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Abstract. In this paper we consider existence, asymptotic behavior
near the boundary and uniqueness of positive solutions to the problem

divx(|∇xu|p−2∇xu)(x, y) + divy(|∇yu|q−2∇yu)(x, y) = ur(x, y)

in a bounded domain Ω ⊂ RN × RM , together with the boundary con-
dition u(x, y) = ∞ on ∂Ω. We prove that the necessary and sufficient

condition for the existence of a solution u ∈ W 1,p,q
loc (Ω) to this problem

is r > max{p− 1, q − 1}. Assuming that r > q − 1 ≥ p− 1 > 0 we will
show that the exponent q controls the blow-up rates near the boundary
in the sense that all points of ∂Ω share the same profile, that depends
on q and r but not on p, with the sole exception of the vertical points
(where the exponent p plays a role).

1. Introduction

We will be concerned in this paper with the study of positive solutions to
the problem

(1.1)
{

∆p,qu(x, y) = ur(x, y) in Ω,
u = +∞ on ∂Ω,

where Ω is a smooth bounded domain in RN × RM , N, M ≥ 1 and ∆p,qu
stands for the combination divx(|∇xu|p−2∇xu) + divy(|∇yu|q−2∇yu), of the
standard p and q-Laplacian operators with p, q > 1 acting separately in
each group of variables x ∈ RN and y ∈ RM . This definition of ∆p,qu is
understood in a distributional sense in a suitable subspace of W 1,p∧q

loc (Ω) with
p ∧ q = min{p, q}. The boundary condition is understood in the sense that
u(x, y) → ∞ as (x, y) → ∂Ω. Solutions to problem (1.1) will be regarded
in a weak sense concerning both the equation and the boundary condition
(see Section 2 for a precise statement). Without loss of generality it will be
assumed in the sequel that 1 < p ≤ q.

Problems like (1.1) which involve a singular Dirichlet condition on ∂Ω are
usually known in the literature as “boundary blow-up problems”, and their
solutions are also termed “large solutions”. Since the pioneering works of
Bieberbach, [5], and Rademacher, [27], and further continuations by Keller,
[18], Osserman, [26], Loewner-Nirenberg, [23], and Bandle-Marcus [2], a
great amount of research has been devoted to study such problems. In
fact, they arise in completely different fields as Riemannian geometry or
population dynamics. We refer the interested reader to [12] and [28] for a
complete updated account of references and applications.
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In most of the cases treated in the literature, the operator considered in
(1.1) is the linear 2-Laplacian ∆u = ∆xu + ∆yu = f(u) (p = q = 2) with
different kinds of nonlinearities as reaction terms. Of particular importance
are the special cases f(u) = ur and f(u) = eu. On the other hand, only few
works have dealt with the p-Laplacian operator as left hand side in (1.1)
(see [8], [25], [13], [14] and Remark 2 below).

As for the operator in (1.1) its analysis belongs to the realm of anisotropic
elliptic equations also known as elliptic equations under non standard (or
“non natural”) growth conditions. Such area has deserved a great deal of
interest since the last eighties, specially regarding the regularity issues. See
[16], [24], [22] to quote only a few early works on the subject and [11], [9],
[10], [32] and [34] for additional recent literature on operators exhibiting
anisotropic growth in the gradient that are complemented with standard
(finite) boundary conditions. Concerning physical models involving this
kind of operators we refer to the recent survey [1] (see also [3], [4] for further
models in mathematical biology involving operators as the one considered
in (1.1)). On the other hand, we should emphasize that, at the best of
our knowledge, this is the first time where a quasilinear operator involving
a different growth rate in the gradient with respect to separate groups of
variables is considered when dealing with large solutions.

Our main result here can be summarized as follows: A necessary and
sufficient condition for the existence of a solution u ∈ W 1,p,q

loc (Ω) to the
problem (1.1) is

r > max{p− 1, q − 1}.

Provided that such condition holds then (1.1) possesses a minimal positive
solution u ∈ W 1,p,q

loc (Ω) ∩ L∞loc(Ω) such that v(x) ≤ u(x), x ∈ Ω, for every
solution v ∈ W 1,p,q(Ω) to the equation ∆p,qu = ur in Ω with finite bound-
ary datum (see next section for the definition of the space W 1,p,q

loc (Ω)). In
addition, the positive solution is unique if the domain Ω verifies a certain
“starshapedness” condition.

Since, due to the boundary condition in (1.1), solutions satisfy u(x, y) →
∞ as (x, y) → ∂Ω, we also analyze their asymptotic behavior near the
boundary (the speed at which solutions go to infinity when (x, y) → ∂Ω).
Assuming that q > p we will show that the variable y controls the blow-up
rates in the sense that all points of ∂Ω share the same profile –in order of
magnitude– as the horizontal points, with the sole exception of the vertical
points (see Section 4 for a precise definition of horizontal and vertical points).
Furthermore, we also prove that the upper estimate at vertical points z0

strongly depends on the shape of the boundary ∂Ω in a neighborhood of z0,
more precisely, on the order of tangency of ∂Ω in the y-direction (see also
Section 4 for a precise definition of order of tangency). Of course, symmetric
results would be obtained by properly reversing the rôles of the variables x
and y if p > q.

All these features clearly reflect the strong anisotropic character of our
problem.



LARGE SOLUTIONS TO A QUASILINEAR PROBLEM 3

As a previous step for our proofs we look in detail at the simpler case
in which the domain is a product Ω = Ω1 × Ω2 with special emphasis in
the cases Ω = B1 × B2 (the product of two balls) and Ω = RN

+ × RM
+ (the

product of two half-spaces).

The paper is organized as follows: in Section 2 we collect some prelim-
inary results which are mainly concerned with problem (1.1) with a finite
datum on ∂Ω; in Section 3 we consider the case in which we can use a sep-
aration of variables, that is when the domain is of the form Ω = Ω1 × Ω2.
Section 4 is devoted to consider the issues of existence and uniqueness in
general domains, while the boundary behavior of solutions in this general
case is contained in Section 5.

2. Preliminary results

In this section we collect some preliminary results which mainly deal with
problem (1.1) with a finite datum as a boundary condition.

Let Ω ⊂ RN ×RM be an open set. For functions defined in Ω we use the
notation u(x, y), where x ∈ RN , y ∈ RM , (x, y) ∈ Ω. Let us introduce the
space,

W 1,p,q(Ω) ={
u ∈ Lp(Ω) :

∂u

∂xi
∈ Lp(Ω),

∂u

∂yj
∈ Lq(Ω), 1 ≤ i ≤ N, 1 ≤ j ≤ M

}
,

where derivatives are being considered in the weak sense. It is clear that
W 1,p,q(Ω) is a Banach space when endowed with the norm

‖u‖ := |u|p + |∇xu|p + |∇yu|q,
that is in addition reflexive provided 1 < p ≤ q < ∞. In the literature,
W 1,p,q(Ω) is often referred to as an “anisotropic” Sobolev space (see [29],
[30]). As customary, W 1,p,q

0 (Ω) will designate the completion of C∞
0 (Ω) in

W 1,p,q(Ω), while the space W 1,p,q
loc (Ω) comprises all those measurable func-

tions u in Ω such that u ∈ W 1,p,q(Q) for each bounded open set Q such that
Q ⊂ Ω. Since W 1,p,q(Ω) ⊂ W 1,p(Ω) (recall that we are assuming 1 < p ≤ q),
restrictions of functions u ∈ W 1,p,q(Ω) to the boundary ∂Ω will be considered
in the sense of traces. Thus, u|∂Ω ∈ W 1−1/p,p(∂Ω) if u ∈ W 1,p,q(Ω).

Let us state next what we will understand as a solution to (1.1).

Definition. A nonnegative function u ∈ W 1,p,q
loc (Ω) ∩ L∞loc(Ω) is called a

(weak) solution to (1.1) if

(2.1)
∫

Ω
|∇xu|p−2∇xu∇xϕ + |∇yu|q−2∇yu∇yϕ +

∫

Ω
urϕ = 0,

for all ϕ ∈ W 1,p,q(Ω), compactly supported in Ω. In addition, the boundary
condition is understood in the sense that (k−u)+ ∈ W 1,p,q

0 (Ω) for arbitrary
k > 0.
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For future use in this work, u ≥ 0 on ∂Ω (u ∈ W 1,p,q(Ω)) will mean
u− ∈ W 1,p,q

0 (Ω) (see [17]). Comparison between functions of W 1,p,q(Ω) on
∂Ω will always be understood in this sense.

