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SUN controls elongated tomato (Solanum lycopersicum) shape early in fruit development through changes in cell number along the
different axes of growth. The gene encodes a member of the IQ domain family characterized by a calmodulin binding motif. To gain
insights into the role of SUN in regulating organ shape, we characterized genome-wide transcriptional changes and metabolite and
hormone accumulation after pollination and fertilization in wild-type and SUN fruit tissues. Pericarp, seed/placenta, and columella
tissues were collected at 4, 7, and 10 d post anthesis. Pairwise comparisons between SUN and the wild type identified 3,154 significant
differentially expressed genes that cluster in distinct gene regulatory networks. Gene regulatory networks that were enriched for cell
division, calcium/transport, lipid/hormone, cell wall, secondary metabolism, and patterning processes contributed to profound shifts
in gene expression in the different fruit tissues as a consequence of high expression of SUN. Promoter motif searches identified
putative cis-elements recognized by known transcription factors and motifs related to mitotic-specific activator sequences. Hormone
levels did not change dramatically, but some metabolite levels were significantly altered, namely participants in glycolysis and the
tricarboxylic acid cycle. Also, hormone and primary metabolite networks shifted in SUN compared with wild-type fruit. Our findings
imply that SUN indirectly leads to changes in gene expression, most strongly those involved in cell division, cell wall, and patterning-
related processes. When evaluating global coregulation in SUN fruit, the main node represented genes involved in calcium-regulated
processes, suggesting that SUN and its calmodulin binding domain impact fruit shape through calcium signaling.

Tomato (Solanum lycopersicum) is an important veg-
etable that is extensively studied for aspects related
to plant and fruit development, fruit ripening, and
quality (de Jong et al., 2011; Matas et al., 2011; Goulet
et al., 2012; Ruan et al., 2012; Mazzucato et al., 2013;
Osorio et al., 2013; Pan et al., 2013; Zhong et al., 2013;
van der Knaap et al., 2014). As a member of the So-
lanaceae family, tomato is also an excellent genetic
system because of its diploid and highly inbred nature
as well as the availability of genetic and genomic re-
sources, such as a reference genome sequence (Tomato
Genome Consortium, 2012). Fruit development initi-
ates at anthesis (flower opening), which in tomato, is
marked by the release of pollen and pollination. After
successful fertilization of the ovules, fruit growth com-
mences. In tomato and many other plants, the initial
growth stages are characterized by cell division fol-
lowed by the cell expansion of the maternally derived
fruit tissues (Gillaspy et al., 1993; Xiao et al., 2009).
Cross talk among the various hormones plays key
roles during the initial stages of fruit growth (Gillaspy
et al., 1993; Ozga et al., 2003; Montoya et al., 2005; de
Jong et al., 2009).

Growth of plant organs, including the fruit, occurs
along three axes: the proximal-distal, mediolateral, and

abaxial-adaxial axes. Fruit length is determined by the
degree of growth along the proximal-distal axis, whereas
fruit width is determined by the degree of growth along
the mediolateral axis. The degree of the pericarp thick-
ness and other internal tissues are determined along the
abaxial-adaxial axis. These growth axes are defined
much earlier, namely during the formation of the floral
meristem and gynoecium primordia in the developing
flower. Correct initiation of the gynoecium requires the
specification of organ and tissue identity as well as the
establishment of the boundaries between primordia to
ensure that the appropriate identities and division pat-
terns are initiated and maintained throughout organ
growth (Dinneny et al., 2005; Balanzá et al., 2006; Girin
et al., 2009; van der Knaap et al., 2014). Hormones, such
as auxin, play a critical role in setting up the patterns of
cell division by regulating the expression of transcription
factors that control ovary development along the three
axes of growth (Ståldal and Sundberg, 2009; Nole-Wilson
et al., 2010; Wang et al., 2011).

The role of patterning genes in the initiation and
growth of organ primordia is relatively well under-
stood. Except in fruit ripening (Vrebalov et al., 2009),
the role of patterning genes in fruit ontogeny is largely
unknown. Soon after initiation, the different tissue
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types within the developing gynoecium arise by re-
activation of the cell identity and cell division in the
so-called quasi-meristems (zones of active cell prolif-
eration within an organ; Girin et al., 2009). The quasi-
meristems give rise to medial tissues, such as the
ovules, septum, style, stigma, and a structure specific
to fruit of members in the Brassicaceae family, the
replum (Girin et al., 2009). Other than the embryo and
the placenta surrounding the developing seeds, fruit
development is not typically marked by newly arising
tissues. However, rates of cell division and cell ex-
pansion are enhanced after fertilization (Gillaspy et al.,
1993; Xiao et al., 2009), and it is, therefore, conceivable
that the patterning genes also play important roles
during the initial stages of fruit development.
The tomato fruit shape gene SUN regulates proximal-

distal patterning by controlling the elongation of the
fruit (Xiao et al., 2008). The mutation resulted from an
interchromosomal gene duplication event, whereby the
coding region was placed in a different genome context,
resulting in high expression of the derived version of
SUN in tissues and at developmental time points when
the ancestral version of this gene is barely expressed
(Xiao et al., 2009; Wu et al., 2011). SUN encodes a
protein of the IQ Domain (IQD) family characterized by
a central domain of 67 conserved amino acid residues
(referred to as the IQ67 domain), which is defined by a
unique and repetitive arrangement of the three con-
sensus calmodulin (CaM) recruitment motifs (Levy
et al., 2005; Xiao et al., 2008). CaM binding proteins
have extremely diverse functions in plants, including
metabolism regulation and hormone signaling (Kim et al.,
2009). The effect on fruit shape by SUN is noticeable at

anthesis but most dramatic 7 to 10 d post anthesis
(DPA; van der Knaap and Tanksley, 2001; Xiao et al.,
2009; Wu et al., 2011). SUN does not control fruit
weight but instead, controls the redistribution of fruit
mass, and the degree of elongation is positively cor-
related to the level of gene expression (Xiao et al., 2008;
Wu et al., 2011). Throughout development from the
ovary at anthesis until the breaker stage, SUN is
expressed highly in the SUN mutant compared with
wild-type fruit (Xiao et al., 2009). The cellular basis of
this elongated shape is clearly visible at 7 DPA, when
an increase in cell number is found in columella and
septum tissues in the proximal-distal direction and a
decrease is found in the mediolateral direction in
plants carrying the SUN mutation compared with the
wild type. Cell size is not significantly different in SUN
compared with wild-type fruit. Based on these results,
it was proposed that SUN results in changes of the
plane of cell division toward more cells in the proximal-
distal direction (Wu et al., 2011). Little is known about
the function of the IQD family, despite their widespread
occurrence in plant genomes (Abel et al., 2005; Huang
et al., 2013). In Arabidopsis (Arabidopsis thaliana), in-
creased expression of AtIQD1 leads to higher glucosi-
nolate levels, which coincide with increased expression
of certain enzymes in the shared auxin/glucosinolate
pathway involving the intermediate metabolite indole-
3-acetaldoxime (Levy et al., 2005). In tomato, however,
glucosinolates are not produced, and the indole-3-
acetaldoxime pathway is only found in the Brassicaceae
family (Glawischnig et al., 2004; Sugawara et al., 2009;
Zhao, 2010; Won et al., 2011), suggesting that the role of
these proteins is not specific to glucosinolate produc-
tion. In support of that notion, AtIQD1 was found to
localize to microtubules in planta and physically interact
with a kinesin light chain-related protein1 (Bürstenbinder
et al., 2013). These results imply that members of the IQD
family may provide a scaffold for protein transport along
the microtubules through kinesin motor proteins (Abel
et al., 2013; Bürstenbinder et al., 2013). In tomato, SUN
overexpression leads to extreme phenotypes, such as
seedless fruit with a pointed shape, twisted stems and
leaf rachis, and altered vascular patterning as well as
increased leaf serration (Wu et al., 2011). Combined,
these traits are associated with altered auxin homeo-
stasis in tomato and other plants (Bouchard et al., 2006;
de Jong et al., 2009; Molesini et al., 2009; Wu et al.,
2011; Sawchuk et al., 2013; Ge et al., 2014). SUN ex-
pression does not lead to extensive changes in expres-
sion of AUX/IAA or Auxin Response Factor; therefore,
SUN has been proposed to function in auxin-regulated
processes by either increasing its biosynthesis or alter-
ing polar transport (Xiao et al., 2009; Wu et al., 2011).
However, direct links between SUN expression and the
auxin pathway have not been established.

