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ABSTRACT 

Because of budget constraints a survey has two major limitations when it comes to 

availing data on prevalence of diabetes in small areas as Counties. First, it is costly for a survey 

to cover all relevant areas. And second, a survey often comes short of taking large samples for 

adequate representations. Examining such limitations and shortcomings of a direct method of 

estimation which uses data from such surveys, this dissertation attempted to apply Bayesian 

Hierarchical Model of estimation to provide reliable data on prevalence of Diabetes in small 

areas (counties). In doing so a range of Bayesian Hierarchical models which provide reliable 

data on prevalence of diabetes for small areas as counties were explored. 



The Estimation Models used data of Behavioral Risk Factor Surveillance System (BRFSS 

[1]) survey. In total the analysis examined survey data made on 1,497 counties (including the 

644 counties in the CDC diabetes belts [2] in 16 states in the US.  

The statistical models used in this analysis are aimed at reducing estimation error of 

diabetes prevalence in direct estimation methods, so as to help an efficient policy formulation 

and budget allocation. In this regard we generated estimates on the prevalence of diabetes for 

1,188 Counties having a complete set of information and another 295 which were not covered 

in BRFSS survey and among the 1188 Counties 824 Counties that have smaller sample size 

(Healthy people 2020 data suppression for BRFSS [3]). 

Unlike the direct method usually applied for such estimation the result in this analysis 

brought about statistical significance of the estimates in our study. 
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1 INTRODUCTION 

1.1 Purpose of the Study 

 According to CDC (Center for Diseases Control and Prevention) diabetes is the seventh 

leading cause of death in the U.S. (National Diabetes Statistics Report, 2014 [4]). The CDC 

fact sheet, reported that in 2013 alone 29 million people which is 9.3 % of the U.S. 

population is affected by this disease. Among these, 21 million are diagnosed while 8.1 

million are yet to know they have the disease. Diabetes can bring substantial economic 

cost to people with the disease as well as their families. 

 

Figure 1-1 Direct Medical Expense for Diabetes Cost in U.S. from 2007 to 2012 
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The cost associated to this disease is overwhelmingly high and increasing as years go by. 

According to the American Diabetes Association (ADA [5]), the cost of diagnosed diabetes went 

from $174 billion in 2005 to a staggering $245 billion in 2012. This data does not include resources 

from care provided by non-paid care givers and the burden associated with undiagnosed 

diabetes. $1 in $3 Medicare dollars and $1 in $5 health care dollars are spent in caring for people 

with diabetes (American Diabetes Association (ADA [5])). The physical and psychological stress 

resulted from complication on different parts of the body on people with diabetes brings health 

issues to be treated by health institutions. 

Addressing this chronic diseases at local level, in our case counties, depends on 

I. Reliable estimates at local level 

II. Appropriate budget allocation 

III. Applicable health policy 

 

The demand for I) is extremely important so that II) and III) can be implemented efficiently using 

a methodology that effectively estimates the burden of diabetes at the county level. 

Due to shortage of budget, most national surveys that are used widely for a variety of analysis 

and decision making, have hard time to cover all local areas or counties in a given state. For 

instance, from among 1,497 counties in 16 states that we included in our analysis, 307 of the 

counties lacked information when we aggregated individuals surveyed in the BRFSS survey we 

have checked from 2000 to 2010. In fact these counties have zero sample size when we 

aggregated the respondent response for the question, “Has a doctor told you, you have 
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diabetes?” according their age, sex, race, education attained, income and insurance status. In 

addition to this, there were other counties with small sample size.  

 

Applying direct estimates on such data results in a large sampling coefficients of variation (CV) or 

Mean Square Error (MSE) (Rao, 2003 [6]). This estimation problem compounding with the budget 

constraints call for other methods of indirect estimation that help overcome these problems. 

These indirect methods, which are discussed in the next two chapters, have an advantage of 

borrowing information from neighboring counties (local area or domains, counties) using liking 

models (Rao, 2003 [6]). Rao, in his “Some New Development in Small Area Estimation” paper, 

explained in detail the advantages of indirect estimation methods based on the explicit linking 

models. One of the advantages listed in his paper is the handling of the binary or count and 

spatially-correlated data which we used in our analysis. Moreover, one can validate these models 

using the sample data found in the survey. 

 

Small area or domains refer to an area such as counties, cities, zip codes, or local areas. 

There are many methods implemented to estimate the parameters of interest in these small 

areas for small sub-populations such as counties in the states or cities in the counties. One of the 

methods commonly used before the introduction of indirect method was direct estimation 

method. This method that uses only the survey data to provide results produces unreliable 

estimates especially for those small areas with no information or small sample size. 
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The purpose of this dissertation therefore is to address the above issues so that public health 

professionals, relevant federal, state, and local bodies, and other stakeholders will make use of 

reliable estimates at local level to tackle diabetes. This can be realized by applying small area 

estimation method which is the Bayesian Hierarchical method discussed in chapter 2 and 3. 

 

We used the 2010 BRFSS [1] survey data which included auxiliary data to estimate the prevalence 

of diabetes for counties which are located in the CDC’s Diabetes belt. We fitted Empirical Best 

Linear Unbiased (EBLUB) predictors extending the regression model to handle random effects 

model. 

 

A Bayesian approach for small area estimation provides an advantage of handling many types of 

survey outcomes such as continuous, dichotomous or categorical variables. In addition to this, 

the Bayesian method handles different random effect structures such as correlated and 

uncorrelated structures. That particular advantage helps to extend the Bayesian methods to 

small area estimation to produce the needed reliable estimates for all areas including those small 

local areas with no direct survey information or not covered by the survey. On top of this, the 

Bayesian Hierarchical method is best in handling small areas with spars data since Bayesian 

posterior inference is exact and does not rely on asymptotic arguments (Bayesian Statistics for 

Small Area Estimation [7]).  
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1.2 Studies on Diabetes 

Diabetes is one of the leading cause of deaths in the U.S. as well as around the world. People 

with diabetes develop a number of complication such as kidney failure, blindness, and 

amputation are some of the complication. In 2013, 30 million people are affected by diagnosed 

diabetes and 86 million who don’t know they have diabetes. The cost associated with this disease 

is staggering. In 2007 it was $174Billion and this cost increased to $322Billion in 2012. An 

increased trend observed for both the diseases and cost. 

Projection of the year 2050 burden of diabetes in the US adult population [21]paper studied a 

projection of this diseases and in their study they projected the total prevalence of diabetes to 

increase from 14% in 2010 to 21% in 2050 for U.S. adult population. 

According to National Diabetes Statistics Report, 2014, the diabetes affected older age group, 

more prevalent in Men than Women and in Non-Hispanic blacks than Non-Hispanic White [20] 

 

1.3 Spatial Effects Models 

The application of Bayesian Hierarchical model to small area estimation has been widely used in 

recent year due the fast development in the powerful computational computer and applicable 

software. Analyzing the HB model using WinBUGS software which applies the Markov Chain 

Monte Carlo (MCMC, Gilks et al., 1996). The MCMC requires regress computation and the 

development of such fast computer has been a plus for the HB analysis. The WinBUGS, developed 

by a team of UK researcher [22] which uses the BUGS(Bayesian inference using Gibbs Sampling), 

designed to handle a range of Bayesian Hierarchical model incorporating geographical variation 
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also an advantage for the researchers interested in this study area. This dissertation widely used 

both the BH modelling and the Win BUGS. 

Direct method has been used but this methods has a number of draw back when we come to do 

small area estimation since it doesn’t take into consideration geographical variation and the 

reliability of the estimation can be hindered by small sample size. In order to overcome these 

drawback a variety of indirect method has been proposed by researcher to estimate the mean of 

small area characteristics. Among the methods are  

i. synthetic estimator(Gonzalez, 1973) assumes a fixed mean across a domain(small area)  

ii. Small-Area level Model estimation (Rao, 2003 [6]) 

Throughout this dissertation we applied the second method by including the geographical 

variation (in our case counties) , i.e.  by including CAR (Conditional Autoregressive Model). 

Glen Meeden, in a Non-informative Bayesian approach to small are estimation paper[23], 

highlighted applying the conditional autoregressive model to estimate the variable of interest at 

small area level which strength the reliability of the estimates since this methods have the 

advantage using data from neighboring small area which known as “Borrowing Strength”. 

Ying C. MacNab [24] summarized the Bayesian Hierarchical model for spatially correlated small 

area health services outcomes. The paper used the BH method to identify spatial variation in 

small area incidence rates of interventricular hemorrhage (IVH) that occurred to NICU neonates 

in census division across Canada.  

In Bayesian Small Area Estimates of Diabetes Prevalence by U.S. Counties (2005, [] pp185) 

recommended a research on the addition of spatial effect and county level covariates and also 

highlight the advantage of using the recommendation. 
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2 ESTIMATING COUNTY-LEVEL DIABETES PREVALENCE IN FLORIDA USING BAYESIAN 

HIERARCHICAL MODEL  

2.1 Background 

Type 2 diabetes, a condition in which body cells fail to use insulin properly [8], affected 29.1 

million Americans (9.1% of the U.S. population in 2013 [4]).  One of the surveys used in the U.S. 

to predict the risk and prevalence of Type 2 diabetes is the Behavioral Risk Factor Surveillance 

System (BRFSS [1]). 

 

In this chapter we attempted to explore a method suitable for accurately estimating the annual 

prevalence of diagnosed diabetes in Florida counties based on the BRFSS survey. Tackling to 

reduce the burden of this disease requires an effort from all responsible parties that includes 

the analyst, policy formulators and fund allocators.  Providing reliable health data for all the 

parties involved facilitates the decision making process to this end. 

 

The demand for health information for policy formulation and fund allocation for small areas 

such as counties are strongly increasing.  The same is true with information on diabetes. One of 

the major factors that determine success of policies and budget allocation in this regard is the 

quality of health data presented and accessed for that decision making process.  

The need for best spatial analysis[9] of health data has been found to be essential in producing 

accurate and representative estimate for small areas such as counties, since generating direct 

estimates from the survey data is usually hindered by insufficient sample size or even lack of 

specific data. Getting reliable estimate for small areas helps the effective implementation of 
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public health policy, especially in allocating fund to target an area with high burden of diseases 

[10]. 

 

In the following discussion an attempt was made to build an appropriate Bayesian hierarchical 

(BH [11]) small area model which can be used to estimate the probability of having diabetes 

among residents in counties in Florida. However, this method can be extended for other U.S. 

counties with some modifications. 

 

2.2 Methods  

The Behavioral Risk Factor Surveillance System (BRFSS) is an ongoing, state -based 

telephone survey of the non-institutionalized, adult civilian U.S. population (18 years of age or 

older). The survey provides state-specific information on behavioral risk factors and preventive 

care practices. The survey includes demographic and socioeconomic information about survey 

respondents.  It also collects the respondent’s health status, including chronic health conditions 

like diabetes [11].  

But the BRFSS doesn’t cover all counties in the U.S. Even it does, it may lack a reliable 

sample size for each and every county. For instance, the Florida state has 63 out of 67 counties 

with the above information. Since a direct estimate based on an inadequate sample size is not 

reliable, we construct Bayesian Hierarchical models to compute more accurate estimates of the 

prevalence of diabetes for all 63 Florida counties.  
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Since neighboring counties tend to have similar chronic health condition, we 

incorporate the spatial correlation by the Conditional Autoregressive (CAR [12]) model in our 

analysis. 

 

Variables of Interest [1] 

A. Diagnosed Diabetes (Type II diabetes): Respondent who participated in the BRFSS survey 

and answered “Yes” to the question “Has a doctor told you, you have diabetes?” was 

considered as having diabetes. If the respondent was a woman and indicated that the 

diagnosis of diabetes was only during pregnancy, then the respondent would be 

excluded. 

B. Salient Covariates 

A. Age Group: we grouped those who answered the question “How old were you on 

your last birthday?”  as follows: 

I. 18 to 44 - age group 1(reference group) 

II. 45 to 64 - age group 2 

III. 65 and above - age group 3 

B. Education level: Using BRFSS question, “What is your highest grade or year of school 

you have completed?”, we grouped the respondents  into 

I. Less than high school(reference group) 

II. High school graduate or GED 

III. Under graduate degree 

IV. Graduate degree and above 
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C. House hold income: Based on the BRFSS question, “Which of the following 

categories best describes your annual income from all sources?” , we created four 

categories for income 

I. < $25,000(reference group) 

II. $25000 -  <$50,000 

III. $50000 - <$75000 

IV. >=$75,000  

D. County Poverty: The U.S. Census Bureau use a set of income thresholds based on 

the family size to determine if a person is below the federal poverty level. If a 

family’s total income is below the respective threshold, then the whole family is 

considered in the state of poverty.(US Census Bureau) 

2.3 Analysis  

We estimated the prevalence of diagnosed diabetes for Florida counties using the 2010 

BRFSS survey data. We aggregate the individual data according to their age group (18 – 44, 45-

64 or 65+), gender (Male or Female), race (White or Black), income level (< $25,000, $25,000 -

$49,999, $50,000 - $74,999),  ≥$75,000) and education level (<high School, high School, college 

degree and graduate or above). So we have 192 possible groups in total, which corresponds to 

all possible combination of age, gender, race, income level, and education level. 

A Bayesian Hierarchical (BH [11], [15]) statistical model was built, which models the 

number of diabetes cases for each group within each county using a binomial distribution, uses 

the logic link function to include the predictors age group, gender, race, income level, education 

level, interactions between age and gender, age and race, gender and race, and county poverty, 
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as well as the spatial effects with the conditional autoregressive (CAR [12]) model. Estimations 

from a logistic regression model (PROC GENMODE) were used as initial values for the 

parameters in BH analysis, where the logistic regression model contains the same set of 

predictors as the BH model, excluding the CAR model. From the BH model, and estimating the 

proportion of individuals within each group for each county using BRFSS survey data we 

estimated the small area (county-level) prevalence of diabetes by age group, sex, and race. The 

prevalence of diabetes for each county were also estimated. Below we presented our BH model 

in more detail. 

2.4 Model 

2.4.1 Bayesian Hierarchical with CAR (spatial dependency) model 

Let Y�� be the number of people from class j in the county k with diagnosed diabetes (j=1, 2… 

192, and k=1, 2… 67) and N�� be the total number of people in class j of county k (k=1, 2… 63).  

We assume that Y��~Binomial
N��	, θ��� and the link equation logit
θ��� = X��β + b� where 

j=1, 2… 192 classes, k=1, 2… 63 counties and X�� = 
1, x��, x��, ⋯ , x���� is the vector of dummy 

variables for the socioeconomic categorical variables and the interactions using reference 

coding, and county poverty, β =  β!, β�, β�, ⋯ , β��"� is the corresponding coefficient vector. 

This model assumes that the effect of a predictor is the same across counties.  

The term bk (k = 1, 2… 63) captures the random spatial effect and we use the conditional 

autoregressive model (CAR [12]) to describe the spatial correlation.  

That is b�~CAR
b�&&&, τ���, where ()&&& = �
∑ +,-, ∑ b�. w.� 

 τ�� = 01
∑ +,-,   and w.�23 �	.4	.	567	�	589	57�5:96;!																													<;=98+.>9
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2.4.2 The CAR Model [12] 

The CAR model also known as Auto-Normal model or Gauss-Markov model is used usually to do 

“local investigation”, i.e. it allows to analyze phenomena that occur in a geographical area 

immediately surrounding the site analyzed(in our case the geographical area is county). 

Let C (counties) = {1, 2… 63) and Ni represent neighborhood of the county i where i is in C, then 

a random field x =  x�, x� ⋯x6" is called CAR Model, if it is characterized by  

 f x./xA," = B �
�CD,1

exp G− I J,KL,"KM∑ N,,∗ J∗KL∗",∗∈Q, R1
�D,1

S 

For i ϵ C, μ. ∈ R (Real number),σ. ∈ R, |W| < 1 and βii
* ϵR, βii =0 and βii* = βi*I  with I, i* ϵC 

For the priors, we assume that for each (m=1, 2… 17) βY~Normal 0, σ\", β is the coefficient of 

the covariates and σb
-2 ~ Gamma (0.5, 0.5). By giving a small values for the gamma distribution 

(such as 0.5 for shape and scale), we let  

 

2.4.3 Alternative Models  

We also considered three alternative models, including the model with county-specific 

coefficients, the model that ignores the random spatial effect b�, and the model that includes 

both uncorrelated and correlated spatial random effects.  