To show the existence of solutions to (1.1), we first analyze the finite
boundary value problem, namely

(2.2)
{

∆p,qu = |u|r−1u in Ω,
u = g on ∂Ω.

For g ∈ W 1,p,q(Ω), a solution u ∈ W 1,p,q(Ω) ∩ Lp′r(Ω) to (2.2) is defined
through the equality (2.1) by employing test functions ϕ ∈ W 1,p,q

0 (Ω) and
requiring that u− g ∈ W 1,p,q

0 (Ω). Subsolutions u ∈ W 1,p,q(Ω) ∩ Lp′r(Ω) are
defined by replacing equality by ≤ in (2.1), using nonnegative test functions
ϕ and requiring that (u− g)+ ∈ W 1,p,q

0 (Ω), supersolutions being defined by
properly reversing the inequalities. Since we will be henceforth interested
in positive solutions, we are assuming g ≥ 0, and thus the absolute value in
the right-hand side of (2.2) can be dropped.

We start by stating a comparison result, which in particular implies
uniqueness of positive solutions to (2.2).

Lemma 1. Let u, u ∈ W 1,p,q(Ω) ∩ Lp′r(Ω) be nonnegative subsolution and
supersolution, respectively, of the equation in (2.2) with u ≤ u on ∂Ω. Then
u ≤ u a.e. in Ω.

Proof. Using the same (nonnegative) test function ϕ ∈ W 1,p,q
0 (Ω) in the

inequalities for u and u we get, after substraction
∫

Ω

{
(|∇xu|p−2∇xu− |∇xu|p−2∇xu)∇xϕ

}

+
∫

Ω

{
(|∇yu|q−2∇yu− |∇yu|q−2∇yu)∇yϕ

}
+

∫

Ω
(ur − ur)ϕ ≤ 0.

By choosing ϕ = (u− u)+ as a test function and using the monotonicity of
the p and q-Laplacians (see [33]), we get that (u − u)+ = 0 and so u ≤ u
in Ω. ¤

The relevant results on existence and uniqueness for problem (2.2) are
contained in the next theorem.

Theorem 2. Assume that g ∈ W 1,p,q(Ω)∩Lr+1(Ω) and g ≥ 0 on ∂Ω. Then,
the problem

(2.3)
{

∆p,qu = ur in Ω,
u = g on ∂Ω,

admits a unique nonnegative solution u ∈ W 1,p,q(Ω) ∩ Lr+1(Ω) in the sense
that urϕ ∈ L1(Ω) and (2.1) is satisfied for arbitrary ϕ ∈ W 1,p,q

0 (Ω). In
addition, if gm = min{g, m}, m ∈ N, and um ∈ W 1,p,q(Ω) ∩ Lr+1(Ω) stands
for the solution to (2.3) with gm replacing g then um ∈ L∞(Ω) and um ⇀ u
weakly in W 1,p,q(Ω).
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Proof. We first note that uniqueness is a consequence of Lemma 1. We will
prove existence of solutions by showing that the functional

J(u) =
∫

Ω

1
p
|∇xu|p +

∫

Ω

1
q
|∇xu|q +

∫

Ω

|u|r+1

r + 1
.

achieves its global minimum in M := {u ∈ W 1,p,q(Ω) : u = g on ∂Ω}. Since
J is sequentially weakly lower semicontinuous –as can be easily shown– and
the set M is weakly closed, the existence of a global minimizer is obtained
as soon as we prove that J is coercive (see [31]).

To show that J is coercive, assume on the contrary that there exists a
sequence with ‖un‖ → ∞ and J(un) ≤ C. Then

∫

Ω

tpn
p
|∇xvn|p +

∫

Ω

tqn
q
|∇yvn|q +

∫

Ω
tr+1
n |vn|r+1 ≤ C,

where tn = ‖un‖, un = tnvn. Passing through a subsequence, vn ⇀ v weakly
in W 1,p,q(Ω) and strongly in Lp(Ω) with v ∈ W 1,p,q

0 (Ω). Thus,

tp−1
n

p

∫

Ω
|∇xvn|p +

tq−1
n

q

∫

Ω
|∇yvn|q = O(1),

which implies that vn → 0 strongly in W 1,p,q(Ω). This is not compatible
with ‖vn‖ = 1. Therefore, J is coercive and admits a global minimizer.

By Fatou’s Lemma u ∈ Lr+1(Ω) and since |u| ∈ M together with J(|u|) =
J(u) then we can assume that u is nonnegative. On the other hand, u
satisfies

(2.4)
∫

Ω
|∇xu|p−2∇xu∇xϕ + |∇yu|q−2∇yu∇yϕ +

∫

Ω
urϕ = 0,

for ϕ ∈ C1
0 (Ω). We claim that test functions ϕ ∈ W 1,p,q

0 (Ω) can be inserted
in (2.4). To prove this, notice that if ϕ ∈ W 1,p,q

0 (Ω)+ then ϕ = limϕn in
W 1,p,q

0 (Ω) with ϕn ∈ C1
0 (Ω)+. Since

∫

Ω
urϕn = −

{∫

Ω
|∇xu|p−2∇xu∇xϕn + |∇yu|q−2∇yu∇yϕn

}
,

then Fatou’s Lemma implies that urϕ ∈ L1(Ω). However, this holds true
for arbitrary ϕ ∈ W 1,p,q

0 (Ω) thanks to the decomposition ϕ = ϕ+−ϕ− with
ϕ± ∈ W 1,p,q

0 (Ω)+. Indeed, consider such a ϕ ∈ W 1,p,q
0 (Ω) and let ϕn be a

sequence in C1
0 (Ω) approximating ϕ in W 1,p,q

0 (Ω). The equalities
∫

Ω
ur(ϕn − ϕm)± = −

∫

Ω
|∇xu|p−2∇xu∇x(ϕn − ϕm)±

−
∫

Ω
|∇yu|q−2∇yu∇y(ϕn − ϕm)±

hold since the test function (ϕn−ϕm)± ∈ L∞(Ω) and hence it can be inserted
in (2.4). Taking into account that

lim
m,n→∞

∫

Ω
ur(ϕn − ϕm)± = 0,
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we obtain

lim
m,n→∞

∫

Ω
ur|ϕn − ϕm| = 0.

This implies that

(2.5)
∫

Ω
urϕ = lim

∫

Ω
urϕn

= −
{∫

Ω
|∇xu|p−2∇xu∇xϕ + |∇yu|q−2∇yu∇yϕ

}

with an arbitrary ϕ ∈ W 1,p,q
0 (Ω), and the claim is proved.

To finish the proof, set gm = min{g, m} and let um be the solution to
(2.3) with g replaced by gm. Since u = m is a supersolution, by Lemma 1
we have that um ≤ m, and thus um ∈ L∞(Ω). It is also a consequence of
Lemma 1 that um is increasing in m and satisfies um(x) ≤ u(x) a.e. in Ω.

Our next aim will be to obtain estimates for the norms ‖um‖. Taking
ϕ = um − gm as a test function we obtain (a subindex for ϕ is omitted for
the sake of clarity)

(2.6)
∫

Ω
(|∇xum|p−2∇xum − |∇xgm|p−2∇xgm)∇xϕ

+
∫

Ω
(|∇yum|q−2∇yum − |∇ygm|q−2∇ygm)∇yϕ =

−
∫

Ω
ur

mϕ−
∫

Ω
|∇xgm|p−2∇xgm∇xϕ

−
∫

Ω
|∇ygm|q−2∇ygm∇yϕ.

The right hand side of (2.6) can be estimated by

(2.7) C(ε)(|∇xu|pp + |∇yu|qq + |∇xg|pp + |∇yg|qq) + ε(|∇xϕ|pp + |∇yϕ|qq),
for a conveniently small ε. In fact, the term involving ur

m in (2.6) can be
handled, by using (2.5), as follows

∣∣∣∣
∫

Ω
ur

mϕ

∣∣∣∣ ≤
∫

Ω
urϕ+ +

∫

Ω
urϕ−

≤ C(ε)(|∇xu|pp + |∇yu|qq) + ε(|∇xϕ|pp + |∇yϕ|qq),
where Hölder’s and Young’s inequalities have been involved elsewhere.

