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A MATHEMATICAL MODEL FOR β1-ADRENERGIC REGULATION OF THE MOUSE 
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ABSTRACT 

 The β1-adrenergic signaling system is one of the most important systems regulating heart 

function. Activation of this system leads to an increased heart rate, which can be beneficial 

during exercise, but can lead to cardiac hypertrophy and heart failure with continuous over-

stimulation. In this dissertation, we have developed two comprehensive mathematical models of 

mouse ventricular myocyte contraction. The first model is based on a previously published 

mathematical model of action potential and Ca2+ handling mechanism of the mouse cardiac cell 

that are not modulated by the β1-adrenergic signaling system. The model was verified with 

experimental data on mouse myocyte contraction at room temperature. In the model, we 

implement simplified sarcomere length variability and indirect modulation of the tropomyosin 

transition rates by Ca2+ and troponin. The resulting model describes well steady-state force-



calcium relationships, dependence of contraction force on sarcomere length, time course of 

contraction force and myocyte shortening, frequency dependence of contraction force and 

cellular contraction, and experimentally measured derivatives of myocyte length variation. We 

emphasize the importance of including variable sarcomere length in the model for ventricular 

myocyte contraction and investigate the differences in contraction force and cell shortening for 

epicardial and endocardial ventricular myocytes. The second model of the mouse ventricular 

myocyte contraction includes a more advanced description of the forces involved in myocyte 

contraction (active, passive, viscous, and flexible forces) and the β1-adrenergic signaling system. 

The model was verified by the simulation of major experimental protocols on measurements of 

steady-state force-calcium relationships, crossbridge release rate (krel) and force development 

rate (kdf), force-velocity relationship, and force redevelopment rate (ktr). It also reproduces quite 

well frequency and isoproterenol dependencies for [Ca2+]i transients, total contraction force, and 

sarcomere shortening. The resulting mathematical model reveals the mechanisms of increased 

contraction force and myocyte shortening upon stimulation of β1-adrenergic receptors. The 

developed mathematical models can be used further for simulations of contraction of ventricular 

myocytes from genetically modified mice and myocytes from mice which have developed 

chronic cardiac diseases. 
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1 INTRODUCTION  

Heart disease is the number one cause of death in the United States [1]. A common way 

to treat heart disease is through pharmacological interventions and implanted devices. A 

comprehensive knowledge of the basic physiological processes that occur at the cellular level is 

required for proper treatment of cardiac disease states. While experimental studies of cardiac 

cells are the primary source of knowledge on cardiac physiology, mathematical models are 

useful supplementary tools in understanding the mechanisms behind heart function in health and 

disease. In this chapter, we review the basic physiology of cardiac cell contraction and the 

current state of mathematical modeling of cardiac cellular contraction. 

 

Figure 1.1 Diagram of the heart. 

 

1.1 Physiological background  

The heart is made up of several distinct regions, with different roles in the overall 

function of the organ. Because of their different roles, the regions have different types of cells. 

Some of the major components of the heart are the sinoatrial node, the left and right atrium, and 

the left and right ventricles (Fig. 1.1). The sinoatrial node, located on the right atrium, is the 

pacemaker of the heart. It sends electrical signals to the rest of the heart by means of Purkinje 
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fibers. The atria are the upper chambers of the heart, into which blood flows from the body. The 

blood is then pumped into the larger, lower chambers, called ventricles. From the ventricles, 

blood is pumped back out to the rest of the body. Due to their major role in heart contraction, the 

model presented in this paper is of contraction in ventricular cells. 

 

Figure 1.2 Schematic diagram of cardiac sarcomeres. 

Thick filaments are composed primarily of myosin, attached to the Z-line by titin. Thin filaments contain actin, 
tropomyosin, and troponin complex. When the myosin heads change conformation, the thin filaments move 
toward the M line, causing a contraction. 

 

1.1.1 Myofilaments and contraction 

Cellular contraction is achieved through the interaction of contractile proteins in 

myofilaments. Myofilaments account for a significant amount of the volume in mammalian 

cardiac cells. In mouse hearts, for example, they account for approximately half of the cell 

volume [2]. Each myofilament is comprised of a series of thick and thin filaments (Fig. 1.2) 

which interact to generate cell movement and contraction. A sarcomere is a section of the 

myofilament between two consecutive Z-lines. The thick filaments are composed of myosin, 

titin, and myosin binding protein C (MyBP-C), while the thin filaments are composed of actin, 

tropomyosin (Tm), and troponin complex (TnI, TnC, and TnT) (Fig. 1.3). The globular heads of 

the myosin proteins protrude from the thick filament and bind to the actin on the thin filaments to 

form crossbridges. When myosin hydrolyzes ATP, the myosin head changes conformation, 

pulling the thin filament toward the M line and causing a contraction. In its resting state, 
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however, tropomyosin blocks the myosin binding sites on actin (Fig. 1.4A). When calcium 

(Ca2+) binds to TnC, the tropomyosin protein shifts enough to uncover the binding sites and 

allow crossbridges to form (Fig. 1.4B). In this way, Ca2+ regulates cardiac contraction. 

 

Figure 1.3 Thin and thick filament structure. 

Tropomyosin and actin each form two strands which are interwoven to form the thin filament (top). The 
troponin complex consists of three subunits: troponin T (TnT), troponin C (TnC), and troponin I (TnI). The 
strand of the thick filament (bottom) is made primarily of the rod-like myosin tails (heavy chains). The myosin 
heads, which are attached to the heavy chains by the regulatory light chain (RLC) and essential light chain 
(ELC), protrude from the thick filament. Myosin binding protein C (MyBP-C) is typically spaced along the 
thick filament such that three pairs of myosin heads are located between consecutive MyBP-C molecules. 

 

1.1.2 Phosphorylation of contractile proteins 

In muscle cells, contractions are primarily regulated by intracellular Ca2+ levels, but there 

are other changes to contractile proteins which can affect the formation or disassociation of 

crossbridges. One such change is phosphorylation [3]. Phosphorylation is the addition of a 

negatively charged phosphate group to a protein. The addition of this group can change the 

structure of the protein, which can change the function of the protein [4]. While phosphorylation 

can occur to most of the contractile proteins, only TnI, MyBP-C, and the myosin regulatory light 

chain (RLC) are phosphorylated and dephosphorylated fast enough to influence contractions [3]. 

However, of these three, only TnI and MyBP-C are phosphorylated by protein kinase A (PKA), a 
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component of the β1-adrenergic signaling system, so they are the only two whose 

phosphorylation is included in our contraction model. 

 

Figure 1.4 Two conformations of the thin filament. 

 (A) In the nonpermissive state, tropomyosin is blocking the myosin binding sites on actin. (B) In the permissive 
state, Ca2+ is bound to TnC, causing tropomyosin to shift so that the myosin binding sites are exposed. 
 

1.1.2.1 Troponin I 

Troponin I is the subunit of troponin complex which binds to actin and is a target of PKA 

[2]. Activation of the β1-adrenergic signaling system increases the percentage of phosphorylated 

TnI from a baseline level of ~40% to a saturation level of ~80% [5, 6]. Multiple studies have 

shown that the phosphorylation of TnI decreases Ca2+ sensitivity [7-9], but Robertson et al. [7] 

found that the major effect of TnI phosphorylation was on the unbinding rate of Ca2+. While 

investigating the role of phosphorylation of TnI versus MyBP-C on crossbridge kinetics, Kentish 

et al. [8] found that it is TnI phosphorylation by PKA that increases relaxation rates. 

1.1.2.2 Myosin binding protein C 

Myosin binding protein C is a protein located on the thick filament of a sarcomere. 

MyBP-C molecules are spaced along the thick filament such that there are three sets of myosin 
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heads between them (Fig. 1.4) [10, 11]. MyBP-C’s role in crossbridge mechanics is still 

relatively unknown, but its phosphorylation has been found to be important in maintaining 

sarcomere structure and normal cardiac function [12]. Mutations of MyBP-C are the most 

common genetic cause of hypertrophic cardiomyopathies, with 150 different mutations of the 

MyBP-C gene having been found to be linked to cardiomyopathies [10]. 

PKA-activated phosphorylation of MyBP-C accelerates crossbridge kinetics, decreases 

Ca2+ sensitivity, and enhances relaxation [13]. Tong et al. [14] found that changes in stretch-

activated contraction kinetics were due to phosphorylation of MyBP-C, not TnI, while the 

changes in the steady state force-Ca2+ relationship were primarily due to TnI phosphorylation. 

More recent experimental data, however, has shown that both MyBP-C and TnI make 

approximately equal contribution to the change in steady-state force-Ca2+ relationships [15].  

1.1.3 The β1-adrenergic signaling system 

The β1-adrenergic signaling system is one of the primary signaling systems in the body. 

Activation of this system sends epinephrine (adrenaline) and norepinephrine (noradrenaline) 

throughout the body initiating what is often called the “fight or flight” response, which includes 

increased heart rate, blood pressure, and cardiac contractility.  In ventricular myocytes, 

stimulation of the β1-adrenoreceptors (β1-ARs) by a β1-adrenergic agonist (isoproterenol) sets off 

a sequence of events (see [16]) which leads downstream to the activation of PKA. PKA 

phosphorylates several cardiac proteins, including TnI and MyBP-C (see Section 1.1.2). 

1.2 Mathematical models of cardiac cells 

1.2.1 Modeling cardiac electrical activity and Ca2+ dynamics 

The first cardiac cell models were of Purkinje cells. Because these cells have currents 

similar to neural cells (sodium and potassium currents), the first models were based on the 1952 
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Hodgkin-Huxley (H-H) model of a neuron [17]. Like the H-H model, the 1962 Noble model [18] 

included a differential equation for the membrane current (Im) comprised of three ionic currents, 

sodium (INa), potassium (IK), and the anion (leak) current (IAn): 

 ,m
m m Na K An

dE
I C I I I

dt
      (1.1) 

where Cm is the membrane capacity, t is the time, and Em is the membrane potential. Each 

individual ionic current was expressed as the ionic conductance (gNa, gK, and gAn) times the 

difference in the membrane potential and the ionic equilibrium potential (ENa, EK, and EAn): 

  Na Na m NaI g E E    (1.2) 

  K K m KI g E E    (1.3) 

  An An m AnI g E E    (1.4) 

An explanation of the non-linear differential equations of the gating variables related to the 

conductances, and how they have been modified from the H-H equations, can be found in [18]. 

At that time there was little experimental knowledge about the role of Ca2+ in cardiac cells, 

therefore, the 1962 Noble model [18] did not include a Ca2+ current. One important change from 

the H-H model was that Noble described potassium (K+) dynamics using two currents, a fast 

inward and a slow outward current, each with their own conductances (gK1 and gK2, 

respectively). The addition of a slow outward current allowed the model to reproduce the long 

plateau in the action potential. Unfortunately, the model was flawed because it was based on 

flawed experimental data [19]. 

As experiments became more precise and more detail was discovered about the 

components of cardiac cells, the cardiac models became increasingly complex. In 1975, the 

McAllister-Noble-Tsien model of a Purkinje cell [20] extended the Noble model to include five 
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more currents. They introduced a secondary inward current (isi) partially carried by Ca2+, a 

transient outward chloride current (iqr), replaced the outward K+ current (IK1) with two K+ 

currents (ix1 and ix2), and replaced the single leak (anion) current with three background ionic 

currents: an inward current (iNa,b) and two outward currents (iK1 and iCl,b).  

The 1985 DiFrancesco-Noble Purkinje model [21] made several important additions to 

the modeling of cardiac cells. Among those improvements were the addition of time-dependent 

intracellular Na+, Ca2+, and K+ concentrations, time-dependent extracellular K+ concentration, 

the Na+-K+ exchange pump current (ip), and the Na+/Ca2+ exchange current (iNaCa). It also 

modeled the movement of Ca2+ through the sarcoplasmic reticulum (SR) by the SR Ca-ATPase 

(SERCA) from the cytosol into the network sarcoplasmic reticulum (NSR), from the NSR to the 

junctional sarcoplasmic reticulum (JSR) through diffusion, and release from the JSR by Ca2+ 

induced Ca2+ release (CICR) [19]. This description of intracellular Ca2+ cycling becomes 

particularly important in the description of cellular contraction. 

1.2.2 Modeling ventricular cells 

Much of the current research on cardiac cells focuses on ventricular cells. Abnormalities 

in ventricular action potential duration (APD) are believed to be the leading cause of fatal 

cardiac arrhythmias. For this reason, modeling ventricular cells has become particularly 

important [22]. 

In 1977, Beeler and Reuter introduced the first model of a cardiac ventricular cell [23]. It 

was based primarily on the McAllister-Noble-Tsien Purkinje cell model, using H-H type 

descriptions for membrane currents. Like the McAllister-Noble-Tsien Purkinje cell model, they 

included currents iK1, ix1, iNa, iCa, and is, however, they did not believe the experimental evidence 

for ventricular cells supported the existence of two more time-activated outward currents or the 
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dynamic chloride current, so they did not included iK2, ix2 , or iCl in their ventricular cell model. 

They also omitted the iNa current, including its effects in the is current [23].  

As cardiac cell modeling advanced, most of the models became species and region 

specific. One benefit of this specificity was that modelers could attempt to better fit types of data 

that varied between species (such as the APD) and make more reliable model predictions for 

cellular behavior. Despite being designed as species specific, most models could be modified to 

account for differences in species data. The Luo-Rudy (L-R) ventricular cardiac action potential 

(AP) models from the early 1990’s marked a significant step forward [24-26]. These guinea pig 

myocyte models were based on an extensive amount of data, including data from single cell and 

single channel experiments. This allowed the authors to update existing ion current descriptions, 

as well as introduce additional currents. The Luo-Rudy phase 2 dynamic AP model [24, 25] 

included many of the processes important to intracellular Ca2+ transients, such as the Na+/Ca2+ 

exchanger (INaCa), a non-specific Ca2+ activated current (Ins(Ca)), a sarcolemmal Ca2+ pump (Ip(Ca)), 

buffering of Ca2+ ions in the myoplasm and SR, and movement of Ca2+ through the SR (Iup, Itr, 

Ileak, and Irel). The inclusion of these processes allowed the dynamic L-R 2 model to incorporate 

variable ionic concentrations, particularly Ca2+, which they noted could be the basis for future 

excitation-contraction models [24].  In addition, Luo and Rudy published their model equations 

so others were able to implement their model. Because of these innovations, the L-R 2 model 

[24, 25] has become the most used ventricular myocyte model [19]. 

Other models which introduced important Ca2+ handling processes were the 1998 Jafri-

Rice-Winslow (JRW) model [27] and the 1999 Winslow et al. model [28]. Among other 

innovations, the JRW model introduced a subspace region for local control of CICR. The 
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Winslow et al. model, which was the first canine model, was able to model Ca2+ mediated AP 

prolongation in tachycardia-induced heart failure [19]. 

The 2004 Bondarenko et al. model [29] was the first mouse ventricular cell model. Mice 

and rats have a significantly shorter APD than larger species, with no plateau. This difference 

makes the electrophysiological models of other species more difficult to adapt to the mouse, the 

most used species in genetic research. The Bondarenko et al. model was the first to describe the 

short, “triangular” AP of mice, and included both apex and septum cells. This model was also the 

first to simulate Ca2+ fluxes and describe a comprehensive Markov model for the L-type Ca2+ 

channel. 

1.2.3 Modeling the beta adrenergic signaling system 

Early cardiac cell experiments and models, such as those discussed above, focused on 

electrical activity and Ca2+ dynamics. Recently there has been a research focus on protein 

signaling systems such as the α- and β-adrenergic and CaMKII-mediated signaling systems, 

which modulate various cell activity [16]. The β1-adrenergic signaling system has been of 

particular note as it causes the most prominent effects on cardiac cells and is a target for 

pharmacological interventions such as “beta-blockers”. 

Comprehensive mathematical models of the β1-adrenergic system in ventricular cells 

have been developed for various species [16, 30-33]. The 2003 Saucerman et al. model [30] of 

rat ventricular myocytes was the first such model. This model included two PKA targets, 

phospholamban and the L-type Ca2+ channel. The 2004 Saucerman-McCulloch model [31] for 

rabbit ventricular myocytes included additional PKA targets: slow delayed rectifier K+ current 

(IKs), ryanodine receptors, and troponin I. The Yang-Saucerman model [33] extended the 
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previous Saucerman models to mouse ventricular myocytes, focusing on Ca2+ dynamics [16], but 

it did not describe the effects of β1-adrenoreceptor activation on the mouse action potential. 

Heijman et al. [34] developed a canine ventricular myocyte model which included three 

signaling systems: the β1- and β2-adrenergic and the CaMKII-mediated signaling systems. This 

compartmentalized model included both biochemical and electrophysiological parts and was 

extensively verified by experimental data. Like the Heijman et al. model [34], the Bondarenko 

mouse ventricular myocyte model [16] is compartmentalized, containing three subcellular 

compartments: caveolae, extracaveolae, and cytosol. Compartmentalization is important due to 

the localization of the components of the various signaling systems [35-38]. The Bondarenko 

model [16] contains the β1-adrenergic signaling system, but has been extended in the Rozier-

Bondarenko model [39] to include the β2-adrenergic signaling system.  

1.2.4 Modeling cardiac contraction 

The basis of our current understanding of crossbridge kinetics can be traced back at least 

to Huxley [40]. He proposed the sliding of two filaments, one of myosin and one of actin, to 

cause a contraction. He mentioned “side-pieces”, now known to be myosin heads, which could 

slide along the actin filament, combining temporarily with the actin filament. In his mathematical 

model [40] of striated muscle contraction, he included two crossbridge states, attached and 

detached, which he described by partial differential equations. In addition, he included the role of 

ATP in his model, but not Ca2+ activation. 

However, it is now understood that Ca2+ plays an integral role in crossbridge formation in 

cardiac muscle cells. With the advances in the modeling of Ca2+ transients, more physiologically 

accurate contraction models were able to be developed. The 1996 Negroni-Lascano contraction 

model [41], while based on the Huxley model, introduced the effects of Ca2+ kinetics and 
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sarcomere dynamics on crossbridge structure and mechanics. The Ca2+ kinetics were described 

by a four state system: TnC without bound Ca2+ (T), TnC with bound Ca2+ but no crossbridges 

(TCa), TnC with bound Ca2+ and crossbridges (TCa*), and TnC without bound Ca2+ but with 

crossbridges (T*). 

In 1999, Rice et al. [42] examined various Markov models for tropomyosin states based 

on the number of crossbridges and whether Ca2+ was bound to TnC. States with bound Ca2+ were 

considered permissive states (P), the states without Ca2+ were considered nonpermissive (N) (see 

Fig. 1.4). The models the authors considered ranged from four to six tropomyosin states. In three 

of the models, transitions from N to P were modulated by a two troponin states. Using the 

models with multiple crossbridges, Rice et al. [42] examined the effects of various mechanisms 

to describe crossbridge cooperativity.    

A more comprehensive model of cardiac cell contraction, which included a description of 

active, passive, viscous, and flexible forces was developed by Rice et al. [43] in 2008. They 

introduced a four-state crossbridge model that included nonpermissive and permissive states, but 

distinguished between weakly bound and strongly bound crossbridge states. The model 

reproduced multiple experimental protocols on the steady-state force-Ca2+ relationship, force-

velocity relationship, time behavior of force and sarcomere shortening, and rate of force 

redevelopment, ktr, as a function of normalized force. The 2008 Rice et al. model [43] was 

species specific for rat and rabbit ventricular myocytes. 

The Mullins-Bondarenko model [44] was developed in 2013 to describe mouse 

ventricular myocyte contraction (see Chapter 2). The model is based on the Bondarenko et al. 

[29] model of action potential and Ca2+ dynamics in mouse ventricular myocytes, but has a 

simplified description of sarcomere shortening using Hooke’s law. The model describes well the 
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contraction of ventricular myocytes from two heart regions, the epicardium and endocardium. It 

emphasizes the importance of variable sarcomere length in the description of contraction force. 

The results of the model simulations fit well the experimental data on the steady-state force-Ca2+ 

relationship, time course of contraction force and sarcomere shortening, and frequency 

dependence of contraction force and myocyte shortening. 

The effects of the β1-adrenergic signaling system on ventricular contraction was studied 

by Land et al. [45] in 2013. The authors used modifications of the model parameters from their 

previous mathematical model of mouse ventricular contraction [46] to include the effects of 

stimulation of the β1-adrenergic receptors parametrically, however, the biochemical part of the 

signaling system was not incorporated. The resulting model was used to simulate tension 

development without and with stimulation of β1-ARs. The authors [45] concluded that in control 

their model produced realistic tension development, while upon stimulation with isoproterenol 

the simulated tension was greater than that measured experimentally. 

More recently, Negroni et al. [47] developed a detailed mathematical model for the 

β1-adrenergic regulation of rabbit ventricular myocyte contraction. This model was based on the 

Negroni-Lascano contraction model [48] and the Soltis-Saucerman model of β1-adrenergic 

signaling in rabbit ventricular myocytes [49]. The model described the effects of activation of 

β1-ARs on the steady-state force-Ca2+ relationship, the stiffness-frequency relationship, force-

velocity dependence, and stretch-activation of the contraction force. The authors compared the 

results of their simulations to the corresponding experimental data. While the Negroni et al. 

model [47] described the effects of stimulation of β1-ARs, it had limitations in that the model 

was developed based on experimental data from multiple species, including frog, guinea pig, 

rabbit, ferret, cat, and mouse. 
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1.3 Purpose of the study 

While multiple models were developed for myocyte contraction, including mouse 

ventricular myocyte contraction [46], the models were not investigated with respect to 

stimulations of different frequencies, nor did they describe the effects of cellular heterogeneity or 

variable sarcomere length. The existing cardiac contraction models also have a limited ability to 

simulate the effects of β1-adrenergic signaling on ventricular myocyte contraction. The 

β1-adrenergic contraction models were only developed for rabbit ventricular myocytes, but a 

model for the mouse ventricular cell, which has much shorter action potential and different Ca2+ 

dynamics, was absent.  

Therefore, in this dissertation, we develop two mathematical models of mouse ventricular 

myocyte contraction. The first model is based on a comprehensive mathematical model of the 

action potential and Ca2+ dynamics in mouse ventricular myocytes [29] and addresses the 

questions about the effects of stimulation frequencies, variable sarcomere lengths, and cellular 

heterogeneity on the myocyte contraction. The second model is designed to describe the 

β1-adrenergic signaling system and its effects on mouse ventricular myocyte contraction. It also 

simulates a broad set of the experimental protocols for measurements of steady-state force-Ca2+ 

relationships, crossbridge release rate (krel) and force development rate (kdf), force-velocity 

relationship, and force redevelopment rate (ktr). 
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2 A SIMPLIFIED MATHEMATICAL MODEL OF THE MOUSE VENTRICULAR 

MYOCYTE CONTRACTION 

2.1 Introduction 

Cardiac cell functions include the interaction of several major subsystems, including 

those responsible for the generation of electrical activity, Ca2+ dynamics, and cardiac contraction. 

Experimental data from diseased hearts or obtained at fast pacing rates show that the changes in 

one of the subsystems can lead to abnormal behavior in others. For example, dysfunction of the 

L-type Ca2+ channel, as in Timothy syndrome when the channel’s inactivation is significantly 

reduced, affects Ca2+ handling in cardiac cells [50, 51] resulting in cardiac arrhythmias. 

Heterogeneities in cellular electrical activities in the heart, dysfunction of K+ channels, or 

acidosis can also produce pro-arrhythmic behavior, such as action potential propagation block, 

re-entry, Ca2+ alternans, and irregular contractions [52, 53]. In particular, instability of Ca2+ 

dynamics (alternans) can lead to action potential alternans [54] and alternans in mechanical 

contraction [55]. Therefore, understanding interactions of the major cardiac cell subsystems and 

mechanisms of their pro-arrhythmic activity is of great importance.  

Myocyte contraction is a complex process which involves activation of ionic currents 

(Fig. 2.1A), including L-type Ca2+ current (ICaL), through which Ca2+ enters the cell and causes 

Ca2+ release (Jrel) from the intracellular Ca2+ store, the sarcoplasmic reticulum [56]. High 

intracellular Ca2+ concentration ([Ca2+]i) leads to an increase in Ca2+ bound by intracellular 

proteins (troponin, calmodulin) and changes the myofilament configuration, resulting in force 

development. Force generation involves conformational changes in thick (myosin) and thin 

(actin, tropomyosin, and troponin) filaments resulting in an increase in their overlap. Myosin 

represents a polypeptide chain with globular heads, which constitute crossbridges that interact 
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Figure 2.1 Schematic diagram of the mouse model cell and Markov model for force 
generation. 