2.4.3.1 Model with county-specific coefficients and CAR [12]  

Y��~Binomial
N��	, θ���	 where N�� is the total number of people in a given class j and county k 

with the link equation logit (θ��) = x��βY + b� where j=1, 2, …, 192 classes, k=1, 2,…, 67 counties 

and XT
j  = (1,x1j, ,x2j, …, ,x17j), βm = ( β1, β1, β2, …, , β17) represent the county –specific coefficient 
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vector. We assume that βkm ~ Normal (βm, σb
2), for k=1, 2… 67 and m=0, 1… 16 and βm ~ Normal 

(0, σb
2), σb

-2 ~ Gamma (0.5, 0.5)  

 

2.4.3.2 Model without CAR [12]  

Y��~Binomial
N��	, θ��� where Njk is the total number of people in a given class j and county k 

with the link equation logit
θ��� = X��βY where j=1, 2… 192 classes, k=1, 2… 67 counties,   

X�� = 
1, x��, x��, ⋯ , x���� and β =  β!, β�, β�,⋯ , β��"�.The above model is the second 

alternative model without spatial correlation between neighboring areas or without the 

Conditional Autoregressive (CAR [12]) model.  

 

2.4.3.3 Model with both uncorrelated and correlated spatial random effects 

Y��~Binomial
N��	, θ��� where Njk is the total number of people in a given class j and county k 

with the link equation logit
θ��� = X��βY + b� + e� where j=1, 2… 192 classes, k=1, 2… 67 

counties.  

2.5 Counties with Missing Data 

The BRFSS survey may not cover all counties every year but the state may do additional 

survey to cover all counties in their state, even this may not be conducted every year. But by 

applying the CAR [12] model we can overcome this problem and get estimates of missing 

counties by borrowing information from neighboring counties. For instance, the 2010 BRFSS 

public survey data which can be downloaded from BRFSS website2 had 4 counties not covered 
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in the survey. For those counties with missing or uncovered in the survey, we used the BH 

model with the CAR model to estimate their prevalence of diabetes as follows: 

Based on the BH model with the CAR model, the spatial effect for the mth missing or uncovered 

county (m=1, 2, 3 and 4) has a normal distribution with mean  

b&Y = ∑ bY	6.2� and the precision vY = �
 ^∗6"_.a	  

where v is the precision parameter in the CAR model, and n is the number of neighbor counties 

for the mth missing county. With the MCMC samples of bk from the simulation, we also get 

samples of bm for the mth missing counties using	b&Y~Normal bY	, vY". 

Using the simulated samples for bm and β = (β1, β2… β17), we can simulate the posterior 

distribution for the prevalence of diabetes for the missing counties in the same way as we do 

for the other 63 counties without missing information, and hence estimate its posterior mean 

and credible interval. 

We used the WinBugs software [13] to fit these models. The model was run for 100,000 

iterations with single chain but the first 2,000 samples were used as a burn-in (discarded) which 

implies that the rest 98,000 samples were used to make inference. We chose the model that 

has the same coefficients across counties and the CAR [12] model, which has the smallest 

Deviance information criterion (DIC [14]). 

With the MCMC samples of parameters in this model, we can infer the posterior distribution of 

the overall prevalence rate for each county in the following way. Similarly we can get the 

prevalence rate by race or sex for each county. 

Plugging in the sampled values of β and bk, and specifying the values of x, we can get the 

prevalence rate of diabetes in a group of a county.  
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Let ( )ˆ i

jkθ denote the ith sample of
jkθ , the prevalence rate of diabetes in the j-th group of the k-th 

county, from the MCMC procedure (i=1… 17, j=1 … 192 and k=1… 63), the corresponding overall 

prevalence rate of the k-th county is estimated by 

192
( )

1

ˆ i

jk jk

j

pθ

=

∑          (1) 

 where 
jkp represents the proportion of individuals belonging to the jth group in county k, which 

is obtained from {
192

( )

1

ˆ i

jk jk

j

pθ

=

∑ } (i=1,2,…) simulate the posterior distribution of the overall 

prevalence rate of county k. 
192

( )

1 1

1 ˆ
I

i

jk jk

i j

p
I

θ

= =

∑∑ , the mean of {
192

( )

1

ˆ i

jk jk

j

pθ

=

∑ }(i=1,2,…), estimates the 

posterior mean of the  overall prevalence rate of county k. The 2.5th and 97.5th percentiles of {

192
( )

1

ˆ i

jk jk

j

pθ

=

∑ } (i=1, 2…) form the 95% credible interval for the overall prevalence rate of county k. 

Similarly we can simulate the posterior distribution of the prevalence rate by race, or by sex, for 

each county, and then get the posterior mean and 95% credible intervals. The results are shown 

in Tables1-4 and Figures 1-4. 

We validate our estimates by comparing with estimates from National Center for Chronic 

Prevention and Health Promotion [15] and Florida Health Department estimates [16] using 

Pearson and Spearman Correlation coefficients, Mean Square Error (MSE), Mean Absolute 

difference (MAD), Mean Relative absolute differences (MRAD), and Rank statistics ([17] See 

table 5). 
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2.6 Results  

The estimated prevalence of diabetes in the counties ranges from 6.2% (Monroe county) to 

13.9% (Jackson county) (see the table1 and fig1). Almost all counties, except Monroe (6.2%) and 

St. Johns (6.9%), have estimated prevalence of diabetes above the national average (6.92%) and 

54 out of the 67 counties had higher estimated prevalence of diabetes than the Florida state 

estimate (8.6%). Most of these counties were found in the north part of the state and had 

higher percentage poverty compared to those counties with lower prevalence of diabetes. This 

was also clearly indicated by the house hold income, where those counties with low house hold 

income resides in those counties with high estimated prevalence of diabetes. In all counties in 

this study, blacks had higher estimated prevalence of diabetes than white (see table 2 and fig 2 

below). 

 

The prevalence of estimated diabetes was higher among men than women ranging 7.2% - 

15.1% in men and 5.0% - 13.3% in women. In almost all counties, the Blacks had the higher 

prevalence than whites. 

 

Monroe County has the lowest prevalence by sex (Men (7.2%) and Women (5%) while Putnam 

County had the highest male (15.1%) prevalence. The estimated prevalence of diabetes tended 

to increase with age.  

 

For counties with missing data in the 2010 public BRFSS data, as it discussed in the method 

section we used CAR [12] model which helped us to borrow information from the surrounding 
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counties. We checked our findings with the Florida public health direct estimate and by running 

Bayesian hierarchical model for the complete data we got from the Florida BRFSS. For your 

information, some state may do complete survey but the survey may not be done every year. 

Our CAR model can estimate for every year regardless of the survey cover all counties or not. 
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Gold 

Standard
*

CAR Model

Estimate

Gold 

Standard
*

CAR Model

Estimate

Gold 

Standard
*

CAR Model

Estimate

Gold 

Standard
*

CAR Model

Estimate

Overall 10.1 (8.3-12.1) 10.8 (7.1-15.4) 12.8 (10.6-15.2) 12.5 (9.8-15.3) 9.1 (7.7-10.6) 9.2 (7.1-11.7) 9.2 (7.7-11) 11.8 (9.3-14.6)

Age Groups

18-44 3.9 (3.0-5.0) 4.1 (2.4-6.3) 4.8 (3.7-6.1) 4.4 (3.2-5.8) 3.8 (3.0-4.7) 3.9 (2.6-5.0) 3.9 (3.0-4.9) 5.0 (3.6-6.7)

45-64 13.7 (11.2-16.4) 14.7 (9.7-21.0) 15.7 (12.9-18.7) 15.5 (12.1-19.2) 14.1 (11.9-16.5) 13.8 (11.3-18.8) 13.8 (11.4-16.3) 17.5 (13.9-21.6)

65 and above16.7 (13.9-19.7) 17.8 (12-24.6) 21.4 (18.0-25.0) 21.0(16.9-25.5) 17.8 (15.2-20.5) 18.1 (14.0-22.1) 18.1 (15.3-21.2) 23.3 (18.8-28.2)

Gender

Male 10.5 (8.6-12.6) 11.4 (7.5-16.1) 13.9 (11.6-16.5) 13.5 (10.7-16.6) 9.4 (7.9-11.1) 9.7 (7.4-12.3) 9.7 (8-11.5) 12.5 (9.8-15.5)

Female 9.5 (7.7-11.4) 9.9 (6.4-14.3) 11.1 (9.1-13.3) 10.9 (8.5-13.6) 8.5 (7.1-10.0) 8.5 (6.5-10.9) 8.5 (7-10.1) 10.7 (8.3-13.3)

Race

White 10(8.2-12.0) 10.7 (7.0-15.3) 12.8 (10.6-15.2) 12.4 (9.8-15.3) 9.5 (8.0-11.1) 9.0 (7.2-12.0) 9.0 (7.5-10.7) 11.6 (9.1-14.4)

Black 10.6(8.6-12.7) 11.1 (7.4-15.8) 12.8 (10.5-15.4) 12.6 (9.9-15.8) 7.5 (6.1-9.1) 10.1 (6.3-11) 10.1 (8.2-12.1) 12.7 (9.9-15.9)

* Estimates calculated using the complete counties data give by Florida BRFSS and applying the Bayesian Hierarchical 

LibertyLafayetteGladesFranklin

Table 2-1 Estimates for missing counties with complete data vs BH Estimates 
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Prevalence of Diabetes 

Figure 2-2 Estimated Prevalence of Diabetes, Overall, Florida Counties using Bayesian 
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Figure 2-3 Estimated Prevalence of Diabetes, Aged 18-44, Florida Counties using Bayesian 
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Prevalence of Diabetes 

Figure 2-5 Estimated Prevalence of Diabetes, Aged 45-64, Florida Counties using Bayesian 
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Prevalence of Diabetes 

Figure 2-7 Estimated Prevalence of Diabetes, Aged 65 and above, Florida Counties using Bayesian 

Hierarchical Model 
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Prevalence of Diabetes 

Figure 2-8 Estimated Prevalence of Diabetes, Male, Florida Counties using Bayesian Hierarchical 

Model 



6 

 

 

 

 

 

 

 

 

 

 

 

Prevalence of Diabetes 

Figure 2-10 Estimated Prevalence of Diabetes, Female, Florida Counties using Bayesian Hierarchical Model 
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Prevalence of Diabetes 

Figure 2-12 Estimated Prevalence of Diabetes, White, Florida Counties using Bayesian 

Hierarchical Model 
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Figure 2-13 Estimated Prevalence of Diabetes, Black, Florida Counties using Bayesian 

Hierarchical Model 
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Table 2-2 Overall County Estimated Prevalence of Diabetes 

Alachua 7.8 (6.4 - 9.2) Lee 8.6 (6.9 - 10.4)

Baker 11.6 (9.8 - 13.6) Leon 8.5 (6.9 - 10.3)

Bay 8.8 (7.3 - 10.6) Levy 12.0 (10.2 - 13.9)

Bradford 12.4 (10.5 - 14.5) Liberty 11.8 (9.3 - 14.6)

Brevard 10.7 (9.0 - 12.6) Madison 12.4 (10.4 - 14.5)

Broward 7.1 (5.7 - 8.6) Manatee 10.8 (9.0 - 12.7)

Calhoun 12.1 (10.2 - 14.3) Marion 11.4 (9.7 - 13.2)

Charlotte 10.9 (9.0 - 12.9) Martin 7.8 (6.2 - 9.4)

Citrus 11 (9.1 - 13.1) Miami-Dade 7.8 (6.2 - 9.5)

Clay 8.7 (7.2 - 10.4) Monroe 6.2 (4.7 - 7.8)

Collier 7.6 (6.2 - 9.2) Nassau 8.1 (6.4 - 10)

Columbia 11.3 (9.6 - 13.2) Okaloosa 8.3 (6.5 - 10.3)

Desoto 11.4 (9.6 - 13.4) Okeechobee 9.9 (8.4 - 11.6)

Dixie 12.2 (10.0 - 14.6) Orange 8.2 (7.0 - 9.5)

Duval 9.5 (7.9 - 11.3) Osceola 8.7 (7.4 - 10.1)

Escambia 10.7 (8.7 - 13.0) Palm Beach 7.7 (6.3 - 9.3)

Flagler 10.2 (8.3 - 12.3) Pasco 9.2 (7.6 - 10.9)

Franklin 10.8 (7.1 - 15.4) Pinellas 10.0 (8.0 - 12.1)

Gadsden 12.9 (10.8 - 15.2) Polk 10.4 (8.9 - 11.9)

Gilchrist 10.0 (8.2 - 11.9) Putnam 13.5 (11.5 - 15.6)

Glades 12.5 (9.8 - 15.3) St. Johns 6.9 (5.5 - 8.4)

Gulf 10.5 (8.5 - 12.6) St. Lucie 11.1 (9.2 - 13.3)

Hamilton 13.0 (10.8 - 15.4) Santa Rosa 9.4 (7.5 - 11.5)

Hardee 12.8 (10.8 - 14.9) Sarasota 9.0 (7.3 - 10.8)

Hendry 9.7 (8.1 - 11.5) Seminole 9.6 (7.9 - 11.5)

Hernando 10.6 (8.7 - 12.8) Sumter 12.8 (10.7 - 15.0)

Highlands 13.0 (11.1 - 15.1) Suwannee 10.7 (8.8 - 12.7)

Hillsborough 9.4 (7.8 - 11.1) Taylor 11.9 (9.9 - 13.9)

Holmes 13.2 (11 - 15.5) Union 12.7 (10.6 - 14.9)

Indian River 10.8 (8.9 - 12.9) Volusia 11.5 (10 - 13.1)

Jackson 13.9 (11.8 - 16.1) Wakulla 9.2 (7.4 - 11.3)

Jefferson 12.6 (10.6 - 14.8) Walton 9.0 (7.4 - 10.8)

Lafayette 9.2 (7.1 - 11.7) Washington 12.0 (10.1 - 14.1)

Lake 10.5 (9.0 - 12.2)

OverallCounty

Name

Overall County

Name

 

Highlighted in yellow are county with missing data but estimates are calculated using CAR 

model.  
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Table 2-3 Estimated Diabetes Prevalence by Age Group, Florida Counties, 2010 

County 

Name 

Age Group 

18 - 44 45 - 64 ≥65 

Alachua 3.4 (2.6 - 4.3) 12.9 (10.6 - 15.3) 15.6 (13.0 - 18.3) 

Baker 4.4 (3.5 - 5.5) 16.5 (13.9 - 19.3) 23.6 (20.3 - 27.2) 

Bay 3.4 (2.6 - 4.2) 11.9 (9.8 - 14.3) 16.1 (13.4 - 19.0) 

Bradford 4.7 (3.7 - 6.0) 17.8 (15.0 - 20.9) 21.6 (18.5 - 25.0) 

Brevard 3.5 (2.7 - 4.4) 13.1 (10.9 - 15.6) 17.4 (14.7 - 20.3) 

Broward 2.4 (1.8 - 3.1) 9.8 (7.9 - 12.0) 13.1 (10.6 - 15.7) 

Calhoun 4.6 (3.5 - 5.8) 16.6 (13.9 - 19.6) 21.8 (18.6 - 25.3) 

Charlotte 3.1 (2.4 - 3.9) 11.0 (9.0 - 13.2) 15.4 (12.8 - 18.1) 

Citrus 3.2 (2.5 - 4.1) 11.7 (9.5 - 14.1) 15.6 (13.0 - 18.5) 

Clay 3.2 (2.5 - 4.1) 12.0 (9.9 - 14.4) 16.7 (14.0 - 19.7) 

Collier 2.4 (1.9 - 3.1) 9.0 (7.3 - 11.0) 11.6 (9.5 - 14.0) 

Columbia 4.1 (3.2 - 5.1) 15.5 (13.1 - 18.2) 19.3 (16.5 - 22.4) 

De Soto 4.2 (3.2 - 5.3) 16.3 (13.6 - 19.1) 19.4 (16.5 - 22.5) 