The goal of this study was to investigate the molec-
ular mechanisms by which SUN controls fruit shape in
tomato. To do so, we carried out a network analyses
approach to gain insights into the role of SUN in fruit
development. Three tissues at different stages of fruit
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development were collected from wild-type and SUN
plants and evaluated for gene expression, primary me-
tabolite, and hormone profiles. By clustering gene ex-
pression based on similar profiles in the different tissues
over time and evaluating metabolite and hormone accu-
mulation, putative regulatory networks were identified
that accompanied the early stages of fruit development
when the changes in fruit shape mediated by SUN
became apparent. The results showed that the early
stages of tomato fruit development were highly dy-
namically controlled. Moreover, clusters of genes that
were codifferentially expressed in SUN compared with
the wild type share common promoter elements, which
might explain the codifferential expression patterns.
The findings provided unique information as to how
SUN may regulate elongated fruit shape, while also
providing a framework for the metabolite, hormone,
and gene networks that are operating during the early
stages of tomato fruit development.

RESULTS

Clustering of Coregulated Genes in Developing
Fruit Tissues

Fruit growth after pollination consists of a rapid in-
crease in cell division and the initiation of seed devel-
opment followed by a period of cell expansion and
organ enlargement (Gillaspy et al., 1993; Xiao et al.,
2009). The effect of SUN on fruit shape is most dramatic
immediately after pollination, and in cultivated tomato,
the shape is final at 10 to 12 DPA (Fig. 1; van der Knaap
and Tanksley, 2001). The tissue that is most affected in
the change in shape is the central part of the fruit,
namely the columella and septum (Wu et al., 2011). To
identify key processes that accompanied the initial
stages of fruit development after pollination, we first
evaluated global variation in gene expression in wild-
type fruits in the following tissues at these time points:
pericarp, columella, and the combined seed/placenta
tissues at 4, 7, and 10 DPA (Supplemental Tables S1
and S2). Using fuzzy C means, we selected a subset of
clusters of 100 based on the most dynamic expression
changes in a spatial and temporal manner (Fig. 2;
Supplemental Table S3). The selected clusters repre-
sented dynamic developmental changes in expression
programs during early fruit development and included
enrichment of different bin ontologies. Cell division
(Fig. 2A; 604 genes) exhibited peak expression in 7-DPA
pericarp tissue and shares a similar pattern with RNA
(Fig. 2C; 224 genes), a cluster enriched for transcription
factors. Showing peak expression in 4- and 7-DPA
pericarp, the cluster enriched for secondary metabolism
(Fig. 2D; 396 genes) was also enriched for lipid metab-
olism, cell division, and transport (Supplemental Table
S4A). The cell wall-enriched (Fig. 2B; 188 genes) gene
cluster showed peak expression at 7 DPA in all three
fruit tissues. Interestingly, a cluster enriched for transport/
signaling showed peak expression in 4-DPA columella
and decreased as development of this tissue proceeded

(Fig. 2F; 224 genes). This cluster’s expression program
was in contrast to a cluster enriched for transport/
hormone, which showed peak expression in 10-DPA
columella (Fig. 2E; 353 genes), implying that signaling
led to hormonal and transport responses during col-
umella development. A cluster of genes enriched for
photosynthesis (Fig. 2G; 201 genes) showed peak ex-
pression in 4- and 7-DPA columella. This cluster was
also enriched for tricarboxylic acid cycle, carbohydrate
metabolism, oxidative pentose phosphate pathway,
and protein, showing an emphasis on metabolism in
columella tissue during the earliest stages of fruit de-
velopment. At 10 DPA, the latest developmental stage
that we assayed, a cluster of protein-related enriched
genes showed peak expression in all fruit tissues,
presumably setting the stage for the next phase of fruit
development.

Collectively, the temporal and spatial clusters showed
a coordinated program of gene expression that was
dynamically executed during early fruit development.
To investigate whether SUN expression altered overall
gene expression programs, we next evaluated those
that were differentially regulated in the same tissues
and time points.

Figure 1. Tomato fruit growth after pollination. A, Wild-type fruit at
anthesis and 4, 7, 10, and 16 DPA. B, SUN fruit at anthesis and 4, 7,
10, and 16 DPA. Bar = 1 cm. C, Expression of SUN in wild-type and
SUN fruit tissues and at developmental time points. col, Columella;
per, pericarp; se, seed and placenta; WT, wild type.
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Clustering of the Codifferentially Expressed Genes in SUN
and Wild-Type Fruit

To provide insights into how SUN regulates shape
and whether this is accompanied with shifts in tran-
script profiles, we identified differentially expressed
genes in eight pairwise comparisons of SUN and wild-

type fruit tissues and time points. The total number of
significant differentially expressed genes in at least one
comparison was 3,154 based on DESeq analysis and
multiple Bonferroni corrections (Anders and Huber,
2010; Anders et al., 2013). Seven genes showed robust
differential expression in all tissues at all develop-
mental time points. Three of the genes were expected,
namely SUN itself (Solyc10g079240; Fig. 1C) and the
two defensin genes (DEFENSIN-LIKE1 [DEFL1] and
DEFL2; Solyc07g007760 and Solyc07g007750, respec-
tively), which had expression that was perturbed by
the retrotransposition of SUN from chromosome 10 to
chromosome 7 (Xiao et al., 2008; Jiang et al., 2009). Of
the other four genes, three had lower expression in
SUN fruit, and one had higher expression. The higher
expressed gene, Solyc07g064380, encoded a Ser/Thr
phosphatase. Of the three genes that showed lower
expression in SUN, two encoded proteins that were
involved in secondary metabolism. Solyc06g035940
was a likely paralog of PROTODERMAL FACTOR2,
encoding a transcription factor regulating cutin bio-
synthesis (Nadakuduti et al., 2012). Solyc07g006670
encoded a hydroxycinnamoyl CoA quinate transferase
participating in chlorogenic acid synthesis.

The differential gene expression appeared dynamic
over the course of fruit development and in different
tissues (Supplemental Table S5). To further investigate
how elevated SUN expression impacts overall path-
ways in the developing tomato fruit, we evaluated the
enrichment of gene ontology (GO) categories in the
significantly differentially expressed gene data set
(Supplemental Table S4B). Collectively, the enrichment
for genes involved in cell wall, photosynthesis, hor-
mone metabolism, transport, and biotic stress as well
as secondary metabolism, including lipid metabolism,
metal handling, and cell division, indicated that these
processes were most dramatically affected by high
expression of SUN. Linear factorial modeling of the
data with genotype and genotype 3 time point inter-
actions in the model also supported the importance of
many of the same processes in differential fruit growth
that is conditioned by SUN (Supplemental Tables S4C
and S6).

We clustered the differentially expressed genes
based on the log2 fold change of the wild type and
SUN using fuzzy C means. This analysis resulted in
the identification of several gene regulatory networks
(GRNs), of which 14 exhibited dynamic differences in
expression between SUN and wild-type fruit in the de-
velopmental time points and tissue types (Supplemental
Fig. S1; Supplemental Table S7). GRN8 showed one of
the highest significant enrichments for only one cate-
gory, namely cell division (Supplemental Table S4D).
This cluster included 9 cyclins and 17 cell organization
genes, including 15 kinesin/microtubule motor genes
(Supplemental Table S7). Of the several networks that
were enriched for cell wall, GRN4 was most signifi-
cantly enriched for genes in this category (16% of all
genes in the network; Supplemental Tables S4D and
S7). The network included genes involved in cell wall

Figure 2. Dynamically expressed and coregulated genes during early
fruit development in wild-type tomato. A, Six hundred four genes rep-
resented by cell cycle- and cell division-related processes. B, One
hundred eighty-eight genes represented by cell wall-related processes.
C, Two hundred twenty-four genes represented by RNA- and transcrip-
tion-related processes. D, Three hundred ninety-six genes represented by
secondary metabolism-related processes. E, Three hundred fifty-three
genes related to transport- and hormone-related processes. F, Two hun-
dred twenty-four genes represented by transport- and signaling-related
processes. G, Two hundred one genes represented by photosynthesis-
related processes. H, Two hundred eighty-four genes represented by
protein- and translation-related processes. Gene expression is on a
relative mean-centered scale, showing the median expression level for
all members in the respective cluster in SUN and wild-type fruit. Error
bars indicate SE for the genes in the respective cluster. Col.4, Columella
4 DPA; Col.7, columella 7 DPA; Col.10, columella 10 DPA; Per.4,
pericarp 4 DPA; Per.7, pericarp 7 DPA; Per.10, pericarp 10 DPA; Se.7,
seed 7 DPA; Se.10, seed 10 DPA.
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synthesis, degradation, modification, UDP GLUCOSYL
and GLUCORONYL TRANSFERASES, INVERTASES,
PECTATE LYASES, and PECTIN ESTERASES. Another
interesting cluster was represented by GRN10 and GRN14,
showing similar dynamics in differential expression
(Supplemental Fig. S1). Combined, they represented
genes, such as three PINFORMED1-like (PIN1-like),
involved in auxin transport and enrichment for genes
encoding transport-related proteins, cell wall, hormone
metabolism, several Leu-rich repeat receptor-like ki-
nases, and transcription factors putatively involved in
patterning. Additional GRNs showed genes enriched
in the secondary metabolism category and included
those involved in the isoprenoid, polypropanoid, and
lignin pathways (GRN2; Supplemental Table S4D).
GRN3 had the most genes related to calcium, particu-
larly those involved in its transport and signaling, and
included a member of the IQD family, SlSUN25. GRN9
was enriched for genes involved in lipid, hormone, and
secondary metabolism. In this cluster, four were pre-
dicted to act in the brassinosteroid pathway, and four
other genes were predicted to act in the steroid metab-
olism pathway. Several genes involved in isoprenoid
and phenylproponoid pathways were found in this
network as well.

