f2 = (0.5, 0.5, 0), (15)

then: O(f1, f2) = 0.5, (16)

which is smaller than 1, even though the “footprint” of
the two animals on the substrate is the same. The usual
interpretation for this is a dynamical one, rather than a
geometric one. Since they have two plants to browse, they
can take turns between the plants, thus reducing the inter-
ference with respect to the case where they share just one
plant. For this reason we will refer to O as the dynamical
overlap below.1

To complement this feature, and to be able to discern
when the two home ranges are effectively disjoint (that is,
whether the supports of f1 and f2 are disjoint: sup(f1) ∩
sup(f2) = ∅), we can use another measure of the overlap,
namely the same scalar product divided by the Euclidean
norms of fi and fj :

P (fi, fj) =

∑N
k=1(fi)k(fj)k
‖fi‖ ‖fj‖

. (17)

In the usual geometric interpretation of the scalar prod-
uct, P (fi, fj) is the cosine of the angle between fi and fj .
This measure of the overlap gives the same value (P = 1)
whenever the footprints of the home ranges coincide. As
such, smaller values of P measure an effective spatial sep-
aration of the home ranges. Both measures are comple-
mentary, as can be seen from the discussion above, so we
chose to analyze both, referring to P as the geometrical
overlap.

To begin the analysis of these matters we have studied
systems composed of the minimal non-trivial population:
two animals. Figure 6 shows the overlaps O and P mea-
sured for a range of the probability of choosing the nearest
plant, r, and for a set of values of the relaxation time τ .
Each curve is the result of the average of 1000 realizations
per value of r, with randomly chosen uniform substrates
and initial conditions. The top panel shows O(f1, f2) and
the bottom one P (f1, f2).

Observe that the effect of randomness in the step rule
is not the same for the two overlaps. It stands out that a
little chance (r . 1) increases the overlaps (because the
two home ranges expand due to the smaller r). But pro-
gressively smaller values of r have different effects on O
and P . Observe first the dynamical overlap O: there is a
maximum at an intermediate value of r, and a further in-
crease in randomness actually reduces the overlap. It can
even become smaller than the value it has for the deter-
ministic rule, r = 1. The same behavior has been observed

1 The interpretation of taking turns to share the two plants
is not the only possible one. Observe that we say that they can

take turns. Other dynamical possibilities exist for the same set
of fi and O. Still we prefer to refer to O as a dynamical overlap
to distinguish it from the one defined below.
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Fig. 6. Overlaps of the home ranges of two animals as a func-
tion of r. N = 400 (uniform substrate). Runs of 10N time
steps, average of 1000 realizations per value of r (each with a
different substrate).

for all values of τ , but is more striking the slower the ripen-
ing, in the sense that a very little randomness in the choice
of the step (which is to be expected in most animals) puts
the system in the regime of decreasing dynamical overlap.

While this happens to O, observe that the purely ge-
ometric overlap P grows monotonically when reducing r.
In other words, the two animals are sharing a common
space (high P ) but taking turns in their use (low O). This
is a rather surprising behavior in such a simple model.
Moreover, it show that there is good reason to keep both
definitions of the overlap as complementary descriptions
of the use of space.

What can be said regarding the first question posed at
the beginning of this section, regarding the interference of
animals occupying progressively bigger areas?We have an-
alyzed the dependence of the overlaps of the home ranges
of two animals in a wide range of systems sizes (defined by
the number of plants N). The results, corresponding to a
set of values of the main parameters of the model, r and τ ,
are shown in Fig. 7. The left panel displays the dynamical
overlap P , while the right one shows the geometric one O.
Observe firstly that, as expected, in all cases a bigger sys-
tem accommodates better than a smaller one our minimal
population of two animals.

We also observe that both measures of the overlap
decay almost algebraically, as a power law of N . In the
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Fig. 7. Overlaps of two animals as a function of the substrate
size, N . Runs of 10N time steps, average of 100 realizations
per value of r (each with a different substrate). Parameters r
and τ as shown in the legend.

graphics we have added a dashed line that decays as N−1.
A simple calculation shows that this is the law expected if
the home ranges where placed at random without correla-
tion. It is slower than an exponential one for large systems,
but shows a faster drop for rather small systems. Our re-
sults show that the deterministic walks (r = 1) follow the
N−1 behavior for a wide range of system sizes. The depar-
ture obeys mainly to a saturation effect in small systems,
and to subsampling of the basins of attraction in the bigger
ones. It is clear, though, that more realistic walks (slightly
random with r = 0.9) have a very different behavior. They
also depend algebraically on the system size, but with a
slower decay. For these animals the interference in their
home ranges is stronger, compared to non-interacting ani-
mals. In other words, two animals interacting in the man-
ner modelled here need a much bigger system than what
could be expected from the random overlap of their home
ranges.

It is also apparent in our results, and completely rea-
sonable, that a model with r = 1 (deterministic step)
shows smaller overlaps than one with some randomness
(r = 0.9 shown). We see that the former has a drasti-
cally smaller overlap for system sizes N > 100. On the
other hand, the dependence on the relaxation rate τ is
less obvious. Compared to the system with τ = 100, the
plants with τ = 500 replenish the resource so slowly that
the animals need to browse a bigger fraction of the sys-
tem. Indeed, the geometric overlap (O, right panel) of the
slow relaxation system is much greater than the fast one
for both the deterministic and the random steps. This in-
dicates that the footprints of their home ranges overlap.
Nevertheless, for the same systems the dynamical over-
lap remains small, of the same order of magnitude that
the corresponding systems with the faster τ = 100. This
shows that, even though the animals need to share a ter-
ritory because of the depletion of the resource, they can
do it with little interference by taking turns in different
parts of the corresponding home ranges.

