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ABSTRACT: Disc-type activated carbon monoliths were prepared through
chemical activation of coconut shell and African palm pits with phosphoric acid
at different concentrations, without using any binder. The structures thereby
produced were studied experimentally by nitrogen adsorption at 77 K, carbon
dioxide adsorption at 273 K and immersion calorimetry in benzene. The
experimental data allowed the textural and energetic characterization of the
microporous solids to be obtained, viz. BET areas between 752 and 1711 m2/g,
micropore volumes between 0.32 and 0.61 cm3/g, ultramicropore volumes
between 0.11 and 0.24 cm3/g and immersion enthalpy values between 95.85 and
147.7 J/g. Grand Canonical Monte Carlo (GCMC) simulations were used to
analyze the experimental results, providing an interpretation of, as well as a
more detailed characterization, of the textural properties, such as the
determination of the pore-size distribution (PSD) of each material. 

1. INTRODUCTION

The term “activated carbon” applies to a group of microporous carbons prepared by reaction of a
carbonized material with an oxidizing gas or by the carbonization of lignocellulosic materials
impregnated with chemical dehydrating agents. The activated carbons are disordered solids
consisting primarily of carbon, with a high degree of porosity and high internal surface, which are
of significance in adsorption and catalysis. The porous structure of these materials consists of
small graphitic sheets stacked as imperfect micro-crystallites, interlocking to create a three-
dimensional network whose empty space constitutes the porosity (Bansal and Goyal 2005;
Budinova et al. 2006).

This adsorbent can be produced in the form of fibres, powders, granules, fabrics and monolithic
structures, amongst others (Yates et al. 2000). Because of their characteristics, the so-called
activated carbon monoliths (ACMs) are at present being used as effective adsorbents and catalyst
supports for environmental decontamination. The monoliths may be produced in different forms,
such as compact discs and honeycomb monoliths, the latter being unitary structures traversed
lengthwise by parallel channels. These represent a new concept in the design of catalysts supports
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and absorbents, featuring low values of load loss in the passage of gases thereby facilitating their
smooth flow, convenient mechanical properties and a large geometric surface per unit weight or
volume. They also behave as nearly adiabatic systems and reduce the constraints generated by
internal diffusion phenomena (Rodríguez-Reinoso et al. 2003; Liu et al. 2006).

The physical adsorption of gases, vapours and liquids is one of the most popular techniques
used to study the porous texture of solids of all kinds. In the characterization of the porous texture
of a solid, the main properties to be determined are the surface area (or specific surface area), the
micropore volume and the pore-size distribution (PSD) (Rodríguez-Reinoso and Molina-Sabio
1998; Sing 2004). The adsorption of nitrogen at 77 K and of carbon dioxide at 273 K is normally
used for the determination of these properties by measuring the corresponding adsorption
isotherms (James 2006; Sing 1989), which are then analyzed via appropriate theoretical models in
order to finally obtain the desired information.

In recent years, Monte Carlo simulation methods have been used as a convenient theoretical
tool to predict the textural and energetic characteristics of adsorbents such as activated carbons.
These methods have the advantage that the results will depend only on the accuracy of the
interaction potentials assumed. In the Grand Canonical Monte Carlo (GCMC) simulation, the
temperature, volume and chemical potential (which can be directly related to the pressure and the
temperature using the bulk gas equation of state) are specified, while the number of particles and
associated configurational energy are allowed to fluctuate. Hence, GCMC sampling is capable of
yielding directly the amount adsorbed in arbitrary confined spaces as a function of pressure and
temperature, and thus presents a convenient tool for modelling adsorption in pores. This
simulation method relies on the actual molecular microscopic configurations of the confined fluid
using realistic intermolecular interaction potentials and, in principle within statistical errors,
provides exact predictions for the potentials used (Gusev and O’Brien 1997).

In the present study, we have used a slit-like geometry for a collection of independent pores
distributed according to a PSD (Valladares et al. 1998). Such a configuration has normally been
employed over a period of several decades, although other models using different geometries have
been developed recently (Azevedo et al. 2010). These kinds of models require the assumption of
a given geometric shape for the pores and the way in which these are interconnected. 