On the other hand, the left hand side in (2.6) can be estimated from
below by employing the monotonicity properties of the p-Laplacian and q-
Laplacian operators ([33]). We distinguish several cases. If q ≥ p ≥ 2 such
estimate from below reads as follows

(2.8) Cp|∇xϕ|pp + Cq|∇yϕ|qq,
for positive constants Cp, Cq no depending on ϕ. Relation (2.8) combined
with (2.7) and a suitable election of ε imply the boundedness of the sequences
|∇xϕ|p, |∇yϕ|q, ϕ = gm − um.
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Assume now that, say, 1 < p < 2. Then, the term involving the p power
in the left hand side of (2.6) can be estimated from below by

(2.9) Cp

{ |∇xϕ|pp
|Ω|+ |∇xg|pp + |∇xϕ|pp

} 2−p
p

|∇xϕ|pp,

Cp being a positive constant no depending on ϕ. Notice that the coefficient of
|∇xϕ|pp in such expression is O(1) and bounded away from zero as |∇xϕ|pp →
∞. In addition, the term associated to the power q in the left hand side
of (2.6) could be treated exactly in the same way supposed that 1 < q < 2
holds. Therefore, the combination of (2.9) and (2.7) and a proper choice of ε
lead again to the boundedness of the sequences |∇xϕ|p, |∇yϕ|q, ϕ = um−gm.
Accordingly, ‖um‖ is bounded.

Thus we have that um ⇀ u∗ weakly in W 1,p,q(Ω) where u∗ = supum.
Since W 1,p,q

0 (Ω) is weakly closed then u∗−g ∈ W 1,p,q
0 (Ω) and u∗ is a solution

to (2.1) with test functions in W 1,p,q
0 (Ω). The uniqueness implies that u∗ = u

and the proof is completed. ¤
Remarks 1. (a) The proof of Theorem 2 remains valid if Ω is unbounded,
for instance in the case Ω = RN

+ × RM
+ with RN

+ = {x ∈ RN : xN > 0},
RM

+ = {y ∈ RM : yM > 0}. In fact, the functional J(u) continues to
be coercive in M (as long as g ∈ W 1,p,q(Ω) ∩ Lr+1(Ω), g ≥ 0), while the
general lower semi-continuity result contained in [31] (Theorem 1.6) still
allows us to conclude that J exhibits a global and nonnegative minimizer
u ∈ W 1,p,q(Ω) ∩ Lr+1(Ω). The same reasoning shows that the weak form
(2.4) holds again with test functions in W 1,p,q

0 (Ω), which is the natural way
to obtain uniqueness of solutions in unbounded domains.

(b) The proof of existence can also be obtained using the method of sub
and supersolutions as we describe below. One can use the standard iterative
technique: if u, u ∈ W 1,p,q(Ω) ∩ Lp′r(Ω) are a sub and a supersolution to
(2.2), respectively, such that 0 ≤ u(x) ≤ u(x) a.e. in Ω, we can construct a
sequence by defining u0 = u, and u = un+1, the solution to the problem{

∆p,qu = ur
n in Ω

u = g on ∂Ω.

To show that this problem has a solution one can argue as in Theorem 2
finding a global minimizer of the corresponding energy functional. Lemma 1
then shows that u(x) ≤ un(x) ≤ un+1(x) ≤ u(x), a. e. in Ω for all n. Setting
u(x) = supun(x) we find that u ∈ Lp′r(Ω). In addition, the norm of un can
be estimated as in the proof of Theorem 2 and thus, modulus extracting
a subsequence, un ⇀ u, weakly in W 1,p,q(Ω). Hence, u weakly solves the
equation in (2.2) while u−g ∈ W 1,p,q

0 (Ω). Therefore, u ∈ W 1,p,q(Ω)∩Lp′r(Ω)
is the unique solution to (2.2).

To end this section, we briefly recall some facts on the simpler version of
problem (1.1) that occurs when p = q,

(2.10)

{
∆pu(x) = ur(x) in Q

u(x) = ∞ on ∂Q,
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with Q ⊂ RN a smooth bounded domain and ∆pu = div(|∇u|p−2∇u) the
usual p−Laplacian, p > 1. Problem (2.10) will be used later on as an
auxiliary tool. Its main properties that are used here are collected in the
next statement.

Theorem 3. Let Q be a C2 bounded domain of RN , p, r positive numbers
satisfying p > 1 and

r > p− 1.

Then problem (2.10) has a unique positive weak solution u ∈ W 1,p
loc (Q) such

that,

a) u ∈ C1(Q)∩C1,β(Q′) for every subdomain Q′ ⊂ Q
′ ⊂ Q with β depending

on Q′. Moreover, the boundary condition is satisfied in the sense that u(x) →
∞ as d(x) = dist(x, ∂Q) → 0.

b) The solution u satisfies:

(2.11) lim
d(x)→0

u(x)
Ad(x)−α

= 1,

where d(x) = dist(x, ∂Q) and α and A depend explicitly on p and r,

α =
p

r − p + 1
, Ar−p+1 = (p− 1)αp−1(α + 1).

Remark 2. A proof of Theorem 3 is essentially contained in [8] where it is
shown that all possible solutions exhibit the asymptotic profile (2.11). With
this asymptotic profile at hand, uniqueness is readily obtained by using the
direct argument in [15] instead of the approach in [8]. Moreover, the re-
strictions on the geometry of ∂Q required in [8] for existence of solutions
to (2.10) can be omitted by employing the “up to the boundary” C1,β esti-
mates in [21]. On the other hand, more general nonlinearities are studied in
[25]. However, the uniqueness of solutions to (2.10) with more general non-
linearities is only obtained in rather special domains. Finally, the regularity
assertion in a) can be considerably improved since it can be shown that the
gradient ∇u of u also blows up in modulus when x approaches ∂Q (cf. [6]
for the semilinear case p = 2). This implies that the equation becomes non
degenerate in the elliptic sense in a neighborhood of ∂Q. Then, the standard
theory of quasilinear elliptic equations (cf. [19]) permits to conclude that u
upgrades regularity up to C2 in such neighborhood and in particular u is of
class C1+β in the whole Q for a certain β ∈ (0, 1).

3. The case of product domains

This section is devoted to the analysis of the main features of problem
(1.1) in “box” domains Ω = Ω1 × Ω2.

Theorem 4. Let Ω = Ω1 × Ω2, where Ω1 ⊂ RN and Ω2 ⊂ RM are bounded
C2 domains, q ≥ p > 1 and r > q−1. Then, problem (1.1) admits a minimal
solution u ∈ W 1,p,q

loc (Ω)∩L∞loc(Ω). Moreover, for each g ∈ W 1,p,q(Ω)∩Lr+1(Ω)
we have that

ug ≤ u
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a.e. in Ω where ug ∈ W 1,p,q(Ω) stands for the solution to the finite boundary
problem (2.3).

Remark 3. It will be proved later in Theorem 9 that r > max{p− 1, q − 1}
also becomes a necessary condition for the existence of solutions to (1.1) on
a general bounded domain Ω ⊂ RN × RM .

Proof. First, we construct a smooth supersolution u to the equation ∆p,qu =
ur in Ω which blows up on ∂Ω. To this end, let U ∈ C1,β(Ω1) be the
solution to problem (2.10) with Q = Ω1 while V ∈ C1,β(Ω2) will designate
the solution to

(3.1)

{
∆qu(x) = ur(x) in Ω2

u(x) = ∞ on ∂Ω2.

Then, we have that
u = tU + sV,

t, s ≥ 1, defines a supersolution provided either t or s are conveniently large.
In fact, take ϕ ∈ C1

0 (Ω)+. Then, for every y ∈ Ω2,∫

Ω1

tp−1|∇U |p−2∇U∇xϕ(·, y) = −
∫

Ω1

tp−1U rϕ(·, y),

and, similarly, for each x ∈ Ω1 it holds∫

Ω2

sq−1|∇V |q−2∇V∇yϕ(x, ·) = −
∫

Ω2

sq−1V rϕ(x, ·).