The log2 fold (SUN/the wild type) profiles of the
total set of 3,154 differentially expressed genes were
plotted in the principal components analysis (PCA)
space (Fig. 3A). The highlighting of selected GRNs
showed that they were tightly codifferentially regu-
lated in SUN fruit in distinct programs (Fig. 3B). The
most intriguing codifferentially regulated cluster was
GRN8 enriched for cell division-related genes (Fig. 3E).
This cluster showed decreased expression in SUN fruit
in 7-DPA pericarp and increased expression in 7-DPA
columella. At 10 DPA, the genes in this cluster were
not differentially expressed between SUN and wild-
type fruit, coinciding with when the shape controlled
by SUN became finalized. GRN2, enriched for sec-
ondary metabolism, showed reduced expression in
SUN fruit in the pericarp at 4 DPA and increased ex-
pression in SUN fruit in seed and columella at 7 DPA
(Fig. 3C). The opposite regulation was found in GRN10
and GRN14 enriched for cell wall/RNA and hormone
metabolism/development/transport, respectively, show-
ing increased expression in SUN fruit in pericarp at 4
DPA, decreased expression in SUN fruit in seed at 7
DPA, and increased expression in SUN fruit in 4-DPA
columella (Fig. 3G). GRN9, enriched for lipid and
hormone metabolism, showed increased expression in

Figure 3. GRN expression dynamics in developing fruit. A, PCA of all differentially expressed genes using the log2 SUN/wild-
type expression over all tissue types and time points sampled. B, Selected GRNs in PCA space. C to G, Log2 SUN/the wild type
for selected GRN per tissue type and time point. C, GRN2. D, GRN3. E, GRN8. F, GRN9. G, GRN10/GRN14. col.4, Columella
4 DPA; col.7, columella 7 DPA; col.10, columella 10 DPA; PC1, principal component 1; PC2, principal component 2; per.4,
pericarp 4 DPA; per.7, pericarp 7 DPA; per.10, pericarp 10 DPA; se.7, seed 7 DPA; se.10, seed 10 DPA; WT, wild type.

1168 Plant Physiol. Vol. 168, 2015

Clevenger et al.

 www.plant.org on June 30, 2015 - Published by www.plantphysiol.orgDownloaded from 
Copyright © 2015 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/cgi/content/full/pp.15.00379/DC1
http://www.plantphysiol.org/cgi/content/full/pp.15.00379/DC1
http://www.plantphysiol.org/
http://www.plant.org


SUN fruit at 7 DPA in seed and columella and at 10
DPA in seed and pericarp (Fig. 3F).
To investigate in more detail the level of coexpression

among selected genes, we focused on those that were
known from other studies to participate in shared path-
ways or those that were involved in patterning. For
brassinosteroid biosynthesis, eight tomato putative
orthologs were higher expressed in SUN compared
with the wild type in seed and columella at 7 DPA and
seed, columella, and pericarp at 10 DPA (Supplemental
Fig. S2A). The putative ortholog of the auxin biosyn-
thesis gene YUCCA4, auxin influx gene AUX1, and
auxin efflux gene PIN1were higher expressed in 4-DPA
columella and pericarp, and the putative auxin conju-
gation gene JASMONATE RESISTANT1 showed an
opposite expression pattern, similar to findings from
other systems (Supplemental Fig. S2B). Calcium-related
genes were correlated with SlSUN25 and higher ex-
pressed in 4- and 7-DPA columella tissue in SUN
fruit while being lower expressed in 7-DPA pericarp
(Supplemental Fig. S2C). GROWTH-REGULATING
FACTOR1 (GRF1), GRF-INTERACTING FACTOR1 (GIF1),
and 12 cyclin genes were also higher expressed in
4-DPA pericarp and 7-DPA columella tissues in SUN
fruit (Supplemental Fig. S2D).
Among the patterning genes, the Arabidopsis genes

PIN1 and KANADI2 are involved in regulating organ
polarity and coregulated with one another (Izhaki and
Bowman, 2007). In SUN compared with wild-type to-
mato fruit, the putative orthologs of PIN1 and KANADI2
showed similar differential expression dynamics, with
a strong increased expression in 4-DPA columella tis-
sue (Supplemental Fig. S3A). JACKDAW and MAGPIE
control SHORTROOT (SHR) activity in Arabidopsis
roots (Welch et al., 2007). The putative tomato orthologs
showed a similar expression dynamic as in Arabidopsis:
when JACKDAW and MAGPIE were not differentially
expressed, SHR was differentially expressed in fruit
tissues (Supplemental Fig. S3B). The putative orthologs
of the transcription factors REPLUMLESS (RPL),
AGAMOUS (AG), SHOOT MERISTEMLESS (STM ),
and PHABULOSA (PHB) showed coregulated expres-
sion in SUN fruit (Supplemental Fig. S3C). RPL and
APETALA2 (AP2) showed an opposite differential ex-
pression pattern in tomato fruit, where RPL was most
differentially expressed at 4 and 7 DPA in the colu-
mella (Supplemental Fig. S3D). RPL and AG were
expected to be coregulated, because they are both re-
pressed by AP2 (Drews et al., 1991).

Promoter Analysis of Codifferentially Expressed Genes

To gain insights into the molecular mechanism that
drives the regulation of the differentially expressed
genes found in the same network, we evaluated the
promoter sequences in a subset of the GRNs. The se-
lected GRNs were enriched for genes related to the cell
cycle (GRN8), RNA/cell wall (GRN10), and lipid/
hormones (GRN9), and one network featured genes

involved in calcium signaling and transport (GRN3).
GRN10 contained several transcription factors repre-
senting those putatively involved in patterning, such
as AINTEGUMENTA-LIKE5, STM, KANADI2, and
PHB, as well as three PIN1-like genes andAUX1 involved
in auxin transport. Commonly used motif-finding pro-
grams, such as MEME, Cosmo, and Wordseeker, re-
sulted in few putative cis-elements, and most of them
resembled microsatellite sequences (Blackwood et al.,
2013). Therefore, we uniquely designed and imple-
mented an exhaustive search and frequency-based
analysis for 6-mers in 1 kb of promoter using Python
scripts run on Hadoop (Hadoop, 2013). For each net-
work and 6-mer, the occurrence of the motif was
counted in the actual and shuffled promoters, yielding
a promoter enrichment score (Supplemental Table S8).
For the cell cycle network, 13 putative 6-mers were
recognized based on the enrichment score of three or
higher. These motifs were then clustered manually into
four consensus motifs (Table I). For the RNA/cell wall
network, two 6-mers were identified, which clustered
into one consensus motif. For the lipid and hormone
network, 18 6-mers were identified, resulting in six
consensus motifs. In the calcium signaling and trans-
port network, the five 6-mers identified were clustered
into three consensus motifs (Table I). Some of the
identified motifs were unknown, whereas others had
been described previously to bind MYELOBLASTOSIS
(MYB) or TEOSINTE BRANCHED1, CYCLOIDEA, and
Proliferating Cell Nuclear Antigen gene-controlling
element binding factor (TCP) family transcription factors,
involve cell cycle regulation, or represent putative abscisic
acid (ABA) response elements (Iwasaki et al., 1995; Abe
et al., 1997; Ito et al., 1998; Ito, 2000; Schommer et al., 2008,
2014; Zhang et al., 2010; Supplemental Table S8).

To test the validity of the computationally identified
6-mers, the enrichment score for each was evaluated in
the promoters of the genes in the other three networks.
For the cell cycle cluster, all four consensus elements
were occurring at much higher enrichment scores in
the cell cycle than in any of the other networks (Table
I). In fact, two of its consensus motifs, TRRCCGT and
CCACGGYYA, were 22- to 5-fold higher enriched in
the cell cycle network than in any of the others.
However, the single-consensus motif found in the
RNA/cell wall network, TGGACCA, was highest in its
own network but only slightly lower in the lipid/
hormone network. This result implied that the genes
in the RNA/cell wall and lipid/hormone networks
may be coregulated through the same putative 6-mer.
Indeed, the RNA/cell wall GRN was represented by
several genes involved in auxin transport. All six con-
sensus elements from the lipid/hormone network
showed higher enrichments scores compared with the
other three networks (a 25- to 3-fold-higher represen-
tation). Finally, the three consensus motifs from the
calcium network were 3- to 2-fold higher enriched in
this compared with the other three networks.