 (A) Mouse model ionic currents and Ca2+ fluxes as presented by Bondarenko et al. [29].  Transmembrane 
currents are the fast Na+ current (INa), the L-type Ca2+ current (ICaL), the sarcolemmal Ca2+ pump (Ip(Ca)), the 
Na+/Ca2+ exchanger (INaCa), the rapidly recovering transient outward K+ current (IKto,f), the slowly recovering  
transient outward K+ current (IKto,s), the rapid delayed rectifier K+ current (IKr), the ultrarapidly activating 
delayed rectifier K+ current (IKur), the noninactivating steady-state voltage activated K+ current (IKss), the time-
independent K+ current (IK1), the slow delayed rectifier K+ current (IKs), the Na+/K+ pump (INaK), the Ca2+-
activated chloride current (ICl,Ca), the Ca2+ and Na+ background currents (ICab and INab). Istim is the external 
stimulation current. The Ca2+ fluxes within the cell are uptake of Ca2+ from the cytosol to the network sarco-
plasmic reticulum (SR) (Jup), Ca2+ release from the junctional SR (Jrel), Ca2+ flux from the network SR (NSR) to 
junctional SR (JSR) (Jtr), Ca2+ leak from the SR to the cytosol (Jleak), Ca2+ flux from the subspace volume to the 
bulk myoplasm (Jxfer), Ca2+ flux to troponin (Jtrpn). The model includes Ca2+ buffering by troponin and calmod-
ulin in the cytosol and by calsequestrin in the SR. [Ca2+]i, [Na+]i, and [K+]i are the intracellular Ca2+, Na+, and 
K+ concentrations in cytosol; [Ca2+]o, [Na+]o, and [K+]o are the extracellular Ca2+, Na+, and K+ concentrations. 
Contraction force (Fcontr) develops due to interaction of thin and thick filaments in the cytosol. (B) State diagram 
of the Markov model for the force generation in mouse cardiac myofilaments [42]. Top states describe cross-
bridge formation, bottom states describe Ca2+ binding to troponin. P0, P1, P2, and P3 are the permissive states; 
N0 and N1 are the nonpermissive states. TCa is Ca2+ bound troponin; T is unbound troponin. (Figure 
reproduced from [44])  

  

with thin filaments. Thin filaments are composed of long tropomyosin polypeptide chains, on 

which globular actin molecules aggregate in a double-stranded helix with crossbridge binding 

sites. In a non-active configuration, troponin blocks crossbridge binding sites (Fig. 1.4). Upon 

Ca2+ binding to troponin, troponin-tropomyosin complex exposes crossbridge binding sites 
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which interact with myosin globular heads, thereby creating weak bonds. ATP molecules bound 

to actin release a phosphate group and transform weak bonds into strong bonds. This 

transformation results in a change of crossbridge conformation to a bent position and forces thick 

filaments to slide relative to thin filaments. 

Because of the complexity of the contraction mechanism, most mathematical models use 

a significantly simplified description of this process [57]. They explore the Huxley two-state 

crossbridge model [40], extend it to a larger number of crossbridge states, and include direct and 

indirect interaction with troponin and variable sarcomere lengths [42, 57]. Such simplified 

description, for example, does not involve energy metabolism and interaction with mitochondria. 

The crossbridge models are further incorporated into cellular models, which include electrical 

activity, comprehensive Ca2+ dynamics [43, 46, 58], and energy metabolism [59, 60]. 

In this chapter, we developed a new electromechanical model for mouse ventricular 

myocyte contraction at room temperature (298K, or +25C) [44]. We employed previously 

published models for action potential and Ca2+ dynamics in mouse ventricular myocytes [29, 61-

63], which were also developed for room temperature (298K, or +25C), and incorporated a 

myocyte contraction model from Rice et al. [42]. These models were successfully employed for 

simulations of proarrhythmic activities in mouse cardiac cells and tissues [62, 63]. In addition, in 

the Rice et al. [42] model, we implemented a simplified sarcomere length variation during 

twitch. We also explored the effects of heterogeneity of the electrical activity and Ca2+ dynamics 

in epicardial and endocardial cells on the contraction force generation and cell shortening. The 

resulting model was adjusted to fit experimental data on mouse ventricular cell contraction. Our 

model successfully reproduces steady-state force-calcium relationships for different sarcomere 

lengths; time courses of the Ca2+ transients, developed force, and cellular shortening; peak force-
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frequency and cell shortening-frequency relationships; and time-to-peak force and time-to-50% 

force relaxation. We also investigated and emphasized the importance of using variable 

sarcomere lengths in models of myocyte contraction. In the simulations, we compared both the 

absolute value of the contraction force and cellular shortening, and their normalized 

dependencies to fit existing experimental data. 

2.2 Methods 

A mathematical model for mouse ventricular myocyte contraction is a natural extension 

of the Bondarenko et al. model [29] for action potential and Ca2+ dynamics in mouse ventricular 

myocytes, with model improvements from [61-63] (Fig. 2.1A), developed for room temperature 

(298K, or +25C). In this chapter, we explored mouse ventricular myocyte models from the 

epicardial and endocardial regions of the heart [63]. Endocardial cells have more prolonged 

action potentials and larger intracellular [Ca2+]i transients compared to epicardial cells [63]. We 

incorporated the Rice et al. [42] contraction model 4 in our model of electrical activity and Ca2+ 

handling [29, 61-63] (See Appendix A) and adjusted model parameters to fit experimental data 

on myocyte contraction obtained for room temperatures. 

The Rice et al. [42] model links Ca2+ dynamics and myocyte contraction (Fig. 2.1B). The 

model contains two nonpermissive tropomyosin states (N0 and N1) and four permissive 

tropomyosin states (P0, P1, P2, and P3). N0, N1, P0, P1, P2, and P3 are functions of time that 

describe probabilities of finding the model in that particular state. N0 is the rest state of the 

model, with no strongly bound crossbridges. When Ca2+ binds to the tropomyosin, it changes its 

conformation to a permissive state without strongly bound crossbridges (P0), which allows for 

strong binding of one (P1), two (P2), or three (P3) crossbridges. The model also includes one 

nonpermissive state with one strongly bound crossbridge even without a bound Ca2+ ion (N1). 
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All transition rates in the model are Ca2+-independent, except for kNP, which depends on the 

concentration of troponin with Ca2+ bound to a low-affinity binding site. Detailed analysis of 

several contraction models and the plausibility of different cooperative mechanisms was 

performed in [42]. The model which we adopted for the mouse ventricular myocyte contraction 

(Model 4 from [42]) gave the best fit to the existing experimental data for mice. The contraction 

model parameters for epicardial and endocardial cells are presented in Appendix A.  

Contraction force Fcontr (in mN/mm2) was calculated using the equation [42]: 

 73.26 ,contr contrnF F   (2.1) 
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In equation (2.1), Fcontrn is the normalized contraction force, and the coefficient 73.26 

was obtained from fitting absolute values of the steady-state and dynamic experimental forces. 

For simulating steady-state force-calcium relationships (F-Ca2+), we used fixed values of the 

sarcomere lengths (SL), so that d(SL)/dt = 0, and changed intracellular Ca2+ concentration. We 
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simulated F-Ca2+ relationships for sarcomere lengths 1.9, 2.1, and 2.3 μm. In this case, Fcontrn has 

time-independent magnitude.  

For simulating twitch contraction, where Fcontrn is time-dependent, we used Hooke’s law, 

the linear relationship between contraction/relaxation force and cell shortening/extension: 

 00.8 contrnSL F SL   (2.9) 

where SL0 is the initial value of SL. In this case, sarcomere length becomes a function of time. 

We estimated the variable cell length by 

 0
0

SL
L L

SL
   (2.10) 

where initial cell length L0 = 100 μm. For all simulations in this chapter, we used extracellular 

Ca2+ concentration [Ca2+]o = 2 mM.  

The electromechanical cardiac cell models were stimulated with different frequencies 

using a stimulus current (Istim = 80 pA/pF, τstim = 0.5 ms) for at least 200,000 ms to reach a quasi-

steady state. Simulated data of intracellular [Ca2+]i transients, myocyte contraction force Fcontr, 

and sarcomere length SL on the interval from 192,000 to 200,000 ms were compared to 

extensive experimental data.  

The model consists of 51 ordinary differential equations and multiple model parameters 

(see Appendix A). Differential equations were solved by fourth-order Runge-Kutta method with 

time step 0.0001 ms. The model was implemented as an original Intel FORTRAN 90 code, 

which was run under SUSE Linux on a Dell Precision Workstation T3500 (Intel Xeon Processor 

W3670, 3.2 GHz, 8 GB RAM). To determine the values of the model parameters, we ran 

simulations and compared key characteristics of myocyte [Ca2+]i transients and contraction force 

to experimental data obtained from mice. We adjusted transition rates in the Markov model for 

tropomyosin until our simulations fit well the experimental data from multiple laboratories. 
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2.3 Results 

2.3.1 Steady-state force-calcium relationships 

We first simulated steady-state force-calcium relationships. Both epicardial and 

endocardial cell models demonstrated the same simulation data for the steady-state force, as the 

contraction model Rice et al. [42] depends on intracellular [Ca2+]i concentration. Figure 2.2A 

shows the Ca2+-dependence of the absolute value of contraction force obtained by Prabhakar et 

al. [64] for two different sarcomere lengths, 1.9 and 2.3 μm, from skinned mouse ventricular 

myocytes. For both cases, the force represents an increasing sigmoid function of calcium 

concentration. There is a relatively small increase in the saturation force from 48.8 to 57.2 

mN/mm2 when sarcomere length increases by about 20%, from 1.9 to 2.3 μm. Figure 2.2B shows 

simulation of the steady-state force-calcium relationships for three sarcomere lengths, 1.9, 2.1, 

and 2.3 μm. Our model is able to closely reproduce the saturating value of the force for 

corresponding sarcomere lengths. However, there are some differences between simulated and 

experimental data in sensitivity to external Ca2+, as simulated force saturates at smaller values of 

Ca2+ concentrations. Such differences are due to a decrease in Ca2+ sensitivity of skinned 

compared to intact cardiac cells [2]. 

Our model is also able to reproduce a shift in Ca2+ sensitivity for steady-state force-

calcium relationships shown for three sarcomere lengths (Fig. 2.2D). Such a shift can be clearly 

seen for normalized steady-state force-calcium relationships. Simulations show that an increase 

in sarcomere length leads to smaller half-saturation values of Ca2+ concentrations, demonstrating 

an increase in Ca2+ sensitivity (Fig. 2.2D). A similar shift in Ca2+ sensitivity is also observed 

experimentally for mouse cardiac cells (Fig. 2.2C) [64, 65]. 
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Figure 2.2 The steady-state force-[Ca2+]i relationship. 

The steady-state absolute force-[Ca2+]i relationship (A and B) and the steady-state normalized force-[Ca2+]i 
relationship (C and D). Experimental data from Prabhakar et al. [64] (SL = 1.9 and 2.3 μm) and Konhilas et al. 
[65] (SL = 1.95 and 2.25 μm), obtained with skinned myocytes, are shown in (A) and (C) with filled symbols; 
experimental data for non-skinned myocytes from [66] is shown by unfilled circles in (C) and (D). The model’s 
simulations at various initial sarcomere lengths (SL = 1.9, 2.1, and 2.3 μm) are shown in (B) and (D). Simulated 
data for both epicardial and endocardial cells are the same. (Figure reproduced from [44]) 
 

In addition to the skinned mouse ventricular myocytes, our simulation data is also 

compared to the available experimental data on steady-state force-calcium relationships from 

intact cells, shown in Fig. 2.2 C and D with unfilled circles [66]. Figure 2.2D shows that our 

simulations are in good agreement with the experimental data. ICa50 and Hill coefficient h 
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obtained by fitting steady-state force-calcium relationships from McCloskey et al. [66] data with 

the function 

  
 

2 max min
mini 2

50i

Ca
1 Ca ICa

h

F F
F F



    
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  (2.11) 

are 0.4 µM [Ca2+]i and 3.05, respectively. Fitting our simulation data gives ICa50 0.68, 0.59, and 

0.49 µM [Ca2+]i and Hill coefficients 2.30, 2.33, and 2.25, for sarcomere lengths 1.9, 2.1, and 2.3 

µM, respectively. 

 
Table 2.1 Experimental conditions for measurements of contraction force, cell 
shortening, and [Ca2+]i transients and corresponding simulated conditions. 

Reference  Temperature, ◦C  Sarcomere length, µm  [Ca2+]o mM  Stimulation freq., Hz  [Ca2+]i indicator 

Gao et al. [67]  20‐22  2.1‐2.2  2.0  0.5  Fura‐2 

Kirchhefer et al. [68]  Room  No data  2.0  0.5   

Kogler et al. [69]  22‐23  2.1‐2.2  2.0  0.5  Fura‐2 

McCloskey et al. [70]  22  2.1  2.0  0.5  Fura‐2 

Stuyvers et al. [71]  25  2.0‐2.1  2.0  1.0   

Fentzke et al. [72]  22‐23  2.3       

Huang et al. [73]  Room  2.3  0.5  0.5   

Jones et al. [74]  25    2.0    Fluo‐3 

Simulation, this chapter  25  2.1  2.0  0.5   

 Table reproduced from [44]         

 

2.3.2 Dynamic behavior of contraction force 

To test the ability of our model to reproduce time behavior of the contraction force 

developed by mouse ventricular myocytes, we first stimulated the model cells with a constant 

frequency of 0.5 Hz. The time course of force in epicardial and endocardial cell simulations is 

plotted in Fig. 2.3A by red solid and dashed lines, respectively. As endocardial cells show larger 

[Ca2+]i transients than epicardial cells, we obtained that the former develops stronger contraction 

force and larger shortening than the latter. The time behavior of the contraction forces obtained 

experimentally is shown by black solid lines with symbols [67, 69-71]. There are significant  
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Figure 2.3 Contraction force, myocyte shortening, and [Ca2+]i transients. 

The time course force (in mN/mm2) (A) and normalized force (B) simulated by the model for epicardial (red 
solid lines) and endocardial (red dashed lines) cells are compared with experimental data from Stuyvers et al. 
[71], Gao et al. [67], Kirchhefer et al. [68], Kogler et al. [69], and McCloskey et al. [70]. (C) Normalized 
shortening as a function of time. Simulation data is shown by red solid (epicardial cell) and red dashed 
(endocardial cell) lines, experimental data from Fentzke et al. [72] and Huang et al. [73] are shown by lines 
with symbols. (D) Normalized [Ca2+]i transients as functions of time. The model simulation (red solid and red 
dashed lines for epicardial and endocardial cells, respectively) is compared to experimental data from Gao et al. 
[67], Jones et al. [74], Kogler et al. [69], and McCloskey et al. [70] (lines with symbols). For comparison, the 
initial sarcomere length in the model simulation is set to 2.1 µm, extracellular [Ca2+]i concentration is 2 mM, 
and the frequency is 0.5 Hz, the frequency used most in the experimental data (see Table 2.1). (Figure 
reproduced from [44]) 
 

differences in the experimental data obtained from different experimental groups on the time 

behavior of force, both in peak values and residual forces (Table 2.1). Comparison of the time 

behavior of normalized simulated and experimental forces, both for epicardial and endocardial 
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cells, shows a clear similarity in the time-to-peak values and relaxation of the simulated forces 

(Fig. 2.3B) [67-71]. 

Our model includes changes in sarcomere length during myocyte contraction. The time 

behavior of normalized sarcomere shortening for simulated cells is shown in Fig. 2.3C by red 

solid and dashed lines for epicardial and endocardial cells, respectively. The models did not 

show large differences in time-to-peak shortening and relaxation times. They closely reproduced 

myocyte shortening obtained in different experiments with mice (solid lines with symbols in Fig. 

2.3C) [72, 73]. For comparison of the time scales of contraction force and Ca2+ dynamics, we 

also plotted the time courses of the simulated and experimental intracellular Ca2+ transients by 

red lines and black solid lines with symbols in Fig. 2.3D, respectively. In each case, there is a 

delay in force development following the peak of the Ca2+ transient (compare times to peaks in 

Fig. 2.3 B and D).  

2.3.3 Force-frequency relationships 

In order to investigate force-frequency relationships, we also stimulated model cells with 

different frequencies ranging from 0.25 to 2.0 Hz. Frequency dependencies of intracellular Ca2+ 

transients, contraction force, and cell shortening are shown in Fig. 2.4. Our simulated peak 

[Ca2+]i-frequency relationship (red solid and dashed lines in Fig. 2.4A) is within the variability of 

experimental data (solid lines with symbols in Fig. 2.4A) [70, 71, 75, 76]. Note that the 

simulated amplitudes of [Ca2+]i transients for epicardial and endocardial cells are verified by the 

experimental data obtained by Dilly et al. [77] (Fig. 2.4D). The models were able to reproduce 

peak contraction force-frequency relationships for mouse ventricular myocytes in the frequency 

range from 0.5 to 2.0 Hz (Fig. 2.4B). The experimental data shows biphasic behavior of the peak 

force, with a decrease from 0.25 to 0.5-1.0 Hz, followed by an increase from 1.0 to 2.0 Hz [70],  
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Figure 2.4 Stimulation frequency dependence. 

(A) Peak [Ca2+]i.(B) Peak force. (C) Cell shortening. The simulation data is shown by red solid (epicardial cell) 
and red dashed (endocardial cell) lines. The modeling results are compared to data from Ito et al. [75, 76] (A), 
McCloskey et al. [70] (A and B), and Huang et al. [73] (C). The initial SL for the simulation is 2.1 µm. (D) 
Experimental (black bars [77]) and simulated (gray bars) intracellular [Ca2+]i transients obtained for epicardial 
and endocardial cells at stimulation frequency 1 Hz. (Figure reproduced from [44]) 

 

with a clear minimum in force-frequency relationships (however, see data of Ito et al. [76] where 

the minimum is less apparent). Our model reproduced such biphasic behavior of the force-

frequency relationships for epicardial cells. Peak contraction force for endocardial cells increases 

with stimulation frequency. 

Finally, we were able to simulate peak lengthening-frequency relationships (red lines in 

Fig. 2.4C). While some experimental data shows consistent decrease in cellular shortening  
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Figure 2.5 Time course of the contraction force, sarcomere length, and percentage of 
shortening for epicardial and endocardial cells for different sarcomere lengths. 

Simulations with different resting sarcomere lengths (SL0 = 1.9, 2.1, and 2.3 m) show a significant difference 
in the magnitude of the contraction force (A, D), sarcomere length (B, E) and percentage of sarcomere length 
shortening (C, F). The stimulation frequency for each simulation is 1 Hz. Simulations are performed for 
epicardial (A, B, C) and endocardial (D, E, F) cells. (Figure reproduced from [44]) 
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with frequency [73], other data follows biphasic behavior [75, 76] (solid lines with symbols in 

Fig. 2.4C). Our modeling data demonstrates biphasic behavior in cell shortening for epicardial 

cells, which is consistent with the biphasic behavior of the contraction force and [Ca2+]i 

transients (red solid lines in Fig. 2.4 A, B and C). Model endocardial cells show only an increase 

in cell shortening as well as in [Ca2+]i (red dashed lines in Fig. 2.4 A and C, respectively). 

Simulated time courses for contraction forces, sarcomere lengths, and sarcomere 

shortenings for three different resting sarcomere lengths (1.9, 2.1, and 2.3 m) for epicardial and 

endocardial cells are shown in Fig. 2.5. As seen from the figure, an increase in the resting 

sarcomere length increases twitch force and relative sarcomere shortening. Similar behavior is 

also observed experimentally and from simulation of others [43, 46]. At comparable sarcomere 

lengths, the endocardial cells develop larger contraction force and sarcomere shortening than the 

epicardial cells (Fig. 2.5). 

2.3.4 Constant versus variable sarcomere length 

While steady-state simulations show that peak force is dependent on the initial sarcomere 

length, there is also a dynamic relationship between force and sarcomere length. Our models use 

a variable SL when calculating the transition rate from non-permissive to permissive states, as 

well as in the detachment rates in permissive states.  To see the effect of using a variable SL in 

the transition rate equations, we ran simulations in which a constant SL replaced the variable SL 

in the calculation of the normalized sarcomere length  

 
norm

1.3 m

2.3 m 1.3 m

SL
SL


 





 (2.12) 

which is used in the detachment rates and transition rates in the Markov model (Fig. 2.1B) 

 10 21 32, 2 , 3 ,SL xbSL SL xbSL SL xbSLg g g g g g    (2.13) 
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where KCa = k−ltrpn/k+
ltrpn, and the constants can be found in Appendix A. 

Figure 2.6A shows force development in epicardial cells at a stimulation rate of 1 Hz in 

the simulation using a constant SL (dashed line) versus the simulation using a variable SL (solid 

line) (see also Fig. 2.6B). Data for endocardial cells displays similar behavior and is shown in 

Fig. 2.6 C and D. The peak force when using a constant SL is clearly higher, while the residual 

force appears to be about the same. However, simulations run at various frequencies show that 

the peak and residual force when using a constant SL (Fig. 2.7E) is always higher than 

corresponding forces when a variable SL is used (Fig. 2.7C). Even though there is a difference in 

the magnitude of force, the frequency dependence of peak force when using a constant SL (black 

dashed line in Fig. 2.7F) is similar to the frequency dependence when a variable SL is used 

(black solid line in Fig. 2.7F). For comparison, Fig. 2.7 B and D show simulated data on cell 

shortening and contraction force at different stimulation frequencies for endocardial cells, using 

variable sarcomere length (data on constant SL is not shown). As seen from the figures, both 

peak contraction force and cell shortening are larger for the endocardial cells than the epicardial 

cells. In both cases, constant and variable SL, we observed a decrease in time-to-peak and time 

to 50% relaxation rate for the contraction force with an increase of stimulation frequency starting  
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Figure 2.6 The effects of constant and variable sarcomere lengths on the contraction 
force development and myocyte shortening. 

(A) Force development for the models with variable (solid line) and constant (dashed line) sarcomere lengths. 
Changing the SL from variable to a constant (B, D) does not change [Ca2+]i transients, but changes contraction 
force (A, C). The initial SL for each simulation is 2.1 µm with a stimulation frequency of 1 Hz. Simulation data 
shows an increase in force, both for epicardial (A) and endocardial (C) cells, when variable SL is replaced by 
constant SL. (Figure reproduced from [44])  

 

from 0.5 Hz. A similar increase in the residual contraction force at the larger stimulation 

frequencies is also observed experimentally [78]. 

2.3.5 Frequency dependence of dL/dt and dF/dt 

The frequency dependencies of the peak force and cell shortening are shown in Fig. 2.4. 

As might be expected, dL/dt and dF/dt also showed frequency dependence. Simulated time 
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Figure 2.7 The effects of stimulation frequency on the time behavior of sarcomere 
length and contraction force for epicardial and endocardial cells. 

The time courses of the SL (A and B) and contraction force (C, D, and E) over a four second interval are shown 
at different stimulation frequencies for epicardial (A, C, and E) and endocardial (B and D) cells. The simulation 
data with constant SL is shown only for epicardial cells, as the data for endocardial cells is similar. The 
frequency dependence of force for an epicardial cell when a variable SL parameter is used is not as pronounced 
as the frequency dependence of force when a constant SL parameter is used (C and E).  The initial SL for each 
simulation is 2.1 µm, but the residual force for higher frequencies leads to significant shortening (A and B). 
Frequency dependence of peak force for epicardial and endocardial cells with variable SL and for epicardial cell 
with constant SL is shown in (F). (Figure reproduced from [44]) 
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courses for dL/dt (Fig. 2.8 A and B) and dF/dt (Fig. 2.8 C and D) are shown for various 

frequencies from 0.25 Hz to 4.0 Hz, both for epicardial (Fig. 2.8 A and C) and endocardial (Fig. 