Integrating the first equality in Ω2, the second one in Ω1 and adding the
results we get

∫

Ω
|∇xu|p−2∇xu∇xϕ + |∇yu|q−2∇yu∇yϕ

= −
∫

Ω
(tp−1U r + sq−1V r)ϕ ≥ −

∫

Ω
(tU + sV )rϕ.

Here we have used the fact that the inequality tp−1xr + sq−1yr ≤ (tx + sy)r

holds for all x, y > 0 if t, s ≥ 1 and it is assumed that either t or s are large
enough (recall that r > q − 1 ≥ p− 1). Thus, u defines a supersolution.

We next show that any finite solution to the equation is bounded by u. In
fact, let ug ∈ W 1,p,q(Ω) ∩ Lr+1(Ω) be the solution to (2.3). We first assume
that g ∈ L∞(Ω). In this case,

ug ≤ u‖g‖∞ ≤ ‖g‖∞,

where u‖g‖∞ stands for the solution to (2.3) with g replaced by ‖g‖∞.
Lemma 1 implies ug ≤ u. Finally, to obtain this inequality for a general g, we
use the approximation result in Theorem 2. Thus, setting gn = min{n, g}
we first obtain ugn ≤ u in Ω for each n and then, by taking supremum,
ug ≤ u.

Next, we construct the minimal solution of problem (1.1). To this end, if
u = um ∈ W 1,p,q(Ω) ∩ L∞(Ω) is the solution to

(3.2)
{

∆p,qu(x, y) = ur(x, y) in Ω,
u(x, y) = m on ∂Ω,
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then {um} is an increasing sequence, such that

um(x, y) ≤ u(x, y) (x, y) ∈ Ω.

Thus

u(x, y) =: lim
m→∞um(x, y) = sup

m
um(x, y) < ∞ (x, y) ∈ Ω,

is a well defined function in L∞loc(Ω).

Let us introduce now the sets Ak = {u < k} (k ∈ N). Since ∪Ak = Ω,
any subdomain Ω′ ⊂ Ω′ ⊂ Ω, such that Ω′ is compact lies in a certain Ak

for k large enough. Setting in addition Am
k = {um < k}, we find that

Ak ⊂ Am+1
k ⊂ Am

k ,

for every m.

Using ϕ = (k − um)+, m > k, as a test function in the weak form of the
equation verified by um we obtain∫

Am
k

|∇xum|p + |∇yum|q =
∫

Am
k

ur
mϕ.

This implies that ∫

Ω′
|∇xum|p + |∇yum|q ≤ kr+1|Ω|

and hence ‖um‖ is bounded in Ω′ which implies that u is the weak limit of
um in W 1,p,q(Ω′). Since Ω′ is arbitrary we conclude that u ∈ W 1,p,q

loc (Ω) and
passing to the limit in the weak formulation of (3.2) we see that u defines a
weak solution to ∆p,qu = ur in Ω. To check that the boundary condition is
satisfied in the weak sense we observe that for fixed k > 0,

(k − u)+ = lim
m→∞ (k − um)+,

pointwise in Ω, with (k − um)+ ∈ W 1,p,q
0 (Ω) for every m > k. Taking

ϕm = (k − um)+ as a test function we obtain∫

Ω
|∇xϕm|p + |∇yϕm|q =

∫

Ω
ur

mϕm ≤ kr+1|Ω|

and since W 1,p,q
0 (Ω) is weakly closed this means that (k − u)+ ∈ W 1,p,q

0 (Ω),
as desired.

Now, let ug be the solution to (2.3) with g ∈ W 1,p,q(Ω) ∩ Lr+1(Ω). Ac-
cording to Theorem 2 we have ug = limugn with gn ∈ L∞(Ω). Since
ugn ≤ u‖gn‖∞ ≤ u we get limn ugn ≤ u.

To conclude the proof, we need to show that the solution u constructed
above is the minimal solution. To this end, let v be an arbitrary solution,
and notice that by Lemma 1 um ≤ v in Ω. Letting m → ∞ we arrive at
u ≤ v, as we wanted to prove. ¤
Remark 4. Theorem 4 remains true if one (or both) of the domains Ω1, Ω2

is unbounded. The main requirement is the solvability of problem (2.10) in
Q = Ω1 in case Ω1 is unbounded (respectively in Q = Ω2 with q replacing p,
in case Ω2 is unbounded). For instance, if Ω = RN

+ × RM
+ then the proof of

Theorem 4 works without changes. In fact, solutions um are constructed by
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using Remark 1 and Theorem 2 while to obtain the supersolution u one uses
the solutions U = U(x) and V = V (y) to ∆pu = up in RN

+ , u|xN=0 = ∞ and
∆qu = up in RM

+ , u|yM=0 = ∞, respectively. These functions are explicit.
In fact, it can be checked that U(x) = Ax−α

N , α,A as in Theorem 3, while
V (y) = By−β

M with β = q/r − q + 1 and Br−q+1 = (q − 1)βq−1(β + 1).

Next, let us consider an issue which is interesting in its own right. Namely,
the study of the asymptotic profiles of solutions to (1.1) near the boundary.
For this purpose, and also by its intrinsic interest, we state first a uniqueness
result for problem (1.1) which holds in a large class of domains of the form
Ω1 × Ω2. Its proof is inspired by an idea contained in [20].

Theorem 5. Let Ω1 ⊂ RN , Ω2 ⊂ RM be bounded starshaped domains with
respect to the points ξ1 ∈ Ω1, ξ2 ∈ Ω2, and r > q−1 ≥ p−1. Then, problem
(1.1) possesses a unique positive solution in Ω = Ω1 × Ω2.

Proof. No generality is lost if it is assumed that ξ1 = 0 ∈ RN , ξ2 = 0 ∈ RM .
Suppose u, v ∈ W 1,p,q

loc (Ω) ∩ L∞loc(Ω) are positive solutions to (1.1).

For positive λ, µ set Ω1,λ = {λx : x ∈ Ω1}, Ω2,µ = {µy : y ∈ Ω2} and take

Ωλ,µ = Ω1,λ × Ω2,µ.

Define

ū(x̄, ȳ) = λ
− p

r−p+1 u

(
x̄

λ
,
ȳ

µ

)

with (x̄, ȳ) ∈ Ωλ,µ and where

µ = λ
p
q

r−q+1
r−p+1 .

Then, we find that ū solves problem (1.1) in Ωλ,µ. If 0 < λ < 1 then
Ωλ,µ ⊂ Ωλ,µ ⊂ Ω while v = v(x, y) becomes a finite solution to ∆p,qu = ur

in Ωλ,µ. Hence, by Lemma 1

v(x, y) ≤ ū(x, y) (x, y) ∈ Ωλ,µ.

Since Ωλ,µ → Ω as λ → 1 this implies that v(x, y) ≤ u(x, y) a.e. in Ω.
The reversed inequality is shown in the same way and then uniqueness is
proved. ¤

Remarks 5. (a) A reference case where the hypotheses of Theorem 5 hold is
certainly the product of two balls in RN and RM respectively, B1(ξ1, R1)×
B2(ξ2, R2). The unique solution u to (1.1) in this domain takes the form

u(x, y) = v(r1, r2)

where r1 = |x− ξ1|, r2 = |y − ξ2|. Notice also that u(x, y) = v(|x|, |y|) gives
the unique solution to (1.1) in the shifted ball B1(0, R1)×B2(0, R2).

(b) A second reference situation where uniqueness is attained is Ω =
RN

+ × RM
+ (see Remark 4). Thus in this domain the solution to problem

(1.1) is given by
u(x, y) = v(xN , yM ),

where v stands for the positive solution to (1.1) in Ω = R2
+.
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The behavior of the minimal solution u(x, y) to problem (1.1) when (x, y)
approaches ∂Ω is described in our next result. We remark that we are not
considering the case where (x, y) converges to a “corner point” (x0, y0) ∈
∂Ω1 × ∂Ω2 on the boundary (for this case see the analysis of the particular
cases Ω = RN

+ × RM
+ , Ω = R2

+ at the end of the section).