The genes with promoters that carried the cell cycle
network consensus motif (CCAACGGYYA expected to
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recognize MYB transcription factors or the mitotic-specific
activator sequences, the RNA/cell wall consensus
motif TGGACCA possibly recognized by TCP tran-
scription factors, the lipid/hormone consensus motif
CAYRTGG expected to be an ABA response element,
and the unknown calcium/transport consensus motif
AGGTSATG) were further investigated (Fig. 4). The
expression profiles of the genes carrying these motifs
in their promoters clustered according to genotype
(SUN or the wild type), clearly showing that these genes
were codifferentially expressed. To validate these results,
we analyzed a random set of differentially expressed
genes, which did not cluster based on genotype (Fig. 4,
C and D). Thus, SUN expression is associated with ex-
tensive reprogramming of genes in the developing fruit
that is coincidingwith the changes in fruit growth patterns.

SUN Modulates Metabolite Networks to Form Unique
Associations with the Tricarboxylic Acid Cycle and
Abolishes Associations with Amino Acids

To investigate whether metabolite accumulation
also differed in SUN and wild-type fruit, we used the
same tissues that were analyzed for gene expression
analysis and evaluated the metabolite levels using
gas chromatography-time-of-flight-mass spectrometry
(GC-MS). Pairwise comparisons were made between
SUN and wild-type fruit and placed into a global
metabolic context by constructing a pathway map of
significant changes using a relaxed statistical threshold
(P, 0.05; Fig. 5). The pathwaymap of significant changes
between SUN and the wild type showed that columella

Figure 4. PCA of the expression profile of genes with detectedmotifs in the
promoter region. A, Fifty-eight genes in the cell cycle cluster with the
CCAACGGYYA consensus motif (GRN8). B, Twenty-four genes in the RNA
and cell wall cluster with the TGGACCA consensus motif (GRN10). C, A
group of 45 random genes. D, Thirty-one genes in the lipid and hormone
cluster with the CAYRTGG consensus motif (GRN9). E, Twenty-eight genes
in the calcium signaling and transport cluster with the AGGTSATG con-
sensus motif (GRN3). F, A second set of 45 random genes. PC1, principal
component 1; PC2, principal component 2; WT, wild type.T
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tissue at 7 and 10 DPA exhibited the most significant
changes (Fig. 5). Globally, decreased accumulation of in-
termediates in the tricarboxylic acid cycle and increased
accumulation in certain sugars and amino acids were
observed in SUN, although these changes were less than
2-fold. Certain metabolites also showed significant
changes between SUN and the wild type in seed tissue at
10 DPA in the same pattern as columella tissue at 10 DPA
(Supplemental Fig. S4). However, these findings should
be interpreted with caution, because pairwise compari-
sons may oscillate around the mean, which could lead to
false-positive and -negative results, and the fold differences
are relatively low.
We next evaluated correlations of the metabolites

with one another in SUN and wild-type fruit. The
relative accumulation for each primary metabolite that
was evaluated in SUN and wild-type tissues showed
that many did not differ dramatically, except certain
sugars and organic acids. (Supplemental Fig. S5). Suc
levels were lower in SUN fruit in 4-, 7-, and 10-DPA
columella. In contrast, Glc-6-P was higher in 10-DPA
columella in SUN fruit. Another sugar, trehalose, was
higher in 10-DPA pericarp in SUN fruit. The organic

acids, fumaric acid and succinic acid, were lower in 7-
and 10-DPA columella, whereas fumaric acid was
lower in 10-DPA pericarp. Pairwise correlations of
each metabolite were conducted separately. The anal-
ysis suggested positive and negative correlations be-
tween metabolites that were only found in SUN
(Supplemental Fig. S6; Supplemental Table S9). Con-
versely, positive and negative correlations were also
found only in wild-type fruit (Supplemental Fig. S7;
Supplemental Table S10). We subsequently extracted
the unique and abolished metabolite connections and
created subnetworks of those metabolites exhibiting
10 or more correlations (Supplemental Fig. S8). These
hubs mirror the results of the pairwise comparisons,
suggesting that these metabolites seemed to be af-
fected in SUN fruit, at least in the later stages of fruit
development that were assayed.

Profiling of Hormone Levels in SUN and Wild-Type Fruit

Hormone levels were profiled in SUN and wild-type
fruit in 4-DPA columella/seed and pericarp tissue and

Figure 5. Metabolite changes in wild-type and SUN tomato fruit. Pairwise comparisons of metabolite accumulation between
SUN and wild-type fruit in the pericarp tissue 7 and 10 DPA and septum tissue 4, 7, and 10 DPA. Highlighted boxes reflect a
P , 0.05 using Student’s t test. The color legend indicates fold change of SUN/wild-type fruit. Positive values indicate values
higher in SUN fruit. Negative values indicate values higher in wild-type fruit. GABA, g-aminobutyric acid; PEP, phospho-
enolpyruvate; 3PGA, 3-phosphoglyceric acid.
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10-DPA columella, seed, and pericarp tissue (Supplemental
Table S11). Eleven hormones were profiled, including
auxin (IAA); GA3 (GA1 and GA4); brassinolide (BL);
the cytokinins (CKs) transzeatin (tZ), dhihydrozeatin
(DHZ), and isopentenyl adenine (iP); jasmonic acid (JA)
and its activated conjugate JA-Ile (JA-Ile); salicylic acid
(SA); and ABA. We identified those hormonal net-
works that were found only in SUN or the wild type
(Supplemental Fig. S9, A and B). Two unique subnet-
works emerged in SUN fruit (Supplemental Fig. S9,
A and C). One was a network with ABA as the hub and
positive correlations with IAA and the CKs iP, DHZ,
and tZ. iP and tZ also were highly correlated in SUN
compared with the wild type (Pearson’s correlation
coefficient [PCC] . 0.98). Additionally, GA4 and JA-Ile
had formed a unique subnetwork in SUN fruit. One
network with DHZ as the hub was only found in the
wild type and therefore, abolished in SUN fruit
(Supplemental Fig. S9, B and D). Negative correlations
between IAA and GA4 and between IAA and DHZ
were only found in the wild type as well as negative
correlations between DHZ and GA1.

Hierarchical clustering of hormone correlations showed
three distinct groups in wild-type fruits: GA; the de-
fense hormones JA, JA-Ile, SA, and ABA; and IAA, BL,
and the CK (Supplemental Fig. S9D). In SUN com-
pared with the wild type, the grouping broke down as
ABA became correlated with IAA, iP, and tZ, and JA-
Ile became correlated with GA (Supplemental Fig.
S9C). However, overall hormone levels did not change
dramatically in these experiments, and therefore, the
results should be interpreted with caution.

DISCUSSION

Tomato Fruit Initiation and Associated
Transcription Profiles

By conducting transcriptome analyses of separate tis-
sues at an early stage of fruit development, we identified
coregulated gene networks that differed in SUN and
wild-type fruit. Using different approaches, a cluster of
genes involved in cell cycle regulation and cell division
(cell division cluster in Fig. 2A; GRN8 in Supplemental
Fig. S1) was found to differ most dramatically during
fruit development while also being differentially ex-
pressed in SUN and wild-type fruit. Genes in GRN8
showed the highest coregulation, the most striking
genotype-specific regulation of all of the coregulated
gene clusters, and the highest enrichment score of cluster-
specific promoter motifs identified in this study. For ex-
ample, six of eight cyclin genes in the cluster contain the
promoter consensus motif CCAACGGYYA, including
CYCLIN B1;2 (CYCB1;2; slyc01g009040, solyc10g080950,
and solyc10g078330), CYCB2;4 (solyc02g082820 and
solyc04g082430), and FIZZY-RELATED3 (solyc06g043150).
Thus, this consensus motif represents a potential target
for regulation of cell division patterns. The data show
that the cell cycle is one of the key processes that is
most dynamically altered by SUN, which is consistent

with its effect on increasing cell number on the proximal-
distal axis while decreasing cell number on the medio-
lateral axis (Wu et al., 2011). Prior studies into gene
expression regulated by SUN were less informative,
because the RNA was isolated from whole organs as
opposed to separate tissue types (Xiao et al., 2009).
This shows that expression analyses of specific tissues
are more insightful than expression analysis of whole
organs.