2.8 B and D) cells. A negative dL/dt value indicates cell shortening during a contraction, while a 

positive dL/dt corresponds to relaxation. A positive dF/dt indicates the increase in force during a 

contraction, while a negative dF/dt corresponds to relaxation. The epicardial cell demonstrated a 

monotonic increase in the magnitudes of peak values for dL/dt and dF/dt in the frequency range 

from 0.25 to 4 Hz (Fig. 2.8 A and C). In contrast, the endocardial cell showed biphasic behavior 

in the peak magnitudes of the derivatives: an increase when the stimulation frequency changes 

from 0.25 to 2 Hz, and a decrease in the frequency range from 2 to 4 Hz (Fig. 2.8 B and D). 

The frequency relationship for +dL/dtmax (solid lines) and −dL/dtmax (dashed lines) is 

shown in Fig. 2.9A. Both values showed biphasic behavior. For the epicardial cell, +dL/dtmax and 

−dL/dtmax decreased at stimulation frequencies from 0.25 to 0.5 Hz, and then increased for 

stimulation frequencies up to 4 Hz. For the endocardial cell, +dL/dtmax and −dL/dtmax increased at 

stimulation frequencies from 0.25 to 2 Hz, and then decreased for stimulations frequencies up to 

4 Hz. When compared to the experimental data, our model tended to show, on average, peak 

contraction rates approximately equal to experimental data (open symbols). However, the model 

showed somewhat slower relaxation, thus lower values of +dL/dtmax, than experimental data 

(solid symbols) [73, 79, 80]. 

Figure 2.9B shows the frequency relationship for +dF/dtmax (solid lines) and −dF/dtmax 

(dashed lines). As with corresponding values for +dL/dtmax and −dL/dtmax, the +dF/dtmax and 

−dF/dtmax showed biphasic behavior for both epicardial and endocardial cells. 

To compare experimental and simulated data quantitatively, we plotted experimental and 

simulated results on time-to-peak and time-to-50% relaxation of the contraction force and 
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Figure 2.8 Time behavior of dL/dt and dF/dt for different stimulation frequencies. 

Simulated time course of the rates of cellular shortening dL/dt (A, B) and contraction force dF/dt (C, D) during 
twitches for epicardial (A, C) and endocardial (B, D) cells. For epicardial cells, the largest values of dL/dtmax 
and dF/dtmax are observed at a relatively fast stimulation frequency of 4 Hz (solid lines in (A) and (C)). For 
endocardial cells, the largest values of dL/dtmax and dF/dtmax occur in the frequency interval from 1 to 4 Hz 
(dashed lined in (B) and (D)). (Figure reproduced from [44]) 

 

intracellular [Ca2+]i transients in Fig. 2.10. Simulated data are shown for both epicardial and 

endocardial cells (black and red, respectively, in Fig. 2.10 B and D). Simulated data for time-to-

peak force showed good agreement with the experimental data (compare Fig. 2.10 B and A), 

while time-to-50% relaxation were somewhat longer in the simulated data than those obtained in 

the experiments (compare Fig. 2.10 D and C). Experimental data for time-to-peak and time-to-

50% relaxation of [Ca2+]i transients were somewhat longer than those from simulations, but the 
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Figure 2.9 Frequency dependence of dL/dtmax and dF/dtmax. 

(A) The simulated frequency dependencies of (+dL/dt)max (solid lines) and (−dL/dt)max (dashed lines). 
Experimental data from Chu et al. [80], Flagg et al. [79], and Huang et al. [73] are shown by symbols. We 
consider (−dL/dt) to correspond to cell shortening. (B) The simulated frequency dependence of (+dF/dt)max 
(solid lines) and (−dF/dt)max (dashed lines). We consider (+dF/dt) to correspond to contraction. The initial SL 
for the simulations in (A) and (B) is 2.1 µm. Data for epicardial and endocardial cells are shown in black and 
red, respectively. (Figure reproduced from [44]) 

 

50% relaxation of [Ca2+]i transients were somewhat longer than those from simulations, but the 

simulated time-to-50% relaxations approached the experimental values at larger frequencies. 

Epicardial and endocardial cells showed similar simulated values for time-to-peak and time-to-

50% relaxation of [Ca2+]i transients, and for time-to-50% relaxation of contraction force. 

However, there were moderate differences between the cells for time-to-peak of the contraction 

force (Fig. 2.10B). 
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Figure 2.10 Time-to-peak and time-to-50% relaxation of the contraction force and 
[Ca2+]i transients as function of stimulation frequency. 

Experimental (A) and simulated (B) frequency dependencies of time-to-peaks for intracellular [Ca2+]i transients 
and contraction force, and experimental (C) and simulated (D) frequency dependencies of time-to-50% 
relaxations for intracellular [Ca2+]i transients and contraction force. Experimental data are obtained by Gao et al. 
([67], triangles) and Ramirez-Correa et al. ([81], circles). Unfilled and filled symbols are used for intracellular 
[Ca2+]i transients and contraction force, respectively. Simulation data for contraction force and intracellular 
[Ca2+]i transients are shown by solid and dashed lines, respectively, and data for epicardial and endocardial cells 
are shown in black and red, respectively. (Figure reproduced from [44]) 

 

2.4 Discussion 

In this chapter, we developed a new model for mouse ventricular myocyte contraction. 

This model is based on previously published models for epicardial and endocardial cells [29, 61-

63], which include a comprehensive description of action potential, ionic currents, and Ca2+ 

dynamics. For a description of myocyte contraction, we adopted Model 4 developed by Rice et 

al. [42] by fitting experimental data on contraction for mice. 
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Mice demonstrate much faster heartbeats than many other species. Their contraction rate 

is about 10 beats per second [82], which is, for example, faster than the rabbit (4 Hz, [83]) and 

human (1 Hz, [84]) heart contraction rates. In addition, the action potential duration in mouse 

ventricular myocytes is also much shorter (APD50 ~ 4.5 ms in mice [29] versus ~200 ms in 

rabbits [43] and ~300-400 ms in humans [85]). These differences suggest different time 

characteristics for contraction in mouse, compared to human or rabbit, ventricular myocytes. 

In a mouse cardiac cell, at moderate stimulation rates, an increase in action potential is 

followed by an increase in [Ca2+]i and a delayed increase in force. The peak value of Ca2+ 

transient occurs after almost complete repolarization of action potential. In addition, peak 

contraction force appears after a significant decline of [Ca2+]i. Our model replicates this 

relationship. Figure 2.11 shows normalized values for epicardial action potential (solid line), 

[Ca2+]i (dashed line), and force (dotted line) over a 0.5 second interval for a simulation at 1 Hz. 

In larger species, such as rabbit, time scaling of the action potential, [Ca2+]i and contraction force 

transients is different (Fig. 9 in [43]). For rabbits, [Ca2+]i transient, in significant part, overlaps 

with the action potential and contraction force transient, while the peak sequence is the same as 

in mice. 

Mouse ventricular myocytes, unlike other species, demonstrate biphasic frequency 

dependence of intracellular [Ca2+]i transient and peak force [70, 71] (however, see data of Ito et 

al. [76] where biphasic behavior is less apparent). Stuyvers et al. [71] suggested a qualitative 

mechanism which explains this biphasic behavior based on frequency-dependent Ca2+ dynamics. 

The minimum occurs at the crossroad of the descending frequency trend of the Ca2+ load into the 

sarcoplasmic reticulum during diastole and ascending trend in Ca2+ entry into the cell through 

L-type Ca2+ channels. They used a simplified description of Ca2+ dynamics for mouse ventricular 
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Figure 2.11 Scaling action potential, [Ca2+]i transient, and force in the model for mouse 
ventricular myocyte contraction. 

The simulation used an initial SL of 2.1 µm and a stimulation frequency of 1 Hz. In mouse ventricular 
myocytes, Ca2+ transient develops after action potential repolarization is almost complete. After that, the 
contraction force develops with time delay due to Ca2+ binding to troponin and troponin-induced changes in 
contractile proteins. (Figure reproduced from [44]) 

 

myocytes. Our model for an epicardial cell, which includes a comprehensive description of the 

electrical activity and Ca2+ dynamics in mouse ventricular myocytes during cell twitch, was also 

able to reproduce this physiological phenomenon. In our model, myocyte contraction force is 

related to Ca2+ dynamics through the Markov model for crossbridge kinetics. While both peak 

[Ca2+]i transients and peak contraction force show minimum values as functions of stimulation 

frequency, these minimum frequency values are slightly different (Fig. 2.4). This trend is also 

confirmed by the experimental data of McCloskey et al. [66]. 

However, our model for the endocardial cell does not show biphasic behavior in the 

frequency-dependence of both peak [Ca2+]i transients and peak contraction force. There is also 

some experimental data in which non-monotonic increase in peak [Ca2+]i transients and myocyte 

shortening in mice is less apparent: even saturation and decrease in myocyte shortening 

amplitude at relatively large stimulation frequencies occurred [76]. Our model for the 

endocardial cell, at least qualitatively, reproduced saturation and even decrease in sarcomere 
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shortening and contraction force amplitude at 4 Hz stimulation (Fig. 2.7 B and D). This effect 

can be explained by the larger peak and diastolic values of [Ca2+]i transients in endocardial cells 

compared to epicardial cells, which shift the operation interval of intracellular Ca2+ towards a 

smaller slope in force-calcium relationships (Fig. 2.2D). 

While there are no specific experimental studies of contraction force and cell shortening 

in mouse epicardial and endocardial ventricular myocytes, there are a few studies of the 

differences in action potentials and Ca2+ handling in these cells [77, 86]. The studies show that 

the endocardial cells demonstrate significantly larger [Ca2+]i transients, and our modeling 

predicts larger contraction force and shortening in these ventricular myocytes. 

Our electromechanical model for mouse ventricular myocyte contraction includes a 

variable sarcomere length during cell contraction, the effect that occurs in most experiments. 

Simulations with variable sarcomere length produced significantly smaller contraction force than 

the simulations with constant sarcomere length despite the same time course and amplitude of 

[Ca2+]i transient during twitch. This suggests the importance of the inclusion of cell shortening in 

the model for cardiac myocyte contraction. Note that a similar result was obtained with a more 

complex model of Rice et al. [43], developed for rabbit ventricular myocytes, who also studied 

the effects of variable and fixed sarcomere length on the force development. 

Several models for cardiac myocyte contraction have been developed to date [42, 43, 46, 

58, 60] (see also review [57]). Earlier models did not include sarcomere shortening during twitch 

[42, 58, 60]. They are primarily focused on simplification of the description of crossbridge 

kinetics, their dependence on Ca2+ dynamics, and careful reproduction of the existing 

experimental data on steady-state and dynamic force-calcium relationships. Most of these models 

have limitations due to this and other simplifications. 
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Rice et al. [42] investigated five Markov models describing contraction mechanisms in 

cardiac myocytes. Two of the models consisted of four tropomyosin states and transitions 

between them (N0, N1, P0, and P1, see Fig. 2.1B). These models differed by the mechanisms of 

modulation of the transition rates (in Fig. 2.1B they are defined as kNP and kPN). In Model 1, rates 

kNP and kPN were independent of the developed force, while in Model 2 the rates depended on the 

developed force. In both models, Ca2+ binding to troponin directly affected tropomyosin shifting, 

i.e., rates kNP and kPN. Model 3 included an indirect connection of the Ca2+ binding to troponin 

and tropomyosin shifting, as shown by dashed arrows in Fig. 2.1B (see also [42]), and only four 

states (N0, N1, P0, and P1). Models 4 and 5 were extended to up to three crossbridge bindings, 

which resulted in four permissive tropomyosin states, P0, P1, P2, and P3, (Fig. 2.1B and [42]). 

The only difference between Models 4 and 5 was the modulation of the k−ltrpn rate by generated 

force. Because Model 4 and Model 5 yielded an approximately equal description of myocyte 

contraction, we implemented Model 4 in our electrophysiological model, as Model 5 led to 

unstable solutions. 

Our model of mouse ventricular myocyte contraction also has some limitations due to the 

simplification of the biophysical mechanism of contraction. In particular, the model uses a 

simplified description of the relationships between contraction force and cellular shortening in 

the form of Hooke’s law, while the real dependence is more complicated [43]. It does not 

describe the effects of cellular shortening on Ca2+ transients, as does the 2008 model of Rice et 

al. [43]; however, this effect is relatively small. Also, our model, as most other models, does not 

take into account intracellular spatial inhomogeneities of Ca2+ concentration and crossbridge 

binding sites. 
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Nevertheless, despite the limitations, our electromechanical model of mouse ventricular 

myocyte contraction was extensively verified by experimental data obtained for mice. It 

reproduced reasonably well a significant amount of the existing experimental data. The model 

can be used for cells from two different regions of the heart (epicardium and endocardium). As 

with most other models, it uses a simplified description of the contraction force generation. We 

employed a six-state Markov model for tropomyosin dynamics and separate Ca2+ binding to 

troponin to describe force development. More comprehensive models will be necessary to 

develop a better simulation of more extended experimental data sets. 

For supporting information, see the model summary in Appendix A. 
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3 A MATHEMATICALMODEL OF β1–ADRENERGIC REGULATION OF MOUSE 

VENTRICULAR MYOCYTE CONTRACTION 

3.1 Introduction 

Multiple experimental protocols have been developed to study mechanisms of cardiac 

myocyte contraction and isolate the stages of this process. These include measurements of 

steady-state force-calcium relationships, the crossbridge release rate (krel), force development 

rate (kdf), force-velocity relationship, and force redevelopment rate (ktr), which were performed 

with skinned cardiac cells [15, 87, 88]. In addition, frequency and isoproterenol dependencies for 

[Ca2+]i transients, total contraction force, and sarcomere shortening were measured with non-

skinned cardiac cells [67, 70, 75, 76, 81, 89-95]. 

Cardiac myocyte contraction is modulated by the β1-adrenergic signaling system and its 

components, the activation of which significantly increases contraction force, sarcomere 

shortening, and speeds up contraction relaxation [91, 92]. Experimental data demonstrate that it 

is the phosphorylation of two contractile proteins, TnI and MyBP-C, that causes the major effects 

of β1-adrenoreceptor activation on myocyte contraction [15, 87].  While the experimental 

investigations have led to the development of mathematical models that allow for detailed 

description of myocyte contraction, only a few models include the effects of activation of 

β1-adrenergic signaling. Land et al. [45] used modifications of their model parameters to include 

the effects of stimulation of the β1-adrenergic receptors, however, there was no detailed 

description of the biochemical reactions involved in the β1-adrenergic signaling system. More 

recently, a detailed mathematical model was developed for the β1-adrenergic regulation of rabbit 

ventricular myocytes [47] that included modeling of biochemical reactions. However, the model 

gave qualitative, rather than quantitative, agreement with the experimental data, perhaps because 
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the model was developed based on data from multiple species, including mice, which have a 

significantly different repolarization mechanism and different Ca2+ dynamics. 

In this chapter, we developed a new comprehensive mathematical model of the 

β1-adrenergic regulation of mouse ventricular myocyte contraction, which was verified by 

experimental data obtained from mice. Our model is based on a model of the β1-adrenergic 

signaling system in mouse ventricular cells [16] and models for myocyte contraction [42-44]. In 

this new model, we incorporated phosphorylation of MyBP-C, as well as the effect of 

phosphorylation of TnI and MyBP-C on crossbridge attachment and detachment rates and on the 

viscosity coefficient. With the resulting model, we were able to simulate major experimental 

protocols without and with stimulation of the β1-adrenergic signaling system. These protocols 

included measurements of steady-state force-calcium relationships, force-velocity relationship, 

and rates krel, kdf, and ktr. We also simulated frequency and isoproterenol dependencies for 

[Ca2+]i transients, total contraction force, and sarcomere shortening. The fit of the simulations to 

the experimental data suggests that the increased contraction force and myocyte shortening upon 

stimulation of β1-ARs is primarily due to the increased [Ca2+]i transients and phosphorylation of 

TnI and MyBP-C resulting from activation of the β1-adrenergic signaling system. The new 

mathematical model can also be modified to simulate ventricular myocyte contraction in 

genetically modified mice modeling chronic cardiac diseases. 

3.2 Methods 

3.2.1 Model development 

To develop this model, we modified the Bondarenko model [16], which describes action 

potential, Ca2+ dynamics, and the biochemical part of the β1-adrenergic signaling system (Fig. 

3.1), to include active contraction force from [42, 44], passive and flexible contraction forces 
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from [43], and modified viscous force based on the description by Rice et al. [43]. A detailed 

description of the Bondarenko model is given elsewhere [16, 96]. In this chapter we focused on 

the model development for myocyte contraction. 

Our mathematical model is based exclusively on experimental data obtained from mice. 

During model development we used data from multiple laboratories so that our model would fall 

within the range of an “average” set of experimental data. Due to the modular structure of the 

original Bondarenko model [16], we were able to add modules for MyBP-C phosphorylation and 

myocyte contraction without affecting the parameters for existing modules. First we added the 

MyBP-C module, and fit parameters to experimental data for MyBP-C phosphorylation. Next we 

added the contraction module, and fit parameters to match experimental contraction data for 

control conditions. As we simulated new protocols (described in the remainder of Section 3.2) 

and compared the results to the corresponding experimental data, we were able to identify the 

contributions of active, passive, viscous, and flexible force and refine the parameters 

accordingly. To account for changes in contraction characteristics due to stimulation of the 

β1-adrenergic system, we introduced factors to adjust several rates and constants due to TnI and 

MyBP-C phosphorylation. We repeated the parameter fitting process for the contraction module, 

focusing only on parameters for the introduced factors. When experimental data was available 

for the independent effects of TnI versus MyBP-C phosphorylation in a particular protocol, we 

adjusted the parameters accordingly; otherwise we adjusted the parameters such that TnI and 

MyBP-C affected the rate equally. 

3.2.2 Active contraction force 

The active force portion of the model is based on force generated from crossbridges. We 

used our previous Markov model of six tropomyosin states (see Chapter 2, Fig. 2.1B), with 
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modifications of the rate constants and the equation for active contraction force. Time behavior 

of the tropomyosin states is described by the same differential equations as in Chapter 2 [44]. 

These equations and the contraction model parameters are presented in Appendix B. 

 

 

Figure 3.1 Schematic diagram of the β1-adrenergic regulation of the mouse ventricular 
myocyte contraction. 

The model cell contains three intracellular compartments in the β1-adrenergic signaling system: caveolae, extra-
caveolae, and cytosol. The subspace volume (Vss) is located in the caveolae domain. Transmembrane currents 
are the time-independent K+ current (IK1), the L-type Ca2+ current (ICaL,cav and ICaL,ecav), the fast Na+ current (INa), 
the Na+/K+ pump [INaK, regulated by phospholemman(PLM)], the ultrarapidly activating delayed rectifier K+ 
current (IKur), the rapidly recovering transient outward K+ current (IKto,f), the sarcolemmal Ca2+ pump (Ip(Ca)), the 
noninactivating steady-state voltage activated K+ current (IKss), the rapid delayed rectifier K+ current (IKr), the 
Na+/Ca2+ exchanger (INaCa), the Ca2+-activated chloride current (ICl,Ca), the Ca2+ and Na+ background currents 
(ICab and INab). The Ca2+ fluxes within the cell are uptake of Ca2+ from the cytosol to the network sarcoplasmic 
reticulum (NSR) by the SERCA pump (Jup) and the Ca2+ release from the junctional sarcoplasmic reticulum 
(JSR) through the ryanodine receptors (RyRs) (Jrel). The components of the β1-adrenergic signaling system are 
the β1-adrenergic receptors (β1-AR); α- and βγ-subunits of stimulatory G-protein (Gsα and Gβγ); G-protein-
coupled receptor kinase of type 2 (GRK2); adenylyl cyclases of type 5/6 or 4/7 (AC5/6 or AC4/7, respectively); 
cyclic AMP (cAMP); regulatory (R) and catalytic (C) subunit of protein kinase A (PKA) holoenzyme; 
phosphodiesterases of type 2, 3, or 4 (PDE2, PDE3, or PDE4, respectively); inhibitor-1 (I-1); protein kinase A 
inhibitor (PKI); and protein phosphatases of type 1 and 2A (PP1 and PP2A). Stimulatory links are shown by 
black arrows and inhibitory links are shown by red dashed lines with circles. The contractile proteins are actin; 
myosin; myosin binding protein C (MyBP-C); troponin I, C and T (TnI, TnC and TnT, respectively); and 
tropomyosin (Tm). They are localized in the cytosolic compartment. Two of these (TnI and MyBP-C) are 
substrates of the β1-adrenergic signaling system. 
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Active contraction force Fcontr (in mN/mm2) was calculated using the equation: 

 58.0 ,contr contrnF F   (3.1) 

where 

 
   
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 01 12 2315 , 30 , 7 .XB XB XBf f f f f f     (3.8) 

In equation (3.1), Fcontrn is the normalized contraction force, and the coefficient 58.0 was 

obtained from fitting absolute values of the steady-state and dynamic experimental forces. 

Experimental data show that active contraction force is regulated by Ca2+ transients and 

activation of the β1-adrenergic signaling system. Two major proteins are involved in the force 

modulation, TnI and MyBP-C. Activation of β1-ARs results in an increased level of phosphory-

lation of TnI and MyBP-C which changes the transition rates between tropomyosin states.  

TnI phosphorylation is described by a differential equation developed by Bondarenko 

[16]: 

 , _ , _ 2 ,

_ , _ 2 ,

[ ] (1 ) [ 2 ]
,

(1 )

cyt cyt cyt cyt cyt
TnI p TnI PKA TnI p TnI PP A TnI p

cyt cyt
TnI PKA TnI p TnI PP A TnI p

df k C f k PP A f

dt K f K f

    
 

  
 (3.9) 
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where ,
cyt

TnI pf  is the fraction of phosphorylated TnI, _TnI PKAk  is the rate of TnI phosphorylation by 

PKA, _ 2TnI PP Ak  is the rate of TnI dephosphorylation by PP2A, _TnI PKAK  is the relative affinity for 

TnI phosphorylation by PKA, _ 2TnI PP AK  is the relative affinity for TnI dephosphorylation by 

PP2A, [ ]cytC  is the cytosolic concentration of catalytic subunit of PKA, and [ 2 ]cytPP A  is the 

cytosolic concentration of protein phosphatase of type 2A (see Appendix B). 

Similarly, we describe phosphorylation of MyBP-C by the following differential 

equation: 

 
 _ ,, _ ,

_ , _ ,

[ 1] [ 2 ][ ] (1 )
,

(1 )

cyt cyt cytcyt cyt cyt
MyBPC PP MyBPC pMyBPC p MyBPC PKA MyBPC p

cyt cyt
MyBPC PKA MyBPC p MyBPC PP MyBPC p

k PP PP A fdf k C f

dt K f K f

    
 

  
 (3.10) 

where ,
cyt

MyBPC pf  is the fraction of phosphorylated MyBP-C, _MyBPC PKAk  is the rate of MyBP-C 

phosphorylation by PKA, _MyBPC PPk  is the rate of MyBP-C dephosphorylation by PP1 and PP2A, 

_MyBPC PKAK  is the relative affinity for MyBP-C phosphorylation by PKA, _MyBPC PPK  is the 

relative affinity for MyBP-C dephosphorylation by PP1 and PP2A, and [ 1]cytPP  is the cytosolic 

concentration of protein phosphatase of type 1, (see Appendix B). 

Model parameters for equation (3.10) were adjusted to fit experimental data on 

phosphorylation of MyBP-C. Figure 3.2A demonstrates simulated and experimental increases of 

phosphorylation levels of MyBP-C due to an activation of β1-ARs. Experimental data [97-99] 

show a significant level of phosphorylation of MyBP-C (~55-60%) without stimulation of 

β1-ARs, which is in line with our modeling value of 57.5% phosphorylation. Upon activation of 

β1-ARs, the experimental phosphorylation level of MyBP-C increased 1.65-1.8 fold [97-99], 

which is close to our simulated 1.64 fold. In addition, we simulated kinetics of MyBP-C 
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phosphorylation, shown in Fig. 3.2B. Our simulation data fits well the experimental data of 

Verduyn et al. [99]. 

 

Figure 3.2 MyBP-C phosphorylation levels. 