Dixie 4.0 (3.0 - 5.1) 15.4 (12.5 - 18.4) 20.0 (16.6 - 23.6) 

Duval 3.6 (2.8 - 4.6) 14.2 (11.7 - 16.8) 18.4 (15.5 - 21.6) 

Escambia 4.0 (3.0 - 5.2) 15.1 (12.2 - 18.3) 19.7 (16.2 - 23.5) 

Flagler 3.1 (2.3 - 4.0) 12.0 (9.7 - 14.5) 15.8 (13.0 - 18.9) 

Franklin 4.1 (2.4 - 6.3) 14.7 (9.7 - 21.0) 17.8 (12.0 - 24.6) 

Gadsden 4.7 (3.6 - 6.1) 18.5 (15.4 - 21.8) 21.2 (17.8 - 24.7) 

Gilchrist 3.6 (2.7 - 4.5) 12.8 (10.5 - 15.3) 18.1 (15.2 - 21.3) 

Glades 4.4 (3.2 - 5.8) 15.5 (12.1 - 19.2) 21.0 (16.9 - 25.5) 

Gulf 4.0 (3.0 - 5.2) 14.4 (11.6 - 17.4) 18.0 (14.8 - 21.5) 

Hamilton 4.8 (3.7 - 6.2) 19.2 (16.0 - 22.7) 24.2 (20.4 - 28.3) 

Hardee 5.2 (4.1 - 6.6) 18.7 (15.8 - 21.8) 24.3 (21.0 - 27.9) 

Hendry 3.9 (3.0 - 4.9) 14.6 (12.2 - 17.3) 19.5 (16.5 - 22.7) 

Hernando 3.5 (2.6 - 4.5) 12.0 (9.7 - 14.5) 16.4 (13.5 - 19.5) 

Highlands 3.8 (3.0 - 4.7) 14.3 (12.0 - 16.7) 18.8 (16.1 - 21.6) 

Hillsborough 3.7 (2.9 - 4.6) 13.8 (11.5 - 16.4) 18.1 (15.3 - 21.1) 

Holmes 4.7 (3.6 - 5.9) 17.7 (14.7 - 20.9) 22.4 (19.0 - 26.0) 

Indian River 3.4 (2.6 - 4.3) 12.2 (10.0 - 14.6) 16.2 (13.5 - 19.2) 

Jackson 5.4 (4.2 - 6.7) 19.4 (16.5 - 22.5) 23.4 (20.2 - 26.7) 

Jefferson 4.4 (3.4 - 5.5) 16.4 (13.7 - 19.3) 21.3 (18.0 - 24.7) 

Lafayette 3.6 (2.6 - 5.0) 14.8 (11.3 - 18.8) 17.9 (14.0 - 22.1) 

Lake 3.3 (2.6 - 4.1) 12.2 (10.3 - 14.3) 16.8 (14.4 - 19.4) 
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County 

Name 

Age Group 

18 - 44 45- 64 ≥65 

Lee 2.8 (2.1 - 3.6) 10.3 (8.2 - 12.6) 13.6 (11.1 - 16.4) 

Leon 4.1 (3.1 - 5.2) 14.1 (11.5 - 16.9) 17.5 (14.6 - 20.8) 

Levy 3.9 (3.1 - 4.9) 14.6 (12.3 - 17.0) 19.8 (17.0 - 22.8) 

Liberty 5.0 (3.6 - 6.7) 17.5 (13.9 - 21.6) 23.3 (18.8 - 28.2) 

Madison 4.4 (3.4 - 5.5) 17.6 (14.8 - 20.7) 20.3 (17.3 - 23.6) 

Manatee 3.7 (2.9 - 4.6) 12.5 (10.4 - 14.9) 17.2 (14.6 - 20.1) 

Marion 3.9 (3.1 - 4.8) 13.4 (11.3 - 15.6) 17.2 (14.8 - 19.7) 

Martin 2.3 (1.7 - 3.0) 8.5 (6.8 - 10.4) 11.8 (9.5 - 14.2) 

Miami-Dade 2.8 (2.1 - 3.6) 11.1 (8.9 - 13.7) 15.2 (12.3 - 18.3) 

Monroe 2.0 (1.5 - 2.7) 7.8 (5.9 - 9.9) 10.5 (8.1 - 13.1) 

Nassau 2.8 (2.0 - 3.6) 10.1 (7.9 - 12.5) 14.5 (11.6 - 17.7) 

Okaloosa 3.3 (2.5 - 4.4) 11.5 (9.0 - 14.3) 14.6 (11.6 - 17.8) 

Okeechobee 3.5 (2.8 - 4.4) 13 (10.9 - 15.2) 18.1 (15.4 - 20.8) 

Orange 3.4 (2.7 - 4.1) 12.9 (11.0 - 14.9) 17.5 (15.2 - 19.9) 

Osceola 3.4 (2.7 - 4.2) 12.7 (10.7 - 14.8) 17.4 (14.9 - 20.1) 

Palm Beach 2.5 (1.9 - 3.2) 9.7 (7.8 - 11.7) 12.6 (10.4 - 15.1) 

Pasco 2.9 (2.3 - 3.7) 11.2 (9.2 - 13.4) 15.6 (13.1 - 18.3) 

Pinellas 3.2 (2.4 - 4.2) 12.1 (9.6 - 14.7) 16.3 (13.3 - 19.6) 

Polk 3.8 (3.0 - 4.6) 13.4 (11.5 - 15.4) 17.9 (15.5 - 20.3) 

Putnam 4.4 (3.5 - 5.4) 17.0 (14.4 - 19.8) 22.0 (18.9 - 25.3) 

St. Johns 2.3 (1.7 - 3.0) 8.7 (6.9 - 10.7) 12.2 (9.8 - 14.8) 

St. Lucie 3.7 (2.8 - 4.7) 14.5 (11.9 - 17.4) 17.9 (14.9 - 21.1) 

Santa Rosa 3.4 (2.6 - 4.5) 13.0 (10.4 - 15.9) 17.0 (13.8 - 20.5) 

Sarasota 2.7 (2.0 - 3.4) 9.7 (7.9 - 11.8) 13.1 (10.7 - 15.6) 

Seminole 3.7 (2.8 - 4.7) 13.2 (10.8 - 15.9) 18.7 (15.7 - 22.1) 

Sumter 4.2 (3.2 - 5.4) 12.7 (10.5 - 15.0) 16.4 (13.8 - 19.2) 

Suwannee 3.5 (2.6 - 4.4) 13.5 (11.1 - 16.2) 18.0 (15.1 - 21.2) 

Taylor 4.2 (3.3 - 5.3) 16.7 (14.0 - 19.7) 20.0 (17.0 - 23.2) 

Union 4.7 (3.6 - 5.9) 19.2 (16.0 - 22.6) 22.7 (19.3 - 26.3) 

Volusia 4.0 (3.2 - 4.8) 13.7 (11.8 - 15.7) 19.2 (16.9 - 21.7) 

Wakulla 3.5 (2.6 - 4.6) 13.3 (10.7 - 16.3) 17.8 (14.5 - 21.3) 

Walton 3.2 (2.4 - 4.1) 11.6 (9.4 - 14.0) 16.1 (13.3 - 19.0) 

Washington 4.4 (3.4 - 5.5) 16.7 (14.0 - 19.6) 21.0 (17.9 - 24.3) 

 

Highlighted in yellow are county with missing data but estimates are calculated using CAR 

model.  
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Table 2-4 Estimated Diabetes Prevalence by Gender, Florida Counties, 2010 

Male Female Male Female

Alachua 8.5 (6.9 - 10.1) 7.1 (5.8 - 8.4) Lee 10.0 (8.1 - 12.2) 7.2 (5.7 - 8.8)

Baker 12.8 (10.8 - 15) 10.3 (8.6 - 12.1) Leon 9.2 (7.4 - 11.1) 7.9 (6.4 - 9.6)

Bay 9.7 (8.0 - 11.6) 8.0 (6.5 - 9.6) Levy 14.0 (12.0 - 16.3) 10 (8.5 - 11.8)

Bradford 13.1 (11.1 - 15.4) 11.3 (9.5 - 13.4) Liberty 12.5 (9.8 - 15.5) 10.7 (8.3 - 13.3)

Brevard 12.1 (10.2 - 14.3) 9.4 (7.8 - 11.1) Madison 13.2 (11.1 - 15.5) 11.5 (9.6 - 13.5)

Broward 8.0 (6.4 - 9.7) 6.3 (5.0 - 7.7) Manatee 12.1 (10.2 - 14.3) 9.6 (8 - 11.3)

Calhoun 13.3 (11.1 - 15.6) 10.7 (8.9 - 12.7) Marion 13.0 (11.1 - 15.0) 10.0 (8.4 - 11.6)

Charlotte 12.9 (10.7 - 15.3) 9.0 (7.4 - 10.7) Martin 8.9 (7.1 - 10.8) 6.7 (5.3 - 8.1)

Citrus 13.3 (10.9 - 15.7) 9 .0(7.3 - 10.8) Miami-Dade 8.7 (6.9 - 10.6) 7.0 (5.6 - 8.6)

Clay 9.8 (8.1 - 11.7) 7.7 (6.3 - 9.3) Monroe 7.2 (5.5 - 9.1) 5.0 (3.8 - 6.3)

Collier 8.8 (7.1 - 10.6) 6.6 (5.3 - 8.0) Nassau 9.1 (7.2 - 11.2) 7.2 (5.7 - 8.9)

Columbia 12.3 (10.4 - 14.4) 10.2 (8.6 - 12) Okaloosa 8.9 (7.0 - 11.1) 7.7 (6.0 - 9.6)

DeSoto 12.2 (10.2 - 14.4) 10.4 (8.7 - 12.3) Okeechobee 11.3 (9.5 - 13.2) 8.3 (7.0 - 9.8)

Dixie 13.8 (11.3 - 16.4) 10.4 (8.4 - 12.5) Orange 9.0 (7.7 - 10.4) 7.4 (6.3 - 8.6)

Duval 10.2 (8.4 - 12.1) 8.8 (7.3 - 10.5) Osceola 9.7 (8.2 - 11.3) 7.8 (6.5 - 9.1)

Escambia 11.5 (9.3 - 14.0) 10.0 (8.0 - 12.1) Palm Beach 8.8 (7.2 - 10.6) 6.7 (5.4 - 8.1)

Flagler 11.9 (9.7 - 14.3) 8.7 (7 - 10.5) Pasco 10.8 (8.9 - 12.7) 7.8 (6.4 - 9.3)

Franklin 11.4 (7.5 - 16.1) 9.9 (6.4 - 14.3) Pinellas 11.2 (9.0 - 13.6) 8.9 (7.1 - 10.9)

Gadsden 13.3 (11.0 - 15.7) 12.6 (10.5 - 14.9) Polk 11.7 (10.1 - 13.5) 9.1 (7.8 - 10.5)

Gilchrist 10.8 (8.9 - 12.9) 9.1 (7.5 - 10.9) Putnam 15.1 (12.8 - 17.5) 11.9 (10.1 - 14)

Glades 13.5 (10.7 - 16.6) 10.9 (8.5 - 13.6) St. Johns 8.0 (6.3 - 9.7) 5.9 (4.6 - 7.2)

Gulf 10.8 (8.7 - 13.1) 9.9 (8.0 - 12.0) St. Lucie 12.6 (10.5 - 15.1) 9.7 (7.9 - 11.6)

Hamilton 12.8 (10.6 - 15.3) 13.3 (11 - 15.8) Santa Rosa 10.5 (8.4 - 12.9) 8.2 (6.5 - 10.1)

Hardee 13.7 (11.6 - 16.1) 11.7 (9.8 - 13.7) Sarasota 10.5 (8.6 - 12.6) 7.7 (6.2 - 9.2)

Hendry 10.6 (8.9 - 12.6) 8.6 (7.1 - 10.2) Seminole 10.4 (8.6 - 12.5) 8.8 (7.2 - 10.6)

Hernando 12.4 (10.2 - 14.9) 9.0 (7.3 - 10.9) Sumter 14.8 (12.4 - 17.3) 10.6 (8.8 - 12.6)

Highlands 14.9 (12.7 - 17.3) 11.2 (9.4 - 13.1) Suwannee 12.0 (9.9 - 14.2) 9.3 (7.6 - 11.2)

Hillsborough 10.4 (8.6 - 12.3) 8.5 (7.0 - 10.1) Taylor 12.5 (10.5 - 14.8) 10.9 (9.1 - 13.0)

Holmes 14.5 (12.1 - 17.0) 11.7 (9.7 - 13.9) Union 13.4 (11.2 - 15.8) 11.1 (9.3 - 13.2)

IndianRiver 12.5 (10.4 - 14.9) 9.2 (7.6 - 11.1) Volusia 12.7 (11.1 - 14.5) 10.4 (9.0 - 11.9)

Jackson 14.4 (12.3 - 16.8) 13.2 (11.2 - 15.4) Wakulla 9.9 (7.9 - 12.0) 8.4 (6.7 - 10.4)

Jefferson 13.4 (11.3 - 15.8) 11.6 (9.7 - 13.8) Walton 10.2 (8.3 - 12.2) 7.8 (6.4 - 9.5)

Lafayette 9.7 (7.4 - 12.3) 8.5 (6.5 - 10.9) Washington 12.9 (10.9 - 15.2) 10.9 (9.1 - 12.9)

Lake 12.2 (10.4 - 14.2) 9.0 (7.6 - 10.5)

County

Name

Gender County

Name

Gender

Highlighted in yellow are county with missing data but estimates are calculated using CAR 

model.  
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 Table 2-5 Estimated Diabetes Prevalence by Race, Florida Counties, 2010 

White Black White Black

Alachua 7.1 (5.8 - 8.5) 10.4 (8.4 - 12.3) Lee 8.4 (6.8 - 10.3) 10.1 (8.1 - 12.3)

Baker 11.2 (9.4 - 13.1) 14.1 (11.8 - 16.6) Leon 7.7 (6.2 - 9.4) 10.3 (8.3 - 12.5)

Bay 8.7 (7.1 - 10.4) 10.4 (8.5 - 12.5) Levy 11.6 (9.9 - 13.5) 15.8 (13.4 - 18.4)

Bradford 12.1 (10.2 - 14.2) 13.5 (11.2 - 16.1) Liberty 11.6 (9.1 - 14.4) 12.7 (9.9 - 15.9)

Brevard 10.6 (8.9 - 12.5) 12.0 (10.0 - 14.2) Madison 11.3 (9.4 - 13.3) 14.2 (11.9 - 16.7)

Broward 6.6 (5.3 - 8.1) 8.3 (6.6 - 10.1) Manatee 10.7 (9.0 - 12.6) 11.6 (9.6 - 13.8)

Calhoun 11.9 (10.0 - 14.0) 13.4 (11.0 - 15.9) Marion 11.2 (9.6 - 13) 12.6 (10.6 - 14.7)

Charlotte 10.7 (8.9 - 12.7) 13.8 (11.4 - 16.4) Martin 7.7 (6.2 - 9.4) 8.5 (6.8 - 10.5)

Citrus 10.9 (9.0 - 13.0) 14.0 (11.5 - 16.7) Miami-Dade 7.2 (5.7 - 8.8) 10.4 (8.3 - 12.6)

Clay 8.6 (7.1 - 10.3) 9.8 (8.0 - 11.8) Monroe 6.1 (4.6 - 7.7) 7.7 (5.8 - 9.8)

Collier 7.6 (6.2 - 9.2) 8.1 (6.5 - 9.9) Nassau 8.0 (6.3 - 9.9) 10.1 (8.0 - 12.4)

Columbia 10.9 (9.2 - 12.8) 13.2 (11.0 - 15.5) Okaloosa 8.0 (6.3 - 10.0) 10.9 (8.6 - 13.6)

DeSoto 11.1 (9.3 - 13.1) 13.4 (11.2 - 15.8) Okeechobee 9.8 (8.3 - 11.5) 11.0 (9.1 - 13.0)

Dixie 12.3 (10.1 - 14.7) 11.5 (9.2 - 14.1) Orange 7.6 (6.5 - 8.8) 10.3 (8.8 - 12.0)

