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ABSTRACT. The identification of suitable models for predicting daily water flow is important for planning 
and management of water storage in reservoirs of Argentina. Long-term prediction of water flow is crucial for 
regulating reservoirs and hydroelectric plants, for assessing environmental protection and sustainable 
development, for guaranteeing correct operation of public water supply in cities like Catriel, 25 de Mayo, 
Colorado River and potentially also Bahía Blanca. In this paper, we analyze in Buta Ranquil flow time series 
upstream reservoir and hydroelectric plant in order to model and predict daily fluctuations. We compare 
results obtained by using a three-layer artificial neural network (ANN), and an autoregressive (AR) model, 
using 18 years of data, of which the last 3 years are used for model validation by means of the root mean 
square error (RMSE), and measure of certainty (Skill). Our results point out to the better performance to 
predict daily water flow or refill them of the ANN model performance respect to the AR model. 
Keywords: prediction, time series, neural networks, autoregressive models, flows, Colorado River, Argentina. 

 
 

   Predicción de caudales en río Colorado, Argentina 
 

RESUMEN. La identificación de modelos adecuados para predecir caudales diarios es importante para la 
planificación y la gestión de almacenamiento de agua en los embalses de la Argentina. La predicción a largo 
plazo del caudal es crucial para la regulación de los embalses y centrales hidroeléctricas, evaluar la protección 
del medio ambiente y el desarrollo sostenible, garantizar el correcto funcionamiento del abastecimiento 
público de agua en ciudades como Catriel, 25 de Mayo, río Colorado y también, eventualmente, en Bahía 
Blanca. En este trabajo, se analizan series de tiempo de caudales de agua, arriba del embalse y de la planta 
hidroeléctrica en Buta Ranquil, para modelar y predecir las fluctuaciones diarias. Se comparan los resultados 
obtenidos mediante el uso de una red neuronal artificial (ANN) de tres capas y un modelo autoregresivo (AR), 
con 18 años de datos, cuyos últimos 3 años se utilizan para la validación del modelo por medio de la raíz del 
error cuadrado medio (RMSE) y medida de certeza (Skill). Para predecir o rellenar el caudal diario, los 
resultados indican que el mejor desempeño es del ANN con respecto al modelo AR. 
Palabras clave: predicción, series temporales, redes neuronales artificiales, modelos autorregresivos, 
caudales, río Colorado, Argentina. 
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INTRODUCTION 

The identification of suitable models for forecasting 
daily inflows to hydropower reservoirs is an essential 
pre-requisite for the effective reservoir management 
and scheduling. The long-term forecasting, in parti-
cular, is useful in many water resource applications, 
like environmental protection, drought management, 
operation of water supply utilities, optimization of 
reservoir activities, involving irrigation and hydro-
power generation (Casa de Piedra in Colorado River 
basin). In this context, hydrologic time series 
forecasting has always been receiving particular 
interest in operational hydrology (Krzysztofowicz, 
2001, 2002).  

Water resource planning and management requires 
that magnitude of hydrological variables like precipi-
tation, streamflow and groundwater level, are 
estimated or forecasted with good accuracy. Forecas-
ting of hydrological variables, especially stream flow, 
is important for providing warnings on the occurrence 
of extreme events (like floods or heavy droughts), thus 
contributing to develop multipurpose reservoir 
operations (Coulibaly et al., 2000, 2001a). It is 
necessary to forecast both short and long term water 
flows in order to optimize the reservoir or to plan 
future expansion or reduction (Dong et al., 2006). 
Colorado River basin is a large reservoir and is 
characterized by a very sparse hydrographic data 
collection network, implying a considerable uncer-
tainty in the hydrologic information.  

Furthermore, the inherently non-linear relationship 
between inflow and outflow makes the forecasting of 
streamflow events very complex.  