(A) Maximum MyBP-C phosphorylation levels of model simulations and experimental data [97-99] without 
(Control) and with (PKA) β1-adrenergic stimulation. Values have been normalized to control values for 
comparison. Simulation data was obtained by stimulation with 10 µM isoproterenol to achieve maximum effect. 
(B) The time-course of MyBP-C phosphorylation by fold increase. The model simulation was obtained by 
stimulation with 10 µM isoproterenol (shown by the solid line) and is compared to experimental data from 
Verduyn et al. [99] (shown by symbols). 

 

Activation of the β1-adrenergic system increases detachment rates and decreases 

attachment rates. In our model this effect is accomplished by the modulation of rate constants, fXB 

and gminxb, using the level of phosphorylation of TnI and MyBP-C, as shown below: 
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minxb minxb TnI p MyBPC pg g f f       (3.12) 

where the numbers 0.364 and 0.575 reflect the unstimulated phosphorylation levels of TnI and 

MyBP-C, respectively, and fXB0 and gminxb0 are given in Appendix B. 

3.2.3 Passive contraction force 

Passive contraction force is similar to that developed by Rice et al. [43]. It includes titin- 

and collagen-related components: 
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       ,passive titin collagenF SL F SL F SL    (3.13) 

where  
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 (3.15) 

Constants in Eqs. (3.14) and (3.15) are given in Appendix B. 

Because experimental data by Najafi et al. [100] shows that passive contraction force is 

very weakly modulated by PKA, and the magnitude of the passive force is relatively small 

compared to the active force, we did not include the effects of stimulation of β1-ARs on the 

passive force in this model. 

3.2.4 Viscous force 

In our model, we implemented viscous force, which contains two terms, one with linear 

and one with quadratic dependence on the sarcomere shortening velocity v: 

  1 ,visc fxF visc v a v      (3.16) 

where visc is the linear viscosity coefficient and afx is the additional parameter responsible for 

nonlinearity. 

This form of the viscous force can be derived from the Hill equation relating force and 

muscle velocity [101] (see Appendix C for details): 

     0 .v b F a b F a      (3.17) 

Solution of this equation with respect to F/F0 gives: 
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In equation (3.18), the numerator is a linear function of v, which reflects a decrease in F/F0 with 

shortening velocity. The term v/b in the denominator changes this behavior to hyperbolic. 

Experimental data on the dependence of shortening velocity on the relative force for mice [88] 

demonstrates that the deviation from linearity is quite small, which suggests that the ratio v/b in 

the denominator is also small. Using the Taylor expansion of the denominator, we obtain: 
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Equation (3.19) can be presented in the form 
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which includes both linear and quadratic dependence of the force on the muscle shortening 

velocity, which was implemented in our model. 

Experimental data by Sadayappan et al. [88] also shows that the shortening velocity 

increases upon stimulation of the β1-adrenergic signaling system. To simulate these effects, we 

implemented modulation of visc and afx by phosphorylated fractions of TnI and MyBP-C: 

      1 1

0 , ,1 0.33 0.364 1 1.1 0.575 ,cyt cyt
TnI p MyBPC pvisc visc f f

 
       (3.21) 

      1 1

0 , ,1 0.2 0.364 1 0.6 0.575 ,cyt cyt
fx fx TnI p MyBPC pa a f f

 
       (3.22) 

in which parameters were obtained to fit the experimental data by Sadayappan et al. [88] ( 0visc  

and 0fxa  are given in Appendix B). 
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3.2.5 Flexible force 

We used the expression of the flexible forces as proposed by Rice et al. [43] 

  0 ,flexF KSE SL SL    (3.23) 

where parameter KSE = 1.0. 

3.2.6 Sarcomere shortening  

Unlike our Chapter 2 model, where sarcomere shortening was calculated using Hooke’s 

law and active contraction force only, sarcomere (SL) shortening in this model is described using 

Newton’s second law represented in the form of two first-order differential equations: 

 ,contrn passive visc flexF F F Fdv

dt mass

  
   (3.24) 

 .
dSL

v
dt

    (3.25) 

Here, mass is the model parameter related to sarcomere mass. 

3.2.7 Method of simulation 

The cardiac cell model was stimulated with different frequencies using a stimulus current 

(Istim = 80 pA/pF, τstim = 1.0 ms) for at least 300,000 ms to reach a quasi-steady state. Simulated 

data of intracellular [Ca2+]i transients, myocyte contraction force, and sarcomere length SL on 

the interval from 296,000 to 300,000 ms were compared to extensive experimental data. 

The model consists of 150 ordinary differential equations (see Appendix B), which were 

solved by the fourth-order Runge-Kutta method. In order to decrease computing time, the 

differential equations for four “fast” variables ([Ca2+]ss and RyR states PO1, PC1p, and PO1p) were 

solved with a time step of 0.000002 ms, but the differential equations for all remaining variables 

were solved with two different time steps. The 0.000002 ms time step was used during the first 

10 milliseconds after the initiation of the stimulus current, but a larger time step, 0.0001 ms, was 
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used otherwise. For the force-velocity simulations with isoproterenol and frequency dependence 

simulations with isoproterenol, all time steps were decreased by a factor of 10. The model was 

implemented as an original Intel FORTRAN 90 code, which was run under SUSE Linux on a 

Dell Precision Workstation T3500 (Intel Xeon Processor W3670, 3.20 GHz, 8 GB RAM). 

3.3 Results 

We used several mathematical models as templates for the development of our model of 

the β1-adrenergic regulation of mouse ventricular myocyte contraction. These included a model 

of the β1-adrenergic signaling system in mouse ventricular cells [16] and models for myocyte 

contraction [42-44]. The resulting model allowed for simulation of major experimental protocols 

designed for studying cardiac myocyte contraction without and with stimulation of the 

β1-adrenergic signaling system. 

Experimental data demonstrated that the phosphorylation of two contractile proteins, TnI 

and MyBP-C, cause the major effects of β1-AR stimulation on cardiac myocyte contraction [15, 

102]. The Bondarenko model of the β1-adrenergic signaling system in mouse ventricular 

myocytes [16] included a description of phosphorylation of TnI, as it was involved in the 

modulation of Ca2+ dynamics. In the current model, we developed equations to describe 

phosphorylation of MyBP-C (see Appendix B). Figure 3.2 shows simulated and experimental 

data on MyBP-C phosphorylation upon stimulation of the β1-adrenergic signaling system. 

Experimental data shows that the MyBP-C phosphorylation level increased 1.6-1.8 fold after 

application of PKA. Our model replicated this increase well when stimulated with a maximum 

concentration (10 µM) of isoproterenol (Fig. 3.2A). In addition, we were able to simulate the 

time course of MyBP-C phosphorylation, which is shown in Fig. 3.2B. Simulated 

phosphorylation kinetics are consistent with the experimental data from Verduyn et al. [99]. 
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Figure 3.3 The steady-state force-[Ca2+]i relationship for various sarcomere lengths. 

The steady-state absolute force-[Ca2+]i relationship (A and B) and the normalized steady-state force-[Ca2+]i 
relationship (C and D) for different sarcomere lengths (SL). Experimental data obtained with skinned myocytes 
[64, 65] are shown in (A) and (C) with filled symbols; experimental data obtained with non-skinned myocytes 
[66] are shown in (C) and (D) with unfilled symbols. The model’s simulations at various initial SL lengths are 
shown in red in (B) and (D). 

 

The first protocol we simulated using our model was the steady-state active force-[Ca2+]i 

relationship for differing SL lengths (Fig. 3.3). Sarcomeres with a larger resting length show 

both an increase in absolute force and an increase in [Ca2+]i sensitivity. These increases can be 

seen in both the experimental data and model simulations (Fig. 3.3 A and B, respectively). Our 

simulations model well the maximum absolute force for a 2.3 µm sarcomere, but the reduction in 

maximum force for shorter sarcomeres is not as large as the experimental data for Prabhakar et 

al. [64]. Figure 3.3 C and D show the normalized force-[Ca2+]i relationship. The experimental 
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data for Prabhakar et al. [64] and Konhilas et al. [65], which are from skinned myocytes, show a 

lower [Ca2+]i sensitivity than the model simulations. However, the [Ca2+]i sensitivity in our 

model matches well the data for McCloskey et al. [66], which are from non-skinned myocytes. 

In addition, our model matches well the experimental increase in [Ca2+]i sensitivity when 

sarcomere length increases. The ratio of half-activation [Ca2+]i concentrations estimated from the 

experimental data by Prabhakar et al. [64] is equal to 1.31 when sarcomere length changes from 

1.9 to 2.3 µm. The ratio estimated from the experimental data by Konhilas et al. [65] is equal to 

1.29 when sarcomere length changes from 1.95 to 2.25 µm. Our simulations give the ratio 1.33 

when sarcomere length changes from 1.9 to 2.3 µm, which is close to the experimental ratios 

(Fig. 3.3 C and D). 

Activation of the β1-adrenergic signaling system decreases [Ca2+]i sensitivity of the active 

force. Experimental data for the normalized force-[Ca2+]i relationship without and with activation 

with PKA (Fig. 3.4A) show this decrease in [Ca2+]i sensitivity. The experimental ratio of the 

half-activation [Ca2+]i values for the active force with and without application of PKA is 

estimated as 1.47±0.05 (mean±SE) based on the experimental data sets [15, 72, 88, 103, 104]. 

Experimental data were obtained for the sarcomere lengths ranging from 2.1 to 2.3 µm. Our 

corresponding simulated half-activation [Ca2+]i ratios obtained upon stimulation with and 

without 10 µM isoproterenol are equal to 1.66, 1.51, and 1.36 for sarcomere lengths 1.9, 2.1, and 

2.3 µm, respectively (Fig. 3.4B). 

Our model was able to reproduce a second experimental protocol: stretch-activated force 

kinetics in response to a small (~1%) stretch of the sarcomere (Fig. 3.5). This protocol was 

designed to determine two critical rates, krel and kdf, that characterize contraction force [87]. The 

rate krel characterizes the rate of crossbridges detachment during phase 2 and the rate kdf  
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Figure 3.4 The effect of β1-adrenergic stimulation on the normalized steady-state force-
[Ca2+]i relationship. 

(A) Experimental data for controls are shown with solid lines and symbols. Experimental data using stimulation 
with PKA are shown with dashed lines and unfilled symbols [15, 88, 103, 104]. (B) Model simulations without 
and with β1-adrenergic stimulation (10 µM isoproterenol) are shown with solid and dashed lines, respectively. 
The model replicates the decrease in calcium sensitivity, which results from β1-adrenergic stimulation. 
Simulated sarcomere length is 2.1 µm. 

 

represents the rate of the force development after the stretch (phase 3 in Fig. 3.5B) [87]. To 

simulate this experiment, we first applied a [Ca2+]i to achieve about 50% of maximum active 

force. Then, at time moment 3000 ms, we stretched the sarcomere length by 1%, from 2.1 µm to 

2.12 µm. To simulate the crossbridge detachment during abrupt stretch, we multiplied parameter 

gminxb by the factor  

, ,1 1.4exp[ ( 3000.0)(1 0.3( 0.364))(1 1.0( 0.575)) / 6.0].cyt cyt
TnI p MyBPC pt f f+ - - + - + -  

This factor determines an abrupt increase in the gminxb rate at t = 3000 ms that decreases 

exponentially in time with characteristic time constant 6.0 ms to ensure almost complete cross-

bridges detachment within approximately 20 ms. In addition, this time constant is modulated by 

phosphorylation of TnI and MyBP-C, as it is observed experimentally. 

As a result of this stretch, the force sharply increased (phase 1) and decreased (phase 2), 

and then redeveloped to a larger steady-state value (phase 3) (Fig. 3.5 A and B). This kind of 

behavior is also observed experimentally [87]. In the experiments, application of PKA resulted in 
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an increase of both krel and kdf. Our simulations were able to reproduce these changes (dashed 

lines in Fig. 3.5 A and B). Simulated and experimental values of krel and kdf without and with 

stimulation of the β1-adrenergic signaling system are shown in Fig. 3.5 C and D. Our model 

reproduced well the rate of crossbridge detachment krel in stimulated and unstimulated cardiac 

cells (Fig. 3.5C), as well as the rate of force development kdf in the stimulated cell; however, the 

simulated value of kdf in the unstimulated cell was lower than the experimental value (Fig. 3.5D).  

 

 

Figure 3.5 The stretch activation protocol. 

In this protocol, contraction force was activated by 0.361 and 0.545 µM of [Ca2+]i for control and 10 µM 
isoproterenol, respectively, which approximately corresponds to ~50% of the maximum active force. Then the 
sarcomere was stretched by 1% of its length from the 3rd to 5th seconds. (A) The simulated time courses of the 
absolute force without and with β1-adrenergic stimulation are shown with solid and dashed lines, respectively. 
Initial sarcomere length is 2.1 µm. (B) Time behavior of the force as fraction of pre-stretched force. (C) The 
simulated (black bars) crossbridge release rate krel without (Control) and with (PKA) stimulation of 
β1-adrenergic signaling system is compared to the experimental data Stelzer et al. [87] (gray bars). (D) The 
simulated (black bars) force development rate kdf without (Control) and with (PKA) stimulation of 
β1-adrenergic signaling system is compared to the experimental data Stelzer et al. [87] (gray bars). 
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The third major experimental protocol we simulated with our model was a force-velocity 

protocol. In this protocol, the active force was first maximally activated with 2 µM of [Ca2+]i. At 

1000 ms the [Ca2+]i was changed to simulate an afterload ranging from 0.0 to 1.0 of the 

maximum force. The afterload force was increased from 0.0 to 1.0 of the maximum force in 0.1 

steps during successive trials. The velocity of sarcomere shortening was determined on the 

interval from 1005 to 1020 ms, where the change in sarcomere length is approximately linear as 

a function of time. Figure 3.6 A and B show the changes in sarcomere length during the force-

velocity protocol as a function of time for the afterload forces from 0.0 to 1.0 of the maximum 

force for control conditions (Fig. 3.6A) and after stimulation with 10 µM isoproterenol (Fig. 

3.6B). It can be seen that isoproterenol accelerated sarcomere shortening at all values of afterload 

force. The comparison of the simulated and experimental sarcomere shortening velocity at 

different afterloads without and with stimulation of the β1-adrenergic signaling system is shown 

in Fig. 3.6C. The simulated data fit well the experimental data obtained by Sadayappan et al. 

[88] for mouse ventricular myocytes. In addition, the model was able to reproduce the 

experimental data on the effects of PKA on the cardiac muscle power output defined as the 

product of the force and the sarcomere shortening velocity [88] (Fig. 3.6D).  

Finally, we simulated ventricular myocyte behavior during a fourth major experimental 

protocol, one which determines the rate of force redevelopment, ktr. For this purpose, the 

myocyte was activated with different concentrations of [Ca2+]i from 0.1 to 8.0 µM. The cell was 

first held at a sarcomere length of 2.1 µm for 2000 ms. At time moment 2000 ms the sarcomere 

length was reduced to the steady-state sarcomere length for that [Ca2+]i concentration. After 20 

ms, the sarcomere was stretched back to 2.1 µm. The time course of force was then fitted with an 

exponential function to obtain ktr. (The steady-state sarcomere length for each [Ca2+]i  
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Figure 3.6 The force-velocity protocol. 

The time courses of SL are shown during the force-velocity protocol without and with beta adrenergic 
stimulation (A and B, respectively). During this protocol, the active force was maximally activated with 2 µM 
of [Ca2+]i. The afterload force was changed from 0.0 to 1.0 of the maximum force in 0.1 steps at 1000 ms. The 
velocity of sarcomere shortening is determined on the interval from 1005  to 1020 ms, where the change in 
sarcomere length is approximately linear as a function of time. The force-velocity relationship (C) and power 
output (D) from the model simulations (shown by lines) are compared to data from Sadayappan et al. [88] 
(shown by symbols). Model simulations without and with β1-adrenergic stimulation are shown in (C) and (D) 
by solid and dashed lines, respectively. Experimental data without and with β1-adrenergic stimulation are shown 
by filled and unfilled symbols, respectively. 

 

was obtained by a separate simulation of the model behavior for 4000 ms at that [Ca2+]i.) Figure 

3.7 shows the absolute and normalized values of ktr as functions of the relative force, which was 

determined by [Ca2+]i concentration. Experimental data shows that ktr increased with relative 

force up to a maximum value both without and with application of PKA. Application of PKA 
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increased the magnitudes of ktr at all relative forces. Our simulations reproduced these 

dependencies in general. Simulations of ktr without β1-adrenergic stimulation demonstrated good 

agreement with the experimental data. However, our simulations with β1-adrenergic stimulation 

by 10 µM isoproterenol showed somewhat higher values for ktr. 

 

Figure 3.7 ktr and normalized ktr values as a function of relative force. 

The ktr and normalized ktr values are shown as a function of relative force (A and B, respectively) without and 
with β1-adrenergic stimulation (solid and dashed lines, respectively). The myocyte was activated with different 
concentrations of [Ca2+]i from 0.1 to 8.0 µM. At time moment 2000 ms the sarcomere length was reduced from 
2.1 µm to the steady-state value for a given [Ca2+]i concentration for 20 ms and then stretched back to 2.1 µm. 
Time course of the force was fitted with an exponential function to obtain ktr. Model simulations without and 
with stimulation with 10 µM isoproterenol are shown in red. Experimental data without and with PKA 
stimulation [15, 105] are shown in black with filled and unfilled symbols, respectively. 

 

To investigate the effects of β1-adrenergic stimulation on [Ca2+]i transients, total 

contraction force, and sarcomere shortening, we simulated electrical stimulation of the 

ventricular myocyte model with Istim = 80 pA/pF and τstim = 1.0 ms at 1 Hz without and with 

application of 1 µM isoproterenol (Fig. 3.8). Simulations showed a significant increase in the 

magnitude of [Ca2+]i transients, total contraction force, and sarcomere shortening after 

stimulation of β1-adrenoceptors (Fig. 3.8 A-C). In addition, they showed faster rates of activation 

and relaxation. We compared the increases of model cell activities stimulated at 0.5 Hz to 

experimental data obtained at stimulation frequencies ranging from 0.5 to 4.0 Hz (Fig. 3.8 D-F).  
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Figure 3.8 Time course of [Ca2+]i, contraction force, and sarcomere length. 

The simulated time course of [Ca2+]i (A), contraction force (B), and sarcomere length (C) without and with β1-
adrenergic stimulation by 1 µM isoproterenol are shown by solid and dashed lines, respectively. The simulated 
increases in peak [Ca2+]i (D), peak force (E), and percentage shortening (F) resulting from β1-adrenergic 
stimulation are compared to experimental data [89, 92, 94, 95, 102, 106, 107] without and with β1-adrenergic 
stimulation. The values for [Ca2+]i and force are normalized to control peak values. The model stimulation 
frequency for (A), (B), and (C) is 1 Hz.  The model stimulation frequency for (D), (E), and (F) is 0.5 Hz.  
Experimental measurements were obtained at 0.5 Hz for Brickson et al. [102] and Nakayama et al. [92]; 1 Hz 
for Wang et al. [107]; 2 Hz for Despa et al. [106] and Ackers-Johnson et al. [89]; and 4 Hz for Vandecasteele et 
al. [95] and Takimoto et al. [94].  
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Upon activation of the β1-adrenergic signaling system, simulated [Ca2+]i transients 

increased by 2.7 fold, while the increases in the experimental data ranged from 1.9 to 5.8 fold 

(Fig. 3.8D). Similarly, the simulated increase in the total force was 4.1, which is similar to the 

experimental data, which ranged from 2.3 to 3.5 fold (Fig. 3.8E). Finally, our model showed an 

increase in fractional sarcomere shortening from 3.6% to 14.0% before and after application of 1 

µM isoproterenol, respectively. Simulation data with β1-adrenergic stimulation is in line with the 

experimental data (ranging from 12.2% to 17.5%), but sarcomere shortening for control is 

somewhat smaller than in this set of experimental data (6.7% to 8.6%). Better agreement was 

obtained with another set of experimental data for control (ranging from 2.3% to 5.5% at 0.5 Hz, 

Fig. 3.9B), but those experiments did not include measurements of the effects of β1-adrenergic 

stimulation. 

Our model reproduced quite well the frequency dependencies of the peak [Ca2+]i 

transients, peak total force, and sarcomere shortening (Fig. 3.9). Both simulations and 

experimental data showed bi-phasic frequency dependence of [Ca2+]i transients (Fig. 3.9A). 

Simulations of the peak force demonstrated biphasic behavior, as well; however, some 

experimental data showed bi-phasic frequency dependence with saturation in contraction force at 

frequencies from 2 to 4 Hz (Fig. 3.9B). Finally, our simulations of sarcomere shortening showed 

tri-phasic behavior as stimulation frequency increased from 0.25 to 4.0 Hz (Fig. 3.9C). These 

simulation results are close to the experimental data in terms of shortening magnitude, but some 

experimental data demonstrated only bi-phasic dependencies. 

Finally, we simulated the behavior of peak [Ca2+]i transients, peak total force, and 

sarcomere shortening as functions of isoproterenol (Fig. 3.10). Our simulations showed a 

somewhat larger increase in peak [Ca2+]i transients with isoproterenol concentration than the  
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Figure 3.9 Frequency dependence of peak [Ca2+]i, peak force, and cell shortening. 

The simulated frequency dependence of peak [Ca2+]i (A), peak force (B), and cell shortening (C) (shown in red) 
are compared to experimental data [67, 70, 75, 76, 81, 90-92, 94] (shown in black). The initial SL for the model 
simulation is 1.9 µm. 

 

experimental values (Fig. 3.10A). However, we have only one experiment available in which 

isoproterenol dependence of peak [Ca2+]i transients was measured; other experimental data 

obtained specifically at 1 µM isoproterenol shows better agreement with our simulations (Fig. 

3.8D). Our simulation of the isoproterenol dependence of peak force is also quite close to the 

experimental data (Fig. 3.10B), taking into account the accuracy of the force measurements. 

Simulated sarcomere shortening is within the range of the experimental data (Fig. 3.10C). 
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Figure 3.10 Isoproterenol dependence of peak [Ca2+]i, peak force, and cell shortening. 

The simulated isoproterenol dependence of peak [Ca2+]i (A), peak force (B), and cell shortening (C) (shown in 
red) are compared to experimental data [89, 91-95] (shown in black). The values for peak [Ca2+]i (A) and peak 
force (B) are normalized to control values. The initial SL for the model simulation is 1.9 µm with a stimulation 
frequency of 0.5 Hz. Experimental measurements were obtained at 0.5 Hz for Nakayama et al. [92], Kirchhefer 
et al. [91] and Ramirez-Correa et al. [93]; 2 Hz for Ackers-Johnson et al. [89]; and 4 Hz for Takimoto et al. 
[94] and Vandecasteele et al. [95]. 

 

Thus, in this chapter, we developed a new mathematical model of the β1-adrenergic 

regulation of mouse ventricular myocyte contraction that was able to simulate major 

experimental protocols on measurements of steady-state force-calcium relationships, crossbridge 

release rates (krel) and force development (kdf), force-velocity relationship, and force 
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redevelopment (ktr). It also reproduced quite well frequency and isoproterenol dependencies for 

[Ca2+]i transients, total contraction force, and sarcomere shortening. 

3.4 Discussion 

3.4.1 Recent progress in mathematical modeling of cardiac myocyte contraction 

Mathematical modeling of cardiac myocyte contraction has a long history. Multiple 

cardiac contraction models have been developed since the early work of Huxley [40]. The most 

popular models were developed by Negroni and Lascano [41], Rice et al. [42], and Rice et al. 

[43]. Many of these are implemented in cellular contraction models that include a description of 

action potential and Ca2+ dynamics.  

The 1999 Rice et al. model [42] was implemented in several cardiac cellular models, 

including one for guinea pig ventricular myocytes [58] and one for mouse ventricular myocytes 

[44]. The 2000 Rice et al. model [58] focused mostly on modeling short-term interval-force 

relations, which was found to result from the interplay of the ryanodine receptor adaptation and 

the SR Ca2+ load, with additional contributions of the membrane currents and myofilament 

activation. Mullins and Bondarenko [44] adopted Rice et al. [42] Model 4 to simulate mouse 

ventricular myocyte contraction with the inclusion of sarcomere shortening. They were able to 

reproduce steady-state force-Ca2+ relationships, dependence of contraction force on the 

sarcomere length, time course of contraction force and myocyte shortening, and frequency 

dependence of contraction force and myocyte shortening. The 2008 Rice et al. model [43] was 

implemented in rat and rabbit ventricular myocyte models, and in a canine ventricular myocyte 

model by Campbell et al. [108]. 