Duval 8.4 (6.9 - 10.1) 12.0 (9.9 - 14.3) Osceola 8.3 (7.0 - 9.7) 11.4 (9.6 - 13.4)

Escambia 9.8 (7.9 - 12.0) 14.0 (11.3 - 16.8) Palm Beach 7.4 (6.0 - 8.9) 9.2 (7.4 - 11.1)

Flagler 9.8 (8.0 - 11.9) 13.3 (10.8 - 16) Pasco 9.2 (7.6 - 10.9) 8.8 (7.2 - 10.6)

Franklin 10.7 (7.0 - 15.3) 11.1 (7.4 - 15.8) Pinellas 9.7 (7.8 - 11.8) 12.4 (10.0 - 15.1)

Gadsden 10.8 (8.9 - 12.9) 14.7 (12.2 - 17.3) Polk 10.0 (8.6 - 11.6) 12.2 (10.5 - 14.2)

Gilchrist 10.1 (8.4 - 12.1) 7.4 (6.0 - 9.1) Putnam 13.1 (11.1 - 15.3) 15.6 (13.2 - 18.1)

Glades 12.4 (9.8 - 15.3) 12.6 (9.9 - 15.8) St. Johns 6.7 (5.3 - 8.1) 10.5 (8.3 - 12.7)

Gulf 10.2 (8.2 - 12.3) 11.7 (9.3 - 14.3) St. Lucie 10.4 (8.6 - 12.5) 14.1 (11.6 - 16.8)

Hamilton 12.7 (10.5 - 15.1) 13.6 (11.2 - 16.2) Santa Rosa 9.2 (7.4 - 11.3) 11.8 (9.4 - 14.4)

Hardee 12.3 (10.4 - 14.4) 18.4 (15.7 - 21.3) Sarasota 8.9 (7.2 - 10.7) 11.5 (9.3 - 13.9)

Hendry 9.2 (7.6 - 10.9) 12.8 (10.7 - 15.2) Seminole 9.2 (7.6 - 11.1) 12.2 (10.0 - 14.6)

Hernando 10.5 (8.5 - 12.6) 13.7 (11.2 - 16.5) Sumter 12.7 (10.7 - 15) 13.2 (10.7 - 15.9)

Highlands 12.8 (10.9 - 14.9) 15.0 (12.7 - 17.5) Suwannee 10.6 (8.7 - 12.6) 11.5 (9.5 - 13.7)

Hillsborough 8.8 (7.3 - 10.5) 12.0 (9.9 - 14.2) Taylor 11.3 (9.4 - 13.4) 13.9 (11.5 - 16.4)

Holmes 13.1 (10.9 - 15.4) 14.6 (11.9 - 17.6) Union 12.1 (10.0 - 14.3) 14.4 (11.9 - 17.2)

IndianRiver 10.6 (8.8 - 12.6) 13.1 (10.8 - 15.6) Volusia 11.4 (10.0 - 13) 12.2 (10.5 - 14.1)

Jackson 12.8 (10.8 - 14.9) 16.7 (14.2 - 19.5) Wakulla 8.9 (7.1 - 10.9) 10.9 (8.7 - 13.4)

Jefferson 11.4 (9.5 - 13.5) 14.8 (12.4 - 17.4) Walton 8.9 (7.3 - 10.7) 11.0 (8.9 - 13.2)

Lafayette 9.4 (7.2 - 12.0) 8.5 (6.3 - 11.0) Washington 11.8 (9.9 - 13.9) 13.4 (11.1 - 15.8)

Lake 10.5 (8.9 - 12.2) 11.1 (9.4 - 13.0)

County

Name

Race County

Name

Race

Highlighted in yellow are county with missing data but estimates are calculated using CAR 

model.  
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Figure 2-14 Scatterplot of Bayesian CAR model Estimates versus Division of Diabetes Bayesian 

model Estimates 

 

Table 2-6 Discrepancy Statistics Comparing Overall County Estimate 

Discrepancy Statistics CAR vs Direct CAR vs DDT 

Pearson Correlation Coefficient* 0.56704 0.88305 

Spearman correlation coefficient* 0.60587 0.89347 

MSE 0.00115 0.00022 

MAD 0.00026 0.00013 

MRAD 0.00002 0.00001 

Rank Statistics -0.02500 -0.00780 
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* Correlation ~1 indicates no discrepancy and MSE, MAD, MRAD and Rank statistics~0 no or 

little [[17]   discrepancy in the two estimates. 

Table 2-7 WINBUGS estimate for the coefficients used in the model 

Coefficient  Mean  STDERR  MC error 2.50% Median 97.50% 

beta1 -2.66 0.1503 0.005338 -2.952 -2.662 -2.368 

beta2 1.494 0.1274 0.004269 1.246 1.494 1.746 

beta3 1.779 0.1304 0.004393 1.524 1.779 2.036 

beta4 -0.3373 0.1406 0.003398 -0.6121 -0.3363 -0.06312 

beta5 -0.3353 0.1309 0.004615 -0.5871 -0.3362 -0.07391 

beta6 0.3665 0.1328 0.002958 0.1084 0.3662 0.627 

beta7 0.4783 0.1307 0.002907 0.2239 0.4779 0.7337 

beta8 -0.3448 0.1416 0.004816 -0.6299 -0.344 -0.06813 

beta9 -0.2638 0.1432 0.004958 -0.5496 -0.2627 0.01517 

beta10 0.364 0.08772 0.001372 0.1929 0.3637 0.5367 

beta11 -0.1904 0.03895 1.82E-04 -0.2676 -0.1903 -0.1148 

beta12 -0.2761 0.05348 2.49E-04 -0.3817 -0.2758 -0.1722 

beta13 -0.5997 0.05542 2.52E-04 -0.7084 -0.5996 -0.4912 

beta14 -0.2715 0.0505 5.56E-04 -0.3701 -0.2714 -0.172 

beta15 -0.2354 0.05324 5.96E-04 -0.3397 -0.2356 -0.1307 

beta16 -0.4327 0.05764 6.33E-04 -0.5448 -0.4329 -0.3192 

beta17 0.01895 0.005564 1.34E-04 0.008087 0.019 0.02995 

 

Table 2-8 Selecting model where the regression coefficient doesn’t depend on the counties 

based on the DIC [14]criteria 

A model where the regression coefficient doesn’t depend on the counties 

Dc = post. Mean of -2logL; Dd = -2LogL at post. Mean of stochastic nodes 

  Dc Dd pD DIC 

Diabetes 13469.8 13413.8 56.002 13525.8 

     

County varying coefficients with Conditional Auto Regressive(CAR) Model   

Dc = post.mean of -2logL; Dd = -2LogL at post.mean of stochastic nodes 

  Dc Dd pD DIC 

Diabetes 13280 12871.6 408.374 13688.3 

     

County varying coefficients without spatial correlation Conditional Auto Regressive(CAR) Model 

Dc = post.mean of -2logL; Dd = -2LogL at post.mean of stochastic nodes 

  Dc Dd pD DIC 

Diabetes 13280.1 12871.8 408.389 13688.5 
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3 ESTIMATING COUNTY-LEVEL DIABETES PREVALENCE FOR DIABETES BELT USING 

BAYESIAN HIERARCHICAL MODE 

3.1 Introduction 

In this chapter we focused on the diabetes belt identified by CDC scientist [2]. 

According the CDC scientists the diabetes belt which comprised of 644 counties is 

mostly located in the southern part of U.S. This finding indicates that people who live in 

this area are more likely to have diabetes than in any other part of the country. In 

addition to this the risk factor associated with diabetes such as obesity and physical 

inactivity are also highly prevalent in the belt areas than in other parts of the U.S.  

There is, though, a variation among different counties due to external factors 

such as poverty, education, income and culture. In this chapter we discussed the effect 

of such factors on diabetes.   

One of the challenges in effectively addressing this epidemic disease as discussed 

in chapter 2 lies on providing reliable local level estimates. Sample surveys that 

currently available, such as BRFSS (Behavioral Risk Factor Surveillance System), NHIS 

(National Health Interview Survey), and others are conducted throughout the year and 

are costly. For this and other reasons the surveys fail to cover all areas.  The direct 

estimates from these national surveys generate imprecise estimates since 1) the survey 

for that particular local area(in our case county) may have smaller sample size 2) the 

local area in question may not be covered by the survey due to lack of budget. Deriving 

estimates based on this will lead to unreliable estimates. 
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Armed with good reliable estimates at local level, decision makers will have the 

ability to implement appropriate policies and allocate funds to address the burden 

caused by diabetes in these localities.  

In this chapter we applied Bayesian Hierarchical models to produce better local 

area estimates on CDC diabetes belts. Even if we focused on the Diabetes belts, our 

model generates estimates for all other counties which are not in the Diabetes belts. We 

therefore included all counties that are located in the 16 states except those counties 

who had no information at all. 

 

3.2 Methods 

We used the 2010 BRFSS survey and 2000 US census. BRFSS as mentioned earlier 

is a national telephone survey which collects health related data in all 50 states, District 

of Columbia and the territories. The survey includes demographics and socioeconomic 

information about survey respondents. It completes more than 400,000 adult (aged 18 

years and above) interviews each year throughout the US. 

Among 1,497 counties in 16 states that are covered in this study, 314 of the 

counties have no data or were not covered by 2010 BRFSS survey. As a result, public 

health policy makers and other decision makers face difficulty in addressing the diabetes 

burden in such counties. In addition to those uncovered counties, there are also 

counties with small sample size. 

To fill this gap in information, we applied a small area estimation method 

discussed in Rao, 2003 that addresses issues of estimating a target value in small area 
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set. The method not only is capable of estimating for small area (such as counties in our 

case) but also for small areas that are not covered by the survey. 

We built Bayesian Hierarchical model which gives us a more reliable estimates 

for prevalence of diabetes for all counties regardless of small sample size or for those 

uncovered in the survey.  

A Bayesian Hierarchical model is a statistical model which applies a Bayesian 

method for data that are structured in many level of unites (hierarchical), in our case 

age, sex, race, education, income and insurance. 

We estimated the prevalence of diagnosed diabetes for counties located in the 

Diabetes belt (644 counties) plus for all counties that are found in the 16 states (these 

states includes the 644 counties mentioned above). The SAS procedure “PROC 

GENMODE” and “PROC FREQ” were used to prepare the data and to get initial values for 

covariates (β) and to prepare adjacent counties for CAR model. 

The 2010 BRFSS data was aggregated by age, sex, race, education, income and 

insurance making the analysis take less time than using individual level data. Using 

aggregated data, the analysis made on 16 states with 1,188 counties (this includes 644 

counties found in the belt) took 17 hours of computational time while the individual 

level data took more than 2 days. 

We considered a range of Bayesian Hierarchical models in our analysis. These 

models have a spatial and non-spatial mixed effect model (Rao, 2003 [6]). These models 

are discussed in detail in the next section. 
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Variables of Interest2 

We used all variables that are listed in Chapter 2 and we also include 

A. Insurance: Based on the BRFSS question, “Do you have any kind of health care 

coverage, including health insurance, prepaid plans such as HMOs, or government 

plans such as Medicare?”, we created two categories 

1) Yes 

2) No 

B. County Poverty: The US census bureau use a set of income thresholds based on the 

family size to determine if a person is below the federal poverty level. If a family’s 

total income is below the respective threshold, then the whole family is considered 

in the state of poverty (US Census Bureau). We made use of this measurement of 

poverty in our analysis. 

3.3 Analysis 

We used Bayesian Hierarchical small area estimation method to estimate the 

prevalence of diabetes for counties which are found in the Diabetes belt (in the16 

states) using the 2010 BRFSS survey data and the U.S. census.  

In the 16 states, 644 counties are located in the diabetes belt (CDC Identifies 

Diabetes Belt [2]).  However, if a state has at least one county in the diabetes belt, we 

included all the other counties in our analysis. For this reason we have included a total 

of 1,497 counties in our study. Among these, 1,188 counties were covered in the BRFSS 

2010 survey based on our aggregate data while the rest were not - not only in 2010 

survey but also surveys from 2000 to 2010.   
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The prevalence of diagnosed diabetes then estimated for counties that are 

located in the 644 counties and counties in all 16 states.  These states are Alabama, 

Arkansas, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, North Carolina, 

Ohio, Pennsylvania, South Carolina, Tennessee, Texas, Virginia and West Virginia. 

The SAS 9.3 procedure called “PROC GENMODE” and “PROC FREQ” were used to 

prepare the data for WINBUGS 14.1 and get the covariates initial values as well as to 

format the adjacent (neighbor) counties need for CAR model to be used in the 

WINBUGS.  

The 2010 BRFSS data was aggregated according to the respondent age, sex, race, 

education level, house hold income and insurance status. In doing so, we reduced the 

computational time very much, i.e. while it takes almost more than 48 hours to run all 

16 states at individual level, it took us only 17 hours for aggregated data. By aggregating 

we mean we used 3 age groups (aged 18-44, 45-64 and 65+), sex(male and female), 

race(White and Black), education level( Below high School, High School graduate, some 

college and 1st degree and graduate degree and above), income(<15k, [15k,25k),[25k, 

50k), [50k, 75k) and 75k and above) and insurance(having insurance, yes or no). 

We applied a small area estimation discussed in Rao, 2003[6] that addresses 

issues of estimating a target value in a small area set. The method not only is capable of 

estimating for small area (such as counties in our case) but also for small areas that are 

not covered by the survey. 

We considered a range of Bayesian Hierarchical (BH) models in our analysis (Table 3-1). 

These models have a spatial and non-spatial mixed effect model (Rao, 2003 [6]). Estimating the 
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prevalence of diagnosed diabetes for small area, such as counties in our case, using BH small 

area spatial modeling produce a reliable estimates of the disease. The model are discussed in 

the detail in the next section. 

3.4  Models 

Dealing with binary outcome from the BRFSS survey for the question “Have you ever told by 

health professional that you have diabetes?” Yes/No, our model can be represented as: 

 ef ∖ hf, if~jklmnkop hf, if", 3.1 

where ef	(i=1,2,…,74,192) is the number of individuals who respond “Yes” in given ith group 

 hf is the total number of individuals in ith group 

 if  is the probability that an individual in the ith group responds “yes”, where ith group is 

the aggregate individual class from all counties in the study (refer in chapter 2 for aggregated 

group). We applied the canonical link function for Generalized Linear Model (GLM) for Binomial 

distribution [19] to link θ and predictors. We consider a group of models (Table 3-1) which have 

general form as shown below,  

 pogit θ." = β>; .",! + X.,qr
� β>; .",qr + X.,q1

� βq1 + b:; ." + (st f" 3.2 

where i=1,2, …, N(groups), 

st(i) indicates the state individuals in the ith group come from, 

ct(i) indicates the county individuals in the ith group come from (1,497 counties), 

 v1 is the set of indices for variables whose coefficients are the same across states,  and 

  v2 is the set of indices for variables whose coefficients are state-varying, 

b:; ." and b>; ." represent the county-level and state-level spatial effects, respectively. 

For state varying coefficients, we assume the below prior for the hyper-parameters 
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ust,v~hmwnop xyvz , {v z"�|,  for jϵѵ2 . 

yvz , ~hmwnop 0.0,0.001" 

{v z"�~}onno 0.5,0.5"	 and for coefficients that are the same across states, we assume 

 uv~hmwnop
0.0, 	0.001�, for jϵѵ1.  

  bct, which captures the random effect due to spatial variation, has a CAR(Conditional 

Autoregressive) model where the prevalence of diabetes in a given county depends on the 

prevalence of neighboring counties [19]. The bc can be represented as  

(� (��⁄ , ���~hmwnop
(�c , ��� 

where (�c = ∑ ������
∑ ���� , 	�� = 0�1

∑ ���� , 	��v = G1		k�	�	ol�	� are neighbors

0																								m�ℎ�w	�k��	  
The variability among adjacent counties is controlled by ���. For all models in our analysis we 

used the following prior distribution for our coefficients of covariates and hyper parameters as 

indicated below: 

���~}onno 0.5,0.5" and the precision takes the inverse of ���, i.e. {� = 1 ����  (Bernardinelli et 

al, 1995b) where c=1,2,…, 1188( counties) 

The state-level spatial effect is modeled similarly. 