A second cluster of genes, encoding those involved
in cell wall-related processes, is dynamically and dif-
ferentially expressed in developing fruit tissues and
highly enriched based on GO terms (cell wall cluster in
Fig. 2B; GRN4, GRN10, and others in Supplemental
Fig. S1; Supplemental Table S4). The shift in expression
of the cell wall-related genes as early as 4 d after fruit
initiation implied that high expression of SUN leads to
changes in cell wall properties that may precede the
differential expression of genes related to cell division.
The cell wall, its composition, and its structure are
known to vary during tissue growth (Mirabet et al.,
2011; Hernández-Hernández et al., 2014). Two models
explain organ growth that results in divergent shapes:
(1) stress-based axiality, whereby genes that alter pat-
terning lead to cellular stresses influencing the cy-
toskeleton, which then drive the changes in the
orientation of growth; and (2) polarity-based axiality,
whereby genes that affect the distribution of signaling
molecules define the polarity within the tissue (Uyttewaal
et al., 2010; Kennaway et al., 2011). In both cases, me-
chanical constraints within the tissue caused by the
properties of cell walls together with stress and/or
polarity-based drivers are thought to result in the final
morphology of plant organs. Thus, it may be expected
that changes in expression of cell wall-related genes are
associated with changes in organ shapes.

Another group of differentially expressed genes was
putative orthologs of patterning genes. The role of
these genes during growth of plant organs after their
initiation is largely unknown. Reactivation of meri-
stematic cells in otherwise differentiated zones has
been proposed for the formation of ovules and other
tissues in the developing ovary (Girin et al., 2009).
Whether this also applies to the reactivation of cell
division in fruit tissues after pollination and fertiliza-
tion is unclear. GRN10 was moderately enriched for
RNA regulation (Supplemental Table S4D). Because
there is no organ patterning category using the Map-
man bin ontology, we annotated the set of tomato gene
models using the Trinotate pipeline (http://trinotate.
sourceforge.net/) and associated GO terms with gene
models (data not shown). Using these Trinotate GO
terms, GRN10 was enriched for regulation of meristem
structural organization, polarity specification of the
adaxial-abaxial axis, radial pattern formation, and
asymmetric cell division. Overall, our data showed
that putative organ patterning genes were strongly
differentially regulated in SUN fruit. This might be
directly causative to the change in fruit shape by
modulating the expression of cell cycle-related genes.
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Thus, in addition to cell division and cell wall, SUN
expression also leads to dramatic shifts in the expres-
sion of putative patterning-related genes.
The transcriptome data were also analyzed using

linear factorial modeling approaches (van Leeuwen
et al., 2007). Several GO term categories that were
found in the GRNs were also identified using linear
modeling. Importantly, the linear factorial modeling
identified approximately 80% of the genes found in
GRN10 (cell wall and RNA regulation) and GRN14
(most significantly enriched for development), validat-
ing the genes identified in the clusters (Supplemental
Table S6). These two GRNs were specifically higher
expressed in SUN fruit in 4-DPA pericarp and 4-DPA
columella, indicating significant genotype 3 time point
interactions. However, the factorial approach did not
identify GRN8, the most dramatically altered cell di-
vision cluster (Supplemental Table S4). Because our
experimental setup was not representative of a full
factorial (e.g. 4-DPA columella and seed/placenta were
combined), we were not able to evaluate the interaction
of genotype 3 time point 3 tissue type for all of the
tissues collected. Therefore, genes that are affected by
SUN at only one level, which is the case for GRN8,
would not be identified using the linear model ap-
proach. Instead, to correct for testing errors in pairwise
comparisons, we conducted a multiple testing correc-
tion on eight comparisons on top of the multiple testing
correction within each comparison and only selected
the genes that passed both. With the understanding that
few genes in the GRN clusters still represent false pos-
itives, the clustering based on the pairwise comparisons
gave us excellent insights into GO term pathways that
were most clearly affected by SUN in a dynamic inter-
action of genotype, time point, and tissue type.

Comparison between Metabolite and Transcriptome
Profiling in Developing Tomato Fruit

Investigations into metabolite accumulation in SUN
fruit showed that some tricarboxylic acid cycle me-
tabolites were lower in columella tissues. To link these
results with the transcriptome data, we found that
GRN5 was enriched for genes encoding tricarboxylic
acid cycle enzymes and included malate dehydrogen-
ase, citrate synthase, and citrate lyase. In tomato, in-
hibition of 2-oxoglutarate dehydrogenase results in
decreased respiration and increased accumulation of
oxoglutarate and succinic acid but no difference in
fruit size or biomass (Araújo et al., 2012). In contrast,
inhibition of succinate dehydrogenase leads to in-
creased photosynthate assimilation and fruit biomass
(Araújo et al., 2011). Our data suggest that these
changes in TCA intermediates are a product of dif-
ferential flux through the pathway, possibly as an
effect of increased cell division in the columella,
resulting in altered fruit shape (Wu et al., 2011). Other
links between metabolites and their biosynthesis
pathways were not evident, suggesting that the pair-
wise comparisons were not sufficiently robust or that
the overlap in pathways identified from gene expres-
sion and metabolites is generally low.

Genes, Metabolites, and Hormones Interact to Regulate
Elongated Fruit Shape

To evaluate the combined effect of SUN on gene ex-
pression, metabolite, and hormone accumulation, we
constructed a gene-metabolite-hormone interactome
map (Fig. 6). Genes and metabolites were grouped into
pathways to show how SUN-affected pathways interact

Figure 6. Gene, metabolite, and hormone
interactome in SUN fruit. The size of the
nodes represents the number of edges to that
node. Blue edges represent significant positive
correlations. Red edges represent significant
negative correlations. Nodes represent genes,
metabolites, or hormones that participate in
the pathway indicated. Squares represent
genes. Diamonds represent metabolites. Hor-
mones are represented as circles. Cell pattern
indicates transcription factors that regulate
organ polarity and patterning. IQDs are
members of the SUN family. Calcium indi-
cates genes involved in calcium transport,
CaM binding, and proteins requiring calcium
for function. Lipid indicates genes involved in
lipid biosynthesis and regulation. A, Full
interactome network with bundled edges.
B, Subnetwork of calcium hub. BR, Genes
involved in brassinosteroid homeostasis; cell-
div, genes involved in cell division; GRF GIF,
genes in the GRF family and GIF; TCA, en-
zymes that participate in the tricarboxylic acid
cycle; aa, amino acid; MAX4, more axillary
branching; met, metabolite.
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during early fruit development. The size of each node
represented how many edges were attributed to the
pathway (i.e. how many significant correlations each
pathway exhibited with other pathways; PCC . 0.90
and , 20.90). The most represented pathways were
calcium regulation/transport, lipid metabolism, cell
cycle and division, amino acid metabolism, auxin
biosynthesis/transport/signaling, brassinosteroid metab-
olism, and ethylene biosynthesis/signaling. A zoomed-in
view at the network (Fig. 6B) revealed that processes
involved in calcium regulation/transport form the
main hub of connections with other pathways that are
involved in regulating elongated fruit shape that
resulted from high expression of SUN. The calcium
pathway was positively correlated with patterning,
cell cycle/division, GRF-GIF gene expression, auxin
regulation/transport, and the hormones IAA and BL.
Tricarboxylic acid cycle genes as well as tricarboxylic
acid cycle metabolites were negatively correlated with
the gene pathways controlling cell division/patterning
as well as auxin.

CONCLUSION

It is likely that SUN sets up the pattern for differ-
ential fruit growth before anthesis, because ovary
shape is slightly different at the time that the flower
opens (Wu et al., 2011; van der Knaap et al., 2014).
Thus, the fruit tissues used in this study represent later
growth stages, when shape changes mediated by SUN
are being executed. Inferring from the data generated
in this study, we propose that the manner by which
SUN regulates fruit shape is by impacting a calcium
signaling cascade through its CaM domain-interacting
motif to set up the pattern of organ growth. Based on
the interaction of an SUN family member AtIQD1
(Bürstenbinder et al., 2013) with a kinesin motor pro-
tein, SUN may be involved in transport of cargo
throughout the cell (van der Knaap et al., 2014), pos-
sibly of cell wall components. This then leads to dra-
matic shifts in the spatiotemporal gene expression of
many cell wall, cell division, and patterning genes at
the early stages of fruit development. Although plant
phenotypes associated with high SUN expression
suggest a role for auxin in regulating fruit shape and
plant morphology (Xiao et al., 2008; Wu et al., 2011),
there may be no direct role for any of the known plant
hormones in the regulation of fruit shape mediated by
SUN.