Many of the techniques currently used in modeling 
hydrological time series, and used for generating 
synthetic streamflow series, assume that the involved 
variables are linearly related. Such models are 
essentially: i) physically based conceptual models, and 
ii) time series models. The former are specifically 
designed to mathematically simulate the subprocesses 
and physical mechanisms that govern the hydrological 
cycle, usually incorporating simplified forms of 
physical laws and being generally nonlinear, time-
invariant, and deterministic. These techniques, 
although they use representative parameters of 
watershed characteristics (Gupta et al., 2000), they 
ignore the spatial distribution, the time-varying 
properties and the stochastic nature of the rainfall. 
Yang & Michel (2000) state that conceptual watershed 
models are reliable in forecasting the most important 
features of the hydrograph; but, the implementation 
and calibration of such a model can typically present 
some difficulty, because it requires sophisticated 

mathematical tools, significant amounts of calibration 
data and some degree of expertise and experience with 
the model (Zhang et al., 1998; Sudheer et al., 2007). 
The further problem that physically-based conceptual 
models present is that observational periodicities are 
not always evidenced, and can often be hidden by 
noise.  

Time-series analysis models are based on fitting 
the stochastic model to the time-series, in order to 
forecast, generate synthetic series useful for simu-
lation, and investigate and model the underlying 
characteristics of the system under study. Most of 
these time-series models are multivariate autore-
gressive moving average (ARMA or ARMAX) model 
type (Ochoa-Rivera et al., 2002). 

Artificial Neural Networks (ANNs), have been 
successfully applied in many fields, also in water 
resources. ANNs revealed to be a promising 
alternative for rainfall-runoff modeling (Ahmad & 
Simonovic, 2005; Rajukar et al., 2004), streamflow 
prediction (Muttiah et al., 1997; Maier & Dandy, 
2000; Dolling & Varas, 2002; Sivakumar et al., 2002; 
Kisi, 2004; Cigizoglu & Kisi, 2005; Cigizoglu, 2008) 
and reservoir inflow forecasting (Saad et al., 1996; 
Jain et al., 1999). Recently, Coulibaly et al. (2001b) 
and Kisi & Cigizoglu (2007) reviewed ANN-based 
models developed over the last years in hydrology, 
showing the extensive use of multi-layer feed-forward 
neural networks (FFNN), trained by standard back 
propagation (BP) algorithm (Magoulas et al., 1999). 
BPNNs represent a supervised learning method, 
requiring a large set of complete records, including the 
target variables. As each observation from the training 
set is processed through the network, an output value 
is produced from output nodes. These values are then 
compared to the actual values of the target variables 
for this training set observation and the errors are 
calculated.  

There are many parameters (evapo-transpiration, 
rainfall, ground water, moisture content of soil, etc.), 
that affect the next day runoff. Although it is possible 
to identify sophisticated models, taking into consi-
deration the hydrological and hydro-meteorological 
variables such as precipitation, runoff, temperature 
and evaporation, it is cost-effective and technically 
easier to prefer a model that simulates the flow 
variations on the basis of only past discharge records, 
which are the only values available to the decision 
maker, whether administrator, local authority or 
technical operator. Therefore, only the past discharge 
records were used as inputs in the present study.  

The main objectives of this study is to analyze and 
evaluate stochastic time series measured at Buta 
Ranquil, upstream the Colorado River reservoir and 
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the hydroelectric dam, by means of the FFNN and AR 
models. To our knowledge, FFNN and AR models are 
applied for the first time to forecast daily river flow at 
Colorado River in Argentina (Fig. 1). 

MATERIALS AND METHODS 

Data 
The daily flow data (1990-2008), of the river gauging 
station, operated by the Subsecretaría de Recursos 
Hídricos de la Nación Argentina, involves the separate 
measurement of river stage and river flow. A 
continuous record of flow is subsequently computed 
from stage record, using a rating curve method 
between the measured flows and their corresponding 
river stages (accuracy 0.01 m) (Fig. 2). Fig. 1 shows 
the location of the measurement station, which is at 
850 m above sea level, on the Colorado River, near 
Buta Ranquil (37º06'S, 69º44'W), in Neuquen, 
Argentina. The drainage area at this site is 47,458.89 
km2. Data from April 1st 1990, to March 31st 2005, 
were used for calibration, while data from April 1st 
2005 to April 1st 2008, were used for validation. Note 
that calibration and validation periods include the 
same season (April- March).  