We explored a set of models and summarize them in Table 3-1. Our most complicated model 

assume all slope coefficients are state-varying:  

 pm�k�
ifv� = �usv�fv)�
��

v2!
+ u��f�f + (� f" 3.3 

This model is computational expensive. We consider the following 3 models with the smallest 

DIC: 
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1. Binomial Regression Model with ѵ� = β! Intercept"	and	β�� insurance"	 and bct 

county level CAR model with DIC =85,350.8(Model 8) 

In this model all coefficients of covariates, except intercept and insurance, are the same 

across the state. 

2. Binomial Regression Model with ѵ� = 0,1,2, , … ,9	ol�	16		 and bct (county) CAR county 

level CAR model with DIC =85,315.4 (Model 9)  

Here ѵ� is the intercept, age, sex, race and their interaction and ѵ� is income, education 

level and poverty 

3. Binomial Regression Model with ѵ�=0,1,2,3,5,…,8 and 16   and bct county level CAR 

model with DIC =85,308.5 (Model 9_1) 

For model 9_1 the ѵ� is the intercept, age, sex and their interaction and insurance 

where as ѵ� is the race, income and education and poverty  

The 3 models selected have very close DIC and produce similar prevalence of diabetes 

that can be seen in the scatter plot in Figure 3-1 but we picked Model 8 among the three model 

since  

a) model 8 has smallest DIC like the other three(see Table 3-1) 

b) The credible interval width among the three model is very similar (see Table 3-6 and Table 3-7 ) 

show the credible interval width validation check for Maryland and South Carolina and all other 

states followed similar conclusion. 

c) Model 8 is the simplest model of the three for this reason we selected Model 8 as our final 

model. 
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 We fitted all models discussed above using the BRFSS survey data in WinBUGS (14.1) 

software. A single chain with 52,000 iteration and 2000 burn-in was applied to all three models. 

For this reason (the 200 burn-in or discarded) iteration, we finally used the 50000 iteration for 

analysis. 

 

Table 3-1 Investigated Models 

Model  ¡¢   ¡£  

CAR 

County State DIC 

1  ¤ −  �� No Yes No 85,354.1 

2  ¤	  ¢ −	 �� No No 85,574.1 

3  ¤	  ¢ −	 �� No Yes 85,574.5 

4  ¤	  ¢ −	 �� Yes No 85,419.0 

5  ¤	  ¢ −	 �� Yes Yes 85,430.6 

6 No  ¤ −	 �� No No 85,598.6 

7 No  ¤ −	 �� Yes No 85,424.5 

8  ¤	ol�	 ¢¥	  ¢ −	 �¦		 Yes No 85,350.8 

9  ¤	ol�	 ¢¥	  ¢ −	 �¦		 Yes Yes 85,362.0 

10  ¤	ol�	 ¢§ −	 ¢¥	  ¢ −	 ��,  ¢¨,  ¢©	ol� ¢ª Yes Yes 85,365.8 

11  ¤ −  «	ol�	 ¢¥  ¢¤ −  ¢©	ol�	 ¢ª Yes No 85,315.4 

12  ¤ −  §,  © −  ¬	ol�	 ¢ª  ¨	ol�	 « −	 ¢¥ Yes No 85,308.5 

13  ¤ −  ¨	ol�	 ¢¥  © −  ¢©	ol�	 ¢ª Yes No 85,455.1 

 ¤ Overall effects across the states 

 ¢ Aged 45-64 

 £ Aged 65 and above 

 § Male 

 ¨ White 

 © Male Aged 45-64 

 ¥ Male Aged 65 and above 

 ª White Aged 45-64 

 ¬ White Aged 65 and above 

 « White Male 

 ¢¤ Income2=[$35,000,$50,0000) 

 ¢¢ Income3=[$50,000,$75,0000) 

 ¢£ Income4=$75,000 and above 

 ¢§ Education2= Grade 12 or GED (High school graduate) 
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 ¢¨ Education3= College 1 year to 3 years (Some college or technical school) 

 ¢© Education4= College 4 years or more (College graduate) 

 ¢¥ Insurance=No Insurance 

 ¢ª State Poverty percentage 
Aged 18-44, Female, Black, Inceome1=<35,000, Education1=< High School and Insurance=Yes are reference groups. 

Highlighted in yellow are models selected for analysis due to low DIC 

 

 

 

 

3.5 Handling Counties with Missing Data 

The BRFSS survey may not cover all counties every year but the state may do additional 

survey to cover all counties in their state, even this may not be conducted every year. But by 

applying the CAR model we can overcome this problem and get estimates of missing counties 

by borrowing information from neighboring counties. For instance, the 2010 BRFSS public 

Figure 3-1 Scatter Plot Matrix with Histogram and Normal Fitting Curves, All counties 
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survey data which can be downloaded from BRFSS website had 305 counties not covered in the 

survey. For those counties with missing or uncovered in the survey, we used the BH model with 

the CAR model to estimate their prevalence of diabetes as follows: 

Based on the BH model with the CAR model, the spatial effect for the mth missing or uncovered 

county (m=1, 2, …, 295) has a normal distribution with mean 

b&Y = ∑ bY	6.2� and he precision vY = �
 ^∗6"_.a	  

where v is the precision parameter in the CAR model, and n is the number of neighbor counties 

for the mth missing county. With the MCMC samples of bk from the simulation, we also get 

samples of bm for the mth missing counties using b ̅_m~Normal(b_m  ,v_m ). 

Using the simulated samples for bm and and β = (β1, β2… β17), we can simulate the posterior 

distribution for the prevalence of diabetes for the missing counties in the same way as we do 

for the other 1188 counties without missing information, and hence estimate its posterior 

mean and credible interval. 

We used the WinBugs software[13] to fit these models. The model was run for 52,000 

iterations with single chain but the first 2,000 samples were used as a burn-in (discarded) which 

implies that the rest 50,000 samples were used to make inference. We chose the model that 

has the same coefficients across counties and the CAR model, which has the smallest Deviance 

information criterion (DIC [14]. 

With the MCMC samples of parameters in this model, we can infer the posterior distribution of 

the overall prevalence rate for each counties in the following way; similarly we can get the 

prevalence rate by race or sex for each counties. 
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Plugging in the sampled values of β and bk, and specifying the values of x, we can get the 

prevalence rate of diabetes in a group of a county. 

Plugging in the sampled values of β and bk, and specifying the values of x, we can get the 

prevalence. 

 Let 

( )ˆ i

jkθ
denote the ith sample of jkθ

, the prevalence rate of diabetes in the j-th group of the k-th 

county, from the MCMC procedure (i=1… 17, j=1 … 384 and k=1… 1188), the corresponding 

overall prevalence rate of the k-th county is estimated by  

192
( )

1

ˆ i

jk jk

j

pθ

=

∑          (1) 

where 
jkp represents the proportion of individuals belonging to the jth group in county k, which 

is obtained from3∑ i­v) f"®v)¯°±v2� ²  (i=1,2,…) simulate the posterior distribution of the overall 

prevalence rate of county k. 3�³ ∑ ∑ i­v) f"®v)¯°±v2�³f2� ², the mean of 3∑ i­v) f"®v)¯°±v2� ²(i=1,2,…), 

estimates the posterior mean of the  overall prevalence rate of county k. The 2.5th and 97.5th 

percentiles of 3∑ i­v) f"®v)¯°±v2� ² (i=1, 2…) form the 95% credible interval for the overall prevalence 

rate of county k. Similarly we can simulate the posterior distribution of the prevalence rate by 

race, or by sex, for each county, and then get the posterior mean and 95% credible intervals. 

The results are shown in Table 3-2 and Figures 3-4. 

For Chapter 2 we validate our estimates by comparing with estimates from National Center for 

Chronic Prevention and Health Promotion[15] and Florida Health Department estimates13 using 

Pearson and Spearman Correlation coefficients, Mean Square Error (MSE), Mean Absolute 

difference (MAD), Mean Relative absolute differences (MRAD), and Rank statistic[17](See Table 
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2-6). For chapter 3 we compared our 3 models for validation purpose and detail discussion in 

the next sections. 

 

3.6 Result 

According to CDC scientist, the diabetes belt has 644 counties located in the 16 south-

Easter part of the U.S. This means 43% of the counties in this sixteen states are located in the 

diabetes belt. Georgia with 17% followed by Tennessee (14%), Mississippi (13%), Kentucky 

(11%) and Alabama (10%) are the first 5 states with higher number of counties where as 

Maryland and Pennsylvania with least number of county (1 each) in the diabetes belt. We 

highlight these states in our result discussion. 

143 counties which were included in the belt didn’t have information when we 

aggregated the 210 BRFSS survey, in addition to this, the 5 states listed above had only 105 

counties with reliable sample size for direct estimate leaving 300 counties without estimates 

based on direct estimate (see Table 3-5) but the BH model with spatial effect helped us to have 

reliable estimates for these counties. By using the CAR model and adding a very small fraction 

in population proportion, we calculated an estimates for 1,479 counties located in the 16 states 

but 18 counties found in Kentucky, Pennsylvania, Tennessee, Texas, Virginia and West Virginia 

either they didn’t have information or have neighboring counties not included in study. 

The prevalence of diagnosed diabetes in these 1,479 counties ranges from 4.9% (Jackson 

county in Tennessee) to 20% (Green county in Alabama) (see the Table 3-1 and  
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Figure 3-1). 98% of the counties found in these states had an estimated prevalence of 

diagnosed diabetes higher than the nation average (6.9%) and most of these counties with 

higher prevalence the national estimate were located in the diabetes belt.  

  The male prevalence ranges from 4.6% (Arlington, Virginia) to 20.7% (Briscoe, Texas) 

and the female prevalence ranges 4.1% (Arlington, Virginia) to 22.1% (Green, Alabama). 

In 1,176 counties, the prevalence of diabetes for male was higher than. 

Georgia added 111 (out of 159 total counties) in the diabetes belt and was the highest states 

but Alabama with 65 out of 67 counties was the highest state where almost all counties were 

included in the belt. Below we discussed these three counties in detail. 

 

Alabama 

Alabama had 65 out of 67 counties located in the diabetes belt which shows how the burden of 

this diseases affecting the state. 6 of the counties didn’t have aggregated information in the 

2010 BRFSS but our model took care of these counties which discussed in detail in our 

discussion part. Based on our model estimate, the prevalence of diagnosed diabetes in Alabama 

ranged from 7.9% in Shelby to 20% in Green counties. The prevalence of men (8.4%-17.5%) was 

higher than the female (7.4%-18.15). This variation occurred in 68% (46 out of 67 counties) of 

the counties. The race disparities also noticed in the prevalence, Blacks (8.4%-21.2%) with 

higher prevalence than the white (7.7%-16.1%) in almost all counties. The socioeconomic 

factors such as income, education attainment and poverty level indicted this disparities in those  
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counties with higher prevalence of diagnosed diabetes. Most of these counties with higher 

prevalence also had high percentage poverty compared to those counties with lower 

prevalence of diabetes. Figure 3-1 shows the scatter plot of prevalence of diagnosed diabetes 

for selected counties of Alabama. 

Figure 3-2 Alabama Scatter Plot of Mean with Credible Interval 
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Georgia 

Georgia which hads111 counties in the diabetes belt had prevalence ranging from 6.9% 

(Gwinnett) to 16.8% (Clay). Compared to the national average (6.9%), all Georgian counties, 

except Gwinnett which is border, had higher prevalence of diagnosed diabetes in 2010. In 

Georgia and most of the other 15 states, counties not labeled as diabetes belt, had higher 

prevalence than the national average which indicates the level of the burden in the south- 

eastern part of the U.S. When we looked the gender gap again, the prevalence of male (ranged 

6.3% -16.3) higher than the female (7.1% – 18.6%) in most of the Georgia counties. The 

prevalence for Blacks ranged from 8.1% (Gwinnett) to 18.9(Jeff Davis) while for whites ranged  

5.9% (Fulton) to 16.3(Miller). Again in almost all counties Blacks had higher prevalence than 

Whites. 
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Tennessee    

This state had the 3rd highest number of counties (89 out of 95) in the diabetes belt. In 2010, 

this state had prevalence ranging from 6.3% (Williamson) to 14.4% (Pickett). Like the other 

counties in neighboring states, the prevalence was higher than the nation average for counties 

that were not part of the diabetes belt. Tennessee followed similar trend with Georgia in having 

counties with higher prevalence in Men than Female and in Blacks than Whites.  

  

For instance if we take Alabama, among the 67 counties that we estimated, 61 counties had 

higher prevalence of diagnosed diabetes than the national average(6.9%) ranging from 9.4% to 

15.5% and Georgia had 106 counties (among 158 counties we estimated) had higher estimates 

ranging from 9.4% to 16.2%. Florida, based on the diabetes belt estimate, had 57 out of 67 

Figure 3-3 Georgia Scatter Plot of Mean (<10) and Mean (>13) with Credible Interval 
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counties with higher estimates than the national. Most of these counties located in the diabetic 

belt and had higher percentage poverty compared to those counties with lower prevalence of 

diabetes. This was also clearly indicated by the house hold income, where those counties with 

low house hold income resides in those counties with high estimated prevalence of diabetes. In 

all counties under this study, blacks had higher estimated prevalence of diabetes than white (fig 

3-2 below). 

 

The prevalence of estimated diabetes was higher among men than women in 1,045 counties 

ranging from 3.4% - 18.5% in men and 2.2% - 18.4% in women. In almost all counties, the Blacks 

had the higher prevalence than whites. 

 

Clayton County in Georgia has the lowest prevalence by sex, Men (3.4%) and Women (2.2%), 

while Marion County in Arkansas and Boyd County in Kentucky had the highest male (18.5%) 

prevalence. The estimated prevalence of diabetes tended to increase with age.  