The experimental and theoretical methods described above are applied in this work to the study
of 10 ACM samples, obtained by carbonization and chemical activation of two precursor
materials, i.e. coconut shells and African palm pits. The textural and energetic properties of these
materials have been analyzed through measurements of the adsorption isotherms and immersion
calorimetry in benzene.

2. EXPERIMENTAL

2.1. Preparation of the monolithic discs

The precursor was impregnated with solutions of phosphoric acid for 2 h at 85 °C, employing 1 g
precursor per 2 m� of solution, and then dried at 110 ° C for 4 h. The resulting material was then
shaped in a uniaxial press at 150 °C. The structures obtained were carbonized in a horizontal
furnace at a linear heating rate of 1 °C/min up to a temperature of 500 °C, and then maintained at
this temperature for 2 h under a flow of nitrogen at a flow rate of 85 m�/min. Finally, the structures
were washed with distilled water up to a neutral pH value to remove traces of the chemical agent
employed in the impregnation process (Nakagawa et al. 2007; Almansa et al. 2004). 
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Different concentrations of H3PO4 (24 w/v%, 28 w/v%, 32 w/v%, 36 w/v% and 48 w/v%) were
used to prepare a series of monolithic discs. Such discs are identified by the letters MCO (coconut
shell) and MCU (African palm pit) followed by a number corresponding to the concentration used
for each sample; holding all other conditions constant, the other conditions employed resulted in
a degree of impregnation (g/x pg precursor) for the series of 0.30, 0.35, 0.40, 0.45 and 0.60,
respectively.

2.2. Textural characterization

All ACM samples were characterized via the physical adsorption of nitrogen at 77 K and carbon
dioxide at 273 K using a Quantachrome Autosorb 3-B instrument. The software provided with
the apparatus also allowed the calculation of the micropore volume — by applying the
Dubinin−Radushkevich equation to the experimental data — and the BET surface area.

2.3. Immersion enthalpy

Benzene, a molecule with an average diameter of 0.37 nm, was used as the solvent for determining
the enthalpies of immersion of the ACM samples. Such measurements were made in an
electrically calibrated heat conduction Calvet microcalorimeter (Silvestre-Albero et al. 2001;
Moreno and Giraldo 2000) employing a stainless steel calorimetric cell. Known amounts of the
solid samples (ca. 150–200 mg) were weighed into a glass vial, which was then sealed and joined
to the calorimeter cell containing 10.0 m� of benzene. When the assembly had attained thermal
equilibrium, the vial was broken to allow the solid to be wetted by the liquid, with the heat
generated being recorded as a function of time.

3. MOLECULAR SIMULATION

The adsorption of N2 and CO2 in slit-like micropores was investigated by GCMC simulations
because this method allows a direct calculation of the phase equilibrium between a gaseous phase
and an adsorbate phase. The implementation of this simulation method is both well-established
and well-documented [see, for example, Valladares et al. (1998), Nicholson and Parsonage (1982),
and Steele (1974)]. 

The interaction between adsorbate molecules was modelled using the truncated Lennard-Jones
potential:

(1)

where εgg and �gg are the energetic and geometrical parameters of the LJ potential and r is the
molecular separation. Each wall of the model graphitic slit pore was represented by a series of
stacked planes of LJ atoms. The interaction energy between a fluid particle and a single pore wall
at a distance z (measured between the centres of the fluid atom and the atoms in the outer layer of
the solid) was described by the Steele 10−4−3 potential (Steele 1974):
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where ∆ is the separation between the graphite layers (0.335 nm), ρC is the number density of
carbon atoms per unit volume of graphite (114 nm−3), and εgs and �gs are the solid–fluid
Lennard-Jones parameters. The cross-LJ parameters were determined using the standard
Lorentz−Berthelot combining rules (arithmetic mean for collision diameter and geometric mean
for well depth). The values of the parameters included in the interaction potentials [equations (1)
and (2)] are listed in Table 1 (Cao and Wu 2005; Vishnyakov and Neimark 2003).