Theorem 6. Assume Ω1 ⊂ RN , Ω2 ⊂ RM are bounded smooth domains,
r > q− 1 ≥ p− 1. If u(x, y) is the minimal solution to (1.1) in Ω = Ω1×Ω2

and (x0, y0) ∈ (∂Ω1 × Ω2) ∪ (Ω1 × ∂Ω2) then

(3.3) lim
(x,y)→(x0,y0)

d(x, y)γu(x, y) = B,

where d(x, y) = dist((x, y), ∂Ω) and

γ =
p

r − p + 1
, Br−p+1 = (p− 1)γp−1(γ + 1),

if (x0, y0) is a “vertical” point, i.e. (x0, y0) ∈ ∂Ω1 × Ω2, while

γ =
q

r − q + 1
, Br−q+1 = (q − 1)γq−1(γ + 1),

provided (x0, y0) is a “horizontal” point (x0, y0) ∈ Ω1 × ∂Ω2.

Remark 6. For future use we are setting α, Ap for the values of γ and B
in the vertical case and β, Aq for the corresponding values in the horizontal
case.

Proof. We analyze the case (x0, y0) ∈ ∂Ω1 × Ω2, the other one being han-
dled similarly. Thus, let Um ∈ W 1,p(Ω1) ∩ C1,β(Ω1) be the unique positive
solution to {

∆pu(x) = ur(x) in Ω1

u(x) = m on ∂Ω1.

Since u(x, y) = Um(x) defines a subsolution to (3.2) then

Um(x) ≤ um(x, y) ≤ u(x, y) (x, y) ∈ Ω,

where u stands for the minimal solution to (1.1). This implies that U(x) ≤
u(x, y) in Ω, where U(x) is the solution to (2.10) in Q = Ω1. Since

d(x, y) = d1(x) =: dist (x, ∂Ω1)

as (x, y) → (x0, y0), then

lim
(x,y)→(x0,y0)

d(x, y)αu(x, y) ≥ lim
x→x0

d1(x)αU(x) = Ap,

where α and Ap stand for the exponent and constant in the vertical case of
the statement of Theorem 3, respectively.

To obtain the complementary estimate we use again the supersolution
u(x, y) = tU(x) + sV (y) introduced in the proof of Theorem 4 with the
choices t = 1+ ε, ε > 0 and s ≥ 1 sufficiently large. It was shown there that

u(x, y) ≤ u(x, y).

Therefore,
lim

(x,y)→(x0,y0)
d(x, y)αu(x, y) ≤ (1 + ε)A

and estimate (3.3) follows by doing ε → 0. ¤
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A consequence of Theorem 6 is the following result.

Corollary 7. Under the conditions of Theorem 6 assume in addition that
Ω1, Ω2 are starshaped (for example, balls, half spaces, convex sets). Then,
the unique solution u to (1.1) in Ω1 ×Ω2 satisfies the asymptotic estimates
described in (3.3).

Remarks 7. (a) Using the notation of Remark 5, when Ω = B1(ξ1, R1) ×
B2(ξ1, R1) and, say (x0, y0) ∈ ∂B1(ξ1, R1)×B2(ξ1, R1), then it follows from
(3.3) that

lim(R1 − |xn − ξ1|)γv(|xn − ξ1|, |yn − ξ1|) = B,

when (xn, yn) ∈ B1(ξ1, R1)×B2(ξ1, R1) converges to (x0, y0).

On the other hand, if v(x, y) stands for the positive solution to (1.1) in
R2

+ then

lim
(x,y)→(0,y0)

x−αu(x, y) = Ap, lim
(x,y)→(x0,0)

y−βu(x, y) = Aq,

with y0 > 0 and x0 > 0; the exponents α, β and coefficients Ap, Aq are given
in Theorem 6.

(b) The proof of Theorem 6 shows that the lower estimate

(3.4) lim
(x,y)→(x0,y0)

d(x, y)γu(x, y) ≥ B,

holds true for an arbitrary (not only for the minimal) positive solution u ∈
W 1,p,q

loc (Ω) ∩ L∞loc(Ω) to (1.1).

(c) By using the previous characterization of the asymptotic profile of
the solution to (1.1) in domains B1 × B2 – B1, B2 balls–, the autonomous
character of the equation in (1.1) and a sweeping argument (as in [7]), it
can also be shown that an arbitrary solution u to (1.1) in a domain Ω1×Ω2

satisfies

(3.5) lim
(x,y)→(x0,y0)

d(x, y)γu(x, y) ≤ B,

provided that (x, y) approaches, say (x0, y0) ∈ ∂Ω1 × Ω2, in a “cone” 〈x −
x0,−ν1(x0)〉 ≥ θ|x− x0|, with ν1(x0) the outward unit normal to ∂Ω1 at x0

and θ ∈ (0, 1) a constant.

We are now in a position to prove that the upper estimate (3.5) holds true
for arbitrary solutions to problem (1.1) without restricting the conditions
on the convergence to a point on ∂Ω.

Theorem 8. Suppose Ω1 ⊂ RN , Ω2 ⊂ RM are smooth bounded domains,
1 < p ≤ q, r > q − 1, and let z0 = (x0, y0) be a boundary point of Ω1 × Ω2

not lying on the “corner” ∂Ω1 × ∂Ω2. Then, any positive solution u ∈
W 1,p,q

loc (Ω) ∩ L∞loc(Ω) to (1.1) satisfies the asymptotic estimate (3.3).

Proof. Assume z0 = (x0, y0) ∈ ∂Ω1×Ω2 and zn = (xn, yn) → z0 with zn ∈ Ω.
Choose z̄n = (x̄n, yn), x̄n ∈ ∂Ω1, such that the distance d(xn, yn) form zn to
∂Ω is given by

d(zn) = |xn − x̄n|,
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for all n. The smoothness assumption on Ω1 allows us to get the existence
of a positive radius R such that:

1) d(zn) < R for large n,

2) setting ξn = x̄n − Rν(x̄n), ν the outward unit normal on ∂Ω1 then
B1(ξn, R) ⊂ Ω1 while ∂B1(ξn, R) ∩ ∂Ω1 = {x̄n},

3) B2(yn, R) ⊂ B2(yn, R) ⊂ Ω2 for all n.

Letting vn(x, y) = v(|x− ξn|, |y− yn|) the solution to (1.1) in B1(ξn, R)×
B2(yn, R) (Remarks 5 and 7) we get, after sweeping, that

u(x, y) ≤ vn(x, y),

for (x, y) ∈ B1(ξn, R)×B2(yn, R) and all n. Thus,

d(zn)γu(xn, yn) ≤ d(zn)γv(|xn − ξn|, 0) = d(zn)γv(R− d(zn), 0).

Taking limits we arrive at

lim d(zn)γu(xn, yn) ≤ B,

which is (3.5). As the complementary estimate always holds (Remark 7) the
proof is finished. ¤

We conclude our analysis of asymptotic profiles of solutions to (1.1) in
box-type domains by giving an insight of the possible behavior near “corner
points” on ∂Ω (i. e. points on ∂Ω1 × ∂Ω2). For this purpose we are dealing
with the special case of Ω = RN

+ ×RM
+ . In view of Remarks 5 (b) it suffices

with analyzing directly the case Ω = R2
+.

Accordingly, let us observe that if u(x, y) is a positive solution to

(3.6)

{
(|ux|p−2ux)x(x, y) + (|uy|q−2uy)y(x, y) = ur(x, y) (x, y) ∈ R2

+

u(x, y) = ∞ (x, y) ∈ ∂R2
+,

then, for every positive λ > 0,

uλ(x, y) =: λαu(λx, λα/βy),

also defines a positive solution to (3.6), where the exponents α and β are
given by α = p/r − p + 1, β = q/r − q + 1.

It follows by uniqueness that

u(x, y) = λαu(λx, λα/βy),

for all (x, y) ∈ R2
+ and positive λ. Setting in particular λ = 1/x we conclude

that the solution has the self-similar form,

u(x, y) = x−αf(x−α/βy),

where f ∈ C(0,∞) is positive and absolutely continuous in every compact
interval I ⊂ R+.