For counties with missing data in the 2010 public BRFSS data, as it discussed in the method 

section we used CAR model which helped us to borrow information from the surrounding 

counties. In Chapter 2 we checked our findings with the Division Diabetes and Translation (DDT) 

estimates and by running Bayesian hierarchical model for the complete data we got from the 

Florida BRFSS. For your information, some state may do complete survey but the survey may 

not be done every year. Our CAR model can estimate for every year regardless of the survey 

cover all counties or not. 
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Figure 3-4 Estimated Prevalence of Diagnosed Diabetes, Overall, for counties in Diabetes Belt 
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Figure 3-5 Estimated Prevalence of Diagnosed Diabetes, Male, for counties in Diabetes Belt 

 

 



36 

 

 

 

 

 

 

 

Figure 3-6 Estimated Prevalence of Diagnosed Diabetes, Female, for counties in Diabetes Belt 
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Figure 3-7 Estimated Prevalence of Diagnosed Diabetes, White, for counties in Diabetes Belt 
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Figure 3-8 Estimated Prevalence of Diagnosed Diabetes, Black, for counties in Diabetes Belt 
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Figure 3-9 Estimated Prevalence of Diagnosed Diabetes, Aged 18-44, for counties in Diabetes 

Belt 
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Figure 3-10 Estimated Prevalence of Diagnosed Diabetes, Aged 45-64, for counties in Diabetes 

Belt 
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Figure 3-11 Estimated Prevalence of Diagnosed Diabetes, Aged 65 and above, for counties in 

Diabetes Belt 
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Table 3-2 Overall County Estimated Prevalence of Diabetes 

 

State 

Name 

County 

Name 
Overall 

State 

Name 

County 

Name 
Overall 

Alabama Autauga 10.3(8.3,12.5) North Carolina Stokes 10.4(8.7,12.4) 

Alabama Baldwin 11.3(9.7,12.9) North Carolina Surry 10.1(8.5,11.9) 

Alabama Barbour 12(9.8,14.5) North Carolina Swain 11.9(10,14) 

Alabama Bibb 10.5(8.7,12.5) North Carolina Transylvania 9.8(8.2,11.5) 

Alabama Blount 9.6(8.1,11.2) North Carolina Tyrrell 12.4(11,13.7) 

Alabama Bullock 14.3(11.7,17.2) North Carolina Union 8.3(7.1,9.6) 

Alabama Butler 13.3(10.9,15.9) North Carolina Vance 11.4(9.2,13.9) 

Alabama Calhoun 10.8(9.2,12.5) North Carolina Wake 6.5(5.7,7.5) 

Alabama Chambers 12(9.9,14.3) North Carolina Warren 13.7(11.5,16.2) 

Alabama Cherokee 10.1(8.5,12) North Carolina Washington 16(12.3,20.3) 

Alabama Chilton 10.5(8.6,12.6) North Carolina Watauga 9.3(7.6,11.2) 

Alabama Choctaw 13(11.1,15.1) North Carolina Wayne 10.4(8.9,11.9) 

Alabama Clarke 12.2(10.2,14.3) North Carolina Wilkes 11.6(9.9,13.5) 

Alabama Clay 11.5(9.3,14) North Carolina Wilson 11.5(9.6,13.5) 

Alabama Cleburne 12.3(10.4,14.3) North Carolina Yadkin 10.1(8.3,12) 

Alabama Coffee 11.1(9.2,13.2) North Carolina Yancey 12.2(9.9,14.7) 

Alabama Colbert 10.3(8.5,12.4) Ohio Adams 10.6(8.6,12.8) 

Alabama Conecuh 14.3(11.7,17.1) Ohio Allen 9.8(7.9,11.8) 

Alabama Coosa 15.8(13.3,18.6) Ohio Ashland 10.1(8.4,11.9) 

Alabama Covington 11.4(9.7,13.2) Ohio Ashtabula 10(8.2,12.1) 
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Alabama Crenshaw 12.4(10.3,14.8) Ohio Athens 8.6(7.1,10.2) 

Alabama Cullman 10.3(8.6,12.1) Ohio Auglaize 9.6(7.9,11.5) 

Alabama Dale 10.6(8.7,12.6) Ohio Belmont 11.4(9.5,13.4) 

Alabama Dallas 13.1(10.8,15.5) Ohio Brown 11.2(9.1,13.5) 

Alabama DeKalb 9.8(8.2,11.6) Ohio Butler 9.8(8.1,11.8) 

Alabama Elmore 10.1(8.3,12.1) Ohio Carroll 12.6(10.4,15.1) 

Alabama Escambia 11.9(10.2,13.6) Ohio Champaign 10.5(8.7,12.6) 

Alabama Etowah 11.2(9.5,13) Ohio Clark 11.2(9.3,13.4) 

Alabama Fayette 11.9(9.9,14.1) Ohio Clermont 8.7(7.1,10.4) 

Alabama Franklin 10.5(8.7,12.5) Ohio Clinton 9.1(7.5,10.9) 

Alabama Geneva 12.7(10.8,14.9) Ohio Columbiana 11.9(10.1,14) 

Alabama Greene 20(16.6,23.7) Ohio Coshocton 11.1(9.2,13.1) 

Alabama Hale 12.4(10,15.1) Ohio Crawford 11.5(9.5,13.8) 

Alabama Henry 13.5(10.6,16.7) Ohio Cuyahoga 10(8.8,11.3) 

Alabama Houston 11(9.1,13) Ohio Darke 11.1(9.2,13.3) 

Alabama Jackson 10.6(8.8,12.6) Ohio Defiance 9.6(7.4,12.1) 

Alabama Jefferson 11(9.7,12.4) Ohio Delaware 7.4(6.2,8.8) 

Alabama Lamar 11.6(9.5,13.9) Ohio Erie 11.3(8.8,14.2) 

Alabama Lauderdale 9.7(8.3,11.4) Ohio Fairfield 9.4(7.8,11.2) 

Alabama Lawrence 10.7(9,12.5) Ohio Fayette 12.3(10.2,14.6) 

Alabama Lee 8.9(7.3,10.6) Ohio Franklin 9.2(8.1,10.4) 

Alabama Limestone 9(7.5,10.7) Ohio Fulton 10.3(7.9,13.1) 

Alabama Lowndes 17.6(14.5,21) Ohio Gallia 12(9.8,14.4) 

Alabama Macon 12.9(10.6,15.4) Ohio Geauga 8.6(7.1,10.2) 

Alabama Madison 8.5(7.2,10) Ohio Greene 8.5(7,10) 

Alabama Marengo 12.8(10.8,15) Ohio Guernsey 11.3(9.4,13.5) 

Alabama Marion 11.5(9.7,13.5) Ohio Hamilton 9.9(8.6,11.2) 
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Alabama Marshall 10.2(8.6,11.9) Ohio Hancock 8.9(7.4,10.7) 

Alabama Mobile 11.2(9.9,12.7) Ohio Hardin 8.5(7,10.1) 

Alabama Monroe 12.9(10.8,15.3) Ohio Harrison 12.2(9.9,14.6) 

Alabama Montgomery 11.5(9.7,13.5) Ohio Henry 10.3(8.4,12.4) 

Alabama Morgan 9.3(7.6,11.1) Ohio Highland 11.4(9.4,13.7) 

Alabama Perry 15.7(12.9,18.8) Ohio Hocking 11.7(9.7,14) 

Alabama Pickens 11.8(9.7,14) Ohio Holmes 9.9(8.2,11.7) 

Alabama Pike 12(9.9,14.3) Ohio Huron 10(8.3,11.9) 

Alabama Randolph 11.1(9.2,13.1) Ohio Jackson 11.6(9.6,13.9) 

Alabama Russell 11.9(9.7,14.4) Ohio Jefferson 12.2(10.2,14.4) 

Alabama St. Clair 10.5(8.9,12.3) Ohio Knox 9.7(8.2,11.4) 

Alabama Shelby 7.9(6.6,9.3) Ohio Lake 9.8(7.8,12) 

Alabama Sumter 13.5(11.2,16.1) Ohio Lawrence 11.8(9.8,14) 

Alabama Talladega 11.9(10.1,13.8) Ohio Licking 10.3(8.8,11.9) 

Alabama Tallapoosa 11.3(9.5,13.3) Ohio Logan 10.2(8.3,12.3) 

Alabama Tuscaloosa 9.3(8.1,10.7) Ohio Lorain 10.2(8.5,12.2) 

Alabama Walker 11.9(10.2,13.7) Ohio Lucas 10.5(9.1,12) 

Alabama Washington 10.1(8.5,12) Ohio Madison 9.4(7.9,11.1) 

Alabama Wilcox 13.1(10.8,15.6) Ohio Mahoning 11.8(10.4,13.2) 

Alabama Winston 10.7(8.8,12.8) Ohio Marion 10.1(8.4,12) 

Arkansas Arkansas 13.2(10.5,16.2) Ohio Medina 8.4(6.9,10.1) 

Arkansas Ashley 12.2(9.3,15.5) Ohio Meigs 11.7(9.6,14.1) 

Arkansas Baxter 10.8(7.9,14.3) Ohio Mercer 10.3(8.2,12.8) 

Arkansas Benton 6.7(5.4,8.2) Ohio Miami 10.1(8.2,12.1) 

Arkansas Boone 10.1(7.3,13.5) Ohio Monroe 11.2(9.1,13.6) 

Arkansas Bradley 7.6(5.5,10) Ohio Montgomery 10.9(9.6,12.2) 

Arkansas Calhoun 9.2(6.4,12.5) Ohio Morgan 12.7(10.3,15.4) 
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Arkansas Carroll 9.7(7.4,12.4) Ohio Morrow 10.3(8.4,12.4) 

Arkansas Chicot 14.2(11.1,17.7) Ohio Muskingum 10.3(8.6,12.3) 

Arkansas Clark 9.3(6.7,12.4) Ohio Noble 12(9.8,14.3) 

Arkansas Clay 13(9.4,17.4) Ohio Ottawa 10.8(8.4,13.6) 

Arkansas Cleburne 12.2(9.6,15) Ohio Paulding 9.8(7.4,12.5) 

Arkansas Cleveland 14.4(11.2,18) Ohio Perry 11.8(9.8,14) 

Arkansas Columbia 11.1(8.5,14) Ohio Pickaway 9.5(7.9,11.3) 

Arkansas Conway 11.6(9.2,14.5) Ohio Pike 12.3(10,14.9) 

Arkansas Craighead 10.1(8.2,12.4) Ohio Portage 8.9(7.5,10.4) 

Arkansas Crawford 9.4(7.3,11.7) Ohio Preble 10.3(8,12.8) 

Arkansas Crittenden 12(9.7,14.4) Ohio Putnam 8.9(7.2,10.7) 

Arkansas Cross 12.4(9.7,15.5) Ohio Richland 10.5(8.7,12.6) 

Arkansas Dallas 12.7(9.9,16) Ohio Ross 10.8(9,12.8) 

Arkansas Desha 12.9(10.2,16) Ohio Sandusky 10.7(8.6,12.9) 

Arkansas Drew 11.4(8.2,15.2) Ohio Scioto 12(9.9,14.3) 

Arkansas Faulkner 8.3(6.8,10) Ohio Seneca 9.7(8,11.6) 

Arkansas Franklin 10.5(8.3,13.1) Ohio Shelby 9.2(7.5,11.2) 

Arkansas Fulton 13.3(9.7,17.6) Ohio Stark 10.1(9,11.3) 

Arkansas Garland 10.2(8,12.7) Ohio Summit 9.9(8.7,11.2) 

Arkansas Grant 10.5(8.3,13) Ohio Trumbull 9.9(8.3,11.5) 

Arkansas Greene 11.2(8.6,14.2) Ohio Tuscarawas 10.8(9,12.7) 

Arkansas Hempstead 10.6(7.9,13.8) Ohio Union 8(6.7,9.4) 

Arkansas Hot Spring 10(7.9,12.4) Ohio Van Wert 10.1(8,12.5) 

Arkansas Howard 9.7(7,13) Ohio Vinton 12.7(10.4,15.3) 

Arkansas Independence 10.8(8.8,13.2) Ohio Warren 8.7(7.3,10.3) 

Arkansas Izard 11.9(8.9,15.3) Ohio Washington 11.4(9.2,13.7) 

Arkansas Jackson 13(10.6,15.7) Ohio Wayne 9.4(7.7,11.2) 
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Arkansas Jefferson 12.7(10.6,14.9) Ohio Williams 11.4(8.7,14.6) 

Arkansas Johnson 9.3(7.2,11.7) Ohio Wood 8.3(6.8,9.8) 

Arkansas Lafayette 14.7(11.6,18.2) Ohio Wyandot 10(8.1,12.1) 

Arkansas Lawrence 12.7(10.1,15.6) Pennsylvania Adams 9.5(7.8,11.4) 

Arkansas Lee 14.2(10.7,18.1) Pennsylvania Allegheny 10.6(9.6,11.7) 

Arkansas Lincoln 12.1(9.1,15.5) Pennsylvania Armstrong 11.8(10,13.7) 

Arkansas Little River 10.8(8.1,14) Pennsylvania Beaver 11.1(9.4,13) 

Arkansas Logan 11.3(8.9,13.9) Pennsylvania Bedford 11.5(9.6,13.5) 

Arkansas Lonoke 9.7(7.9,11.6) Pennsylvania Berks 8.8(7.4,10.3) 

Arkansas Madison 11(8.9,13.4) Pennsylvania Blair 10.3(8.6,12.3) 

Arkansas Marion 11.4(8,15.5) Pennsylvania Bradford 10.8(8.8,13.1) 

Arkansas Miller 10.2(8,12.8) Pennsylvania Bucks 8.7(7.2,10.3) 

Arkansas Mississippi 11.9(9.7,14.4) Pennsylvania Butler 10(8.7,11.5) 

Arkansas Monroe 14.3(10.8,18.3) Pennsylvania Cambria 11.6(9.8,13.5) 

Arkansas Montgomery 13.4(10.8,16.4) Pennsylvania Carbon 11.4(9.5,13.6) 

Arkansas Nevada 14.1(10.8,17.9) Pennsylvania Centre 6.7(5.6,7.9) 

Arkansas Newton 13.8(10.9,17) Pennsylvania Chester 7.2(6,8.6) 

Arkansas Ouachita 12.7(9.7,16.2) Pennsylvania Clarion 10(8.1,12.2) 

Arkansas Perry 11.1(9.1,13.3) Pennsylvania Clearfield 11.3(9.6,13.2) 

Arkansas Phillips 13.4(10.4,16.8) Pennsylvania Clinton 9.6(7.9,11.5) 

Arkansas Pike 11.5(8.4,15.1) Pennsylvania Columbia 9.3(7.7,11) 

Arkansas Poinsett 11.2(9,13.8) Pennsylvania Crawford 11.3(9.5,13.2) 

Arkansas Polk 10(6.9,13.8) Pennsylvania Cumberland 8.3(6.9,9.9) 

Arkansas Pope 9.2(7.4,11.4) Pennsylvania Dauphin 9.9(8.5,11.4) 

Arkansas Prairie 13.7(10.5,17.3) Pennsylvania Delaware 8.6(7,10.5) 

Arkansas Pulaski 10.4(9,11.9) Pennsylvania Elk 11.6(9.4,14.1) 

Arkansas Randolph 13.5(10.3,17.1) Pennsylvania Erie 10(8.3,11.8) 
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Arkansas St. Francis 12(8.9,15.7) Pennsylvania Fayette 11(9.3,12.9) 

Arkansas Saline 9.5(7.6,11.6) Pennsylvania Forest 13.2(10.9,15.7) 

Arkansas Scott 9.6(7.4,12.1) Pennsylvania Franklin 10.3(8.8,11.9) 

Arkansas Searcy 13.5(10.3,17.1) Pennsylvania Fulton 10(8.2,12.1) 

Arkansas Sebastian 9.3(7.3,11.8) Pennsylvania Greene 11.4(9.2,13.8) 

Arkansas Sevier 9.2(6.7,12.2) Pennsylvania Huntingdon 10.9(9.2,12.8) 

Arkansas Sharp 12.9(10,16.3) Pennsylvania Indiana 9.9(8.2,11.8) 

Arkansas Stone 15(11.8,18.4) Pennsylvania Jefferson 11.4(9.4,13.6) 

Arkansas Union 11.3(8.9,14) Pennsylvania Juniata 9.5(7.9,11.3) 

Arkansas Van Buren 11.5(9.1,14.4) Pennsylvania Lackawanna 9.9(8.1,11.7) 

Arkansas Washington 7.2(5.8,8.8) Pennsylvania Lancaster 9.5(8.2,11.1) 

Arkansas White 10.2(8.3,12.4) Pennsylvania Lawrence 11.5(9.7,13.4) 

Arkansas Woodruff 14.6(11.4,18.2) Pennsylvania Lebanon 9.2(7.5,11.1) 

Arkansas Yell 11.4(9.1,14.1) Pennsylvania Lehigh 9(7.7,10.4) 

Florida Alachua 8.2(7.2,9.3) Pennsylvania Luzerne 10.2(8.8,11.8) 

Florida Baker 12.1(10.8,13.6) Pennsylvania Lycoming 9.7(8.3,11.3) 

Florida Bay 10.8(9.4,12.3) Pennsylvania McKean 10.5(8.3,13.1) 

Florida Bradford 12.7(11.2,14.4) Pennsylvania Mercer 11.5(9.8,13.3) 

Florida Brevard 12.1(10.6,13.6) Pennsylvania Mifflin 10.4(8.5,12.5) 

Florida Broward 8.3(7.1,9.6) Pennsylvania Monroe 9.8(8.2,11.7) 

Florida Calhoun 13.8(12.1,15.6) Pennsylvania Montgomery 8.1(6.9,9.4) 

Florida Charlotte 12(10.5,13.7) Pennsylvania Montour 9.9(7.8,12.3) 

Florida Citrus 12(10.4,13.7) Pennsylvania Northampton 8.8(7.3,10.5) 

Florida Clay 9.8(8.6,11.1) Pennsylvania Northumberland 10.1(8.7,11.6) 

Florida Collier 9.2(8,10.5) Pennsylvania Perry 10.9(9.1,12.8) 

Florida Columbia 12.8(11.4,14.3) Pennsylvania Philadelphia 11.2(10.1,12.4) 

Florida De Soto 12.1(10.6,13.6) Pennsylvania Pike 10.6(7.9,13.8) 
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Florida Dixie 14(12.1,16) Pennsylvania Potter 11.6(9.3,14.1) 