MATERIALS AND METHODS

Plant Materials

Nearly isogenic lines were constructed by repeated backcrosses of recom-
binants harboring approximately 70 kb of introgression of the sun locus from
Solanum pimpinellifolium LA1589 (the wild type for the sun locus). Sun1642
harboring the mutation at the sun locus (SUN) was used as the recurrent
parent, and backcrosses were monitored using background markers. Thus,
in principle, these lines only differ for the allele of the tomato (Solanum

lycopersicum) SUN gene (Wu et al., 2011). The nearly isogenic lines (the wild
type; SUN) were grown in the greenhouse in 2-gallon pots and 16 h of daylight.
Flowers at anthesis were tagged and self-pollinated on successive days. Polli-
nation of flowers was staggered, such that fruit of all developmental stages
would be harvested on the same day. Fruits at 4, 7, and 10 DPA were harvested
on ice and brought to the laboratory for additional dissection. Columella, seed,
and pericarp tissues were separated using a razor blade, immediately frozen in
liquid nitrogen, and stored at 280°C. Four days post anthesis columella rep-
resents a mixture of columella, seed, and placenta tissues. Four days post an-
thesis pericarp represents a mixture of pericarp and exocarp tissue. Seven– and
10-DPA pericarp samples were peeled and lack exocarp tissues. The seed
tissues include the developing gel tissue surrounding the seed (placenta).
Four harvest dates were carried out on 5 d (February 25–27, March 6, and
March 7 in 2009) for a total of 359 samples. A subset of 116 samples was sent
for metabolite and hormone analyses, representing a minimum of eight bi-
ological replicates per tissue type per genotype for 10 DPA and four bio-
logical replicates per tissue type per genotype for 7 and 4 DPA. The
remaining samples were used for RNA extraction (see below). We collected
two additional replicates for RNA extraction in the summer of 2012. These
tissues were collected as described above, except that they were pooled for
each replicate for each genotype, tissue type, and time point, and aliquots
were used for RNA extraction. The two replicates were collected over 2
successive d.

For the metabolite and hormone analyses, samples were freeze dried and
shipped to the RIKEN Center for Sustainable Resource Science Institute. They
were divided for the hormone and metabolite using 9 to 450 mg dry weight
for the hormone (Growth Regulation Research Group) and 2.0 to 2.7 mg dry
weight for the metabolite (Metabolomics Research Group) analyses. Metabo-
lite extraction procedures (2.5 mg dry weight mL21 extraction solution) and
identification/annotation of metabolites using GC-MS were done as described
previously (Schauer et al., 2005; Redestig et al., 2009). Hormone analyses were
conducted as described previously (Yamamoto et al., 2007; Katsumata et al.,
2011).

RNA Isolation, RNA-Seq Library Preparation,
and Sequencing

Frozen tissues were ground in liquid nitrogen, and total RNA was
extracted using the Trizol (Invitrogen Inc.) method as described by the
manufacturer. RNA quantity and quality were assessed using a Qubit 2.0
Fluorometer RNA Assay Kit (Invitrogen Inc.) and an Agilent 2100 Bio-
analyzer RNA 6000 Nano Kit (Agilent) housed at the Molecular and Cellular
Imaging Center at Ohio State University, Wooster. Strand-specific RNA-seq
libraries with insert size of approximately 250 bp were prepared using the
protocol described previously (Zhong et al., 2011) using 10 mg of total RNA.
Eight libraries with compatible barcodes were pooled and run on a single
lane on a flow cell of the Illumina HiSeq2000 at the Genomics Resources
Core Facility at Weill Cornell Medical College. Single-end reads of 51 bp
were generated.

Alignment and Analysis of Illumina Reads

After sequencing, Illumina reads were quality checked, demultiplexed, and
trimmed. The reads were aligned to a known ribosomal RNA database using
Bowtie (Langmead and Salzberg, 2012) and allowing for two mismatches. The
filtered reads with the ribosomal reads removed were aligned with TopHat2
(Kim et al., 2013) against the tomato genome annotation version 2.4, allowing
for maximum intron lengths of 5,000 bp, segment lengths of 22 bp, and only
one mismatch per segment. All other parameters were set to default. Aligned
sequences were separated into sense and antisense and counted using an in-
house Python script. Of four replicates collected from 16 samples, all but one
showed a quality score of above 95%, with an average of 14.4 million reads per
library that mapped to the genome (Supplemental Table S1). The correlations
between replicates were, in general, very high, particularly the samples that
were collected from wild-type fruit (Supplemental Table S2). Reads per kilo-
base of exon model per million mapped reads (RPKM) were calculated by the
formula RPKMij = (109 3 C)/(N 3 L), where C is the number of reads mapped
to gene i in sample j, N is the total number of reads mapped (taken as the sum
of reads mapped to annotated genes in sample j), and L is the number of 1,000
bp of exon in the gene model of gene i. The reads are archived at the Short
Read Archive at the National Center for Biotechnology Information under
accession number SRA065144.
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Differential Gene Expression Analysis

Analysis of differentially expressed genes between SUN and wild-type fruit
was conducted using the DESeq package (Anders et al., 2013). Raw counts data
were normalized by library size and fit to a negative binomial model. We used
the fit-only option of the SharingMode function using the method of esti-
mating the dispersions. Briefly, we assumed that the variation in dispersions
from the predicted fit line is caused by the sampling variance and not caused
by the true endemic variant expression of the gene. P values were adjusted
using the Benjamini-Hochberg correction for multiple testing. All four bio-
logical replicates were used in the analysis, and differentially expressed genes
with an adjusted P , 0.05 were considered significant.

Differential Expression Analysis Using Linear
Factorial Modeling

Using DESeq2 and the function nbinomLRT(), we tested three separate null
hypotheses. Null hypothesis 1 tested whether each gene was significantly
affected by genotype. Null hypothesis 2 tested whether each gene was affected
by the interaction of genotype by time point. Because including time points and
tissue types together in the model results in amodel that is not full rank, for null
hypothesis 2, we only tested genotype, time point, and the genotype 3 time-
point interaction. Null hypothesis 3 tested whether each gene was affected by
the interaction of genotype by tissue type.

Clustering of the Expression of Genes during Fruit
Development Using Fuzzy C Means

The expression data set was filtered by excluding genes that were low
expressed. This was done by calculating the RPKM values for all genes as
described above and filtering using the criterion of at least four replicates
being expressed above 2 RPKM. This filtering assures that, in at least one
tissue type, time point, and genotype, we are confident that the gene is
expressed. The filtering for low expression resulted in a reduced data set to
19,963 genes. Gene expression values expressed in RPKM were mean centered
and converted to their Z score, which was calculated by dividing each mean-
centered value by the SD of all of the values for each gene. This calculation can
be illustrated by the following formula:

Mij ¼
�
mij 2mi

��
si

where Mij is the normalized value for gene i in sample j, mij is the non-
normalized value of gene i in sample j, mi is the mean of gene i in all samples,
and si is the SD of the gene i in all samples.

Expression profiles for wild-type fruit were clustered using fuzzy C means
by using the Mfuzz package (Futschik and Carlisle, 2005) in R, with a C value
of 100 to maximize dynamic differential clustering identification and core
clustered at 0.70 membership probability. Dynamically regulated gene clusters
were identified by inspecting plots of the normalized expression profiles of
each cluster, which led to the identification of 10 clusters that showed a dy-
namic range of expression in one tissue over another as well as six ontogeny
and spatially specific clusters. Based on genes found predominantly in each
cluster and hypergeometric enrichment of Mapman ontology bins, the clusters
were named accordingly: cell division, cell wall, RNA, secondary metabolism,
transport/hormone, transport/signaling, photosynthesis, and protein.

Expression Networks of Differentially Expressed Genes
Using Fold-Change SUN/Wild Type

For the network analysis, we filtered the data set further by only including
those that showed significant differential expression in at least one pairwise
comparison using DESeq. All genes that were significantly differentially
expressed (Benjamini-Hochberg-adjusted P , 0.05) were chosen (total of 5,623).
An additional multiple testing correction using Bonferroni was performed to
account for eight pairwise comparisons. The final list consisted of 3,154 non-
redundant genes, of which 1,455 were differentially expressed in more than one
comparison. Any gene that was filtered out in a particular time point and tissue
type because of low expression was set to 0 for that condition. Log-transformed
fold changes of SUN relative to the wild type for each gene were estimated
using DESeq in R (Anders et al., 2013). Briefly, the means for each gene at a
particular time point, tissue type, and genotype were estimated based on all

four biological replicates, and the estimated dispersions were based on the
sample dispersions. These estimated means were used to calculate the fold-
change SUN/the wild type. A log2 fold of 0 means no difference, a log2 fold
of one means 2-fold or higher, a log2 fold of two means 4-fold or higher, and so
on. Fold change for each sample was used as differential expression profiles to
include the information of differences in expression in SUN fruit in the same
analysis. These profiles were clustered using fuzzy C means, with a C of 60
using the Mfuzz package in R (Futschik and Carlisle, 2005). We determined that
a C of 60 properly incorporated all patterns in the data without forming spu-
rious or random clustering. The results showed patterns that changed slightly
but were still unique (differences below 1 log2). The 14 clusters that showed the
most dynamic response (i.e. clusters with log2 values above 1 and below 21)
were chosen for additional analysis (Supplemental Fig. S1) and grouped to-
gether based on the median profile of their members.