The GCMC method followed the algorithm outlined by Valladares et al. (1998). In each
attempt of the GCMC simulation, three types of elementary steps with equal probability were
performed randomly (Frenkel and Smit 1996; Allen and Tildesley 1987) — displacement,
adsorption and desorption. The transition probabilities for each Monte Carlo attempt were given
by the usual Metropolis rules. The lateral dimensions of the cell for the slit geometry were taken
as L = 10.3 nm and periodic boundary conditions were used in these directions. The cut-off
distance, beyond which the potential is neglected, was set at 5�. Equilibrium was generally
achieved after 107 MC attempts, after which mean values were taken over the following 107 MC
attempts for configurations, spaced by 103 MC attempts, in order to ensure statistical
independence. The molecules were moved, created or deleted randomly in slit-like micropore
unit cells 

The accessible pore volume may be defined in such a way that the centre of the molecule should
be available in the volume space where the solid–fluid potential is negative. Thus, if z0 is the
distance at which the solid–fluid potential is zero, the accessible width for the adsorbate molecule
may be taken as:

(3)

where Hcc is the physical width of the pore, which is defined as the distance from the plane passing
through all carbon atoms of the outermost layer of one wall to the corresponding plane of the
opposite wall (see Figure 1 overleaf). This formula was first suggested by Everett and Powl
(1976), and later by Kaneko et al. (1994). 

In this way, the adsorption excess (and therefore the adsorption isotherm), as well as other
thermodynamic quantities of interest such as the isosteric enthalpy of adsorption, may be
calculated. 

4. CALCULATING THE PORE-SIZE DISTRIBUTION 

Davies et al. (1999) and Davies and Seaton (1999, 2000) have addressed the problem of
calculating PSDs from adsorption data in detail. We therefore present here only the most
important aspects of the solution procedure. 
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TABLE 1. Parameters Used in the LJ Potentials for the GCMC Simulationsa

Molecule �gg (nm) εgg/kB (K) �gs (nm) εgs/kB (K)

CO2 0.3750 236.1 0.3590 81.3
N2 0.3615 101.6 0.3494 56.3
Carbon 0.3400 28.0 − −

a Boltzmann constant kB = 1.380/650424 × 10–23 J/K.



The theoretical overall adsorption isotherm (θtheor) can be expressed as a superposition of
isotherms corresponding to each pore size (Hj), pressure P and temperature T, called local
isotherms, θL, each with a weight corresponding to the pore-size distribution, f(Hj):

(4)

where m is the number of quadrature intervals used in the analysis, and H* is the mid-point of each
quadrature interval. Equation (4) cannot be solved directly due to the ill-posed and ill-conditioned
properties of these equations. The detrimental effect of both of these properties can, however, be
minimized by employing regularization. The PSD is then obtained by fitting equation (4) plus the
regularization term numerically, as proposed by Davies and co-workers (Davies et al. 1999;
Davies and Seaton 1998), via a fast non-negative least-square algorithm. This is the most
commonly used method to stabilize the result, incorporating additional constraints that are based
on the smoothness of the PSD (Wilson 1992; Szombathely et al. 1992; Merz 1980; Whaba 1977;
Hansen 1992). Physically, this corresponds to recognizing that a real PSD is more likely to be
relatively smooth and centred around a few dominant pore sizes, rather than being highly
fragmented and spiky. One complicating factor in employing regularization is that it requires the
identification of an optimal smoothing parameter to be used in the analysis. To overcome this
difficulty, we have used L curves (Jagiello and Thommes 2004) to determine the optimal amount
of smoothing. Such L curves are a plot of some measure of the error of fit to the data against the
smoothing parameter. In general, the error of fit to the data increases as the value of the smoothing
parameter increases. However, below a threshold value of the smoothing parameter the increase
in the error is often negligible, whilst above the threshold the error increases rapidly. Plots of the
error against the smoothing parameter therefore resemble an “L” lying on its side. These curves
are used to identify this threshold value which is taken to be the optimal extent of smoothing.