Florida Duval 10(8.7,11.4) Pennsylvania Schuylkill 10.4(8.9,12) 

Florida Escambia 11.7(10,13.5) Pennsylvania Snyder 9.5(7.8,11.3) 

Florida Flagler 11.2(9.6,12.9) Pennsylvania Somerset 11.5(9.7,13.5) 

Florida Franklin 13(9.7,16.7) Pennsylvania Sullivan 13.5(11,16.2) 

Florida Gadsden 14.2(12.5,16) Pennsylvania Susquehanna 12.4(9.9,15.2) 

Florida Gilchrist 11.6(10.1,13.1) Pennsylvania Tioga 10.5(8.3,12.9) 

Florida Glades 13.2(11.4,15.1) Pennsylvania Union 9(7.5,10.7) 

Florida Gulf 12.3(10.5,14.3) Pennsylvania Venango 11(9.2,13) 

Florida Hamilton 13.7(12,15.6) Pennsylvania Warren 11.4(9.4,13.7) 

Florida Hardee 12.3(10.9,13.8) Pennsylvania Washington 10.8(9.3,12.4) 

Florida Hendry 10.2(9,11.5) Pennsylvania Wayne 11(8.7,13.6) 

Florida Hernando 11.5(9.8,13.2) Pennsylvania Westmoreland 10.1(8.8,11.4) 

Florida Highlands 13.2(11.7,14.8) Pennsylvania Wyoming 10.2(8.1,12.6) 

Florida Hillsborough 10(8.7,11.4) Pennsylvania York 9.4(8.1,10.8) 

Florida Holmes 14.1(12.4,15.9) South Carolina Abbeville 11.8(9.9,13.9) 

Florida Indian River 11.8(10.2,13.5) South Carolina Aiken 9.9(8.6,11.3) 

Florida Jackson 13.6(12.2,15.1) South Carolina Allendale 10(8.2,11.9) 

Florida Jefferson 13.7(12.2,15.4) South Carolina Anderson 10.1(8.6,11.7) 

Florida Lafayette 13(10.8,15.3) South Carolina Bamberg 13.1(11,15.3) 

Florida Lake 11.5(10.3,12.9) South Carolina Barnwell 12(10,14.3) 

Florida Lee 9.6(8.2,11.2) South Carolina Beaufort 8.2(6.9,9.5) 

Florida Leon 9.3(8.1,10.7) South Carolina Berkeley 9.9(8.6,11.2) 

Florida Levy 13.2(11.7,14.8) South Carolina Calhoun 14.4(12.2,16.9) 

Florida Liberty 16.3(13.9,19) South Carolina Charleston 9.8(8.6,11.1) 

Florida Madison 14.1(12.5,15.8) South Carolina Cherokee 10.8(8.9,12.8) 

Florida Manatee 11.4(9.9,12.9) South Carolina Chester 12(9.7,14.5) 
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Florida Marion 12.3(11,13.7) South Carolina Chesterfield 12.6(10.8,14.6) 

Florida Martin 8.7(7.4,10.1) South Carolina Clarendon 13.6(11.8,15.7) 

Florida Miami-Dade 8.6(7.2,10) South Carolina Colleton 12.2(10.6,14) 

Florida Monroe 7.8(6.4,9.3) South Carolina Darlington 13.1(11.1,15.4) 

Florida Nassau 9.6(8.1,11.2) South Carolina Dillon 12.9(11,15) 

Florida Okaloosa 9(7.6,10.5) South Carolina Dorchester 9.8(8.2,11.6) 

Florida Okeechobee 10.8(9.6,12) South Carolina Edgefield 10.1(8.4,12) 

Florida Orange 9.4(8.4,10.4) South Carolina Fairfield 13.2(11.2,15.4) 

Florida Osceola 9.7(8.6,10.9) South Carolina Florence 11.5(10.1,13.1) 

Florida Palm Beach 8.5(7.3,9.8) South Carolina Georgetown 11.2(9.6,12.9) 

Florida Pasco 10.4(9.1,11.8) South Carolina Greenville 9.4(8.2,10.6) 

Florida Pinellas 10.7(9,12.6) South Carolina Greenwood 9.8(8.3,11.5) 

Florida Polk 11.5(10.4,12.7) South Carolina Hampton 12(10.1,14) 

Florida Putnam 13.9(12.4,15.6) South Carolina Horry 11(9.7,12.5) 

Florida St. Johns 8.2(7,9.5) South Carolina Jasper 10.8(8.8,13) 

Florida St. Lucie 11.9(10.2,13.6) South Carolina Kershaw 11.6(9.9,13.4) 

Florida Santa Rosa 11.2(9.6,12.9) South Carolina Lancaster 10.8(9.1,12.6) 

Florida Sarasota 10.3(8.8,11.8) South Carolina Laurens 11.3(9.8,12.9) 

Florida Seminole 10.3(8.9,11.8) South Carolina Lee 13.3(11.3,15.6) 

Florida Sumter 13.3(11.7,15.1) South Carolina Lexington 9.3(7.9,10.8) 

Florida Suwannee 13.1(11.4,14.8) South Carolina McCormick 13.9(11.3,16.8) 

Florida Taylor 13(11.3,14.7) South Carolina Marion 13.6(11.6,15.8) 

Florida Union 12.9(11.3,14.7) South Carolina Marlboro 12.9(11.1,14.8) 

Florida Volusia 11.7(10.5,12.9) South Carolina Newberry 11.7(10,13.5) 

Florida Wakulla 11.4(9.7,13.2) South Carolina Oconee 9.8(8.3,11.5) 

Florida Walton 11.4(10,12.9) South Carolina Orangeburg 13.7(12.3,15.2) 

Florida Washington 13.7(12.1,15.5) South Carolina Pickens 8.8(7.2,10.7) 
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Georgia Appling 11.4(8.6,14.6) South Carolina Richland 9.6(8.5,10.8) 

Georgia Atkinson 12.8(9.6,16.6) South Carolina Saluda 10.9(9.1,12.9) 

Georgia Bacon 12.8(9.8,16.3) South Carolina Spartanburg 10.1(8.7,11.6) 

Georgia Baker 14.1(10.6,18.1) South Carolina Sumter 12.1(10.5,13.8) 

Georgia Baldwin 8.7(6.5,11.2) South Carolina Union 12.8(11,14.7) 

Georgia Banks 9.9(8,12.1) South Carolina Williamsburg 14.4(12.5,16.5) 

Georgia Barrow 8.9(7.3,10.8) South Carolina York 9.6(8.1,11.2) 

Georgia Bartow 9(7.4,10.6) Tennessee Anderson 8.3(6.9,9.9) 

Georgia Ben Hill 14.3(10.3,18.8) Tennessee Bedford 7.6(6,9.3) 

Georgia Berrien 12.9(10.2,16) Tennessee Benton 10.5(8.3,12.9) 

Georgia Bibb 9.5(7.4,11.9) Tennessee Bledsoe 9.6(7.6,11.8) 

Georgia Bleckley 10.6(7.7,13.9) Tennessee Blount 9.4(7.7,11.2) 

Georgia Brantley 11.2(8.6,14.2) Tennessee Bradley 9.6(8,11.4) 

Georgia Brooks 13.4(11,16.2) Tennessee Campbell 11.5(9.3,14) 

Georgia Bryan 9.3(7.1,11.9) Tennessee Cannon 9.3(7.5,11.4) 

Georgia Bulloch 9(7,11.3) Tennessee Carroll 9.4(7.7,11.3) 

Georgia Burke 12.1(9.8,14.6) Tennessee Carter 10.7(8.9,12.7) 

Georgia Butts 9.2(7.4,11.3) Tennessee Cheatham 8.5(6.9,10.5) 

Georgia Calhoun 13.9(8.9,20.2) Tennessee Chester 6.4(5.2,7.9) 

Georgia Camden 9(6.7,11.7) Tennessee Claiborne 9.9(8.1,12) 

Georgia Candler 12.3(9.4,15.6) Tennessee Clay 11.4(8.1,15.5) 

Georgia Carroll 8.5(7.1,10.1) Tennessee Cocke 10.8(8.9,12.9) 

Georgia Catoosa 9.2(7.2,11.5) Tennessee Coffee 9(7.4,10.8) 

Georgia Charlton 11.3(8.9,14.1) Tennessee Crockett 10(8.1,12.1) 

Georgia Chatham 9.5(7.4,11.9) Tennessee Cumberland 10.1(8.4,12) 

Georgia Chattahoochee 7.5(5.2,10.2) Tennessee Davidson 7.5(6.4,8.7) 

Georgia Chattooga 9.7(7.6,12) Tennessee Decatur 8.7(7,10.7) 
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Georgia Cherokee 7.8(6.5,9.2) Tennessee DeKalb 9.1(7.4,11.1) 

Georgia Clarke 7.4(5.9,9.1) Tennessee Dickson 7.7(6.1,9.5) 

Georgia Clay 16.8(10.6,24.7) Tennessee Dyer 10.3(8.3,12.5) 

Georgia Clayton 9.7(8.1,11.4) Tennessee Fayette 9.7(7.9,11.7) 

Georgia Clinch 14.3(10.9,18.3) Tennessee Fentress 9.7(7.9,11.9) 

Georgia Cobb 7.4(6.1,8.8) Tennessee Franklin 8.3(6.8,10) 

Georgia Coffee 13.1(10.2,16.4) Tennessee Gibson 9.6(7.9,11.4) 

Georgia Colquitt 12(9.8,14.5) Tennessee Giles 9.2(7.5,11.1) 

Georgia Columbia 7.8(5.9,10) Tennessee Grainger 11.5(9.5,13.7) 

Georgia Cook 13.5(10.9,16.5) Tennessee Greene 10.2(8.4,12) 

Georgia Coweta 8.5(7,10.2) Tennessee Grundy 9.5(7.7,11.6) 

Georgia Crawford 9.5(7.2,12.1) Tennessee Hamblen 9.4(7.6,11.3) 

Georgia Crisp 13.4(10.1,17.3) Tennessee Hamilton 8.3(7.2,9.5) 

Georgia Dade 8.4(6.7,10.5) Tennessee Hancock 8.6(7,10.5) 

Georgia Dawson 9.1(7.5,10.9) Tennessee Hardeman 8.6(7.2,10.3) 

Georgia Decatur 12.6(10,15.5) Tennessee Hardin 9.7(8,11.5) 

Georgia DeKalb 8(6.7,9.4) Tennessee Hawkins 10.6(8.9,12.4) 

Georgia Dodge 13.1(9.5,17.4) Tennessee Haywood 10.2(8.4,12.2) 

Georgia Dooly 9.8(7.3,12.7) Tennessee Henderson 7.8(6.2,9.6) 

Georgia Dougherty 12.7(9.8,15.8) Tennessee Henry 7.8(6.3,9.5) 

Georgia Douglas 8.7(7,10.7) Tennessee Hickman 9.4(7.4,11.7) 

Georgia Early 12.2(8.6,16.4) Tennessee Houston 6.9(5.5,8.6) 

Georgia Echols 11.9(9,15.4) Tennessee Humphreys 8(6.1,10.3) 

Georgia Effingham 9(7.1,11.1) Tennessee Jackson 4.8(3.7,6.2) 

Georgia Elbert 11.6(9.3,14.2) Tennessee Jefferson 9.8(8,11.8) 

Georgia Emanuel 11.6(9.3,14.3) Tennessee Johnson 12.4(10.4,14.7) 

Georgia Evans 13.4(10.2,17.1) Tennessee Knox 8.3(7.1,9.5) 
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Georgia Fannin 12.2(10,14.7) Tennessee Lake 9.8(7,13.1) 

Georgia Fayette 8.7(7,10.7) Tennessee Lauderdale 11(8.9,13.3) 

Georgia Floyd 9.1(7.4,11) Tennessee Lawrence 9.5(7.5,11.7) 

Georgia Forsyth 7.4(6.1,8.9) Tennessee Lewis 7.8(6.1,9.7) 

Georgia Franklin 10.3(8.2,12.7) Tennessee Lincoln 9.5(7.8,11.4) 

Georgia Fulton 8(6.9,9.1) Tennessee Loudon 11.5(9.6,13.7) 

Georgia Gilmer 10.4(8.4,12.7) Tennessee McMinn 9.6(7.9,11.4) 

Georgia Glascock 13.5(9.3,18.5) Tennessee McNairy 9.8(7.8,12.1) 

Georgia Glynn 9.5(7,12.4) Tennessee Macon 8.8(6.7,11.3) 

Georgia Gordon 9.2(7.7,11) Tennessee Madison 8.8(7.6,10.1) 

Georgia Grady 13.6(10.9,16.5) Tennessee Marion 10.3(8.5,12.4) 

Georgia Greene 10.9(8.5,13.6) Tennessee Marshall 7.9(6.4,9.5) 

Georgia Gwinnett 6.9(5.8,8.1) Tennessee Maury 8.3(6.7,10) 

Georgia Habersham 10(8.1,12.2) Tennessee Meigs 11.6(9.5,14) 

Georgia Hall 8.3(6.9,9.7) Tennessee Monroe 10.8(8.9,12.9) 

Georgia Hancock 11.4(8.6,14.5) Tennessee Montgomery 7(5.6,8.6) 

Georgia Haralson 9.7(7.7,12.1) Tennessee Moore 7.5(5.9,9.4) 

Georgia Harris 10.3(8.3,12.6) Tennessee Morgan 9.8(8,12) 

Georgia Hart 11.1(8.9,13.7) Tennessee Obion 9.1(7.1,11.4) 

Georgia Heard 9.7(7.6,12.1) Tennessee Overton 10.3(7.6,13.4) 

Georgia Henry 8.2(6.8,9.8) Tennessee Perry 11.5(8.9,14.5) 

Georgia Houston 8.1(5.9,10.7) Tennessee Pickett 14.4(11.4,17.7) 

Georgia Irwin 12.9(9.9,16.5) Tennessee Polk 9.7(8,11.7) 

Georgia Jackson 9.2(7.5,11.1) Tennessee Putnam 7.8(6.3,9.5) 

Georgia Jasper 9.6(7.7,11.7) Tennessee Rhea 9.5(7.6,11.6) 

Georgia Jeff Davis 11.3(8.7,14.3) Tennessee Roane 9.4(7.9,11.1) 

Georgia Jefferson 11.6(9.2,14.4) Tennessee Robertson 8.4(6.8,10.1) 
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Georgia Jenkins 12.1(9.3,15.4) Tennessee Rutherford 6.6(5.5,7.9) 

Georgia Johnson 11.9(9.2,15) Tennessee Scott 10.5(8.6,12.6) 

Georgia Jones 9.7(7.6,12.1) Tennessee Sequatchie 9.1(7.4,11.1) 

Georgia Lamar 10.1(8,12.6) Tennessee Sevier 9.6(7.9,11.4) 

Georgia Lanier 13.4(9.7,17.7) Tennessee Shelby 9.2(7.8,10.6) 

Georgia Laurens 12.4(8.9,16.4) Tennessee Smith 9.5(7.5,11.8) 

Georgia Lee 10.3(7.8,13.2) Tennessee Stewart 9(7.2,11) 

Georgia Liberty 9.3(6.7,12.4) Tennessee Sullivan 10.6(9.2,12.1) 

Georgia Lincoln 12.6(9.4,16.4) Tennessee Sumner 7.5(6.1,9.2) 

Georgia Long 8.6(6.2,11.5) Tennessee Tipton 8.9(7.3,10.8) 

Georgia Lowndes 10.6(8.7,12.8) Tennessee Trousdale 10.7(8.3,13.5) 

Georgia Lumpkin 9.2(7.3,11.3) Tennessee Unicoi 10.4(8.5,12.4) 

Georgia McDuffie 9.3(6.9,12) Tennessee Van Buren 8.5(6.9,10.4) 

Georgia McIntosh 11.7(8.5,15.4) Tennessee Warren 8.6(7,10.3) 

Georgia Macon 12.4(9,16.2) Tennessee Washington 9.3(7.7,11) 

Georgia Madison 10.2(8.3,12.3) Tennessee Wayne 9.3(7.2,11.8) 

Georgia Marion 13.6(9.6,18.4) Tennessee Weakley 8.1(6.5,9.9) 