It follows from Corollary 7 (see Remarks 7) that

lim
t→∞ f(t) = Ap, while lim

t→0+
tβf(t) = Aq.
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Thus, the behavior of u(x, y) near the corner point (0, 0) is summarized as
follows,

u(x, y) ∼





Apx
−α y À xα/β

f(t∗)x−α y ∼ t∗xα/β

Aqy
−β y ¿ xα/β,

where t∗ > 0 and x → 0+. Here we use the following notation: for functions
a(s) and b(s) defined near s = 0 by a(s) À b(s) it is understood –as usual–
that a(s)/b(s) → ∞ as s → 0 while a(s) ∼ b(s) means a(s)/b(s) → 1 as
s → 0. Accordingly, y À xα/β means that y is any function of x near zero
so that the asymptotic relation described above holds as x → 0+.

4. Problem (1.1) in general domains

In the present section we deal with the singular problem (1.1) in a general
smooth bounded domain Ω ⊂ RN × RM . Our main result is the following:

Theorem 9. Assume Ω ⊂ RN × RM is bounded and smooth, and q ≥
p > 1. A necessary and sufficient condition for the existence of a solution
u ∈ W 1,p,q

loc (Ω) ∩ L∞loc(Ω) to the problem
{

∆p,qu(x, y) = ur(x, y) in Ω,
u(x, y) = +∞ on ∂Ω,

is

(4.1) r > max{p− 1, q − 1}.
Provided that such condition holds then (1.1) possesses a minimal solution
u ∈ W 1,p,q

loc (Ω) ∩ L∞loc(Ω) such that

v(x, y) ≤ u(x, y) (x.y) ∈ Ω,

for every “finite” solution v ∈ W 1,p,q(Ω) to the equation ∆p,qv = vr in Ω.

Proof. To show the existence of a solution consider as before the (increasing)
sequence of functions um ∈ W 1,p,q(Ω), m ∈ N, u = um the solution to

{
∆p,qu(x, y) = ur(x, y) in Ω

u(x, y) = m on ∂Ω.

Then
u(x, y) = lim

m→∞um(x, y) = sup
m

um(x, y)

is finite at every (x, y) ∈ Ω and u defines a function in L∞loc(Ω). Indeed,
this immediately follows from the fact that for every cube-type domain Q =
Ω1 × Ω2, Q as in Theorem 4, Q ⊂ Q ⊂ Ω, we have

um(x, y) ≤ uQ(x, y) (x, y) ∈ Q,

uQ ∈ W 1,p,q
loc (Q) being the minimal solution to (1.1) in Q.

It can be shown exactly as in the proof of Theorem 4 that the function u
defined above belongs to W 1,p,q

loc (Ω) and is the minimal solution to (1.1).
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Let us show now the sufficiency of condition (4.1). Suppose that a solution
u ∈ W 1,p,q

loc (Ω) to (1.1) exists and consider bounded smooth domains Ω1 ⊂
RN , Ω2 ⊂ RM such that Ω ⊂ Ω1×Ω2. For m ∈ N, set u = Um ∈ W 1,p(Ω1)∩
C1,β(Ω1) the solution to

{
∆pu(x) = ur(x) in Ω1

u(x) = m on ∂Ω1,

while v = Vn ∈ W 1,q(Ω2) ∩ C1,β(Ω2) (n ∈ N) stands for the solution to the
problem {

∆qv(y) = vr(y) in Ω2

u(y) = n on ∂Ω2.

If um ∈ W 1,p,q(Ω) is the solution to ∆p,qu = ur defined in the first part of
the proof then one finds that for every m ∈ N

Um(x) ≤ um(x, y) ≤ u(x, y) (x, y) ∈ Ω,

and similarly

Vn(y) ≤ un(x, y) ≤ u(x, y) (x, y) ∈ Ω,

n ∈ N arbitrary.

We are next showing that, the condition r ≤ p− 1 implies that

lim
m→∞Um = ∞

uniformly in Ω1. In fact, setting wm = Um/m we obtain the problem
{

∆pwm = mr−p+1wr
m in Ω1

wm = 1 on ∂Ω1.

Since mr−p+1wr
m ≤ wr

m, we obtain

wm(x) ≥ w(x) x ∈ Ω1,

where w ∈ W 1,p(Ω) ∩ C1,α(Ω1), w > 0 in Ω1, is the solution to
{

∆pw(x) = wr(x) in Ω1

w(x) = 1 on ∂Ω1.

In particular Um(x) ≥ m w(x) for x ∈ Ω1 which implies that Um → ∞
uniformly in Ω1.

The same argument shows that Vn → ∞ uniformly in Ω2 provided r ≤
q−1. This means that existence of solutions to (1.1) is not compatible with
the failure of condition (4.1). ¤

As for the uniqueness issue let us make a few remarks. The main feature
is that the proof of uniqueness of solutions to (1.1) in Theorem 5 remains
valid without changes provided the image Ωλ,λα/β of the reference domain
Ω, under the scaling transformation

(x, y) → (x′, y′), x′ = λ(x− x0) + x0, y′ = λα/β(y − y0) + y0,

lies again in Ω for all 0 < λ < 1 and a certain point (x0, y0) ∈ Ω.
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To have an insight of the meaning of such invariance property let us
present some examples. For a domain Ω ⊂ RN × RM let us designate by
Ω1 ⊂ RN , Ω2 ⊂ RM its projections onto RN and RM , respectively. For
ξ ∈ Ω1, η ∈ Ω2 define the corresponding sections as Ω2,ξ = {y : (ξ, y) ∈ Ω},
Ω1,η = {x : (x, η) ∈ Ω}. A sufficient condition in order that a convex domain
Ω exhibits such property with respect to (x0, y0) is that x0 ∈ ∩η∈Ω2Ω1,η and
y0 ∈ ∩ξ∈Ω1Ω2,ξ.

For instance, quadratic domains of the form




N∑

i=1

a2
i x

2
i +

M∑

j=1

b2
jy

2
j < 1



 ,

with ai, bj > 0 for all i and j, give examples of convex domains with the
invariance property. Another class of similar examples are given by Ω =
{(x, y) ∈ RN × RM : x ∈ Ω1, −φj(x) < yj < φj(x)} where Ω1 ⊂ RN is a
bounded smooth domain, φj ∈ C1(Ω1) ∩C(Ω1) are concave, positive in Ω1,
vanish at ∂Ω1 and all of them achieve their maximum at the same point
x0 ∈ Ω1. In this case the symmetry of Ω is achieved since x0 ∈ ∩η∈Ω2Ω1,η

and 0 ∈ RM lies in ∩ξ∈Ω1Ω2,ξ. Moreover, Ω is a convex domain.

Examples of non convex domains can also be constructed in the spirit of
the last example. For instance, if Ω1 ⊂ RN is smooth and bounded, then
regions in RN × R of the form Ω = {(x, y) : x ∈ Ω1, φ1(x) < y < φ2(x)}
where φi ∈ C1(Ω1) ∩ C(Ω1), φ1 = φ2 on ∂Ω1 and whose level sets φ1 > c,
φ2 < c′ are starshaped with respect to the same x0 ∈ Ω also satisfy the
required invariance properties. An example of non convex domain of this
type is described below. Let Γ ⊂ R2 be a closed smooth Jordan curve
enclosing a domain Ω1, (0, 0) ∈ Ω1, and assume that Ω1 is starshaped with
respect to (0, 0). Suppose ϕ(θ) = ρ(θ)eiθ, ρ = |ϕ|, θ = Arg ϕ, parameterizes
Γ and take a positive, decreasing function h ∈ C1[0, 1] with h′(0) = h(1) = 0.
Finally, define

φ(x, y) = h(t)

where,

t =
|ζ|

|ϕ(θ)| , θ = Arg ζ, ζ = x + iy.

Then,

Ω = {(x, y, z) ∈ R3 : (x, y) ∈ Ω1, −φ(x, y) < z < φ(x, y)}
provides the desired example (see Figure 1).

To conclude these remarks, it should be pointed out that the scaling
invariance property Ωλ,λα/β ⊂ Ω, 0 < λ < 1, described above is a technical
assumption to achieve uniqueness. By the moment, it is unclear to the
authors if such uniqueness can be further shown in more general domains
Ω. In fact, the structure of the operator in (1.1) is, in several concepts, not
compatible with the usual techniques employed for handling this issue in the
more regular blow-up problems already studied in the literature.



18 J. GARCÍA-MELIÁN, J. D. ROSSI AND J. C. SABINA DE LIS

x

y

z

W

W

G

+

x

y

G
1

PSfrag replacements

x
y

z
Ω
Γ
+

1

Figure 1. The half Ω+ of a non convex domain in R3 with
a starshaped section whose boundary is similar to the plane
curve Γ.