PSD solutions satisfying minimum L-curve and generalized cross-validation criteria have been
shown to have a superior predictive performance relative to other possible PSD solutions (Davies
et al. 1999; Davies and Seaton 1999; Pinto da Costa et al. 2011).

It is interesting that two PSDs, though different in shape, can give similar predictions that are
in good agreement with the “experimental” isotherms. This suggests that several “good” PSDs —
in terms of their predictive ability — can exist which represent the porous structure of a carbon
(though of course the real material has a unique PSD) (Cai et al. 2007).

θ θ δ
i
theor

L j i
j

m

j j
H P T f H H=

=
∑ ( , , ) ( )* * *

1

Textural Characteristics and Energetic Parameters of Activated Carbon Monoliths 641

Hcc

ℓ

Figure 1. The simulation cell.



Pore-size distributions for slit pores have been calculated with kernels containing 37 pore sizes
between 4 Å and 40 Å (with a step of 1 Å ) and 37 relative pressure points (2.0 × 10–6 – 0.999)
for N2, and 12 pore sizes between 4.13 Å and 11.25 Å for CO2 and 28 relative pressure points
(1.44 × 10–3 – 2.09 × 10–2). Gusev and O’Brien (1997) recognized that, for a given set of data,
there is a maximum pore size that can be identified reliably in a PSD analysis. Differentiating
large pores from one another is difficult because the extent of adsorption is virtually
indistinguishable from one pore to another. This arises when the adsorption onto the opposite
walls of a single pore occurs essentially independently, i.e. the pore walls become too far away
from each other to enhance adsorption. The pore size above which this occurs depends on the
adsorptive and is a function of the temperature and the pressure. Gusev and O’Brien (1997)
therefore introduced the concept of a “window of reliability” into PSD analyses. This “window”
extends from the smallest pore that the adsorptive can enter to the largest pore that can be reliably
distinguished from the next largest pore. Since the adsorption in all the pores larger than those in
the window of reliability is essentially indistinguishable, assigning a single quadrature interval to
this region makes best use of the experimental data (Davies et al. 1999).

5. RESULTS AND DISCUSSION  

Figure 2 presents a comparison between the experimental isotherms and those obtained by Monte
Carlo simulation for N2 and CO2 at 77 K and 273 K, respectively. The simulated isotherms show
very good agreement with experimental data in all cases. On the other hand, the fact that the
adsorption isotherms are clearly of Type I implies that the conditions of impregnation, pressing
and carbonization employed in the preparation of the disc-shaped monoliths was adequate to
produce microporous solids. 
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Figure 2. Experimental (symbol) and fitted (line) isotherms for N2 at 77 K and CO2 at 273 K.



Figures 3 and 4 show the PSDs predicted by the adsorption of N2 and CO2 for all samples. In
these PSDs, it is clear that the activation treatment performed, based on the impregnation of
precursors with H3PO4 solutions, led to the development of porosity in two regions, i.e. in the
ultramicropore region and in the high-micropore and near-mesopore region. In the case of
nitrogen adsorption onto MCU samples, there is a special increase in the porosity in the latter
region when the concentration of active agent is increased. Furthermore, from Figure 3, it can be
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Figure 3. PSDs calculated from the nitrogen isotherms shown in Figure 2 applying the NLDFT (Quantachrome Soft) and
the GCMC. The respective insets show the NLDFT and GCMC fits for the MCO24 and MCU24 samples.



seen that the PSDs calculated from the nitrogen isotherms applying the Non-Local Density
Functional Theory (NLDFT) (Quantachrome Soft) showed good agreement with the MS-PSDs.

The PSDs predicted by the adsorption of N2 and CO2 in the ultramicropore region were in good
agreement for all the samples (considering that the N2 PSD was biased due to the 1 nm pore-size
gap due to the absence of heterogeneity), a behaviour that is not always observed (Débora et al.
2010, 2011; de Oliveira et al. 2011; Toso et al. 2010).