Artificial Neural Networks 
ANNs have a highly interconnected structure and 
consist of large number of simple processing elements 
called neurons, which are arranged in different layers 
in the network: input layer, output layer and one or 
more hidden middle layers. One of the well known 
advantages of ANN is its ability to learn from the 
sample set, called training set. Once the architecture of 
network is defined, then weights through learning 
process are calculated in order to achieve the desired 
output. Neural networks are adaptive statistical 
devices; they can change iteratively the values of their 
parameters (i.e., weights), as a function of their 
performance according to the learning rules of 
gradient descent method. Detailed description of the 
mathematical formulation of the back propagation 
algorithm can be found in Roiger & Geatz (2003), 
Negnevitsky (2005) and Larose (2005).  

The multilayer feed-forward neural represents the 
most used method in hydrology (Govindaraju, 2000; 
Othman & Naseri, 2011). Each neuron in a layer is 
connected to all the neurons of the next layer, and the 
neurons in one layer are not connected among 
themselves. All the nodes within a layer act 
synchronously. The neurons of the input layer receive 
the input vector and transmit the values to the next 
layer of processing elements across connections. This 
process continues up to the output layer. In the feed-

forward network data flows in one direction (forward) 
(Fig. 3). The data passing through the connections 
from one neuron to another are multiplied by weights 
that control the strength of a passing signal. When 
these weights are modified, the data transferred 
through the network changes; consequently, the 
network output also changes. The signal coming out 
from the output node(s) is the network's solution to the 
input problem. The sum of the products of every input 
with the neuron interconnection weight is passed 
through a transfer function to the next layer. This 
transfer function is usually a steadily increasing S-
shaped curve, called sigmoid function. The sigmoid 
function is the most common activation function in 
ANN, because it combines nearly linear behavior, 
curvilinear behavior and nearly constant behavior, 
depending on the value of the input. The sigmoid 
function is sometimes called a squashing function, 
since it takes any real valued input and returns an 
output bounded between (0,1). The sigmoid function 
is continuous, differentiable everywhere, and monoto-
nically increasing. Under this threshold function, the 
output yj from the jth neuron in a layer is: 

(1) 
 

where wji is the weight of the interconnection between 
the jth neuron and the ith neuron in the previous layer, 
xi is the value of the ith neuron in the previous layer. 

The performance of the ANN model is evaluated 
by separating the data into two sets: the training set 
and the testing or validation set. The parameters (i.e., 
the value of weights) of the network are computed 
using the training set. At the beginning of training, the 
weights are initialized, either with a set of random 
values or based on some previous knowledge. Then, 
the weights are systematically changed by the learning 
algorithm such that, for a given input, the difference 
between the ANN output and actual output is small. 
Many learning examples are repeatedly presented to 
the network, and the process is terminated when this 
difference is less than a specified value. At this stage, 
the ANN is considered trained. The backpropagation 
algorithm based upon the generalized delta rule, 
proposed firstly by Rumelhart et al. (1986) and later 
by Al Bayati et al. (2009), was used to train the ANN 
in the present study. In the back-propagation 
algorithm, a set of inputs and outputs is selected from 
the training set and the network calculates the output 
based on the inputs. This output is subtracted from the 
actual output to find the output-layer error. The error 
is backpropagated through the network, and the 
weights are suitably adjusted. This process continues 
for the number of prescribed sweeps, or until a prespe-
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Figure 1. Location of Buta Ranquil gauging station in the Colorado River, Argentina. 
Figura 1. Localización de la estación de aforo de Buta Ranquil en el río Colorado, Argentina. 
 