Hypergeometric Enrichment Test of Gene Clusters

Enrichment of Mapman ontology bin codes represented in each gene cluster
was done using a hypergeometric test using the webserver GeneProf (http://
www.geneprof.org/GeneProf/tools/hypergeometric.jsp) and phyper() in R.
P values were adjusted for multiple testing by Benjamini-Hochberg correction
in R (false discovery rate [FDR] , 5%).

Promoter Motif Searches

We selected four sets of genes from the identified GRNs above: GRN3
(calcium signaling/transport), GRN8 (cell cycle), GRN9 (lipid/hormone), and
GRN10 (RNA/cell wall). Clusters were named based on hypergeometric en-
richment tests and observations of putative orthologs present in each cluster.
For example, GRN10 is enriched for RNA regulation and contains a group of
transcription factors that regulate patterns of cell proliferation. GRN clusters
were further filtered for outliers by visually inspecting the log2 SUN/wild-type
profile. Filtering resulted in 5% reduction for GRN3 (54 remaining), 27.6%
reduction for GRN8 (118 remaining), 27.8% reduction for GRN9 (57 remain-
ing), and 25% reduction for GRN10 (133 remaining).

To build the promoter region data sets, we wrote a Python script, which
using functionality from the Biopython package (Cock et al., 2009), accessed
the tomato genome and extracted 1,000 bases upstream of each gene. For each
of four data sets, our script generated a text file with the corresponding pro-
moter regions. These files were further used for identifying overrepresented
motifs as described below.

For each of four promoter data sets, an exhaustive search of all potential 5- to
8-bp motifs was designed and implemented (Blackwood et al., 2013). This
computationally demanding step was conducted in Hadoop (Hadoop, 2013), a
platform for big data analysis that supports distributed processing of large
data sets. We wrote Python scripts, including mapper and reducer scripts for
Hadoop (Hadoop, 2013), which we ran on the Cloudera Hadoop (www.
cloudera.com) on Oracle VM VirtualBox for Mac OS. For each of four data
sets, these scripts computed the frequency of each possible motif of lengths
5 to 8. To investigate whether the motifs were occurring with similar frequencies
in the randomly rearranged promoter sequences, the promoter regions were
shuffled 100 times, and the averaged frequencies were computed from the
shuffled promoters. The ratio of the frequency in the actual promoter region
over the shuffled one was returned as the enrichment score. An enrichment
score of one indicates that the corresponding motif is found at the same rate
in the original and the shuffled promoters. Therefore, the larger the en-
richment score, the more likely the corresponding motif is a true motif and
not caused by chance. Furthermore, only putative motifs with an enrich-
ment score of three or larger were recorded. This threshold ensured that
only motifs occurring at least three times more frequently in the original
promoter region were selected for the next step of the analysis. In the next
step, unlikely motifs, such as microsatellite (e.g. ACACAC) or homopoly-
mer runs (e.g. AAAAAA), were removed from the set of results. For the
reasons explained below, the results obtained for motifs of lengths 5, 7, and
8 were not as good as the ones for 6-base-long motifs. Many of the 5-base-
long motifs were found with similar frequencies in both the original and the
shuffled promoter regions; in addition, many 5-base-long motifs with high
enrichment scores were repeats. Few motifs of lengths 7 and 8 were iden-
tified, and these motifs were combinations of two or more motifs of length 6.
Therefore, to include all potential motifs, for each of four data sets, we
continued the analysis with the results of the 6-base-long motifs. In the next
stage of our analysis, promoter motifs of length 6 that shared a common core
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element (e.g. 4 of 6 bases were conserved) were grouped together into a
consensus motif.

To further evaluate the likelihood of a consensus motif being enriched in one
cluster over another, the enrichment scores (ratio of actual to shuffled fre-
quency) were computed for each consensus motif in all four data sets
(Blackwood et al., 2013). More precisely, for each consensus motif s found in a
particular data set Di (i = 1,., 4), we first computed its relative frequency in
that data set by using Equation 1, where s denotes a consensus motif, |s|
denotes its number of (motif) components, c denotes a (motif) component, and
fDi
c denotes the relative frequency of a component c in the data set Di :

fDi ðsÞ ¼ ∑jsj
c¼1 f

Di
c ; i ¼ 1; :::; 4 ð1Þ

Similarly, the frequency of a consensus motif s in the shuffled promoter region
is computed by Equation 2:

fDi
randðsÞ ¼ ∑jsj

c¼1 f
Di
rand;c; i ¼ 1; :::; 4 ð2Þ

Finally, the enrichment score for a consensus motif s is calculated as the ratio of
the two frequencies computed above:

ScoreDi ðsÞ ¼ fDi ðsÞ
fDi
randðsÞ

; i ¼ 1; :::; 4 ð3Þ

An enrichment score close to one indicates that the corresponding motif is
equally represented in the original and the shuffled promoter regions and
therefore, not likely to be a true motif for a given data set. An enrichment score
of two or larger implies that the corresponding consensus motif is found more
frequently in the original than in the shuffled data set, and therefore, such
motifs are selected for additional analysis.

Investigation of Gene Expression of Those Containing
CCAACGGYYA, CAYRTGG, TGGACCA, and
AGGTSATG Consensus Motifs

Expression profiles from genes containing the motifs were extracted from
SUN and wild-type fruit separately, and PCA was carried out using the
prcomp() function in R. Loadings for the principal components were extracted
for SUN and wild-type expression profiles and plotted using ggplot() in R
(Supplemental Table S12). Gene sets included 58 for the CCAACGGYA motif-
containing set, 31 for the CAYRTGG motif-containing set, 24 for the
TGGACCA motif-containing set, and 28 for the AGGTSATG motif-containing
set.

Metabolite Pairwise Comparisons

To compare levels of each metabolite in tissue types and time points, we
performed pairwise Student’s t tests between SUN and wild-type fruit.
A relaxed significance threshold was used of P , 0.10 to highlight patterns of
change in SUN fruit. Average fold change of SUN/the wild type was used to
construct a primary metabolite pathway heat map that was constructed based
on the work by Do et al. (2010) using pairwise comparisons with P , 0.10.

Metabolite and Hormone Data Analysis

To compare metabolite and hormone accumulation while taking into ac-
count large differences inmagnitude and variance, the values for eachwere first
mean centered by subtracting the mean value for a metabolite across all
samples from the value for each sample. The data were further normalized for
unequal variance by converting it into its Z score as described above.

Metabolite and Hormone Correlation Networks
Comparison between Genotypes

To comparemetabolite and hormone networks betweenwild-type and SUN
fruit, the values were reclustered separately, and networks for only SUN were
inferred. Basically, clustering was first constructed with fruit samples collected
from SUN plants. These networks were then evaluated in wild-type fruit for
significant correlations. Unique correlations in SUN fruit (adjusted P , 0.05)
that were not significant in wild-type fruit were considered as unique asso-
ciations in SUN. Correlations that were significant in wild-type fruit (adjusted

P , 0.05) and not significant in SUN fruit were considered abolished associ-
ations in SUN fruit. All P values were adjusted for multiple testing by
Benjamini-Hochberg correction (FDR , 5%).

Interactome Network Analysis of Genes, Metabolites,
and Hormones

Hormone data were not available for 7 DPA, and therefore, the genes-
metabolite-hormone interactome network was generated using 4- and 10-
DPA data (five conditions). Hormone values were normalized to their Z score
as described above. Normalized values from hormone and metabolite accu-
mulation and gene expression were used as described previously only using
SUN fruit. Because fewer conditions were used to calculate correlations, a
higher correlation (,20.90 and .0.90) was determined to be significant af-
ter multiple testing correction (adjusted P , 0.05). To assess how different
pathways were interacting, genes were grouped into putative pathways based
on closest Arabidopsis (Arabidopsis thaliana) ortholog and tomato genome
annotation ITAG2.4 (www.solgenomics.net), metabolites were grouped into
biochemical categories, and hormones were taken as hormone class. These
identifiers were then used as the gene, metabolite, or hormone name when
calculating correlations. When constructing the network, nodes represented a
pathway, metabolite class, or hormone. The number of edges connecting the
nodes was used to define the size of each node. The size of the nodes is in-
dicative of the predominance of each pathway, metabolite category, or hor-
mone in its interactions in SUN fruit and how each pathway is interacting with
each other.