From the PSDs predicted by the simulation analysis, other textural parameters such as the
surface area and the micropore volume can be obtained and their values compared with those
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Figure 4. PSDs of activated carbon monoliths obtained by GCMC simulation for CO2 at 273 K.



predicted by the BET and DR equations. Table 2 presents such a comparison for the different
samples studied. It is well known that the BET equation always provides an over-estimation of the
surface area for micropores, while the DR equation provides a realistic estimation of the total
micropore volume. The series of ACMs prepared from coconut shells presented BET surface areas
between 975 m2/g and 1320 m2/g, micropore volumes between 0.36 cm3/g and 0.45 cm3/g,
ultramicropore volumes between 0.21 cm3/g and 0.24 cm3/g, and a maximum adsorbed volume of
nitrogen of 520 cm3/g. The monoliths synthesized from African palm pits presented an adsorbed
nitrogen volume of 450 cm3/g, BET surface areas between 752 m2/g and 1711 m2/g, micropore
volumes between 0.30 cm3/g and 0.60 cm3/g, and ultramicropore volumes between 0.19 cm3/g and
0.21 cm3/g.

From Table 2, it can be observed that the MC predictions for the surface area seemed to be more
consistent than the BET predictions. In fact:

1. For the MCO series of ACMs, the MC surface area attained a maximum value for a
concentration value of the activation agent equal to 32 w/v% and then decayed slightly for
higher values, accompanied by a decrease in the total micropore volume, while the
ultramicropore volume was almost constant. In contrast, the BET surface area experiments
showed a strong decrease when the activation agent concentration was greater than
32 w/v%. Hence, the behaviour of the surface area was more consistent with that of the
micropore volume for MC simulations.

2. For the MCU series of ACMs, the MC surface area again showed a maximum for a
concentration value of the activation agent equal to 32 w/v% and then decayed, while the
BET surface area showed a steady increase. On the other hand, the total micropore volume
increased steadily while the ultramicropore volume showed a notable decrease for high
concentrations of the activation agent, which should produce a decrease in the BET surface
area. Hence, the behaviour of the BET surface area was again more consistent with that of
the micropore volume for MC simulations.

Textural Characteristics and Energetic Parameters of Activated Carbon Monoliths 645

TABLE 2. Textural Characteristics of the Discs: Micropore Volume, W0, Surface Area and Immersion
Enthalpy

Sample Nitrogen adsorption CO2 adsorption Nitrogen adsorption ∆Hinm benzene (J/g)

DR MC DR MC BET MC

W0 total W0 total W0 ultramicr W0 ultramicr Surface area Surface area
(cm3/g) (cm3/g) (cm3/g) (cm3/g) (m2/g) (m2/g)

MCO24 0.40 0.51 0.22 0.29 1125 1289 120.2
MCO28 0.46 0.59 0.23 0.31 1270 1354 130.0
MCO32 0.44 0.62 0.24 0.32 1320 1404 147.7
MCO36 0.45 0.61 0.23 0.32 1318 1386 132.3
MCO48 0.36 0.47 0.20 0.33 975 1190 112.9
MCU24 0.32 0.37 0.19 0.25 752 1148 96.02
MCU28 0.42 0.49 0.21 0.30 1013 1340 123.3
MCU32 0.45 0.63 0.21 0.30 1397 1217 130.1
MCU36 0.59 0.83 0.14 0.22 1711 1555 119.5
MCU48 0.61 0.86 0.11 0.22 1706 1497 111.9