 
 
 
 
 
 
 

Figure 2. Stream flow data over the period of study 
(1990-2008) in Buta Ranquil. 
Figura 2. Datos de caudales sobre el área de estudio en 
Buta Ranquil. 
 
cified error tolerance is reached. The root mean square 
error over the training samples is the typical objective 
function to be minimized. After training is complete, 
the ANN performance is validated. Depending on the 
outcome, either the ANN has to be retrained or it can 
be implemented for its intended use. An ANN is better 
trained as more input data are used. The number of 
input, output, and hidden layer nodes depend upon the 
problem being studied. If the number of nodes in the 
hidden layer is small, the network may not have 
sufficient degrees of freedom to learn the process 
correctly. If the number is too high, the training will 
take a long time and the network may sometimes 
overfit the data (Karunanithi et al., 1994; Zhang et al., 
1998). So, a good compromise needs to be taken. 

AR models 
Autoregressive (AR) models have been extensively 
applied to hydrology and water resource analysis, and 

are based on the dependence of the actual value of the 
variable on its values in the past. The AR models of 
order p (AR(p)) are defined as:  

(2) 

where Et is a purely random process and E(Et) = 0. 
The parameters α1…. αp are the AR coefficients. The 
name “autoregressive" comes from the fact that Qt is 
regressed on the past values of itself. 

RESULTS 

The three-layer FFNN (Fig. 3) used in this study 
contains only one intermediate (hidden) layer. 
Theoretical studies have shown that a single hidden 
layer is sufficient for ANNs to approximate any 
complex nonlinear function (Cybenko, 1989; Hornik 
et al., 1989), and many experimental results seem to 
confirm that one hidden layer may be enough for most 
forecasting problems (Zhang et al., 1998; Coulibaly et 
al., 1999).  

It’s challenging the choice of parameters like the 
number of hidden nodes, the learning rate, and the 
initial weights. In the present study, the common trial 
and error method was used to select the number of 
hidden nodes. The logistic function (Eq. 1) is used as 
the hidden node and the output node activation 
function. Before applying the ANN, the input data 
were normalized in order to fall in the range [0.1-0.9] 
to distribute the data evenly and scale it into an 
acceptable range for the network and remove local 
variations or extreme skewness (Zadeh et al., 2010). 
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Figure 3. Schematic representation of three-layer feedforward neural network. 
Figura 3. Representación esquemática de la red neuronal feedforward de tres capas. 

 
The river flow Q was normalized by the following 
formula: 

max

0.08
1.21n

QQ
Q

⎡ ⎤
= +⎢ ⎥
⎣ ⎦

                       (3) 

where Qn is the normalized flow, Q is the observed 
flow, and Qmax is the maximum value of the flow. The 
following combinations of input data of flow were 
evaluated: 

 
Colorado River stream flow ANN input data 

Case  

1 Qt-1     
2 Qt-1 Qt-2    
3 Qt-1 Qt-2 Qt-3   
4 Qt-1 Qt-2 Qt-3 Qt-4  
5 Qt-1 Qt-2 Qt-3 Qt-4   Qt-5 

The output layer had 1 neuron for current flow Qt. 
In the trials, the number of neurons in the hidden layer 
varied between 1 and 5.  

To compare between the observed and the 
predicted flow obtained through the ANN, or the AR 
model, we used the indicators suggested by Willmott 
(1982). The mean bias (MB), indicates the averaged 

difference between observed and predicted values. 
The root mean square error (RMSE), is the square root 
of the variance, which represents that 95% of the 
model predictions do not differ from the observations 
(in absolute value), by more than twice the RMSE. 
The skill index (or index of agreement), quantifies the 
“predictive skill” between model results and 
observations by using the following formula: 
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where X is the flow data in our case, XMod_i is the 
model result at the time i, XObs_i is the observation 
result at time i, and ObsX  is the mean of the 
observations, and N is the number of observations. 
The Skill index provides a measure of the model 
performance. If the skill index is 1, the model presents 
an optimal predictive skill. In our case, the skill index 
is approximately 1, indicating a large model 
performance (Table 1).  

The correlation of the Colorado River flow is high 
(Table 2). The input to the ANN was 1 up to 5 
previous flow values; similarly the AR models were 
fitted to the river flow data using for the regression 1 
up to 5 past values. In both cases, the best model was 



Prediction of water flows in Colorado River, Argentina 
 
 

877 

selected on the base of maximum skill and minimum 
root mean square errors.  