Our new mathematical model of mouse ventricular myocyte contraction synthesizes 

several previously developed models of mouse ventricular myocytes [16, 96] and cardiac 
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myocyte contraction [42-44]. We used a recent mouse ventricular myocyte model that includes 

descriptions of action potential, Ca2+ dynamics, and the β1-adrenegic signaling system [16, 96] to 

incorporate a modified three-crossbridge model from Rice et al. [42], and passive and flexible 

forces from Rice et al. [43]. In this paper, we also proposed a new description of viscous force 

that includes both linear and nonlinear viscosity. The resulting model reproduced quantitatively 

major experimental data on ventricular myocyte contraction obtained from mice. 

3.4.2 The effects of β1-adrenergic stimulation on cardiac cell contraction 

Experimental data demonstrates that activation of the β1-adrenergic signaling system 

results in stronger active contraction force, decrease in Ca2+-sensitivity of the steady-state force-

Ca2+ relationship, and accelerated force development and relaxation [89, 103]. These effects are 

mostly due to phosphorylation of troponin I and myosin binding protein C, which affect Ca2+ 

sensitivity of the contraction force, crossbridge attachment and detachment rates, viscosity, rate 

of force redevelopment, and the power of cardiac output [88, 105]. 

Previously, a mathematical model of the β1-adrenergic regulation of the rabbit ventricular 

myocyte contraction was developed [47], which was based on the contraction model of Negroni 

and Lascano [48] and the Soltis-Saucerman model of β1-adrenergic signaling [49]. The model 

described the effects of β1-adrenergic stimulation on myocyte contraction mostly qualitatively, to 

demonstrate the direction of its effects rather than their magnitude. In addition, the simulation 

data were compared not only to those obtained from rabbit cardiac cells, but also from 

ventricular myocytes of other species [47]. 

Our mathematical model of the β1-adrenergic regulation of the mouse ventricular 

myocyte contraction was developed based on data obtained from a single species (mouse). We 

simulated major experimental contraction protocols for measurements of steady-state force-
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calcium relationships, crossbridge release rate (krel) and force development rate (kdf), force-

velocity relationship, and force redevelopment rate (ktr). Most of the simulation data compares 

quite well with the experiments (e.g., steady-state force-Ca2+ relationship, force-velocity 

relationship, power output as a function of the relative force). Our model implements the effects 

of β1-adrenergic signaling through the phosphorylation of TnI and MyBP-C, and their effects on 

the transition rates between tropomyosin states and on viscous force. These modulations allowed 

for the simulation of all experimental protocols described in this study. 

3.4.3 Model limitations 

Although our mathematical model of the β1-adrenergic regulation of mouse ventricular 

myocyte contraction describes well a number of experimental protocols, it has several 

limitations. One limitation is that we used the model of an epicardial ventricular cell, however, 

the experimental data used for the model development does not discriminate between the 

epicardial and endocardial cell types. We also used data obtained from different laboratories 

which varied significantly in the magnitude of force, Ca2+ sensitivity, and sensitivity to 

isoproterenol. Lastly, in our model we only implemented the β1-adrenergic signaling system, 

which can potentially interact with β2-adrenergic and CaMKII-mediated signaling systems.  

For supplemental information, see the model summary in Appendix B. 
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4 CONCLUSIONS 

Thus, in this dissertation, we developed two mathematical models of mouse ventricular 

myocyte contraction. The first model was based on a comprehensive model of the action 

potential and Ca2+ dynamics in mouse ventricular myocytes that is not modulated by the β1-

adrenergic signaling system. In the model, we used a simplified description of the contraction 

force and sarcomere shortening. The resulting model fit well experimental data on steady-state 

force-calcium relationships, dependence of the contraction force on the sarcomere length, time 

course of the contraction force and myocyte shortening, frequency dependence of the contraction 

force and cellular contraction, and experimentally measured derivatives of the myocyte length 

variation. We emphasized the importance of the inclusion of variable sarcomere length into a 

model for ventricular myocyte contraction, and we investigated the differences in contraction 

force and cell shortening for epicardial and endocardial ventricular myocytes. 

The second, more comprehensive mathematical model of the mouse ventricular myocyte 

contraction included regulation of the contraction by the β1-adrenergic signaling system through 

phosphorylation of troponin I and myosin binding protein C. The model was based on 

experimental data obtained from mice and described well major experimental protocols on 

ventricular contraction (steady-state force-Ca2+ relationship, stretch-activated force development, 

force-velocity relationship, power output as a function of relative force, the rate of force 

redevelopment as a function of relative force, the effects of isoproterenol on the magnitude of 

contraction force and sarcomere shortening, and frequency and isoproterenol-dependence of 

contraction force and sarcomere shortening). The model can be used as a template for 

mathematical models of β1-adrenergic regulation of contraction in other cell types and cells from 

other species, as well as for the interpretation of experimental data obtained from mice. 
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Slow Delayed-Rectifier Potassium Current 
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Rapid Delayed Rectifier Potassium Current (mERG) 
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Calcium-Activated Chloride Current 
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Model parameters 

Cell Geometry Parameters 

Parameter Definition Value 
Acap Capacitive membrane area 1.534104 cm2 

Vmyo Myoplasmic volume 25.84106 μl 

VJSR Junctional SR volume 0.1210-6 l 

VNSR Network SR volume 2.09810-6 l 

Vss   Subspace volume 1.48510-9 l 

 

Extracellular Ion Concentrations 

Parameter Definition Value 
[K+]o Extracellular K+ concentration 4,000 M 

[Na+]o Extracellular Na+ concentration 136,000 M 

[Ca2+]o Extracellular Ca2+ concentration 2,000 M 

 

SR Parameters 

Parameter Definition Value 
v1 Maximum RyR channel Ca2+ permeability (epicardial cell) 4.0 ms-1 

v1 Maximum RyR channel Ca2+ permeability (endocardial cell) 2.9 ms-1 

v2 Ca2+ leak rate constant from the NSR 1.74  10-5 ms-1 

v3 SR Ca2+-ATPase maximum pump rate 0.315 M ms-1 

Km,up Half-saturation constant for SR Ca2+-ATPase pump 0.5 M 

tr Time constant for transfer from NSR to JSR 20.0 ms 

xfer Time constant for transfer from subspace to myoplasm 8.0 ms 

ka
+ RyR PC1  PO1 rate constant 0.006075 M-4 ms-1 

ka
- RyR PO1  PC1 rate constant 0.07125  ms-1 

kb
+ RyR PO1  PO2 rate constant 0.00405 M-3 ms-1 

(A .136)

(A .137)

(A .138)
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kb
- RyR PO2  PO1 rate constant 0.965 ms-1 

kc
+ RyR PO1  PC2 rate constant 0.009 ms-1 

kc
- RyR PC2  PO1 rate constant 0.0008  ms-1 

n RyR Ca2+ cooperativity parameter PC1  PO1 4 

m RyR Ca2+ cooperativity parameter PO1  PO2 3 

 

L-type Ca2+ Channel Parameters 

Parameter Definition Value 
GCaL Specific maximum conductivity for L-type Ca2+ channel 0.2342 mS F-1 

ECa,L Reversal potential for L-type Ca2+ channel 52.0 mV 

Kpc,max Maximum time constant for Ca2+-induced inactivation 0.11662 ms-1 

Kpc,half  Half-saturation constant for Ca2+-induced inactivation 10.0 M 

Kpcb Voltage-insensitive rate constant for inactivation 0.0005 ms-1 

ICaL,max Normalization constant for L-type Ca2+ current 7.0 pA pF-1 

 

Buffering Parameters 

Parameter Definition Value 
[LTRPN]tot Total myoplasmic troponin low-affinity site concentration 70.0 M 

[HTRPN]tot Total myoplasmic troponin high-affinity site concentration 140.0 M 

k+
htrpn Ca2+ on rate constant for troponin high-affinity sites 0.00237 M-1 ms-1 

k-
htrpn Ca2+ off rate constant for troponin high-affinity sites 3.2  10-5 ms-1 

k+
ltrpn Ca2+ on rate constant for troponin low-affinity sites 0.0327 M-1 ms-1 

k-
htrpn Ca2+ off rate constant for troponin low-affinity sites 0.0196 ms-1 

[CMDN]tot Total myoplasmic calmodulin concentration 50.0 M 

[CSQN]tot Total junctional SR calsequestrin concentration 15,000 M 

Km CMDN Ca2+ half saturation constant for calmodulin 0.238 M 

Km CSQN Ca2+ half saturation constant for calsequestrin 800.0 M 

 

Membrane Current Parameters 

Parameter Definition Value 
Cm Specific membrane capacitance 1.0 F cm-2 

F Faraday’s constant 96.5 C mmol-1 

T Absolute temperature 298 K 

R Ideal gas constant 8.314 J mol-1 K-1 

kNaCa Scaling factor of Na+-Ca2+ exchange (epicardial cell) 234.24 pA pF-1 

kNaCa Scaling factor of Na+-Ca2+ exchange (endocardial cell) 131.76 pA pF-1 

Km,Na Na+  half saturation constant for Na+-Ca2+ exchange 87,500 M 
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Km,Ca Ca2+  half saturation constant for Na+-Ca2+ exchange 1,380 M 

ksat Na+-Ca2+ exchange saturation factor at very negative potentials 0.1 

 Controls voltage dependence of Na+-Ca2+ exchange 0.35 

Imax
NaK Maximum Na+-K+ exchange current (epicardial cell) 0.704 pA pF-1 

Imax
NaK Maximum Na+-K+ exchange current (endocardial cell) 0.6952 pA pF-1 

Km,Nai Na+  half saturation constant for Na+-K+ exchange current 21,000 M 

Km,Ko K+ half saturation constant for Na+-K+ exchange current 1,500 M 

Imax
p(Ca) Maximum Ca2+ pump current (epicardial cell) 0.085 pA pF-1 

Imax
p(Ca) Maximum Ca2+ pump current (endocardial cell) 0.0595 pA pF-1 

Km,p(Ca) Ca2+ half saturation constant for Ca2+ pump current 0.5 M 

GCab Maximum background Ca2+ current conductance (epicardial cell) 0.000033 mS F-1 

GCab Maximum background Ca2+ current conductance (endocardial cell) 0.000017 mS F-1 

GNa Maximum fast Na+ current conductance 13.0 mS F-1 

GNab Maximum background Na2+ current conductance 0.0026 mS F-1 

GKto,f Maximum transient outward K+ current conductance (epicardial cell) 0.3846 mS F-1 

GKto,f Maximum transient outward K+ current conductance (endocardial cell) 0.1939 mS F-1 

GKs Maximum slow delayed rectifier K+ current conductance 0.00575 mS F-1 

GKto,s Maximum transient outward K+ current conductance (epicardial cell) 0.0 mS F-1 

GKur 
Maximum ultra-rapidly delayed rectifier K+ current conductance 
(epicardial cell) 0.3424 mS F-1 

GKur 
Maximum ultra-rapidly delayed rectifier K+ current conductance 
(endocardial cell) 0.1405 mS F-1 

GKss Maximum non-inactivating steady-state K+ current conductance (apex) 0.0611 mS F-1 

GKr Maximum rapid delayed rectifier K+ current conductance 0.078 mS F-1 

kf  Rate constant for rapid delayed rectifier K+ current 0.023761 ms-1 

kb Rate constant for rapid delayed rectifier K+ current 0.036778 ms-1 

GCl,Ca Maximum calcium-activated chloride current conductance 10.0 mS F-1 

Km,Cl Half saturation constant for Ca2+-activated chloride current 10.0 M 

ECl Reversal potential for calcium-activated chloride current 40.0 mV 

 

Contraction Parameters 

Parameter Definition Value 
SL0 Initial sarcomere length 2.1 m 

kPN Transition rate from permissive to non-permissive state 0.045 ms-1 

fXB Basic transition rate from weak to strong crossbridge 0.10 ms-1 

gminxb Minimum detachment rate from strong to weak crossbridge 0.14 ms-1 
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Initial Conditions (epicardial cell) 

Parameter Definition Value 
t Time 0.0 ms 

V Membrane potential 76.3108 mV 

[Ca2+]i Myoplasmic Ca2+ concentration 0.128703 M 

[Ca2+]ss Subspace SR Ca2+ concentration 0.128703 M 

[Ca2+]JSR Junctional SR Ca2+ concentration 1125.08 M 

[Ca2+]NSR Network SR Ca2+ concentration 1125.08 M 

[LTRPNCa] Concentration Ca2+ bound low-affinity troponin-binding sites 12.3737 M 

[HTRPNCa] Concentration Ca2+ bound high-affinity troponin-binding sites 126.707 M 

O L-type Ca2+ channel conducting state 0.85483110-11 

C1 L-type Ca2+ channel closed state 0.993178 

C2 L-type Ca2+ channel closed state 0.68045710-2 

C3 L-type Ca2+ channel closed state 0.17482610-4 

C4 L-type Ca2+ channel closed state 0.19963110-7 

I1 L-type Ca2+ channel inactivated state 0.25334810-10 

I2 L-type Ca2+ channel inactivated state 0.31833910-8 

I3 L-type Ca2+ channel inactivated state 0.94346610-8 

PC1 Fraction of RyR channels in state PC1 0.999714 

PC2 Fraction of RyR channels in state PC2 0.26311210-3 

PO1 Fraction of RyR channels in state PO1 0.23387710-4 

PO2 Fraction of RyR channels in state PO2 0.20925610-9 

CNa3 Closed state of fast Na+ channel 0.420023 

CNa2 Closed state of fast Na+ channel 0.0267137 

CNa1 Closed state of fast Na+ channel 0.72375210-3 

ONa Open state of fast Na+ channel 0.41457610-5 

IFNa Fast inactivated state of fast Na+ channel 0.89368710-3 

I1Na Slow inactivated state 1 of fast Na+ channel 0.12429910-4 

I2Na Slow inactivated state 2 of fast Na+ channel 0.90990110-7 

ICNa2 Close-inactivated state of fast Na+ channel 0.0329860 

ICNa3 Close-inactivated state of fast Na+ channel 0.518643 

[Na+]i Myoplasmic Na+ concentration 14,564.6 μM 

[K+]i Myoplasmic K+ concentration 143,419 μM 

ato,f Gating variable for transient outward K+ current 0.48263010-2 

ito,f Gating variable for transient outward K+ current 0.999945 

nKs Gating variable for slow delayed rectifier K+ current 0.64562610-3 

ato,s Gating variable for transient outward K+ current 0.92165810-3 

ito,s Gating variable for transient outward K+ current 0.995756 

aur Gating variable for ultra-rapidly activating delayed rectifier K+ current 0.92165810-3 

iur Gating variable for ultra-rapidly activating delayed rectifier K+ current 0.995756 
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aKss Gating variable for non-inactivating steady-state K+ current 0.92165810-3 

iKss Gating variable for non-inactivating steady-state K+ current 1.0 

CK0 mERG channel closed state 0.996856 

CK1 mERG channel closed state 0.15660010-2 

CK2 mERG channel closed state 0.10117410-2 

OK mERG channel open state 0.45085510-3 

IK mERG channel inactivated state 0.11561110-3 

PRyR Ca2+ release modulation factor 0.35843810-13 

SL Sarcomere length 2.096593 m 

N0 Nonpermissive tropomyosin with 0 crossbridges 0.998770 

N1 Nonpermissive tropomyosin with 1 crossbridge 0.36761210-4 

P0 Permissive tropomyosin with 0 crossbridges 0.11273510-3 

P1 Permissive tropomyosin with 1 crossbridge 0.14885610-3 

P2 Permissive tropomyosin with 2 crossbridges 0.40848410-3 

P3 Permissive tropomyosin with 3 crossbridges 0.52310810-3 
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Appendix B   Chapter 3 Model Summary 

Biochemical part 

Cell compartments 

Parameter Definition Value Reference 
Acap Capacitive membrane area 1.534104 cm2 Bondarenko et al. [29] 

Vcell Cell volume 38.00106 μl Bondarenko et al. [29]

Vcyt Cytosolic volume 25.84106 μl Bondarenko et al. [29]

VJSR Junctional SR volume 0.1210-6 l Bondarenko et al. [29]

VNSR Network SR volume 2.09810-6 l Bondarenko et al. [29]

Vss   Subspace volume 1.48510-9 l Bondarenko et al. [29]

Vcav Caveolar volume 0.02Vcell Heijman et al. [34] 

Vecav Extracaveolar volume 0.04Vcell Heijman et al. [34] 

 

The protein P concentrations in the cell ([P]cell), caveolae, extracaveolae, and cytosol 

cell
cav cav cell

P cav

V
[P] f [P]

V
= ⋅ ⋅  

cell
ecav ecav cell

P ecav

V
[P] f [P]

V
= ⋅ ⋅  

cell
cyt cav ecav cell

P P cyt

V
[P] (1 f f ) [P]

V
= - - ⋅ ⋅  

 

β1-adrenergic receptor module 

Para-
meter 

Definition Value Reference 

[L] Ligand concentration 0…100 M  

[Rβ1]tot Total β1-adrenoceptor concentration 0.0103 M Hilal-Dandan et al. [109] 

1f cav
b  

Fraction of β1-adrenoceptors located in 
caveolae 

0.01 
Rybin et al. [37] 
Balijepalli et al. [35] 

1f ecav
b  

Fraction of β1-adrenoceptors located in 
extracaveolae 

0.5 
Rybin et al. [37] 
Balijepalli et al. [35] 

1f cyt
b  Fraction of β1-adrenoceptors located in cytosol 1 1 1f 1 f fcyt cav ecav

b b b= - -  Rybin et al. [37] 
Balijepalli et al. [35] 

[Gs]tot Total concentration of Gs protein 2.054 M Post et al. [110] 

f cav
Gs  Fraction of Gs protein located in caveolae 0.4 Rybin et al. [37] 

(B.1)

(B.2)

(B.3)
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f ecav
Gs  Fraction of Gs protein located in extracaveolae 0.4 Rybin et al. [37] 

f cyt
Gs  Fraction of Gs protein located in cytosol f 1 f fcyt cav ecav

Gs Gs Gs= - -   

Kβ1,L 
Low affinity constant of β1-adrenoceptor for 
isoproterenol 0.567 M Heijman et al. [34] 

Kβ1,H 
High affinity constant of β1-adrenoceptor for 
isoproterenol 0.0617 M Heijman et al. [34] 

Kβ1,C 
Affinity constant of β1-adrenoceptor for Gs 
protein 2.86 M Bondarenko [16] 

kPKA+ 
Rate of PKA phosphorylation of β1-
adrenoceptor 0.00081 μM1 s1 Freedman et al. [111] 

kPKA 
Rate of PKA dephosphorylation of β1-
adrenoceptor 0.0002025 s1 Bondarenko [16] 

kGRK2+ 
Rate of GRK2 phosphorylation of β1-
adrenoceptor 0.000243 s1 Bondarenko [16] 

kGRK2 
Rate of GRK2 dephosphorylation of β1-
adrenoceptor kPKA Bondarenko [16] 

kact1,Gs Activation rate for Gs by high affinity complex 4.9 s1 Heijman et al. [34]

kact2,Gs Activation rate for Gs by low affinity complex 0.26 s1 Heijman et al. [34]

khyd,Gs Hydrolysis rate of Gsα-GTP 0.8 s1 Saucerman et al. [30] 

kreas,Gs Re-association rate for Gs 1200 μM1 s1 Saucerman et al. [30] 

 

Caveolae 

1 1 1[ ] f [ ]cav cav cell
tot tot

cav

V
R R

Vb b b= ⋅ ⋅  

, ,[ ] f [ ] [ ] [ ]cav cav cav cavcell
s Gs s tot s GTP s GDP

cav

V
G G G G

Vabg a a= ⋅ ⋅ - -  

1 , 1 1 , 1 2,[ ] [ ] [ ] [ ]cav cav cav cav
np tot tot PKA tot GRK totR R R Rb b b b= - -  
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L H
L

a K L K L
Kb b b

b
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( ) ( )1 1, 1 , 1, 1, 1,
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L
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b G K L R K L K K
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(B.4)

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)



94 

2
1 1 1 1

1 ,
1

[ ] 4
[ ]

2

cav cav cav cav

cav
np f cav

b b a c
R

a
b b b b

b
b

- + - ⋅ ⋅
=

⋅
  

1 ,
1, 1, 1,

[ ]
[ ]

1 [ ]
1 [ ]

cav
scav

s f

cav
np f

C C H

G
G

L
R

K K K

abg

b
b b b

=
æ ö÷ç ÷ç+ + ÷ç ÷÷ç ⋅è ø

 

1 ,
1

1,

[ ] [ ]
[ ]

cav
np fcav

np
L

L R
LR

K
b

b
b

⋅
=  

1 ,
1

1,

[ ] [ ]
[ ]

cav cav
np f s fcav

s np
C

R G
R G

K
b

b
b

⋅
=  

1 ,
1

1, 1,

[ ] [ ] [ ]
[ ]

cav cav
np f s fcav

s np
C H

L R G
LR G

K K
b

b
b b

⋅ ⋅
=

⋅
 

1 ,
1 , 1 ,

[ ]
[ ] [ ] [ ]

cav
PKA tot cav cav cav

PKA np tot PKA PKA tot

d R
k C R k R

dt
b

b b+ -= ⋅ ⋅ - ⋅  

( )1 2,
2 1 1 2 1 2,

[ ]
[ ] [ ] [ ]

cav
GRK tot cav cav cav

GRK np s np GRK GRK tot

d R
k LR LR G k R

dt
b

b b b+ -= ⋅ + - ⋅  

,
2, 1 1, 1 , ,

[ ]
[ ] [ ] [ ]

cav
s GTP cav cav cav

act Gs s np act Gs s np hyd Gs s GTP

d G
k R G k LR G k G

dt
a

b b a= ⋅ + ⋅ - ⋅  

2, 1 1, 1 , ,

[ ]
[ ] [ ] [ ] [ ]

cav
s cav cav cav cav

act Gs s np act Gs s np reas Gs s s GDP

d G
k R G k LR G k G G

dt
bg

b b bg a= ⋅ + ⋅ - ⋅ ⋅  

,
, , , ,

[ ]
[ ] [ ] [ ]

cav
s GDP cav cav cav

hyd Gs s GTP reas Gs s s GDP

d G
k G k G G

dt
a

a bg a= ⋅ - ⋅ ⋅  

 
Extracaveolae 
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1,

1
[ ] [ ]ecav

L H
L

a K L K L
Kb b b

b

= ⋅ + ⋅ +  

( ) ( )1 1, 1 , 1, 1, 1,
1,

[ ]
[ ] [ ] [ ] [ ] 1ecav ecav ecav

s H np tot H C H
L

L
b G K L R K L K K

Kb abg b b b b b
b

æ ö÷ç ÷ç= ⋅ + - ⋅ + + ⋅ + ÷ç ÷÷çè ø
 

1 1 , 1, 1,[ ]ecav ecav
np tot C Hc R K Kb b b b=- ⋅ ⋅  

2
1 1 1 1
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[ ] 4
[ ]

2

ecav ecav ecav ecav

ecav
np f ecav

b b a c
R

a
b b b b

b
b

- + - ⋅ ⋅
=

⋅
  

1 ,
1, 1, 1,

[ ]
[ ]