5 Discussion

We have analyzed a simple model of animal foraging in
an heterogeneous habitat. The movement rules have been
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kept intentionally simple in order to understand the con-
sequences, in the space use, of a minimal model of foragers
exploiting renewable and patchy resources. In this spirit,
our model incorporates one essential ingredient in the ani-
mal movement (the rule of proximity, complemented with
a weaker one of abundance), and one in the resource dy-
namics (the exponential relaxation).

The properties of the walk defined according to these
rules are complex enough for a non-intuitive result. Even
if they provide no means for the animal to remember the
good places to feed, and that there is no explicit cost
in moving, the combination of closeness and fruitload is
enough to guarantee the emergence of a finite home range.
The reason for this is that memory of the usage of the land-
scape is kept in the landscape itself. The walk rule ensures
that the animal tends to go away from the current loca-
tion: it is consuming the resources, so it searches nearby
plants for fruit. Yet, the relaxation of the fruitload en-
sures that the resource is eventually replenished. This is at
variance with models of destructive foraging such as [24],
for example, where the visited sites are removed from the
system and never revisited, which display non-localized
trajectories similar to Lévy flights. When this happens,
the proximity rule (that previously allowed the animal to
move away) allows it to come back to places where it has
fed before. The peculiarities of the random distribution of
patches and the initial location of the walker determine
the sequence in which the plants are visited.

It is particularly notable that, even when the proxim-
ity rule is weakened with the inclusion of noise, (the r < 1
case), there is still a home range, with a well defined prob-
ability of occupation of space. This fact stands out as a
realistic aspect of our results. It is known that a similar
model displays slow (glassy) dynamics, with diverging res-
idence times in cyclic attactors, when randomness is kept
below a transition level [27]. The relationship between the
two models will be explored in the future.

We have also observed that this phenomenology is ro-
bust with respect to details in the distribution of the step
choice, even though the numerical results may vary. For
example, we have considered two cases (not shown here)
that can be thought of as extreme situations of animals
with a limited perception of the availability of fruit in
their neighborhood. On the one hand, the animal may
have an unlimited range, detect all plants with a fruitload
under the threshold, and just ignore them in its exponen-
tial choice of the one to jump to. On the other hand, if the
animal has a very short range of perception of the fruit-
load, it would choose unsuitable plants (because of low
fruitload), discard them, and choose again. The difference
is very subtle, but it affects the relative probabilities of
plants in the tail of the distribution, and has the effect
of slightly inflating the home ranges of the animals that
perceive farther. Since the details of these complex behav-
iors in real animals is difficult to assess completely for the
purpose of modelling, it is important that the observed
phenomena are the same.

Finally, we have studied the interference of two ani-
mals sharing the same resource landscape. This analysis

of the common dynamics of two animals is a necessary
first step towards the modelling of a larger population.
The effective interaction produced by the depletion of the
common resource has an effect of inflation of the home
ranges, without destroying them. We have characterized
this interference by two measures of the overlap of the
home ranges, one more dynamical and the other one more
geometric. In this context we obtained two main results.

In the first place, the dynamical overlap is non-monotonic
with respect to the randomness in the step rule. It has a
maximum at a value of r < 1. In a sense, this corresponds
to a better utilization of the resource, through sharing.
The evolutionary effects of this pattern cannot be assessed
at the present stage of the model, but it certainly will be
one of our interests in future developments. In particular,
it will be of interest to complement this resource-mediated
interference with other known dynamical mechanisms of
the origin of territoriality, such as scent deposition [29].

In the second place, the overlap displays a simple de-
pendence on the system size, namely a power law with
a smaller exponent than the one corresponding to non-
interacting animals. The other relevant parameters (r and
τ) appear involved in this behavior in a no trivial way.
In any case, this result points also in the direction of the
previous one: two animals are more likely to share the re-
source (if there is some randomness in the movement rule)
than what could be expected from the random overlap of
their ranges.

The emergent properties of our simple approach pro-
vides a baseline for more realistic models of animals forag-
ing on patchy and renewable resources. An instance where
the interaction between animal movement and a dynam-
ical resource plays an important role is the mutualism
between plants and their seed dispersers. In the Patago-
nian temperate forest, for example, there exists a particu-
larly interesting example: the quintral (Tristerix corymbo-
sus) and the monito del monte (Dromiciops gliroides). T.
corymbosus, an hemiparasite, depends on agents to dis-
perse their seeds to the branches of potential hosts. It
is a keystone species of the temperate forests of south-
ern South America, because during the winter is the only
resource for the hummingbird Sephanoides sephanoides,
which is one of the most important pollinators in this
ecosystem [30]. Furthermore, the fruits of quintral repre-
sent an important food source for the D. gliroides, a mar-
supial endemic to the region and the only current represen-
tative of the Microbiotheria order. In turn, D. gliroides is
the only seeds disperser for T. corymbosus [31]. The study
of the relevance of the present findings in such systems is
currently under way and will be reported elsewhere.

This work received support from the Consejo Nacional de In-
vestigaciones Cient́ıficas y Técnicas (PIP 112-200801-00076),
Universidad Nacional de Cuyo (06/C304), and Agencia Na-
cional de Promoción Cient́ıfica y Técnica (PICT-2011-0790).
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