5. Boundary behavior in general domains

In this final section we are dealing with the problem of finding the as-
ymptotic profiles of positive solutions to (1.1) near the boundary. Recalling
the results in Section 3 we need to distinguish between horizontal and ver-
tical points on ∂Ω. If ν(z) = (ν1(z), ν2(z)) is the outward unit normal at
z = (x, y) ∈ ∂Ω, z0 = (x0, y0) is defined as a “horizontal” (respectively,
“vertical”) point if ν1(z0) = 0 (resp. ν2(z0) = 0).

As we already pointed out in the introduction, we are showing that the
variable y controls the blow-up rates at non vertical points, since we are
assuming q > p, and that the upper estimates at vertical points depends on
the order of tangency of ∂Ω there.

Let us begin by making precise the notion of order of tangency in the
y-direction. If z0 = (x0, y0) ∈ ∂Ω is a vertical point of ∂Ω and ∂Ω is
locally characterized near z0 by a smooth real function φ as φ(x, y) = 0 then
necessarily

∂yiφ(z0) = 0,

for all i ∈ {1, . . . , M}. It is said that z0 possesses an order of tangency
m ∈ N in the y-direction if ∂γ

y φ(z0) = 0 for all multi indexes γ ∈ NM such
that |γ| ≤ m − 1 and ∂γ

y φ(z0) 6= 0 for some γ with |γ| = m. Such order of
tangency is infinite if φ if of class C∞ near z0 and partial derivatives ∂γ

y φ(z0)
vanish for all γ ∈ NM . For instance, in the case of box domains Ω = Ω1×Ω2

considered in Section 3 all points on the part ∂Ω1×Ω2 of the boundary are
vertical with an infinite order of tangency (in the y-direction).

We can already state our first result providing an upper bound for the
behavior of solutions near the boundary. We find that, while the order of
magnitude of the growth of solutions when z approaches horizontal points
is that predicted by the term with q, namely d−β where

β =
q

r − q + 1
,
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the situation is completely different when z becomes close to vertical point.

Theorem 10. Assume Ω ⊂ RN × RM is a smooth bounded domain and
r > q ≥ p > 1. Let u ∈ W 1,p,q

loc (Ω) ∩L∞loc(Ω) be an arbitrary positive solution
to (1.1). Then, there exists a constant C depending only on p, q and diam(Ω)
such that

(5.1) u(x, y) ≤ Cd(x, y)−β,

for all (x, y) ∈ Ω. If, in addition, z0 = (x0, y0) is a vertical point in ∂Ω with
an order m of tangency in the y direction, then

lim d(x, y)γu(x, y) < ∞
when z = (x, y) converges to z0 following the inner normal at z0 and the
exponent γ is given by

γ =





α if
α

β
≥ 1

m
β

m
if

α

β
<

1
m

.

In particular,
lim d(x, y)αu(x, y) < ∞

if z0 possesses an infinite order of tangency in the y-direction.

Proof. To achieve the upper estimate (5.1) we proceed with a scaling argu-
ment. For z = (x, y) ∈ Ω set d = d(x, y) and choose ρ so that

ρ2 + ρ
2α
β = d2.

Then
B1(x, ρ)×B2(y, ρα/β) ⊂ B(z, d) ⊂ Ω.

Define
v̂(ξ, η) = ραu(x + ρξ, y + ρα/βη) (ξ, η) ∈ B1 ×B2,

with B1, B2 the unit balls in RN and RM , respectively. Then it is easily seen
that v̂ verifies the equation ∆p,qv̂ = v̂r in B1 ×B2, so that by comparison:

v̂ ≤ v

in B1 ×B2 where v = v(ξ, η) is the unique solution to (1.1) in B1 ×B2 (cf.
Remarks 5 (a)). Therefore,

u(x, y) ≤ ρ−αv(0, 0),

and (5.1) follows by noticing that

ρα ≤ dβ ≤ Cρα (x, y) ∈ Ω,

where C is a constant which depends only on α, β and the diameter of Ω.

Assume now that z0 is a vertical point of ∂Ω. This means that the normal
ν at z0 has the form ν = (ν1, 0). Since problem (1.1) is translation invariant
and also invariant with respect to rotations in x, we may assume without loss
of generality that z0 = 0 together with ν = (e1, 0) with e1 = (1, . . . , 0) ∈ RN .
This amounts to saying that ∂Ω can be represented near (0, 0) as

x1 = φ(x′, y) (x′, y) ∈ RN−1 × RM ,
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with a smooth function φ verifying φ(0, 0) = 0 and ∇(x′,y)φ(0, 0) = 0, while
Ω is additionally characterized as x1 > φ(x′, y) when (x′, y) is close enough
to (0, 0).

We now take z = (x̄1, x
′, y) ∈ Ω in the normal direction at (0, 0), i.e.

z = (x̄1, 0, 0) with x̄1 > 0, and want to find ρ = ρ(x̄1) such that

B1((x̄1, 0), ρ)×B2(0, ρα/β) ⊂ Ω,

as x̄1 → 0. Accordingly, set

ρ = (1− θ)x̄1,

with 0 < θ < 1. We first observe that x1 > x̄1 − ρ, |x′| < ρ for (x1, x
′) ∈

B1((x̄1, 0), ρ). On the other hand

(5.2) |φ(x′, y)| ≤ C(|x′|2 + |y|m)

for some C > 0 and (x′, y) near (0, 0) (observe that (5.2) may be artificially
regarded as the definition of order of tangency m without increasing the
smoothness degree of φ). Now, the inequality

θx̄1 > Cρ2,

holds as x̄1 → 0 provided 1 > θ ≥ θ0 > 0. Under this assumption

x1 > φ(x′, 0)

for (x1, x
′) ∈ B1((x̄1, 0), ρ). Thus,

B1((x̄1, 0), ρ) ⊂ Ω ∩ {z ∈ RN × RM : y = 0}.
By employing again (5.2) we notice that B1((x̄1, 0), ρ) × B2(0, ρα/β) ⊂ Ω
provided

(5.3) θx̄1 > C(ρ2 + ρmα/β),

holds true for small x̄1. Since θx̄1 = O(ρ), it suffices with having θx̄1 >

Cρmα/β as x̄1 → 0.

Now, for α/β ≥ 1/m, (5.3) is satisfied for small x̄1 by taking, if necessary,
a constant θ, close enough to 1 when α/β is 1/m.

On the other hand, when α/β < 1/m we take

1− θ = kx̄γ
1 ,

with γ > 0 and k a positive constant. Then, (5.3) is achieved if γ is chosen
so that

γ =
1
m
− α

β
,

and k is small enough. Since θ → 1 under this choice we have again the
desired inclusion B1((x̄1, 0), ρ)×B2(0, ρα/β) ⊂ Ω with the above election for
θ and ρ.

Finally, by arguing as in the first part of the proof we get that

u(x1, 0, 0) ≤ ρ−αv((0, 0), 0),

for all conveniently small x1 > 0. In case α/β ≥ 1/m, ρ ∼ (1 − θ)x1

with θ ∈ (0, 1) constant. Thus, u(x1, 0, 0) ≤ Cx−α
1 as x1 → 0. Observe in

addition that provided the order of tangency of ∂Ω at z0 (in the y-direction)
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is infinity then m can always be chosen so that α/β > 1/m and thus we get
the above estimate.

If, on the other hand, α/β < 1/m then

ρ ∼ k1x
γ+1
1 x1 → 0+,

with k1 > 0 a constant, and so u(x1, 0, 0) ≤ Cx
−β/m
1 for x1 near zero.

The proof is completed by observing that d(x, y) = x1 on points on the
normal direction close enough to (0, 0). ¤

Remark 8. The analysis of Section 3 reveals that in case of “flat” vertical
portions of ∂Ω, as in the example ∂Ω1 × Ω2 ⊂ ∂(Ω1 × Ω2) the exact upper
order α of divergence of solutions to infinity is attained.

On the other hand, the case of the corner point (0, 0) in R2
+×R2

+ reflects
–in some sense– the opposite configuration to flatness. Indeed, as was shown
at the end of Section 3, the solution u exhibits at those points all orders of
divergence to infinity, ranging in the gap from α to β.