Table 3 reports the skill index and RMSE in each 
case. It can be seen that the RMSE for the ANNs is 
smaller than the skill index during the calibration 
period. The configuration giving the minimum RMSE 
and maximum skill was selected for each 
combination. From the results shown in Table 3, the 
ANN combination (4) and AR (4) are characterized by 
best performance. Figs. 4a and 4b show the observed 
and forecasted discharges (with AR (4) and ANN 
combination (4)) of the Colorado River using 2005-
2008 as validation period. Although from eye 
inspection the two models do not reveal any apparent 
difference, closely examining them, we see that ANN 
estimates better than AR the time evolution of the 
water flow. In particular, the ANN predicts the flow 
peak occurred on December 14, 2005 (730.5 m3 s-1) 
with an overestimation of 8% (789.9 m3 s-1); while the 
AR (4) model predicts it with an overestimation of 
10% (799.0 m3 s-1). Regarding the peak occurred on 
July 12, 2005 (476.6 m3 s-1), the ANN predicts the 
value of 481.3 m3 s-1 with an overestimation of 0.09%; 
while the AR (4) model predicts it with the value of 
493.1 m3 s-1 with an overestimation of 1.03%. The 
peak occurred on December 12, 2005 (524.3 m3 s-1) 
was predicted by the ANN with an overestimation of 
2.1% (535.4 m3 s-1), while by the AR (4) model with 
an underestimation of 15.1% (445.1 m3 s-1). For clarity 
reasons, Figs. 4a and 4b show only the results for 
2005-2007. The ANN performs better than AR (4), 
although two peaks were overestimated. Figs. 5a and 
5b show the scatter diagram of the measured versus 
predicted daily water flow by using ANN and AR 
models. The skill index of ANN model is slightly 
better than that of AR model. The relative RMSE 
difference between the ANN combination (4) and the 
AR (4) model in the calibration period for the 
Colorado River is 38%. In other words, results 
produced by the ANN model are almost concurrent 
with the Colorado River stream flow values, while the 
AR model results show some difference from the 
original river data.  

 

Table 1. Representation of correlation, determination 
coefficient, mean bias, RMSE and Skill with ANN (Qt-1), 
during calibration period. 
Tabla 1. Representación de la correlación, coeficiente de 
determinación, sesgo medio, RMSE y Skill con la 
ANN(Qt-1), durante el período de calibración. 
 

Station Buta Ranquil 
Correlation (r) 0.95 
Determination Coef. (r2) 0.90 
Mean Beas 34.1 
RMSE 28.9 
Skill 0.94 

 

DISCUSSION 

It is recognized that data preprocessing can have a 
significant effect on model performance (Maier & 
Dandy, 2000). It is commonly considered that because 
the outputs of some transfer functions are bounded, 
the outputs of an ANN must be in the interval [0,1] or 
depending on the transfer function used in the 
neurons. Some authors suggest using even smaller 
intervals for streamflow modeling, such as [0.1-0.9] 
(Hsu et al., 1995). Time series forecasting has an 
important role for water resources planning and 
management. Conventionally, researchers have 
employed traditional methods such as AR, ARMA, 
ARIMA, etc, (Gupta & Sorooshian, 2000; Cigizoglu 
& Kisi, 2005; Cigizoglu, 2008). The daily discharge 
data, from actual field observed data in Ruta Ranquil 
(Colorado River), was employed first time to develop 
several models investigated in this study, explore the 
performance of the ANN approach for the estimation 
of river flow, and compare its result to those of the 
autoregression technique (AR). The greatest difficulty 
lays in determining the appropriate model inputs for 
such a problem. Although ANN’s belongs to the class 
of data-driven approaches, it is important to determine 
the dominant model inputs, as this reduces the size of

 
Table 2. ANN Buta Ranquil (Colorado River) autocorrelation.  
Tabla 2. Autocorrelación de la ANN en Buta Ranquil (Río Colorado). 
 