Visual Network Creation

Networks were constructed using Cytoscape software (Cline et al., 2007).
Nodes are genes, metabolites, and hormones, and edges are the significant
PCCs between the nodes. The layout of the nodes is based on the strength of
the edge, and the proximity of two nodes is based on the strength of the
correlation between the nodes.

Graphics and Statistical Analysis

PCCs were calculated using R and corrected for 5% FDR using the
Benjamini-Hochberg correction for multiple testing. All PCA plots and jigger
box plots were created in R using the ggplot2() package.

Sequence data from this article can be found in the Short Read Archive at
the National Center for Biotechnology Information under accession number
SRA065144.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. The log2 fold dynamics of 14 GRNs in eight fruit
tissues and developmental time points.

Supplemental Figure S2. Codifferential expression of genes in plant
growth pathways.

Supplemental Figure S3. Codifferential expression of the putative ortho-
logs of patterning genes.

Supplemental Figure S4. Significant differences in metabolite accumula-
tion in seed tissue at 10 DPA.

Supplemental Figure S5. Relative metabolite accumulation in wild-type
and SUN fruit tissues.

Supplemental Figure S6. Unique metabolite network of associations in
SUN fruit.

Supplemental Figure S7. Metabolite network of correlations in wild-type
fruit.

Supplemental Figure S8. Subnetworks of metabolite correlations in wild-
type fruit.

Supplemental Figure S9. Correlations of hormone levels in SUN and wild-
type fruit.
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Supplemental Table S1. Summary statistics for each of the RNA-seq
libraries.

Supplemental Table S2. Correlations among samples in fractions.

Supplemental Table S3. Genes in eight coregulated clusters in wild-type
fruit.

Supplemental Table S4. Hypergeometric GO term enrichments.

Supplemental Table S5. RPKM values and pairwise differential expression
of all genes.

Supplemental Table S6. Genes found in the linear factorial modeling
analyses.

Supplemental Table S7. Membership of genes in 14 GRNs.

Supplemental Table S8. Promoter motifs enriched in GRN3, GRN8,
GRN9, and GRN10.

Supplemental Table S9. Unique metabolite correlations in SUN fruit.

Supplemental Table S10. Abolished metabolite correlations in SUN fruit.

Supplemental Table S11. Hormone levels in the different fruit tissues.

Supplemental Table S12. Loadings for all PCA analyses.
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Figure S1. The log2 fold dynamics of 14 GRNs in 8 fruit tissues and developmental 
time points. The black line shows the average log2 fold dynamics for the GRN. 



Figure S2. Co-differential expression of genes in plant growth pathways.  (A) Putative orthologs 
of brassinosteroid biosynthesis genes: FACKEL – solyc09g009040.2.1, HYDRA1 - 
solyc06g082980.2.1, DET2 - solyc11g006300.1.1, solyc10g086500.1.1, SMO1 - 
solyc01g091320.2.1, SMO2 - solyc06g005750.2.1, STE1 - solyc02g086180.2.1, DWF5 - 
solyc06g074090.2.1, DWF1 - solyc02g069490.2.1. (B) Putative orthologs of auxin biosynthesis, 
transport, and conjugation cluster: PIN1 - solyc03g118740.2.1, solyc10g080880.1.1, 
solyc10g078370.1.1, AUX1 - solyc09g014380.2.1, YUC4 - solyc06g065630.2.1, JAR1 - 
solyc05g050280.2.1, solyc10g009640.1.1, solyc10g011660.2.1. (C) Calcium cluster: Calcium 
binding - solyc02g079520.1.1, IQD18 (SLSUN25) - solyc08g083240.2.1, CAX7 - 
solyc09g072690.1.1, CAX3 -solyc06g006110.2.1, CNCG4 - solyc10g006800.2.1, 
solyc12g005400.1.1, Calmodulin-binding - solyc03g118810.1.1, CRK - solyc01g108400.2.1  (D) 
Putative orthologs of genes in the GRF and cell cycle pathway: GIF1 - solyc11g006230.1.1, 
solyc04g009820.2.1, GRF1 - solyc04g077510.2.1, Cyclin - solyc09g065200.2.1, 
solyc06g065680.2.1, solyc11g010460.1.1, solyc01g009040.2.1, solyc11g005090.1.1, 
solyc10g080950.1.1, solyc02g082820.2.1, solyc03g032190.2.1, solyc06g043150.2.1, 
solyc04g082430.2.1, solyc10g078330.1.1, solyc01g099270.2.1. When more than one gene is 
shown, for example in panel D for the cyclin genes, the expression pattern shown is the median 
pattern of the genes listed. 



Figure S3. Co-differential expression of the putative orthologs of patterning genes.  (A) Putative 
orthologs of KANADI2 and PIN1: KANADI2 - solyc08g005260.1.1, solyc08g076400.2.1, PIN1 - 
solyc03g118740.2.1, solyc10g080880.1.1, solyc10g078370.1.1. (B) Putative orthologs of 
JACKDAW, MAGPIE and SHORT ROOT: SHORT ROOT - solyc02g092370.1.1, JACKDAW - 
solyc10g084180.1.1, MAGPIE - solyc08g063040.2.1, solyc04g080130.2.1. (C) Putative 
orthologs of KANADI2 ASYMETRIC LEAVES 1: AS1 - solyc09g010840.1.1, KANADI - 
solyc08g005260.1.1, solyc08g076400.2.1. (D) Putative orthologs of APETALA2 and 
REPLUMLESS: APETALA2 - solyc03g044300.2.1, solyc10g084340.1.1, REPLUMLESS - 
solyc10g086640.1.1, solyc09g011380.2.1.  When more than one gene is shown,  for example for 
RPL in panel D, the expression pattern shown is the median pattern of the genes listed. 
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Figure S4. Significant differences in metabolite accumulation in seed tissue  at 10 
dpa.  Values are mean-centered relative accumulation. P-values calculated by 
student’s T-test. 



Figure S5. Relative metabolite accumulation in WT and SUN fruit tissues indicated 
below the graphs. Values are the mean centered Z-scores relative to genotype 
where 0 represents the average accumulation across all tissues.  
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palmitic acid pentonic acid phenylalanine phosphoric acid

phytol piperidin proline propane

putrescine pyroglutamate quinic acid ribose
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saccharic acid serine shikimic acid sinapic acid

spermidine suberic acid succinate sucrose

threonic acid threonine trehalose tryptamine
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Figure S7. Metabolite network of correlations in WT fruit. These networks represent 
abolished metabolite correlations in SUN fruit.  Blue edges represent significant positive 
correlations.  Red edges represent significant negative correlations (adjusted p < 0.05).  Red 
nodes represent organic acids and TCA cycle components.  Orange nodes represent amino 
acids.  Blue nodes represent sugars/sugar alcohols.  Yellow nodes represent fatty acids.  
Green nodes represent “other”.  



Figure S7. Metabolite network of correlations in WT fruit. These networks represent 
abolished metabolite correlations in SUN fruit.  Blue edges represent significant positive 
correlations.  Red edges represent significant negative correlations (adjusted p < 0.05).  Red 
nodes represent organic acids and TCA cycle components.  Orange nodes represent amino 
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Figure S8. Subnetworks of metabolite correlations in WT fruit. These subnetworks represent 
abolished correlations in SUN fruit.  Blue edges represent significant positive correlations.  Red 
edges represent significant negative correlations (adjusted p < 0.05).  (A) Inositol-1-phosphate 
sub network. (B) Oxalic acid subnetwork. (C) Caffeoyl quinic acid subnetwork. (D) Linoleic acid 
subnetwork. (E) Citric acid subnetwork.  Layout reflects the strength of the edge, , i.e. the 
stronger the correlation, the shorter the edge length. Red nodes represent organic acids and 
TCA cycle components.  Orange nodes represent amino acids.  Blue nodes represent 
sugars/sugar alcohols.  Yellow nodes represent fatty acids.  Green nodes represent “other”.  
 



Figure S9. Correlations of hormone levels in SUN and WT fruit. (A) Network of hormone 
correlations (> 0.80, < -0.80) in WT fruit. (B) Network of hormone correlations (> 0.80, < -0.80) in 
SUN fruit. Solid edges reflect positive correlations. Dotted edges reflect negative correlations. 
Edges are Pearson’s Correlation Coefficient of normalized hormone levels in 4 and 10 dpa fruits. 
(C) Correlation heatmap and hierarchical clustering of hormones in WT fruit. (D) Correlation 
heatmap and hierarchical clustering of hormones in SUN fruit.  IAA: indole-3-acetic acid, ABA: 
Abscisic Acid, DHZ: dihydrozeatin, tZ: trans-zeatin, iP: isopentenyl adenine, JA-ile: Jasmonic 
acid-isoleucine.  
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