Next we prove complementary lower estimates of the asymptotics of so-
lutions near the boundary. Now we restrict ourselves to consider Ω convex.

Theorem 11. Assume Ω ⊂ RN × RM is a smooth, bounded and convex
domain, and 0 < p − 1 ≤ q − 1 < r. Let u ∈ W 1,p,q

loc (Ω) ∩ L∞loc(Ω) be an
arbitrary positive solution to (1.1). Then, the following properties hold.

a) If z0 = (x0, y0) ∈ ∂Ω is not a vertical point then

(5.4) lim
(x,y)→(x0,y0)

d(x, y)βu(x, y) ≥ |ν2(z0)|βAq,

where ν(z0) = (ν1(z0), ν2(z0)) is the outward unit normal at z0 and A = Aq

verifies Ar−q+1 = (q − 1)βq−1(β + 1).

b) If z0 is a vertical point then

(5.5) lim
(x,y)→(x0,y0)

d(x, y)αu(x, y) ≥ Ap,

where z → z0 along the inner normal at z0 and A = Ap verifies Ar−p+1 =
(p− 1)αp−1(α + 1).

Proof. For z0 ∈ ∂Ω it follows from the convexity of Ω that

−ν(z0)(z − z0) > 0,

for all z ∈ Ω. We are looking for solutions to the equation ∆p,qu = ur of the
form,

u(x, y) = w(t) t =: −ν(z0)(z − z0) > 0,

in t > 0.

Smooth solutions of that type must satisfy the ordinary differential equa-
tion

(5.6) |ν1(z0)|p(|w′|p−2w′)′ + |ν2(z0)|q(|w′|q−2w′)′ = wr.
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We claim the existence of a unique positive solution w ∈ C2(0, +∞) to (5.6)
such that

(5.7) w(0+) = ∞.

Such solution satisfies in addition

lim
t→∞w(t) = lim

t→∞w′(t) = 0,

together with
w(t) ∼ |ν2(z0)|βAqt

−β,

as t → 0+. We will use the notation w = w(t, z0) in what follows.

We now proceed to show the claim. As a first remark, the expression

|ν1(z0)|p
p′

|w′|p +
|ν2(z0)|q

q′
|w′|q − wr+1

r + 1
is constant on any smooth solution w to (5.6).

On the other hand, every positive solution to (5.6) which is defined in the
whole of (0, +∞) and fulfills (5.7) must have w′(t) < 0 for all t > 0. In fact,
define

F (s) =
|ν1(z0)|p

p′
sp +

|ν2(z0)|q
q′

sq,

in s ≥ 0, and G(s) = F−1(s). Then, any solution having w(t0) = w0 > 0
together with w′(t0) = 0 for t0 > 0 makes the integral∫ ∞

w0

ds

G( sr+1

r+1 −
wr+1

0
r+1 )

finite. In that case, w can not be continued to the whole of (0, +∞).

With this kind of ideas it can be checked that our positive solution w,
defined in (0, +∞) and satisfying (5.7) also satisfies

lim
t→∞w(t) = lim

t→∞w′(t) = 0.

Thus, w is implicitly given by the expression∫ ∞

w

ds

G( sr+1

r+1 )
= t.

Since

G(u) ∼ (q′u)1/q

|ν2(z0)|
as u →∞ then it follows that

w(t) = |ν2(z0)|βββ

(
r + 1

q′

)β/q

t−β(1 + o(1)) = |ν2(z0)|βAqt
−β(1 + o(1)),

as t → 0+. This completes the proof of the claim.

Let us proceed now to show (5.4) and suppose zn → z0. If z̄n stands for
the closest point to zn on ∂Ω then z̄n → z0 and for any δ > 0, z̄n ∈ Uδ =
B(z0, δ) ∩ ∂Ω for large n.

On the other hand, by comparison

(5.8) d(zn)βu(zn) ≥ tβw(t, z̄n),
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with t = d(zn) where w(t, z̄n) designates the solution to (5.6) –with z0

replaced by z̄n– satisfying (5.7), and defined in (0, +∞). Now we want to
obtain uniform estimates in n of tβw(t, z̄n) when 0 < t < ε and ε > 0 is
small enough. Setting, θ+

δ = maxUδ
|ν2|, θ−δ = minUδ

|ν2|, wn(t) = w(t, z̄n),

F1(s) =
(1− (θ+

δ )2)p/2

p′
sp +

(θ−δ )q

q′
sq,

and G1(s) = F−1
1 (s) we find

wr+1
n

r + 1
= F (|w′n|, z̄n) ≥ F1(|w′n|),

so that

(5.9)
∫ ∞

wn(t)

ds

G1( sr+1

r+1 )
≤ t.

This inequality entails that for an arbitrary M > 0 we have wn(t) > M
uniformly in n provided 0 < t < ε for a certain ε > 0 only depending on M .
In particular, limwn(tn) = ∞ if tn → 0.

A further consequence of (5.9) is the existence of a function hδ(w) with
limw→∞ hδ(w) = 0, such that,

(1 + hδ(wn(t))
∫ ∞

wn(t)

ds

s
r+1

q

≤ (θ−δ )−1

(
r + 1

q′

)−1/q

.

It readily follows from this relation that

tβwn(t) ≥ (θ−δ )βββ

(
r + 1

q′

)β/q

(1 + hδ(wn(t))β.

Setting t = tn, letting tn → 0 and recalling that limwn(tn) = ∞ we get

lim tβnwn(tn) ≥ (θ−δ )βAq,

for all small δ > 0. Further letting δ → 0+ we find

lim tβnwn(tn) ≥ |ν2(z0)|βAq.

Via (5.8) we finally conclude,

lim dβ
nu(zn) ≥ |ν2(z0)|βAq.

with dn = d(zn), as desired.

To finish the proof of the theorem, we observe that the estimate (5.5) is
a direct consequence of the inequality

u(x, y) ≥ w(t, z0),

t = −ν(z0)(z − z0), where, being now z0 a vertical point, the coefficient
|ν2(z0)|q vanishes in equation (5.6). ¤

Remark 9. If z0 ∈ ∂Ω and for 0 < θ < 1, Kθ designates the conical region
Kθ = {z ∈ Ω : 〈z − z0,−ν(z0)〉 ≥ θ|z − z0|}, then it can be checked that

d(z) ∼ t(z) = −〈z − z0, ν(z0)〉,
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as z → z0. Therefore, (5.5) can be written as,

lim
z→z0,z∈Kθ

d(z)αu(z) ≥ Ap.

Acknowledgements. Supported by Spanish Ministerio de Ciencia e Inno-
vacion under grant MTM2008-05824. J. D. Rossi is partially supported by
UBA X066 and by CONICET, Argentina.

References

[1] S. Antontsev, S. Shmarev, Elliptic Equations with Anisotropic Nonlinearity and
Nonstandard Growth Conditions, in “Handbook of Differential Equations: Station-
ary Partial Differential Equations”, Vol. 3 (M. Chipot and P. Quittner, Editors)
(2006), 1–100.

[2] C. Bandle, M. Marcus, ’Large’ solutions of semilinear elliptic equations: Exis-
tence, uniqueness and asymptotic behaviour, J. Anal. Math. 58 (1992), 9–24.

[3] M. Bendahmane, M. Langlais, M. Saad, On some anisotropic reaction-diffusion
systems with L1-data modeling the propagation of an epidemic disease, Nonlinear
Anal. 54 (2003), 617–636

[4] M. Bendahmane, K. H. Karlsen, Renormalized solutions of an anisotropic
reaction-diffusion-advection system with L1 data, Commun. Pure Appl. Anal. 5
(2006), 733–762.

[5] L. Bieberbach, ∆u = eu und die automorphen Funktionen, Math. Ann. 77 (1916),
173–212.
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[10] A. El Hamidi, J. Vétois, Sharp Sobolev asymptotics for critical anisotropic equa-
tions, Arch. Rat. Mech. Anal. 192 (2009), 1–36.

[11] I. Fragala, F. Gazzola and B. Kawohl, Existence and nonexistence results
for anisotropic quasilinear elliptic equation, Ann. Inst. H. Poincaré AN 21 (2004),
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