1 [ ]
1 [ ]

ecav
secav

s f

ecav
np f

C C H

G
G

L
R

K K K

abg

b
b b b

=
æ ö÷ç ÷ç+ + ÷ç ÷÷ç ⋅è ø
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1

1,

[ ] [ ]
[ ]

ecav
np fecav

np
L

L R
LR

K
b

b
b

⋅
=  

1 ,
1

1,

[ ] [ ]
[ ]

ecav ecav
np f s fecav

s np
C

R G
R G

K
b

b
b

⋅
=  

1 ,
1

1, 1,

[ ] [ ] [ ]
[ ]

ecav ecav
np f s fecav

s np
C H

L R G
LR G

K K
b

b
b b

⋅ ⋅
=

⋅
 

1 ,
1 , 1 ,

[ ]
[ ] [ ] [ ]

ecav
PKA tot ecav ecav ecav

PKA np tot PKA PKA tot

d R
k C R k R

dt
b

b b+ -= ⋅ ⋅ - ⋅  

( )1 2,
2 1 1 2 1 2,

[ ]
[ ] [ ] [ ]

ecav
GRK tot ecav ecav ecav

GRK np s np GRK GRK tot

d R
k LR LR G k R

dt
b

b b b+ -= ⋅ + - ⋅  

,
2, 1 1, 1 , ,

[ ]
[ ] [ ] [ ]

ecav
s GTP ecav ecav ecav

act Gs s np act Gs s np hyd Gs s GTP

d G
k R G k LR G k G

dt
a

b b a= ⋅ + ⋅ - ⋅  

2, 1 1, 1 , ,

[ ]
[ ] [ ] [ ] [ ]

ecav
s ecav ecav ecav ecav

act Gs s np act Gs s np reas Gs s s GDP

d G
k R G k LR G k G G

dt
bg

b b bg a= ⋅ + ⋅ - ⋅ ⋅  
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,
, , , ,

[ ]
[ ] [ ] [ ]

ecav
s GDP ecav ecav ecav

hyd Gs s GTP reas Gs s s GDP

d G
k G k G G

dt
a

a bg a= ⋅ - ⋅ ⋅  

 
Cytosol 

1 1 1[ ] f [ ]cyt cyt cell
tot tot

cyt

V
R R

Vb b b= ⋅ ⋅  

, ,[ ] f [ ] [ ] [ ]cyt cyt cyt cytcell
s Gs s tot s GTP s GDP

cyt

V
G G G G

Vabg a a= ⋅ ⋅ - -  

1 , 1 1 , 1 2,[ ] [ ] [ ] [ ]cyt cyt cyt cyt
np tot tot PKA tot GRK totR R R Rb b b b= - -  

( ) ( )1 1, 1,
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1
[ ] [ ]cyt

L H
L

a K L K L
Kb b b

b

= ⋅ + ⋅ +  

( ) ( )1 1, 1 , 1, 1, 1,
1,

[ ]
[ ] [ ] [ ] [ ] 1cyt cyt cyt

s H np tot H C H
L

L
b G K L R K L K K

Kb abg b b b b b
b
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cyt cyt cyt cyt
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a
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b
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- + - ⋅ ⋅
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L
R

K K K
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b
b b b

=
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K
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b
b

⋅
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C
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b
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⋅
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1 ,
1
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1 ,
1 , 1 ,

[ ]
[ ] [ ] [ ]

cyt
PKA tot cyt cyt cyt

PKA np tot PKA PKA tot

d R
k C R k R

dt
b

b b+ -= ⋅ ⋅ - ⋅  

( )1 2,
2 1 1 2 1 2,

[ ]
[ ] [ ] [ ]

cyt
GRK tot cyt cyt cyt

GRK np s np GRK GRK tot

d R
k LR LR G k R

dt
b

b b b+ -= ⋅ + - ⋅  

,
2, 1 1, 1 , ,

[ ]
[ ] [ ] [ ]

cyt
s GTP cyt cyt cyt

act Gs s np act Gs s np hyd Gs s GTP

d G
k R G k LR G k G

dt
a

b b a= ⋅ + ⋅ - ⋅  

2, 1 1, 1 , ,

[ ]
[ ] [ ] [ ] [ ]

cyt
s cyt cyt cyt cyt

act Gs s np act Gs s np reas Gs s s GDP

d G
k R G k LR G k G G

dt
bg

b b bg a= ⋅ + ⋅ - ⋅ ⋅  

,
, , , ,

[ ]
[ ] [ ] [ ]

cyt
s GDP cyt cyt cyt

hyd Gs s GTP reas Gs s s GDP

d G
k G k G G

dt
a

a bg a= ⋅ - ⋅ ⋅  

 

Adenylyl cyclase module 

Para-
meter 

Definition Value Reference 

Km,ATP Adenylyl cyclase affinity for ATP 340 μM Bondarenko [16] 
[ATP] ATP concentration 5000 μM Heijman et al. [34]

[AC]tot Total cellular AC concentration 0.02622 μM Post et al. [110] 

56, 47fAC AC
 Fraction of AC that is of type 5 or 6 0.74 Heijman et al. [34] 

56f cav
AC

 Fraction of AC5/6 located in caveolae 0.0875 Heijman et al. [34] 

47f ecav
AC

 Fraction of AC4/7 located in extracaveolae space 0.1648 Heijman et al. [34] 
56

,
AC
m GsK a

 AC5/6 affinity for Gsα 0.0852 μM Heijman et al. [34] 

56,AC Gsh a  Hill coefficient for AC5/6 activation by Gsα 1.357 Heijman et al. [34] 
56AC

GV bg
 Maximum amplification of AC5/6 by Gsβγ 1.430 Gao et al. [112] 

56
,

AC
m GsK bg

 Affinity constant for Gsβγ modulation of AC5/6 0.003793 μM Gao et al. [112] 

56,AC Gsh bg  Hill coefficient for Gsβγ modulation of AC5/6 1.0842 Gao et al. [112] 

AC56basal Basal AC5/6 activity 0.0377 Heijman et al. [34] 

AF56 Amplification factor for AC5/6 51.1335 s1 Bondarenko [16] 

47
,

AC
m GsK a

 AC4/7 affinity for Gsα 0.05008 μM 
Zimmermann and Taussig 
[113] 

47,AC Gsh a  Hill coefficient for AC4/7 activation by Gsα 1.1657 
Zimmermann and Taussig 
[113] 

47AC
GV bg

 Maximum amplification of AC4/7 by Gsβγ 1.3500 
Zimmermann and Taussig 
[113] 

(B.47)
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47
,

AC
m GsK bg

 Affinity constant for Gsβγ modulation of AC4/7 0.004466 μM 
Zimmermann and Taussig 
[113] 

47,AC Gsh bg  Hill coefficient for Gsβγ modulation of AC4/7 0.8700 
Zimmermann and Taussig 
[113] 

AC47basal Basal AC4/7 activity 0.04725 Bondarenko [16] 
AF47 Amplification factor for AC4/7 9.283 s1 Bondarenko [16] 

 

Caveolae 

56 56, 47[ 56] f f [ ]cav cav cell
AC AC AC tot

cav

V
AC AC

V
= ⋅ ⋅ ⋅  

( )
( )

( )
( )

56, 56,

56, 56,

56
,

56 56
56 56

, , ,

[ ] [ ]
56 1

[ ] [ ]

AC Gs AC Gs

AC Gs AC Gs

h hcav AC cav
s GTP G scav

AC basal h hAC cav AC cav
m Gs s GTP m Gs s

G V G
k AF AC

K G K G

a bg

a bg

a bg bg

a a bg bg

æ ö æ ö÷ ÷⋅ç ç÷ ÷ç ç÷ ÷= ⋅ + ⋅ +ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷+ +÷ ÷ç çè ø è ø
 

56
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,

[ ] [ 56] [ ]

[ ]

cav cav
cavAC
AC

m ATP

d cAMP AC ATP
k

dt K ATP

⋅
= ⋅

+
 

 
Extracaveolae 

47 56, 47[ 47] f (1 f ) [ ]ecav ecav cell
AC AC AC tot

ecav

V
AC AC

V
= ⋅ - ⋅ ⋅  

( )
( )

( )
( )

47, 47 ,

47 , 47 ,
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,

47 47
47 47

, , ,

[ ] [ ]
47 1

[ ] [ ]

AC Gs AC Gs

AC Gs AC Gs

h hecav AC ecav
s GTP G secav

AC basal h hAC ecav AC ecav
m Gs s GTP m Gs s

G V G
k AF AC

K G K G

a bg

a bg

a bg bg

a a bg bg

æ ö æ ö÷ ÷⋅ç ç÷ ÷ç ç÷ ÷= ⋅ + ⋅ +ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷+ +÷ ÷ç çè ø è ø
 

47
47

,

[ ] [ 47] [ ]

[ ]

ecav ecav
ecavAC
AC

m ATP

d cAMP AC ATP
k

dt K ATP

⋅
= ⋅

+
 

 
Cytosol 

56 56, 47[ 56] (1 f ) f [ ]cyt cav cell
AC AC AC tot

cyt

V
AC AC

V
= - ⋅ ⋅ ⋅  

47 56, 47[ 47] (1 f ) (1 f ) [ ]cyt ecav cell
AC AC AC tot

cyt

V
AC AC

V
= - ⋅ - ⋅ ⋅  
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( )
( )

( )
( )

56, 56,

56, 56,

56
,

56 56
56 56

, , ,

[ ] [ ]
56 1

[ ] [ ]

AC Gs AC Gs

AC Gs AC Gs

h hcyt AC cyt
s GTP G scyt

AC basal h hAC cyt AC cyt
m Gs s GTP m Gs s

G V G
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K G K G

a bg

a bg

a bg bg

a a bg bg
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d cAMP AC ATP
k
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⋅
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,
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47 1
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AC Gs AC Gs

AC Gs AC Gs

h hcyt AC cyt
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47
47

,

[ ] [ 47] [ ]

[ ]

cyt cyt
cytAC
AC

m ATP

d cAMP AC ATP
k

dt K ATP

⋅
= ⋅

+
 

 

Phosphodiesterase module 

Parameter Definition Value Reference 
[IBMX] Concentration of IBMX 0…100 μM  

hIBMX,PDE2 
Hill coefficient for inhibition of PDE2 by 
IBMX 

1.000 Bondarenko [16] 

2
IBMX
PDEK  Affinity of IBMX for PDE2 29.50 μM Bondarenko [16] 

hIBMX,PDE3 
Hill coefficient for inhibition of PDE3 by 
IBMX 

1.000 Bondarenko [16] 

3
IBMX
PDEK  Affinity of IBMX for PDE3 5.100 μM Bondarenko [16] 

hIBMX,PDE4 
Hill coefficient for inhibition of PDE4 by 
IBMX 

1.000 Bondarenko [16] 

4
IBMX
PDEK  Affinity of IBMX for PDE4 16.200 μM Bondarenko [16] 

kf,PDEp Rate of phosphorylation of PDE3/4 by PKA 0.0196 μM−1 s−1 Heijman et al. [34] 

kb,PDEp Rate of dephosphorylation of PDE3/4 by PKA 0.0102 s−1 Heijman et al. [34]

, 3/4k PDE  Increase in PDE3/4 activity after 
phosphorylation 

3.0 Heijman et al. [34] 

kPDE2 Rate of cAMP hydrolysis by PDE2 20 s−1 Iancu et al. [114] 

Km,PDE2 Affinity of PDE2 for cAMP 33 μM Bode et al. [115] 

kPDE3 Rate of cAMP hydrolysis by PDE3 2.5 s−1 Heijman et al. [34] 

Km,PDE3 Affinity of PDE3 for cAMP 0.44 μM Bode et al. [115] 

kPDE4 Rate of cAMP hydrolysis by PDE4 3.5 s−1 Bondarenko [16] 

Km,PDE4 Affinity of PDE4 for cAMP 1.4 μM Bondarenko [16] 

fPDE,part 
Fraction of total PDE located in the 
particulate fraction 

0.2 Osadchii [116] 

rpart,PDE2,PDE3 
Ratio of PDE2 and PDE3 activities in 
particulate fraction 

0.570 Mongillo et al. [117] 

(B.60)
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rpart,PDE3,PDE4 
Ratio of PDE3 and PDE4 activities in 
particulate fraction 

0.748 Mongillo et al. [117] 

[PDE2]tot Total cellular concentration of PDE2 0.034610 μM Bondarenko [16] 

[PDE3]tot Total cellular concentration of PDE3 0.010346 μM Bondarenko [16] 

[PDE4]tot Total cellular concentration of PDE4 0.026687 μM Bondarenko [16] 

2f cav
PDE  Fraction of PDE2 located in caveolae 0.06608 Bondarenko [16] 

2f ecav
PDE  Fraction of PDE2 located in extracaveolae  22 f cav

PDE⋅  Bondarenko [16] 

2f cyt
PDE  Fraction of PDE2 located in cytosol 2 21 f fcav ecav

PDE PDE- -  Bondarenko [16] 

3f cav
PDE  Fraction of PDE3 located in caveolae 0.29814 Bondarenko [16] 

3f ecav
PDE  Fraction of PDE3 located in extracaveolae 0.0 Bondarenko [16] 

3f cyt
PDE  Fraction of PDE3 located in cytosol 3 31 f fcav ecav

PDE PDE- -  Bondarenko [16] 

4f cav
PDE  Fraction of PDE4 located in caveolae 0.05366 Bondarenko [16] 

4f ecav
PDE  Fraction of PDE4 located in extracaveolae 42 f cav

PDE⋅  Bondarenko [16] 

4f cyt
PDE  Fraction of PDE4 located in cytosol 4 41 f fcav ecav

PDE PDE- -  Bondarenko [16] 

 

Caveolae 

, 2

, 2 2

, 2

[ ]
[ 2] 1 f [ 2]

[ ]

IBMX PDE

IBMX PDE

h cell
cav cav
tot PDE toth cavIBMX

m PDE

IBMX V
PDE PDE

VK IBMX

 
       

 

, 3

, 3 3

, 3

[ ]
[ 3] 1 f [ 3]
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IBMX PDE

h cell
cav cav
tot PDE toth cavIBMX

m PDE
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PDE PDE
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 
       
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, 4 4

, 4

[ ]
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[ ]

IBMX PDE
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h cell
cav cav
tot PDE toth cavIBMX

m PDE
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 
       

 

, ,

[ 3]
[ ] ([ 3] [ 3] ) [ 3]

cav
p cav cav cav cav

f PDEp tot p b PDEp p

d PDE
k C PDE PDE k PDE

dt
       

, ,

[ 4]
[ ] ([ 4] [ 4] ) [ 4]

cav
p cav cav cav cav

f PDEp tot p b PDEp p

d PDE
k C PDE PDE k PDE

dt
       

22

, 2

[ 2] [ ][ ]

[ ]

cav cavcav
PDE totPDE

cav
m PDE

k PDE cAMPd cAMP

dt K cAMP

 



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3 , 3/4 33

, 3

([ 3] [ 3] ) [ ] [ 3] [ ][ ]

[ ]

cav cav cav cav cavcav
PDE tot p k PDE PDE pPDE

cav
m PDE

k PDE PDE cAMP k PDE cAMPd cAMP
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
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PDE tot p k PDE PDE pPDE
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
 

 
Extracaveolae 
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Cytosol 
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22

, 2

[ 2] [ ][ ]

[ ]

cyt cytcyt
PDE totPDE
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m PDE

k PDE cAMPd cAMP

dt K cAMP

 



 

3 , 3/4 33
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cyt cyt cyt cyt cytcyt
PDE tot p k PDE PDE pPDE
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
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k PDE PDE cAMP k PDE cAMPd cAMP
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


 

 

cAMP-PKA module 

Parameter Definition Value Reference 

[ ]totPKA  Total cellular concentration of PKA holoenzyme 0.5176 μM Bondarenko [16] 

f cav
PKA  Fraction of PKA located in caveolae 0.08 Bondarenko [16] 

f ecav
PKA  Fraction of PKA located in extracaveolae 0.20 Bondarenko [16] 

f cyt
PKA  Fraction of PKA located in cytosol 1 f fcav ecav

PKA PKA    

[ ]totPKI  Total cellular concentration of PKA inhibitor 2 · 0.2 · [PKA]tot Beavo et al. [118] 

f cav
PKI  Fraction of PKI located in caveolae f cav

PKA   

f ecav
PKI  Fraction of PKI located in extracaveolae f ecav

PKA   

f cyt
PKI  Fraction of PKI located in cytosol f cyt

PKA   

, 1PKAI fk  Forward rate for binding of the first cAMP to 
PKA 

5.6 μM−1 s−1 Bondarenko [16] 

,1PKAIK  Equilibrium value for the binding of the first 
cAMP to PKA 

2.9 μM Dao et al. [119] 

, 2PKAI fk  Forward rate for binding of the second cAMP to 
PKA , 1PKAI fk  Bondarenko [16] 

,2PKAIK  Equilibrium value for binding of the second 
cAMP to PKA 

2.9 μM Dao et al. [119] 

, 3PKAI fk  Forward rate for dissociation of C subunit 2.6 s−1 Bondarenko [16] 

,3PKAIK  Equilibrium value for dissociation of C subunit 1.3 μM Bondarenko [16] 

,PKI fk  Forward rate for inhibition of C subunit by PKI 50 μM−1 s−1 Heijman et al. [34] 

PKIK  Equilibrium value for inhibition of C subunit by 
PKI 

2.6 · 10−4 μM Bondarenko [16] 

, 1PKAII fk  Forward rate for binding of the first cAMP to 
PKA , 1PKAI fk  Heijman et al. [34] 

,1PKAIIK  Equilibrium value for the binding of the first 
cAMP to PKA 

2.5 μM Heijman et al. [34] 

(B.82)

(B.83)

(B.84)
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, 2PKAII fk  Forward rate for binding of the second cAMP to 
PKA , 1PKAI fk  Heijman et al. [34] 

,2PKAIIK  Equilibrium value for binding of the second 
cAMP to PKA 

2.5 μM Heijman et al. [34] 

, 3PKAII fk  Forward rate for dissociation of C subunit , 3PKAI fk  Bondarenko [16] 

,3PKAIIK  Equilibrium value for dissociation of C subunit ,3PKAIK  Bondarenko [16] 
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Protein phosphatases and inhibitor-1 module 

Parameter Definition Value Reference 

[ 1]cyt
totPP  Total concentration of PP1 in the cytosolic 

compartment 
0.2 μM Heijman et al. [34] 

[ 1]cytPP  Cytosolic concentration of PP1 0.0607843 M This paper 

[ 2 ]cytPP A  Cytosolic concentration of PP2A 0.0607843 µM Bondarenko [16] 

[ 1]cavPP  Concentration of PP1 in the caveolae 
compartment 

0.1 µM Bondarenko [16] 

[ 2 ]cavPP A  Concentration of PP2A in the caveolae 
compartment 

0.1 µM Bondarenko [16] 

[ ]cavPP  
Total phosphatase concentration in caveolae 

compartment [ 1]cavPP +[ 2 ]cavPP A  
0.2 µM Bondarenko [16] 

[ 1]ecavPP  Concentration of PP1 in the extracaveolae 
compartment 

0.1 µM Heijman et al. [34] 

[ 1]cyt
totInhib  Total concentration of inhibitor 1 in the 

cytosolic compartment 
0.08543 μM El-Armouche et al. [120] 

Kinhib1 Affinity for PP1 – Inhibitor 1 binding 1.0·10−3 μM Saucerman et al. [30]

kPKA_Inhib1 
Rate of phosphorylation of inhibitor 1 by 
PKA 1080.0 μM1 s−1 Bondarenko [16] 

KmPKA_Inhib1 
Affinity of inhibitor 1 for PKA catalytic 
subunit 

1.5 μM Bondarenko [16] 

2 _ 1PP A Inhibk  Rate of dephosphorylation of inhibitor 1 50.67 μM1 s−1 Bondarenko [16] 

KmPP2A_Inhib1 Affinity for PP2A – Inhibitor 1 binding 1.0·10−3 μM Bondarenko [16] 

 

,[ 1] [ 1] [ 1]cyt cyt cyt
f tot p totInhib Inhib Inhib   

1 1.0Inhiba   

1 1 ,[ 1] [ 1]cyt cyt
Inhib Inhib tot p totb K PP Inhib    

1 , 1[ 1]cyt
Inhib p tot Inhibc Inhib K    
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 

 
 

 

cAMP fluxes 

Parameter Definition Value Reference 

/cav ecavJ  Rate of cAMP diffusion between caveolae 
and extracaveolae compartments 

5.000 · 10−9 μL s−1 Iancu et al. [114] 

/cav cytJ  Rate of cAMP diffusion between caveolae 
and cytosolic compartments 

7.500 · 10−8 μL s−1 Iancu et al. [114] 

/ecav cytJ  Rate of cAMP diffusion between 
extracaveolae and cytosolic compartments 

9.000 · 10−9 μL s−1 Iancu et al. [114] 
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Electrophysiological part: PKA substrates 

L-type Ca2+ current module 

Para-
meter 

Definition Value Reference 

[ ]CaL totI  Total cellular concentration of the L-type 
Ca2+ channels 

0.0273 µM 
Chu et al. [121] 
Bers and Stiffel [122] 

f cav
ICaL  Fraction of the L-type Ca2+ channels located 

in caveolae 
0.2 Scriven et al. [38] 

f ecav
ICaL  Fraction of the L-type Ca2+ channels located 

in extracaveolae 1 f cav
ICaL-  Scriven et al. [38] 

CaLG  Specific maximum conductivity for L-type 
Ca2+ channel (non-phosphorylated) 

0.3772 mS/μF Bondarenko [16] 

CaLpG  Specific maximum conductivity for L-type 
Ca2+ channel (phosphorylated) 

0.7875 mS/μF Bondarenko [16] 

CaLE  Reversal potential for L-type Ca2+ channel 52.0 mV Petkova-Kirova et al. [61] 

,maxpcK  Maximum rate constant for Ca2+-induced 
inactivation 

233.24 s−1 Bondarenko [16] 

,pc halfK  Half-saturation constant for Ca2+-induced 
inactivation 

10.0 µM Bondarenko [16] 

pcfK  Forward voltage-insensitive rate constant 
for inactivation 

40,000 s−1 Bondarenko [16] 

pcbK  Backward voltage-insensitive rate constant 
for inactivation 

2.4 s−1 Bondarenko [16] 

cok  Forward voltage-insensitive rate constant 
for activation (non-phosphorylated) 

1,000 s−1 Bondarenko [16] 

copk  Forward voltage-insensitive rate constant 
for activation (phosphorylated) 

4,000 s−1 Bondarenko [16] 

ock  Backward voltage-insensitive rate constant 
for activation 

1,000 s−1 Bondarenko [16] 

,maxCaLI  Normalization constant for L-type Ca2+ 
current 

7.0 pA/pF Bondarenko et al. [29] 

_ICaL PKAk  Phosphorylation rate of the L-type Ca2+ 
channel by PKA 

1.74 · 10−2 s−1 Bondarenko [16] 

_ICaL PPk  Dephosphorylation rate of the L-type Ca2+ 
channel by PP1 and PP2A 

2.325 · 10−4 s−1 Bondarenko [16] 

_ICaL PKAK  Affinity of the L-type Ca2+ channel for 
PKA 

0.5 µM Bondarenko [16] 

_ICaL PPK  Affinity of the L-type Ca2+ channel for PP1 
and PP2A 

0.2 µM Bondarenko [16] 

 

cav ecav
CaL ICaL ICaLI I I   
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Fast Na+ current module 

Para-
meter 

Definition Value Reference 

NaG  Specific maximum conductivity for the fast 
Na+ channel (non-phosphorylated) 

14.4 mS/μF Bondarenko [16] 

NapG  Specific maximum conductivity for the fast 
Na+ channel (phosphorylated) 

18.0 mS/μF Bondarenko [16] 

_INa PKAk  Phosphorylation-traffiking rate of the fast Na+ 
channel by PKA 6.8400 · 10−3 M1 s−1 Bondarenko [16] 

_INa PPk  Dephosphorylation rate of the fast Na+ 
channel by PP1 and PP2A 1.9804 · 10−2 M1 s−1 Bondarenko [16] 

_INa PKAK  Affinity of the fast Na+ channel for PKA 5.49415  10−3 Bondarenko [16] 

_INa PPK  Affinity of the fast Na+ channel for PP1 and 
PP2A 

0.393025 Bondarenko [16] 

 

  

(B.176)

(B.178)

(B.177)

(B.179)



115 

0.9[ ] 0.1[ ]
ln

0.9[ ] 0.1[ ]
o o

Na
i i

Na KRT
E

F Na K

 

 

 
   

 

( )( )Na Na Na Nap Nap NaI G O G O V E      

3 2 1 2 3

3 2 1 2 3

1 ( 1 2

            1 2 )
Na Na Na Na Na Na Na Na Na

Nap Na p Na p Na p Nap Nap Nap Na p Na p

C O C C IF I I IC IC

O C C C IF I I IC IC

        
        

 

2
11 3 11 2 12 1 12 2 3 2 3 2

_ 2 _ 2

_ 2 _ 2

[ ] [ ]
        