Colorado River 
Period Qt-1 Qt-2 Qt-3 Qt-4 Qt-5 
Calibration (1/4/90 – 31/3/05) 0.94 0.88 0.75 0.69 0.61 
Validation (1/4/05 – 1/4/08) 0.94 0.88 0.72 0.64 0.55 
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Table 3. RMSE and skill during training and validation data of Buta Ranquil (Colorado River).  
Tabla 3. RMSE y Skill durante el entrenamiento y validación de datos en Buta Ranquil (río Colorado).  
 

Colorado River 

Calibration 
(1/4/90 – 31/3/05) 

Validation 
(1/4/05 – 1/4/08) 

ANN AR ANN AR 
Case 

H
id

de
n 

la
ye

r 
RMSE 
m3 s-1 Skill RMSE 

m3 s-1 Skill RMSE 
m3 s-1 Skill RMSE 

m3 s-1 Skill 

1 1 29.5 0.94   28.9 0.95   
2 4 21.1 0.96   19.3 0.96   
3 3 17.8 0.96   17.6 0.97   
4 4 13.9 0.97   12.5 0.98   
5 3 18.3 0.96   17.0 0.97   

AR(1)    37.8 0.92   36.7 0.92 
AR(2)    27.8 0.93   26.1 0.94 
AR(3)    26.7 0.94   23.3 0.94 
AR(4)    25.0 0.94   22.2 0.94 
AR(5)    25.0 0.94   22.8 0.94 

 

 
 
 
 
 
 
 
 

 

Figure 4a. ANN observed and predicted flows of 
Colorado River; the validation period from 1 April 2005 
to 31 March 2008.  
Figura 4a. Caudales observados y modelados con ANN, 
con período de validación de 1 de Abril 2005 al 31 de 
Marzo 2008. 

 
the network and consequently reduces the training 
times and increases the generalization ability of the 
network for a given data set. Two standard statistical 
erformance evaluation measures (RMSE and Skill) are 
adopted to evaluate the performances of each model 
(Willmott, 1982). The results of the research 
illustrated that ANN (4) algorithm and AR (4) can be 
applied to a flow data set to make successful 
estimations over the Argentina basin. While the 

 
 
 
 
 
 
 
 
 
 
Figure 4b. AR observed and predicted flows of Colorado 
River; the validation period from April 1st 2005 to March 
31st 2008. 
Figura 4b. Caudales observados y modelados con AR, 
en río Colorado, con período de validación de 1 de Abril 
de 2005 al 31 de Marzo 2008.  
 

performance of the AR method is 22.2 m3 s-1 and 0.94 
for RMSE and Skill, respectively, estimation of daily 
flow ANN method is fulfilled within 13 m3 s-1 
accuracy and about 98% correlation value. The best 
result among all of the methods was obtained using 
the ANN (4) algorithm with a 12.5 m3 s-1 value for 
RMSE and a 0.98 value for Skill. The results show 
that the ANN model performs better in predicting 
discharge data, even if a certain deviation of the 
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Figure 5a. ANN model: correlation between observed 
and predicted flows of Buta Ranquil. 
Figura 5a. Modelo ANN: correlación entre caudales 
observados y modelados en Buta Ranquil. 

 
predicted values from the observed ones can be seen 
during the validation period. The improvement in the 
RMSE provided by the ANN’s for the testing period 
was 11%. The plots of AR models were more 
scattered (higher standard deviation) compared with 
those of the neural networks. From the graphs and 
statistics it is apparent that ANN’s can provide a fit to 
the data better than the ARs reducing the number of 
outliers: in fact the AR estimates and forecasts for 
high flows were beyond standard deviation (SD) band, 
while those obtained by the ANN were generally 
within the one SD band. ANN’s main advantage is its 
ability to model nonlinear processes of the system 
without any a priori assumptions about the nature of 
the generating processes. Therefore, the ANN 
provides more reliable forecasts, especially of 
discharge flows.  
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