Figure 5 shows the correlation between the DR values for the micropore volumes and the BET
values for the surface areas together with the corresponding values predicted by MC simulation,
thereby aiding visualization of the above discussion. The behaviour of the total micropore volumes
in Figure 5(a) shows a good correlation between the DR values and the simulated data for the two
series. When making a comparison between the surface areas determined by BET and MC
methods, it is important to remember that the BET model usually over-estimates the surface area
of microporous solids. This is because it computes the areas of all the nitrogen molecules that fill
the pores, regardless of whether they are in touch with the pore surface or not. However, for very
small pores, viz. less than two molecular diameters, the BET values under-estimate the surface area.
For the surface areas depicted in Figure 5(b), the trend for the MCO samples was satisfactory. Thus,
as shown in Table 2, the BET areas in all the samples of this series, although lower than those
predicted by Monte Carlo simulation, did deviate significantly from each other. This can be
explained from the PSDs presented in Figure 3, where there is a balance between the narrow pore
volumes (ca. 5 Å) and pore volumes for larger sizes. On the other hand, the MCU samples did not
show a definite trend. Again, as in the previous case, the PSDs can explain this behaviour. Thus,
samples MCU24 and MCU28 contained a large volume of pores of approximately 5 Å size, in
which there was not enough space to accommodate two layers of nitrogen molecules each of 3.6 Å
size, thereby producing an under-estimation of the surface area. In addition, the pore volume for
larger sizes was not sufficient to compensate for this phenomenon, thus resulting in an overall
under-estimation of the surface area. In contrast, in the other samples in this series, the PSDs
showed a higher proportion of pores larger than 10 Å, in which more than two parallel nitrogen
molecules layers could be accommodated, thereby causing an over-estimation of the surface area,
as evidenced by the data listed in Table 2. Taking this into account, if the values of the BET area
can be shifted hypothetically, in an appropriate way, as indicated in the figure by the arrows for
each sample, there would be a good correlation between the areas determined by BET and MC.

Figure 6 overleaf shows the relationship between the enthalpies of immersion into benzene, as
determined experimentally, and the surface areas, as obtained via the BET equation and MC
simulations. According to previous work, the enthalpy of immersion in benzene should increase with
the surface area (Moreno and Giraldo 2000). This regular trend is observed for the MCO samples in
Figure 6(a), where the enthalpy value increased with increasing BET area in an almost linear fashion,
with the exception of sample MCO32 which presented a high value for the enthalpy of immersion in
benzene (147 J/g), but a surface area value very similar to the MCO36 monolith. The PSD for MCO32
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Figure 5. Relationship between DR and BET textural parameters and those obtained by GCMC simulation for the ACMs:
(a) micropore volume; (b) surface area. 



shows that this sample contained a greater volume of pores of ca. 20 Å diameter compared with others
in the series, thereby explaining its high enthalpy of immersion in benzene as a result of the interaction
of a larger number of benzene molecules with the solid. However, in the case of samples taken from
African palm pit, Figure 6(b) shows an initial increase in enthalpy with the surface area up to sample
MCU32, but thereafter a decrease for those samples with higher BET area values corresponding to
higher concentrations of phosphoric acid. As can be seen from the PSDs for these samples, a partial
collapse/shrinkage of the porous structure occurred for those samples prepared using high
concentrations of H3PO4 as the impregnating agent. Phosphoric acid can produce metaphosphates
which can block some of the porous structure of the sample, preventing its interaction with the
benzene molecule and thus producing a decrease in the heat of immersion. Apparently, this effect is
more sensitive for a larger molecule such as benzene. Most probably, in these samples, the swelling
of the porous structure modifies the pore size and shape in such a way that the nitrogen molecule is
capable of accessing the porosity while the benzene molecule experiences kinetic restrictions.

5. CONCLUSIONS

We have compared the textural characteristics and energy parameters of activated carbon
monoliths prepared from coconut shell and African palm pit, through an analysis of adsorption and
calorimetric data carried out using Monte Carlo simulation methods. 

Samples of disc-type activated carbon monoliths obtained from coconut shells had a micropore
volume in the range 0.36–0.45 cm3/g, BET area values in the range 975–1320 m2/g, and micropore
and mesopore distributions appropriate to achieve efficient adsorption. The best characteristics
were obtained for the MCO36 and MCO32 series. 

With respect to the disc-type monoliths obtained from African palm pit, these had a micropore
volume in the range 0.32–0.61 cm3/g, BET area values in the range 752–1711 m2/g, and micropore
and mesopore distributions again appropriate to achieve efficient adsorption. The best
characteristics were obtained for the MCU48 and MCU36 series.

We stress the importance of using a method based on first principles, independent of the adsorption
mechanism — such as Grand Canonical Monte Carlo simulations — to analyze the data through the
calculation of the PSD for the material. Such an approach should provide the most complete
information available for the correct characterization of the adsorption properties of the material. 
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