Na
Na Na Na Na Na Na Na Na Na Na Na Na

cav cav
INa PKA Na INa PP Na p

INa PKA Na INa PP Na p

dC
C C C C IC C

dt

k C C k PP C

K C K C

          

 
 

 

1
12 2 12 1 13 13 1 3 3 1

_ 1 _ 1

_ 1 _ 1

[ ] [ ]
        

Na
Na Na Na Na Na Na Na Na Na Na Na Na

cav cav
INa PKA Na INa PP Na p

INa PKA Na INa PP Na p

dC
C C O C IF C

dt

k C C k PP C

K C K C

          

 
 

 

13 1 13 2 2

_ _

_ _

[ ] [ ]
       

Na
Na Na Na Na Na Na Na Na

cav cav
INa PKA Na INa PP Nap

INa PKA Na INa PP Nap

dO
C O IF O

dt

k C O k PP O

K O K O

      

 
 

 

2 2 3 1 3 4 4

_ _
12 2 12

_ _

1

[ ] [ ]
        

Na
Na Na Na Na Na Na Na Na Na Na Na Na

cav cav
INa PKA Na INa PP Nap

Na Na Na Na
INa PKA Na INa PP Nap

dIF
O IF C IF I IF

dt

k C IF k PP IF
IC IF

K IF K IF

     

 

     

   
 

 

4 4 5 5

_ _

_ _

1
1 2 1

[ ] 1 [ ] 1
     

1 1

Na
Na Na Na Na Na Na Na Na

cav cav
INa PKA Na INa PP Nap

INa PKA Na INa PP Nap

dI
IF I I I

dt

k C I k PP I

K I K I

      

 
 

 

_ _
5 5

_ _

[ ] 2 [ ] 22
1 2

2 2

cav cav
INa PKA Na INa PP NapNa

Na Na Na Na
INa PKA Na INa PP Nap

k C I k PP IdI
I I

dt K I K I
    

 
 

(B.180)

(B.182)

(B.183)

(B.184)

(B.185)

(B.186)

(B.187)

(B.188)

(B.181)



116 

2
11 3 11 2 12 12 2 3 2 3 2

_ 2 _ 2

_ 2 _ 2

[ ] [ ]
          

Na
Na Na Na Na Na Na Na Na Na Na Na Na

cav cav
INa PKA Na INa PP Na p

INa PKA Na INa PP Na p

dIC
IC IC IF IC C IC

dt

k C IC k PP IC

K IC K IC

          

 
 

 

3
11 2 11 3 3 3 3 3

_ 3 _ 3

_ 3 _ 3

[ ] [ ]
           

Na
Na Na Na Na Na Na Na Na

cav cav
INa PKA Na INa PP Na p

INa PKA Na INa PP Na p

dIC
IC IC C IC

dt

k C IC k PP IC

K IC K IC

      

 
 

 

3
11 2 11 3 3 3 3 3

_ 3 _ 3

_ 3 _ 3

[ ] [ ]
          

Na p
Na Na p Na Na p Na Na p Na Na p

cav cav
INa PKA Na INa PP Na p

INa PKA Na INa PP Na p

dC
C C IC C

dt

k C C k PP C

K C K C

      

 
 

 

2
11 3 11 2 12 1 12 2 3 2 3 2

_ 2 _ 2

_ 2 _ 2

[ ] [ ]
         

Na p
Na Na p Na Na p Na Na p Na Na p Na Na p Na Na p

cav cav
INa PKA Na INa PP Na p

INa PKA Na INa PP Na p

dC
C C C C IC C

dt

k C C k PP C

K C K C

          

 
 

 

1
12 2 12 1 13 13 1 3 3 1

_ 1 _ 1

_ 1 _ 1

[ ] [ ]
         

Na p
Na Na p Na Na p Na Nap Na Na p Na Nap Na Na p

cav cav
INa PKA Na INa PP Na p

INa PKA Na INa PP Na p

dC
C C O C IF C

dt

k C C k PP C

K C K C

          

 
 

 

13 1 13 2 2

_ _

_ _

[ ] [ ]
        

Nap
Na Na p Na Nap Na Nap Na Nap

cav cav
INa PKA Na INa PP Nap

INa PKA Na INa PP Nap

dO
C O IF O

dt

k C O k PP O

K O K O

      

 
 

 

2 2 3 1 3 4 4

_ _
12 2 12

_ _

1

[ ] [ ]
         

Nap
Na Nap Na Nap Na Na p Na Nap Na Nap Na Nap

cav cav
INa PKA Na INa PP Nap

Na Na p Na Nap
INa PKA Na INa PP Nap

dIF
O IF C IF I IF

dt

k C IF k PP IF
IC IF

K IF K IF

     

 

     

   
 

 

(B.189)

(B.190)

(B.191)

(B.192)

(B.193)

(B.194)

(B.195)



117 

4 4 5 5

_ _

_ _

1
1 2 1

[ ] 1 [ ] 1
     

1 1

Nap
Na Nap Na Nap Na Nap Na Nap

cav cav
INa PKA Na INa PP Nap

INa PKA Na INa PP Nap

dI
IF I I I

dt

k C I k PP I

K I K I

      

 
 

 

_ _
5 5

_ _

2 [ ] 2 [ ] 2
1 2

2 2

cav cav
Nap INa PKA Na INa PP Nap

Na Nap Na Nap
INa PKA Na INa PP Nap

dI k C I k PP I
I I

dt K I K I
    

 
 

2
11 3 11 2 12 12 2 3 2

_ 2 _ 2
3 2

_ 2 _ 2

[ ] [ ]
                

Na p
Na Na p Na Na p Na Nap Na Na p Na Na p

cav cav
INa PKA Na INa PP Na p

Na Na p
INa PKA Na INa PP Na p

dIC
IC IC IF IC C

dt

k C IC k PP IC
IC

K IC K IC

    



    

  
 

 

3
11 2 11 3 3 3 3 3

_ 3 _ 3

_ 3 _ 3

[ ] [ ]
           

Na p
Na Na p Na Na p Na Na p Na Na p

cav cav
INa PKA Na INa PP Na p

INa PKA Na INa PP Na p

dIC
IC IC C IC

dt

k C IC k PP IC

K IC K IC

      

 
 

 

11 ( 2.5)/17.0 ( 2.5)/150.0

3.802

0.1027 0.20Na V Ve e
a - - - -=

+  

12 ( 2.5)/15.0 ( 2.5)/150.0

3.802

0.1027 0.23Na V Ve e
a - - - -=

+  

13 ( 2.5)/12.0 ( 2.5)/150.0

3.802

0.1027 0.25Na V Ve e
a - - - -=

+  

( 2.5)/20.3
11 0.1917 V

Na eb - -=  

( 7.5)/20.3
12 0.20 V

Na eb - -=  

( 12.5)/20.3
13 0.22 V

Na eb - -=  

7.7/)0.7(7
3 100.7  V

Na e  

)0.7(00002.00084.03  VNa  

(B.196)

(B.197)

(B.198)

(B.199)

(B.200)

(B.201)

(B.202)

(B.203)

(B.204)

(B.205)

(B.206)

(B.207)



118 

393956.0188495.0

0.1
6.16/)0.7(2 

  VNa e


 

)/( 31332132 NaNaNaNaNaNa    

4 2 /100.0Na Naa a=  

34 NaNa    

95000/25 NaNa    

0.50/35 NaNa    

 

Ryanodine receptor module 

Para-
meter 

Definition Value Reference 

[ ]totRyR  Total cellular concentration of ryanodine 
receptors 

0.1993 µM Chu et al. [121] 

1  Maximum RyR channel Ca2+ permeability 4,500 s1 Bondarenko et al. [29] 

n RyR Ca2+ cooperativity parameter PC1 – PO1 4 Bondarenko et al. [29]

m RyR Ca2+ cooperativity parameter PO1 – PO2 3 Bondarenko et al. [29]

ak   RyR PC1 – PO1 rate constant  6.075 M4 s−1 Bondarenko et al. [29] 

ak   RyR PO1 – PC1 rate constant  71.25 s−1 Bondarenko et al. [29] 

bk   RyR PO1 – PO2 rate constant  4.05 M3 s−1 Bondarenko et al. [29] 

bk   RyR PO2 – PO1 rate constant  965.0 s−1 Bondarenko et al. [29] 

ck   RyR PO1 – PC2 rate constant  9.0 s−1 Bondarenko et al. [29] 

ck   RyR PC2 – PO1 rate constant  0.8 s−1 Bondarenko et al. [29] 

apk  RyR PC1p – PO1p rate constant  5 ak   Bondarenko [16] 

apk  RyR PO1p – PC1p rate constant  3 ak   Bondarenko [16] 

bpk  RyR PO1p – PO2p rate constant  5 bk   Bondarenko [16] 

bpk  RyR PO2p – PO1p rate constant  3 bk   Bondarenko [16] 

(B.208)

(B.209)

(B.210)

(B.211)

(B.212)

(B.213)



119 

cpk  RyR PO1p – PC2p rate constant  50 ck   Bondarenko [16] 

cpk  RyR PC2p – PO1p rate constant  30 ck   Bondarenko [16] 

RyRf  Allosteric factor for RyR 0.001 Bondarenko [16] 

_RyR PKAk  Phosphorylation rate of ryanodine receptors 
by PKA 5.775 · 10−2 M1 s−1 Bondarenko [16] 

_RyR PPk  Dephosphorylation rate of ryanodine 
receptors by PP1 0.28875 M1 s−1 Bondarenko [16] 

_RyR PKAK

 
Affinity of ryanodine receptors for PKA 0.5 M Bondarenko [16] 

_RyR PPK  Affinity of ryanodine receptors for PP1 0.05 M Bondarenko [16] 
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Na+-K+ pump module 

Para-
meter 

Definition Value Reference 

max
NaKI  Maximum Na+-K+ pump current 4.0 pA/pF Bondarenko [16] 

,
np
m NaiK  Na+ half-saturation constant for Na+-K+ 

pump current (non-phosphorylated PLM) 18,800 M Despa et al. [123] 

,
p

m NaiK  Na+ half-saturation constant for Na+-K+ 
pump current (phosphorylated PLM) 13,600 M Despa et al. [123] 

,m KoK  K+ half-saturation constant Na+-K+ pump 
current 1,500 M Bondarenko et al. [29] 

_PLM PKAk  Rate of PLM phosphorylation by PKA 3.053 · 10−3 M1 s−1 Bondarenko [16] 

_PLM PKAK  Relative affinity for PLM phosphorylation 
by PKA 

0.0011001 Heijman et al. [34] 

_PLM PPk  Rate of PLM dephosphorylation by PP1 and 
PP2A 1.8491 · 10−2 M1 s−1 Bondarenko [16] 

_PLM PPK  Relative affinity for PLM 
dephosphorylation by PP1 and PP2A 

5.7392 Heijman et al. [34] 
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Ultra-rapidly activating delayed rectifier K+ current module 

Para-
meter 

Definition Value Reference 

KurG  
Specific maximum conductivity for the 
ultra-rapidly activating delayed rectifier 
K+ current (non-phosphorylated) 

0.3424 pA/pF Petkova-Kirova et al. [61] 

KurpG  
Specific maximum conductivity for the 
ultra-rapidly activating delayed rectifier 
K+ current (phosphorylated) 

0.53307 pA/pF Bondarenko [16] 

_IKur PKAk  Rate of IKur phosphorylation by PKA 6.9537 · 10−3 M1 s−1 Bondarenko [16] 

_IKur PKAK  Relative affinity for IKur phosphorylation 
by PKA 

0.138115 Bondarenko [16] 

_IKur PPk  Rate of IKur dephosphorylation by PP1 3.170 · 10−2 M1 s−1 Bondarenko [16] 

_IKur PPK  Relative affinity for IKur 
dephosphorylation by PP1 

0.23310 Bondarenko [16] 
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Rapidly inactivating transient outward K+ current module 

Para-
meter 

Definition Value Reference 

,Kto fG  
Specific maximum conductivity for the 
rapidly inactivating transient outward K+ 
current (non-phosphorylated) 

0.3846 pA/pF Petkova-Kirova et al. [61] 

,Kto fpG  
Specific maximum conductivity for the 
rapidly inactivating transient outward K+ 
current (phosphorylated) 

,Kto fG  Petkova-Kirova et al. [61] 

, _IKto f PKAk  Rate of IKto,f phosphorylation by PKA 4.38983 · 10−2 M1 s−1 Bondarenko [16] 

, _IKto f PKAK  Relative affinity for IKto,f phosphorylation 
by PKA 

0.27623 Bondarenko [16] 

, _IKto f PPk  Rate of IKto,f dephosphorylation by PP1 9.09678 · 10−2 M1 s−1 Bondarenko [16] 

, _IKto f PPK  Relative affinity for IKto,f 
dephosphorylation by PP1 

0.23310 Bondarenko [16] 

 

(B.231)

(B.232)

(B.233)

(B.234)

(B.235)

(B.236)

(B.237)

(B.238)



123 

3 3
, , , , , , , , ,( (1 ))( )ecav ecav

Kto f Kto f to f to f IKto f Kto fp to fp to fp IKto f KI G a i f G a i f V E     

, , _ , , _ ,

, _ , , _ ,

[ 1] (1 ) [ ]

(1 )

ecav ecav ecav ecav ecav
IKto f IKto f PP IKto f IKto f PKA IKto f

ecav ecav
IKto f PP IKto f IKto f PKA IKto f

df k PP f k C f

dt K f K f


 

  
 

,
, ,(1 )to f

a to f a to f

da
a a

dt
     

,
, ,(1 )to f

i to f i to f

di
i i

dt
     

,
, ,(1 )to fp

ap to fp ap to fp

da
a a

dt
     

,
, ,(1 )to fp

ip to fp ip to fp

di
i i

dt
     

0.03577( 33.0)0.18064 V
a e   

0.06237( 33.0)0.3956 V
a e    

( 15.5)/7.0

( 35.5)/7.0

0.000152

0.067083 1

V

i V

e

e


 

 


 

( 35.5)/7.0

( 35.5)/7.0

0.00095

0.051335 1

V

i V

e

e







 

0.03577( 17.0)0.18064 V
ap e   

0.06237( 17.0)0.3956 V
ap e    

( 7.5)/7.0

( 27.5)/7.0

0.000152

0.067083 1

V

ip V

e

e


 

 


 

( 27.5)/7.0

( 27.5)/7.0

0.00095

0.051335 1

V

ip V

e

e







 

 

  

(B.239)

(B.241)

(B.242)

(B.240)

(B.243)

(B.244)

(B.245)

(B.246)

(B.247)

(B.248)

(B.250)

(B.251)

(B.252)

(B.249)



124 

Time-independent K+ current module 
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Phospholamban module 

Para-
meter 

Definition Value Reference 

,
np
m upK  Half-saturation constant for SR Ca2+-ATPase 

pump (non-phosphorylated) 0.41 M Bondarenko [16] 

,
p

m upK  Half-saturation constant for SR Ca2+-ATPase 
pump (phosphorylated) 0.37 M Bondarenko [16] 

3  SR Ca2+-ATPase maximum pump rate 306.0 M s1 Bondarenko [16] 

_PLB PKAk  Rate of PLB phosphorylation by PKA 0.108917 M1 s−1 Bondarenko [16] 

_PLB PKAK

 
Relative affinity for PLB phosphorylation by 
PKA 

4.90970 · 10−4 Heijman et al. [34] 

_ 1PLB PPk  Rate of PLB dephosphorylation by PP1 4.41956 · 10−2 M1 s−1 Bondarenko [16] 

_ 1PLB PPK

 
Relative affinity for PLB dephosphorylation 
by PP1 

1.69376 · 10−2 Bondarenko [16] 
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Troponin I module 

Parameter Definition Value Reference 

tot[LTRPN]  Total cytosolic troponin low-affinity site 
concentration 70.0 M Bondarenko et al. [29] 

tot[HTRPN]  Total cytosolic troponin high-affinity site 
concentration 140.0 M Bondarenko et al. [29] 

htrpnk  Ca2+ on rate constant for troponin high-
affinity sites 2.37 M s1 Bondarenko et al. [29] 

htrpnk  Ca2+ off rate constant for troponin high-
affinity sites 0.032 s1 Bondarenko et al. [29] 

ltrpnk   Ca2+ on rate constant for troponin low-
affinity sites 32.7 M s1 Bondarenko et al. [29] 

,ltrpn npk  Ca2+ off rate constant for troponin low-
affinity sites (non-phosphorylated) 19.6 s1 Bondarenko et al. [29] 

,ltrpn pk   Ca2+ off rate constant for troponin low-
affinity sites (phosphorylated) 29.4 s1 Bondarenko [16] 

_TnI PKAk  Rate of TnI phosphorylation by PKA 0.0247254 M1 s−1 Bondarenko [16] 

_TnI PKAK  Relative affinity for TnI phosphorylation 
by PKA 

2.71430 · 10−5 Heijman et al. [34] 

_ 2TnI PP Ak  Rate of TnI dephosphorylation by PP2A 0.0865898 M1 s−1 Bondarenko [16] 

_ 2TnI PP AK  Relative affinity for TnI 
dephosphorylation by PP2A 

0.801420 Bondarenko [16] 
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[ ] (1 ) [ 2 ]

(1 )

cyt cyt cyt cyt cyt
TnI p TnI PKA TnI p TnI PP A TnI p

cyt cyt
TnI PKA TnI p TnI PP A TnI p

df k C f k PP A f

dt K f K f

    
 

  
 

2[ ]
[ ] ([ ] [ ]) [ ]ltrpn i tot ltrpn

d LTRPNCa
k Ca LTRPN LTRPNCa k LTRPNCa

dt
      

2[ ]
[ ] ([ ] [ ]) [ ]htrpn i tot htrpn

d HTRPNCa
k Ca HTRPN HTRPNCa k HTRPNCa

dt
      
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(B.260)
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MyBP-C module 

Parameter Definition Value Reference 

tot[MyBPC]  Total cytosolic myosin binding protein C 
concentration 50.0 M This paper 

_MyBPC PKAk   Rate of MyBP-C phosphorylation by 
PKA 7.0 · 10−3 M1 s−1 This paper 

_MyBPC PKAK   Relative affinity for MyBP-C 
phosphorylation by PKA 

0.5 This paper 

_MyBPC PPk   Rate of MyBP-C dephosphorylation by 
PP1 and PP2A 1.3985 · 10−3 M1 s−1 This paper 

_MyBPC PPK   Relative affinity for MyBP-C 
dephosphorylation by PP1 and PP2A 

0.4 This paper 

 

 _ ,, _ ,

_ , _ ,

[ 1] [ 2 ][ ] (1 )

(1 )

cyt cyt cytcyt cyt cyt
MyBPC PP MyBPC pMyBPC p MyBPC PKA MyBPC p

cyt cyt
MyBPC PKA MyBPC p MyBPC PP MyBPC p

k PP PP A fdf k C f

dt K f K f

    
 

  
 

 

Electrophysiological part: unaffected by PKA 

Membrane potential 

( ) ,

1 ,

1
(

)

CaL p Ca NaCa Cab Na Nab NaK Kto f
m

K Kur Kss Kr Cl Ca stim

dV
I I I I I I I I

dt C

I I I I I I

        

     
 

 

Calcium dynamics: Calcium concentrations 

2

( )

[ ]
( 2 )

2
cap mcavi

i leak xfer up trpn Cab NaCa p Ca CaL cyt

A Cd Ca
B J J J J I I I I

dt V F

  
        

 
 

2[ ]

2

cyt
cap mecavss JSR

ss rel xfer CaL
ss ss ss

A Cd Ca V V
B J J I

dt V V V F

  
   

 
 

 
2[ ]JSR

JSR tr rel

d Ca
B J J

dt



   

 
2[ ] cyt

NSR JSR
up leak tr

NSR NSR

d Ca VV
J J J

dt V V



    

(B.263)

(B.264)

(B.265)

(B.266)

(B.267)
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1

2 2

[ ]
1

( [ ] )

CMDN
tot m

i CMDN
m i

CMDN K
B

K Ca





 
   

 

1

2 2

[ ]
1
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CMDN
tot m

ss CMDN
m ss

CMDN K
B

K Ca





 
   

 

1

2 2

[ ]
1

( [ ] )

CSQN
tot m

JSR CSQN
m JSR

CSQN K
B

K Ca





 
   

 

 
Calcium dynamics: Calcium fluxes 

2 2
1 1 2 1 2( )([ ] [ ] )rel O O O p O p JSR ss RyRJ v P P P P Ca Ca P       
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tr

Ca Ca
J



 
  

2 2[ ] [ ]ss i
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xfer

Ca Ca
J



 
  

2 2
2 ([ ] [ ] )leak NSR iJ v Ca Ca    

2 2

3 2 2 2
,
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i
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m up i
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J v

K Ca






 

2

2

[ ] ([ ] [ ]) [ ]
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trpn htrpn i tot htrpn

ltrpn i tot ltrpn

J k Ca HTRPN HTRPNCa k HTRPNCa

k Ca LTRPN LTRPNCa k LTRPNCa

  

  

  

  
 

2( 5.0)

648.0

,max

0.04 0.1
Vecav

RyR CaL
RyR

CaL

dP I
P e

dt I




    

 
Calcium pump current 

2 2
max

( ) ( ) 2 2 2
, ( )

[ ]

[ ]
i

p Ca p Ca
m p Ca i

Ca
I I

K Ca





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Na+/Ca2+ exchanger current 

3 3 2 ( 1) /
, ,

/ 3 2 ( 1) / 3 2

1 1 1

[ ] [ ] 1

( [ ] [ ] 2.0 [ ] [ ] )

NaCa NaCa VF RT
m Na o m Ca o sat

VF RT VF RT
i o o i

I k
K Na K Ca k e

e Na Ca e Na Ca



 

  

    


  

 
 

 
Calcium background current 

( )Cab Cab CaNI G V E   

2

2

[ ]
ln

2 [ ]
o

CaN
i

CaRT
E

F Ca





 
  

 
 

 
Sodium dynamics: Sodium concentration 

[ ]
( 3 3 ) cap mi

Na Nab NaCa NaK cyt

A Cd Na
I I I I

dt V F



       

 
Sodium background current 

( )Nab Nab NaI G V E   

 
Potassium dynamics: Potassium concentration 

, , 1

[ ]
( 2 ) cap mi

Kto f Kto s Kur Kss K Kr Ks NaK cyt

A Cd K
I I I I I I I I

dt V F



          

 
Non-inactivating steady-state K+ current 

( )Kss Kss Kss KI G a V E   

Kss ss Kss

Kss

da a a

dt 


  

0.0862( 40.0) 0.0862( 40.0)

1235.5
13.17Kss V Ve e

    

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Rapid delayed rectifier K+ current 

( )Kr Kr Kr KrI G O V E   

0.98[ ] 0.02[ ]
ln

0.98[ ] 0.02[ ]
o o

Kr
i i

K NaRT
E

F K Na

 

 

 
   

 

0 1 2 11 ( )Kr Kr Kr Kr KrC C C O I      

1
0 0 0 1 2 1

Kr
a Kr a Kr b Kr f Kr

dC
C C k C k C

dt
      

2
1 2 1 1 2

Kr
f Kr b Kr a Kr a Kr

dC
k C k C O C

dt
      

1 2 1 1
Kr

a Kr a Kr ir Kr ir Kr

dO
C O I O

dt
        

1
1

Kr
ir Kr ir Kr

dI
O I

dt
    

0.01176
0 0.022348 V

a e   

0.0631
0 0.047002 V

a e   

0.038198
1 0.013733 V

a e   

0.04178
1 0.0000689 V

a e   

0.023391( 5.0)0.090821 V
ir e   

0.03268( 5.0)0.006497 V
ir e    
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Ca2+-activated Cl current 

2

, , , 2
,

[ ]
( )

[ ]
i

Cl Ca Cl Ca Cl Ca Cl
i m Cl

Ca
I G O V E

Ca K



 
  

, ( 46.7)/7.8

0.2

1Cl Ca V
O

e 


 

 

Extracellular ion concentrations 

Parameter Definition Value Reference 

[ ]oK   Extracellular K+ concentration 5,400 M Bondarenko et al. [29] 

[ ]oNa  Extracellular Na+ concentration 140,000 M Bondarenko et al. [29] 

2[ ]oCa   Extracellular Ca2+ concentration 1,800 M Bondarenko et al. [29] 

 

Sarcoplasmic reticulum parameters 

Parameter Definition Value Reference 

2v  Ca2+ leak rate constant from the NSR 1.74 · 10−2 s−1 Bondarenko et al. [29] 

tr  Time constant for transfer from NSR to JSR 0.02 s Bondarenko et al. [29] 

xfer  Time constant for transfer from subspace to 
cytosol 

0.008 s Bondarenko et al. [29] 

 

Calmodulin and calsequestrin parameters 

Parameter Definition Value Reference 

[ ]totCMDN  Total cytosolic calmodulin concentration 50.0 M Bondarenko et al. [29] 

[ ]totCSQN  Total JSR calsequestrin concentration 15,000.0 M Bondarenko et al. [29] 

CMDN
mK  Ca2+ half-saturation constant for calmodulin 0.238 M Bondarenko et al. [29] 

CSQN
mK  Ca2+ half-saturation constant for calsequestrin 800.0 M Bondarenko et al. [29] 

 

  

(B.301)

(B.302)
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Membrane current parameters 

Parameter Definition Value Reference 

mC  Specific membrane capacitance 1.0 F/cm2 Bondarenko et al. [29] 

F Faraday constant 96.5 C/mmol Bondarenko et al. [29] 

T Absolute temperature 298 K Bondarenko et al. [29] 

R Ideal gas constant 8.314 J mol−1 K−1 Bondarenko et al. [29] 

NaCak  Scaling factor for Na+/Ca2+ exchanger 275 pA/pF Bondarenko [16] 

,m NaK  Na+ half-saturation constant for Na+/Ca2+ 
exchanger 87,500 M Bondarenko et al. [29] 

,m CaK  Ca2+ half-saturation constant for Na+/Ca2+ 
exchanger 1,380 M Bondarenko et al. [29] 

satk  Na+/Ca2+ exchanger saturation factor at very 
negative potentials 

0.27 Bondarenko [16] 

η Controls voltage dependence of Na+/Ca2+ 
exchanger 

0.35 Bondarenko et al. [29] 

max
( )p CaI  Maximum sarcolemmal Ca2+ pump current 0.051 Bondarenko [16] 

, ( )m p CaK  Ca2+ half-saturation constant for 
sarcolemmal Ca2+ pump current 0.5 M Bondarenko et al. [29] 

GCab 
Maximum background Ca2+ current 
conductance 

0.000284 mS/µF Bondarenko [16] 

GNab 
Maximum background Na+ current 
conductance 

0.0063 mS/µF Bondarenko [16] 

,Kto sG  
Specific maximum conductivity for the 
slowly inactivating transient outward K+ 
current 

0.0 mS/µF Bondarenko et al. [29] 

KssG  Specific maximum conductivity for the 
noninactivating steady-state K+ current 

0.0611 mS/µF Petkova-Kirova et al. [61] 

KsG  Specific maximum conductivity for the 
slow delayed rectifier K+ current 

0.00575 mS/µF Bondarenko et al. [29] 

KrG  Specific maximum conductivity for the 
rapid delayed rectifier K+ current 

0.078 mS/µF Bondarenko et al. [29] 

fk  Rate constant for the rapid delayed rectifier 
K+ current 

23.761 s−1 Bondarenko et al. [29] 

bk  Rate constant for the rapid delayed rectifier 
K+ current 

36.778 s−1 Bondarenko et al. [29] 

,Cl CaG  Specific maximum conductivity for the 
Ca2+-activated Cl− current 

10.0 mS/µF Bondarenko et al. [29] 

,m ClK  Half-saturation constant for the Ca2+-
activated Cl− current 10.0 M Bondarenko et al. [29] 

ClE  Reversal potential for the Ca2+-activated Cl− 
current 

−40 mV Bondarenko et al. [29] 
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Contraction part  

Contraction Parameters 

Parameter Definition Value Reference 
SL0 Initial sarcomere length 1.9 – 2.3 μm  

SLrest Resting sarcomere length 1.9 μm Rice et al. [43] 

kPN Transition rate from permissive to non-
permissive state 

1,350 s-1 This paper 

PContitin Titin passive force amplitude 0.002 Rice et al. [43] 

PExptitin Titin passive force exponent 10.0 Rice et al. [43] 

SLcollagen Collagen sarcomere length 2.25 μm Rice et al. [43] 

PConcollagen Collagen passive force amplitude 0.0005 This paper 

PExpcollagen Collagen passive force exponent 14.0 This paper 

mass Sarcomere mass 15.0 · 10–6 s2 µm-1 This paper 

KSE Stiffness 1.0 µm-1 This paper 

fXB0 
Basic transition rate from weak to strong 
crossbridge 

18.0 s–1 This paper 

gminxb0 
Minimum detachment rate from strong to 
weak crossbridge 

12.348 s–1 This paper 

visc0 
Effective viscosity without β1-adrenergic 
stimulation 

0.0141 s µm-1 This paper 

afx0 
Non-linear correction to effective viscosity 
without β1-adrenergic stimulation 

0.040 s µm-1 This paper 

 

Permissive states 

10

0
0 1 0PN SL NP

dN
k P g N k N

dt
    

 10

1
1 1PN NP SL
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dt
    

 10 01

0
1 0 0SL NP PN

dP
g P k N k f P

dt
     

 21 01 12 10

1
2 0 1 1SL NP SL PN

dP
g P f P k N f g k P

dt
       

 32 12 23 21

2
3 1 2SL SL

dP
g P f P f g P

dt
     

23 32

3
2 3SL

dP
f P g P

dt
   
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     1 1

0 , ,1 0.45 0.364 1 1.5 0.575cyt cyt
XB XB TnI p MyBPC pf f f f

 
       

     0 , ,1 0.3 0.364 1 1.0 0.575cyt cyt
minxb minxb TnI p MyBPC pg g f f      

01 15 XBf f  

12 30 XBf f  

23 7 XBf f  

10SL xbSLg g  

21 2SL xbSLg g  

32 3SL xbSLg g  
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Active Contraction Force 
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   
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   max max max max1 2 2 3 3F P P P    

  01 min min
max

2 3
1 xb xbf g g

P 


 

 01 12 min
max

3
2 xbf f g

P 


 

01 12 23
max3

f f f
P 


 

        min min min 01 min min 01 12 min 01 12 232 3 2 3 3xb xb xb xb xb xbg g g f g g f f g f f f      

 
Passive Contraction Force 

     passive titin collagenF SL F SL F SL   

 
   
   

exp 1 if

exp 1 if

titin titin rest rest

titin

titin titin rest rest

PCon PExp SL SL SL SL
F SL

PCon PExp SL SL SL SL

    
   

 

     exp 1 if

0 if

collagen collagen collagen collagen

collagen

collagen

PCon PExp SL SL SL SL
F SL

SL SL

    


 

 
Viscous and flexible forces 

 1visc fxF visc v a v      

     1 1

0 , ,1 0.33 0.364 1 1.1 0.575cyt cyt
TnI p MyBPC pvisc visc f f

 
       

     1 1

0 , ,1 0.2 0.364 1 0.6 0.575cyt cyt
fx fx TnI p MyBPC pa a f f

 
      

 0flexF KSE SL SL   
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Sarcomere length 

dSL
v

dt
   

contrn passive visc flexF F F Fdv

dt mass

  
  

 

Initial Conditions 

Parameter Definition Value 
t Time 0.0 ms 

V Membrane potential 78.2807 mV 

[Ca2+]i Myoplasmic Ca2+ concentration 0.100156 M 

[Ca2+]ss Subspace SR Ca2+ concentration 0.100156 M 

[Ca2+]JSR Junctional SR Ca2+ concentration 1025.35 M 

[Ca2+]NSR Network SR Ca2+ concentration 1025.35 M 

[LTRPNCa] Concentration Ca2+ bound low-affinity troponin-binding sites 8.66973 M 

[HTRPNCa] Concentration Ca2+ bound high-affinity troponin-binding sites 123.369 M 
cavO   L-type Ca2+ channel conducting state (non-phosphorylated, caveolae) 0.31990810-11 

1
cavC   L-type Ca2+ channel closed state (non-phosphorylated, caveolae) 0.973686 

2
cavC  L-type Ca2+ channel closed state (non-phosphorylated, caveolae) 0.52436110-2 

3
cavC  L-type Ca2+ channel closed state (non-phosphorylated, caveolae) 0.10589510-4 

4
cavC  L-type Ca2+ channel closed state (non-phosphorylated, caveolae) 0.95046110-8 

cav
PC  L-type Ca2+ channel closed state (non-phosphorylated, caveolae) 0.31990910-11 

1
cavI   L-type Ca2+ channel inactivated state (non-phosphorylated, caveolae) 0.30828710-11 

2
cavI  L-type Ca2+ channel inactivated state (non-phosphorylated, caveolae) 0.21736110-7 

3
cavI  L-type Ca2+ channel inactivated state (non-phosphorylated, caveolae) 0.20947010-7 

cav
pO   L-type Ca2+ channel conducting state (phosphorylated, caveolae) 0.56169810-10 

1
cav
pC   L-type Ca2+ channel closed state (phosphorylated, caveolae) 0.20634710-1 

2
cav

pC  L-type Ca2+ channel closed state (phosphorylated, caveolae) 0.42156910-3 

3
cav
pC  L-type Ca2+ channel closed state (phosphorylated, caveolae) 0.32297710-5 

4
cav

pC  L-type Ca2+ channel closed state (phosphorylated, caveolae) 0.10997410-7 

cav
PpC  L-type Ca2+ channel closed state (phosphorylated, caveolae) 0.14042410-10 

(B.337)

(B.338)
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1
cav
pI   L-type Ca2+ channel inactivated state (phosphorylated, caveolae) 0.54130610-10 

2
cav

pI  L-type Ca2+ channel inactivated state (phosphorylated, caveolae) 0.10060210-6 

3
cav

pI  L-type Ca2+ channel inactivated state (phosphorylated, caveolae) 0.96949610-7 

ecavO   
L-type Ca2+ channel conducting state (non-phosphorylated, 
extracaveolae) 0.28658410-11 

1
ecavC   

L-type Ca2+ channel closed state (non-phosphorylated, 
extracaveolae) 

0.872263 

2
ecavC  

L-type Ca2+ channel closed state (non-phosphorylated, 
extracaveolae) 0.46974110-2 

3
ecavC  

L-type Ca2+ channel closed state (non-phosphorylated, 
extracaveolae) 0.94864110-5 

4
ecavC  

L-type Ca2+ channel closed state (non-phosphorylated, 
extracaveolae) 0.85145610-8 

ecav
PC  

L-type Ca2+ channel closed state (non-phosphorylated, 
extracaveolae) 0.28658510-11 

1
ecavI   

L-type Ca2+ channel inactivated state (non-phosphorylated, 
extracaveolae) 0.27616010-11 

2
ecavI  

L-type Ca2+ channel inactivated state (non-phosphorylated, 
extracaveolae) 0.19471410-7 

3
ecavI  

L-type Ca2+ channel inactivated state (non-phosphorylated, 
extracaveolae) 0.18764610-7 

ecav
pO   

L-type Ca2+ channel conducting state (phosphorylated, 
extracaveolae) 0.32814310-9 

1
ecav
pC   L-type Ca2+ channel closed state (phosphorylated, extracaveolae) 0.120548 

2
ecav

pC  L-type Ca2+ channel closed state (phosphorylated, extracaveolae) 0.24628010-2 

3
ecav
pC  L-type Ca2+ channel closed state (phosphorylated, extracaveolae) 0.18868310-4 

4
ecav

pC  L-type Ca2+ channel closed state (phosphorylated, extracaveolae) 0.64246910-7 

ecav
PpC  L-type Ca2+ channel closed state (phosphorylated, extracaveolae) 0.82035810-10 

1
ecav
pI   

L-type Ca2+ channel inactivated state (phosphorylated, 
extracaveolae) 0.31623010-9 

2
ecav

pI  
L-type Ca2+ channel inactivated state (phosphorylated, 
extracaveolae) 0.58771610-6 

3
ecav
pI  

L-type Ca2+ channel inactivated state (phosphorylated, 
extracaveolae) 0.56637810-6 

CNa3 Fast Na+ channel closed state (non-phosphorylated) 0.436281 

CNa2 Fast Na+ channel closed state (non-phosphorylated) 0.13223910-1 

CNa1 Fast Na+ channel closed state (non-phosphorylated) 0.16113210-3 

ONa Fast Na+ channel open state (non-phosphorylated) 0.36757810-6 

IFNa Fast Na+ channel inactivated state (non-phosphorylated) 0.15318810-3 

I1Na Fast Na+ channel inactivated state (non-phosphorylated) 0.14591310-4 

I2Na Fast Na+ channel inactivated state (non-phosphorylated) 0.54522010-7 

ICNa2 Fast Na+ channel inactivated state (non-phosphorylated) 0.12571910-1 
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ICNa3 Fast Na+ channel inactivated state (non-phosphorylated) 0.414772 

CNa3p Fast Na+ channel closed state (phosphorylated) 0.61086810-1 

CNa2p Fast Na+ channel closed state (phosphorylated) 0.18515910-2 

CNa1p Fast Na+ channel closed state (phosphorylated) 0.22562210-4 

ONap Fast Na+ channel open state (phosphorylated) 0.51470810-7 

IFNap Fast Na+ channel inactivated state (phosphorylated) 0.21450510-4 

I1Nap Fast Na+ channel inactivated state (phosphorylated) 0.21695610-5 

I2Nap Fast Na+ channel inactivated state (phosphorylated) 0.30141710-7 

ICNa2p Fast Na+ channel inactivated state (phosphorylated) 0.17603510-2 

ICNa3p Fast Na+ channel inactivated state (phosphorylated) 0.58076810-1 

PC1 RyR channel closed state (non-phosphorylated) 0.996216 

PC2 RyR channel closed state (non-phosphorylated) 0.96152310-4 

PO1 RyR channel open state (non-phosphorylated) 0.85470310-5 

PO2 RyR channel open state (non-phosphorylated) 0.36038710-10 

PC1p RyR channel closed state (phosphorylated) 0.36783210-2 

PC2p RyR channel closed state (phosphorylated) 0.98639110-6 

PO1p RyR channel open state (phosphorylated) 0.52604310-7 

PO2p RyR channel open state (phosphorylated) 0.36967910-12 

[Na+]i Myoplasmic Na+ concentration 10,508.7 μM 

[K+]i Myoplasmic K+ concentration 145,411 μM 

aur Activation gate of non-phosphorylated IKur 0.71376610-3 

iur Inactivation gate of non-phosphorylated IKur 0.996992 

,
ecav

IKto ff   Fraction of phosphorylated IKto,f 0.252661 

ato,f Activation gate of non-phosphorylated IKto,f 0.53370010-2 

ito,f Inactivation gate of non-phosphorylated IKto,f 0.999945 

ato,fp Activation gate of phosphorylated IKto,f 0.11147810-2 

ito,fp Inactivation gate of phosphorylated IKto,f 0.999983 

,
cyt

PLB pf   Fraction of phosphorylated phospholamban 0.186637 

,
cyt

TnI pf   Fraction of phosphorylated troponin I 0.364102 

,
cyt

MyBPC pf  Fraction of phosphorylated myosin binding protein C 0.572184 

PRyR RyR modulation factor 0.25380910-11 

aKss Activation gate of IKss 0.92165810-3 

CK0 mERG channel closed state 0.997366 

CK1 mERG channel closed state 0.13519910-2 

CK2 mERG channel closed state 0.87347110-3 
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OK mERG channel open state 0.33250210-3 

IK mERG channel inactivated state 0.76346010-4 

1 ,

cav

PKA tot
R     Concentration of total β1-ARs phosphorylated by PKA (caveolae) 0.79945210-3 µM 

1 2,

cav

GRK tot
R    Concentration of total β1-ARs phosphorylated by GRK2 (caveolae) 0.16597110-29 µM 

  ,

cav

s GTP
G


  Concentration of active Gsα subunit (caveolae) 0.13218910-2 µM 

 cav

sG


 Concentration of active Gsβγ subunit (caveolae) 0.18082410-2 µM 

  ,

cav

s GDP
G


 Concentration of inactive Gsα subunit (caveolae) 0.48735610-3 µM 

1 ,

ecav

PKA tot
R     Concentration of total β1-ARs phosphorylated by PKA 

(extracaveolae) 0.47800210-1 µM 

1 2,

ecav

GRK tot
R    Concentration of total β1-ARs phosphorylated by GRK2 

(extracaveolae) 0.16597110-29 µM 

  ,

ecav

s GTP
G


  Concentration of active Gsα subunit (extracaveolae) 0.23080110-1 µM 

 ecav

sG


 Concentration of active Gsβγ subunit (extracaveolae) 0.23727610-1 µM 

  ,

ecav

s GDP
G


 Concentration of inactive Gsα subunit (extracaveolae) 0.64847510-3 µM 

1 ,

cyt

PKA tot
R     Concentration of total β1-ARs phosphorylated by PKA (cytosol) 0.15594910-2 µM 

1 2,

cyt

GRK tot
R    Concentration of total β1-ARs phosphorylated by GRK2 (cytosol) 0.16597110-29 µM 

  ,

cyt

s GTP
G


  Concentration of active Gsα subunit (cytosol) 0.33151110-3 µM 

 cyt

sG


 Concentration of active Gsβγ subunit (cytosol) 0.66357010-3 µM 

  ,

cyt

s GDP
G


 Concentration of inactive Gsα subunit (cytosol) 0.33305810-3 µM 

  56

cav

AC
cAMP   cAMP concentration produced by AC5/6 (caveolae) 0.1 µM 

  47

ecav

AC
cAMP   cAMP concentration produced by AC4/7 (extracaveolae) 0.1 µM 

  56

cyt

AC
cAMP   cAMP concentration produced by AC5/6 (cytosol) 0.1 µM 

  47

cyt

AC
cAMP   cAMP concentration produced by AC4/7 (cytosol) 0.1 µM 

 3
cav

p
PDE   Concentration of phosphorylated PDE3 (caveolae) 0.12510310-1 µM 

 4
cav

p
PDE   Concentration of phosphorylated PDE4 (caveolae) 0.58079810-2 µM 

  2

cav

PDE
cAMP   cAMP concentration degraded by PDE2 (caveolae) 0.1 µM 

  3

cav

PDE
cAMP   cAMP concentration degraded by PDE3 (caveolae) 0.1 µM 
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  4

cav

PDE
cAMP   cAMP concentration degraded by PDE4 (caveolae) 0.1 µM 

 4
ecav

p
PDE   Concentration of phosphorylated PDE4 (extracaveolae) 0.15822610-1 µM 

  2

ecav

PDE
cAMP   cAMP concentration degraded by PDE2 (extracaveolae) 0.1 µM 

  4

ecav

PDE
cAMP   cAMP concentration degraded by PDE4 (extracaveolae) 0.1 µM 

 3
cyt

p
PDE   Concentration of phosphorylated PDE3 (cytosol) 0.12099810-2 µM 

 4
cyt

p
PDE   Concentration of phosphorylated PDE4 (cytosol) 0.37310210-2 µM 

  2

cyt

PDE
cAMP   cAMP concentration degraded by PDE2 (cytosol) 0.1 µM 

  3

cyt

PDE
cAMP   cAMP concentration degraded by PDE3 (cytosol) 0.1 µM 

  4

cyt

PDE
cAMP   cAMP concentration degraded by PDE4 (cytosol) 0.1 µM 

 cav

PKA
cAMP   cAMP concentration change due to binding to PKA (caveolae) 7.92317 µM 

 cav
ARC   

Concentration of PKA RC dimer with 1 cAMP molecule bound 
(caveolae) 

0.299288 µM 

 2

cav
A RC   

Concentration of PKA RC dimer with 2 cAMP molecules bound 
(caveolae) 0.30335810-1 µM 

 2

cav
A R   

Concentration of PKA R subunit with 2 cAMP molecules bound 
(caveolae) 

0.858440 µM 

 cav
C   Concentration of free PKA catalytic subunit (caveolae) 0.45939710-1 µM 

 cav
PKIC   Concentration of PKI inactivated PKA catalytic subunit (caveolae) 0.823499 µM 

 ecav

PKA
cAMP   cAMP concentration change due to binding to PKA (extracaveolae) 6.74029 µM 

 ecav
ARC   

Concentration of PKA RC dimer with 1 cAMP molecule bound 
(extracaveolae) 

0.653988 µM 

 2

ecav
A RC   

Concentration of PKA RC dimer with 2 cAMP molecules bound 
(extracaveolae) 

0.132861 µM 

 2

ecav
A R   

Concentration of PKA R subunit with 2 cAMP molecules bound 
(extracaveolae) 

1.17000 µM 

 ecav
C   Concentration of free PKA catalytic subunit (extracaveolae) 0.147623 µM 

 ecav
PKIC   

Concentration of PKI inactivated PKA catalytic subunit 
(extracaveolae) 

1.03338 µM 

 cyt

PKA
cAMP   cAMP concentration change due to binding to PKA (cytosol) 9.32461 µM 

 cyt
ARC   

Concentration of PKA RC dimer with 1 cAMP molecule bound 
(cytosol) 0.99635010-1 µM 

 2

cyt
A RC   

Concentration of PKA RC dimer with 2 cAMP molecules bound 
(cytosol) 0.14009910-1 µM 

 2

cyt
A R   

Concentration of PKA R subunit with 2 cAMP molecules bound 
(cytosol) 

0.273868 µM 

 cyt
C   Concentration of free PKA catalytic subunit (cytosol) 0.66502210-1 µM 
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 cyt
PKIC   Concentration of PKI inactivated PKA catalytic subunit (cytosol) 0.218365 µM 

  ,
1

cyt

p tot
Inhib   Concentration of total phosphorylated PP1 inhibitor 1 (cytosol) 0.21357110-1 µM 

 cav
cAMP   Concentration of cAMP in caveolae 0.253399 µM 

 ecav
cAMP   Concentration of cAMP in extracaveolae 0.507889 µM 

 cyt
cAMP   Concentration of cAMP in cytosol 0.407775 µM 

SL Sarcomere length 1.89958 m 

v Shortening velocity 0.11097410-14 μm ms‒1 

N0 Nonpermissive tropomyosin with 0 crossbridges 0.999236 

N1 Nonpermissive tropomyosin with 1 crossbridge 0.44756410-3 

P0 Permissive tropomyosin with 0 crossbridges 0.34473710-4 

P1 Permissive tropomyosin with 1 crossbridge 0.68379810-5 

P2 Permissive tropomyosin with 2 crossbridges 0.90132110-4 

P3 Permissive tropomyosin with 3 crossbridges 0.18480610-3 
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Appendix C   Derivation of Fvisc 

We start from Hill’s Equation [101] (see equation (3.17)):  

    0v b F a b F a     

Using algebraic manipulations, we can obtain an equation for F/F0: 

 0F a
v b b

F a


 


  

 0F a F a
v b b

F a F a

 
 

 
  

 0F a F a
v b

F a

      
  

 0F F
v b

F a

    
  

 0

0 0

1
F
F

v b
F a
F F

  
 
  
 

  

 0

0 0

1
F
Fv

a Fb
F F





  

 
0 0 0

1
v a F F

b F F F

 
   

 
  

 
0 0 0

1
av v F F

bF b F F
     

 
0 0

1 1
F v av

F b bF
    
 
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 0

0

1

1

av
bFF

vF
b





  

With the assumption that the ratio v/b is small, we can use the Taylor Expansion of 

1

( ) 1
v

f v
b


   
 

 

at v = 0: 

1

( ) 1
v

f v
b


   
 

, 
2

1
'( ) 1

v
f v

b b

    
 

, 
3

2

2
''( ) 1

v
f v

b b


   
 

, 
3

3

6
''( ) 1

v
f v

b b

    
 

 

(0) 1f  , 
1

'(0)f
b


 , 

2

2
''(0)f

b
 , 

3

6
''(0)f

b


  

Therefore 

21 1
( ) (0) '(0) ''(0) '''(0)

2 6
f v f f v f v f      

2
2 3

1 1 2 1 6
1

2 6
v v

b b b

               
     

  

2 3

2 3
1

v v v

b b b
      

Since 
v

b
 is small, 

1

1 1 ,
v v

b b


    
 

 and we obtain equation (3.19): 

0 0

1 1 .
F av v

F bF b

       
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