Georgia Meriwether 12(9.8,14.5) Tennessee White 10(7.9,12.2) 

Georgia Miller 16.3(10.5,23.6) Tennessee Williamson 6.3(5.2,7.6) 

Georgia Mitchell 12.4(10.1,15.1) Tennessee Wilson 8(6.5,9.6) 

Georgia Monroe 10.3(8.3,12.7) Texas Anderson 10.2(8.4,12.1) 

Georgia Montgomery 10.1(7,13.9) Texas Andrews 10(7.1,13.5) 

Georgia Morgan 10.1(8.2,12.3) Texas Angelina 11.6(9.8,13.8) 

Georgia Murray 10.5(8.6,12.6) Texas Aransas 13.4(9.3,18.5) 

Georgia Muscogee 10.6(8.5,12.9) Texas Archer 15(11,19.7) 

Georgia Newton 9.4(7.7,11.3) Texas Atascosa 12.2(9.8,14.9) 

Georgia Oconee 8.1(6.5,9.8) Texas Austin 9.8(8.1,11.7) 
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Georgia Oglethorpe 10(8,12.3) Texas Bailey 10.5(6.4,15.8) 

Georgia Paulding 7.8(6.4,9.4) Texas Bandera 16.1(13,19.6) 

Georgia Peach 9.3(6.7,12.4) Texas Bastrop 9.5(7.8,11.4) 

Georgia Pickens 9.8(7.9,12) Texas Baylor 12.6(9.1,16.7) 

Georgia Pierce 12.6(9.6,16) Texas Bee 11.3(7.9,15.4) 

Georgia Pike 8.7(6.7,11) Texas Bell 8.7(7.2,10.4) 

Georgia Polk 9.9(8.1,12) Texas Bexar 10(8.8,11.2) 

Georgia Pulaski 11.8(8.3,16) Texas Blanco 14(11.6,16.7) 

Georgia Putnam 10.7(8.5,13.2) Texas Bosque 13.9(11.2,16.9) 

Georgia Quitman 12.2(8.6,16.7) Texas Bowie 10.7(8.3,13.5) 

Georgia Rabun 11.7(9.2,14.7) Texas Brazoria 8.8(7.2,10.5) 

Georgia Randolph 13.7(12.1,15.3) Texas Brazos 6.6(5.4,8) 

Georgia Richmond 10.1(8.2,12.2) Texas Brewster 12.7(8.1,18.4) 

Georgia Rockdale 9.4(7.6,11.4) Texas Briscoe 18(16.5,19.7) 

Georgia Schley 10.4(7,14.7) Texas Brooks 15.3(11.5,19.7) 

Georgia Screven 13.5(10.7,16.9) Texas Brown 10.4(7.4,14) 

Georgia Seminole 16.5(12.7,20.8) Texas Burleson 12.5(10.1,15.1) 

Georgia Spalding 9.6(8,11.4) Texas Burnet 11(8.8,13.4) 

Georgia Stephens 10.6(8.3,13.3) Texas Caldwell 9.6(7.8,11.4) 

Georgia Stewart 10.1(7.5,13.2) Texas Calhoun 9.5(7.2,12.1) 

Georgia Sumter 12.5(9.3,16.2) Texas Callahan 9.8(7,13.2) 

Georgia Talbot 14.9(11.8,18.3) Texas Cameron 12(9.9,14.2) 

Georgia Taliaferro 11.8(8.4,15.9) Texas Camp 11.6(9,14.5) 

Georgia Tattnall 10.4(8,13.1) Texas Carson 10.6(8.2,13.2) 

Georgia Taylor 12.9(9.5,17) Texas Cass 12.5(9.8,15.6) 

Georgia Telfair 12.6(9.2,16.4) Texas Castro 11.6(8.5,15.2) 

Georgia Terrell 15.1(11.2,19.6) Texas Chambers 9.3(7.4,11.5) 
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Georgia Thomas 13.6(11.2,16.3) Texas Cherokee 11.5(9.7,13.4) 

Georgia Tift 12.2(9.7,15.1) Texas Childress 12.7(11.6,13.9) 

Georgia Toombs 12.1(9.1,15.7) Texas Clay 14.5(10.5,19.3) 

Georgia Towns 10.6(8.1,13.5) Texas Cochran 11.4(6.8,17.4) 

Georgia Treutlen 9.6(7.1,12.6) Texas Coke 15(10.7,20.2) 

Georgia Troup 11.1(9,13.5) Texas Coleman 10.4(7.2,14.3) 

Georgia Turner 13.1(10.3,16.4) Texas Collin 7(5.7,8.4) 

Georgia Twiggs 13.7(10.6,17.3) Texas Collingsworth 13.5(8.7,19.5) 

Georgia Union 13.2(10.4,16.4) Texas Colorado 9.5(7.6,11.7) 

Georgia Upson 11.7(9.1,14.7) Texas Comal 10.1(8.1,12.4) 

Georgia Walker 9.5(7.9,11.3) Texas Comanche 12.5(9,16.7) 

Georgia Walton 8.9(7.3,10.7) Texas Concho 13.6(8.9,19.7) 

Georgia Ware 13.1(10.3,16.2) Texas Cooke 11.1(8.5,14) 

Georgia Warren 12.3(8.6,16.7) Texas Coryell 8(6.2,10.1) 

Georgia Washington 11.6(8.3,15.5) Texas Cottle 17.5(16,19.1) 

Georgia Wayne 10.5(8.1,13.3) Texas Crane 12(8.7,15.8) 

Georgia Webster 12.3(7.4,18.5) Texas Crockett 12.5(9.2,16.4) 

Georgia Wheeler 13.1(9.3,17.5) Texas Crosby 8.6(6.2,11.5) 

Georgia White 9.7(7.6,12.1) Texas Culberson 14.8(13.5,16.1) 

Georgia Whitfield 9.4(7.6,11.5) Texas Dallam 9.1(5.1,14.5) 

Georgia Wilcox 12.4(9.4,16) Texas Dallas 9.3(7.9,10.7) 

Georgia Wilkes 11.7(8.9,15) Texas Dawson 11.5(6.4,18) 

Georgia Wilkinson 11.3(8.7,14.1) Texas Deaf Smith 9.7(6.2,14.2) 

Georgia Worth 11.4(9.1,14) Texas Delta 13.6(10.7,16.8) 

Kentucky Adair 11.4(8.9,14.3) Texas Denton 7.5(6.2,9.1) 

Kentucky Allen 9.9(7.9,12.2) Texas DeWitt 11.3(8.8,14) 

Kentucky Anderson 9.2(7.4,11.2) Texas Dickens 16.8(15.3,18.3) 
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Kentucky Ballard 9.8(6.1,14.6) Texas Dimmit 14.6(11.4,18.2) 

Kentucky Barren 10.1(8,12.5) Texas Donley 13.2(8.5,19.1) 

Kentucky Bath 11.2(8.9,13.7) Texas Duval 14.9(10.6,20.1) 

Kentucky Bell 14.6(12.3,17.2) Texas Eastland 11.4(8.6,14.7) 

Kentucky Boone 8.6(6.9,10.5) Texas Ector 8.6(7,10.4) 

Kentucky Bourbon 10.7(8.5,13.1) Texas Edwards 15.3(11.8,19.4) 

Kentucky Boyd 11.7(9.8,13.7) Texas Ellis 9.9(8.3,11.7) 

Kentucky Boyle 10.6(8.5,12.9) Texas El Paso 11.6(10.6,12.7) 

Kentucky Bracken 10.4(8.4,12.6) Texas Erath 9.4(7.2,11.9) 

Kentucky Breathitt 16.8(13.7,20.3) Texas Falls 9.8(7.8,11.9) 

Kentucky Breckinridge 11.3(9,13.8) Texas Fannin 11.3(8.8,14) 

Kentucky Bullitt 9.5(7.6,11.8) Texas Fayette 10.2(8.5,12) 

Kentucky Butler 10(8,12.1) Texas Fisher 11.4(7.6,15.9) 

Kentucky Caldwell 10(7.9,12.4) Texas Floyd 14.1(10.2,18.8) 

Kentucky Calloway 8.1(6.5,9.9) Texas Foard 17.2(9.8,26.6) 

Kentucky Campbell 9.2(7.4,11.2) Texas Fort Bend 8.3(7.2,9.4) 

Kentucky Carlisle 9.6(6.8,12.9) Texas Franklin 11.7(9,14.6) 

Kentucky Carroll 10(6.1,15.1) Texas Freestone 11.4(9.2,13.8) 

Kentucky Carter 12.8(10.7,15.1) Texas Frio 12.4(9.4,15.9) 

Kentucky Casey 11.8(9.7,14) Texas Gaines 10.1(5.2,16.6) 

Kentucky Christian 8(6.5,9.5) Texas Galveston 10.8(8.6,13.3) 

Kentucky Clark 10.8(8.7,13.1) Texas Garza 13.1(9.2,17.8) 

Kentucky Clay 14.2(11.8,16.8) Texas Gillespie 12.3(9.1,16) 

Kentucky Clinton 9.5(6.8,12.7) Texas Goliad 14.5(11.2,18.3) 

Kentucky Crittenden 8.8(6.5,11.6) Texas Gonzales 10(8.3,11.8) 

Kentucky Cumberland 10.7(7.7,14.4) Texas Gray 11.9(10.9,13.1) 

Kentucky Daviess 9.3(7.3,11.4) Texas Grayson 10(7.8,12.4) 
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Kentucky Edmonson 6.8(5.4,8.3) Texas Gregg 10.8(9.2,12.6) 

Kentucky Estill 11.8(9.3,14.7) Texas Grimes 12.3(10.1,14.7) 

Kentucky Fayette 7.4(6.2,8.9) Texas Guadalupe 9.6(7.9,11.4) 

Kentucky Fleming 12.8(10.4,15.3) Texas Hale 8.7(6.4,11.3) 

Kentucky Floyd 16.5(14,19.4) Texas Hall 15.9(14.5,17.3) 

Kentucky Franklin 8.6(6.8,10.6) Texas Hansford 10.4(6.8,15.1) 

Kentucky Fulton 7.8(4.8,11.6) Texas Hardeman 17(9.7,26.4) 

Kentucky Gallatin 5.5(3.9,7.5) Texas Hardin 10.7(8.8,12.9) 

Kentucky Garrard 10.8(8.8,13) Texas Harris 9.2(8.3,10.1) 

Kentucky Grant 9.6(7.8,11.7) Texas Harrison 11.8(9.7,14.1) 

Kentucky Graves 9.1(7.3,11) Texas Hartley 9.8(6.5,13.8) 

Kentucky Grayson 10.3(8.4,12.4) Texas Haskell 14.5(8.3,22.5) 

Kentucky Green 11.1(8.7,13.8) Texas Hays 7.2(5.6,8.8) 

Kentucky Greenup 12.5(10.5,14.7) Texas Henderson 12(10.2,14) 

Kentucky Hancock 10.9(8.3,13.9) Texas Hidalgo 12.8(11,14.7) 

Kentucky Hardin 8.9(7.5,10.5) Texas Hill 13.3(10.9,15.8) 

Kentucky Harlan 15.2(12.8,18) Texas Hockley 7.8(5.7,10.3) 

Kentucky Harrison 9.8(7.7,12.2) Texas Hood 11.2(8.7,14) 

Kentucky Hart 10.4(8.3,12.7) Texas Hopkins 11.4(8.5,14.8) 

Kentucky Henderson 9(7,11.4) Texas Houston 12.3(10.4,14.5) 

Kentucky Henry 9.1(6.7,11.9) Texas Howard 11.4(6.7,17.4) 

Kentucky Hickman 9.4(7,12.1) Texas Hudspeth 13.4(8.7,19.3) 

Kentucky Hopkins 9.3(7.4,11.3) Texas Hunt 10(8.1,12) 

Kentucky Jefferson 8(6.7,9.4) Texas Hutchinson 9.6(6.5,13.4) 

Kentucky Jessamine 9.1(7.3,11) Texas Irion 15.2(9.8,21.9) 

Kentucky Johnson 14.8(12.2,17.6) Texas Jack 13.2(10.2,16.6) 

Kentucky Kenton 9.1(7.5,10.8) Texas Jackson 10.4(8.3,12.8) 
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Kentucky Knott 15(12.7,17.4) Texas Jasper 13.5(11,16.4) 

Kentucky Knox 13.1(10.7,15.7) Texas Jeff Davis 14.5(9.3,21.1) 

Kentucky Larue 10.6(8.7,12.9) Texas Jefferson 13.6(11,16.4) 

Kentucky Laurel 11.7(9.9,13.6) Texas Jim Hogg 15.7(11.4,20.7) 

Kentucky Lawrence 15.3(12.8,18.1) Texas Jim Wells 12(8.1,16.9) 

Kentucky Lee 9.5(7.5,11.7) Texas Johnson 10.3(8.6,12.3) 

Kentucky Leslie 13(10.5,15.8) Texas Jones 11.9(8,16.6) 

Kentucky Letcher 15.9(13.5,18.5) Texas Karnes 9.7(7.7,12) 

Kentucky Lewis 13.6(11.6,15.7) Texas Kaufman 10.9(9,13) 

Kentucky Lincoln 11.9(9.6,14.4) Texas Kendall 10.2(8,12.6) 

Kentucky Livingston 10.1(7.2,13.5) Texas Kent 13.3(7,22.1) 

Kentucky Logan 9.2(7.4,11.1) Texas Kerr 12.5(9.5,16) 

Kentucky Lyon 8.4(6.3,10.7) Texas Kimble 17.1(12,23.2) 

Kentucky McCracken 8.6(6.6,10.8) Texas Kinney 14.1(11,17.7) 

Kentucky McCreary 12.2(10,14.6) Texas Kleberg 10.5(6.6,15.3) 

Kentucky McLean 9.2(7.5,11.2) Texas Knox 16.1(14.8,17.5) 

Kentucky Madison 8.9(7.4,10.7) Texas Lamar 10.1(7.3,13.4) 

Kentucky Magoffin 16.6(13.8,19.7) Texas Lamb 11.1(8.1,14.5) 

Kentucky Marion 9.6(7.7,11.6) Texas Lampasas 9.8(7.4,12.6) 

Kentucky Marshall 9.2(7.3,11.4) Texas La Salle 11.5(8.8,14.5) 

Kentucky Martin 12.6(10.5,14.8) Texas Lavaca 10.4(8.4,12.6) 

Kentucky Mason 11.8(9.7,14) Texas Lee 12.2(10,14.6) 

Kentucky Meade 9.5(7.1,12.3) Texas Leon 12.8(10.7,15.2) 

Kentucky Menifee 11.1(8.8,13.6) Texas Liberty 12.7(10.7,15) 

Kentucky Mercer 10(8,12.3) Texas Limestone 11.1(9.2,13.1) 

Kentucky Metcalfe 11.4(8.7,14.3) Texas Lipscomb 13.9(12.7,15.3) 

Kentucky Monroe 11.8(9,15.1) Texas Live Oak 13.4(10.2,17.1) 
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Kentucky Montgomery 8.6(6.7,10.8) Texas Llano 14.5(10.6,19.1) 

Kentucky Morgan 14.3(11.9,16.9) Texas Lubbock 8.5(7.2,9.9) 

Kentucky Muhlenberg 9.1(7.4,10.9) Texas Lynn 13.2(9.6,17.5) 

Kentucky Nelson 8.5(6.9,10.2) Texas McCulloch 14.4(8.5,21.9) 

Kentucky Nicholas 9.8(7.7,12.3) Texas McLennan 9.7(7.9,11.7) 

Kentucky Ohio 10.2(8.3,12.3) Texas McMullen 9.7(7.3,12.5) 

Kentucky Oldham 7.5(5.5,9.7) Texas Madison 9.9(8.2,11.9) 

Kentucky Owen 7.2(5.6,9) Texas Marion 15(12,18.4) 

Kentucky Owsley 16.7(13.6,20.2) Texas Martin 12.5(8,17.9) 

Kentucky Pendleton 9.9(7.9,12.1) Texas Mason 13.5(9.3,18.8) 

Kentucky Perry 15.2(12.8,17.7) Texas Matagorda 9.8(7.6,12.2) 

Kentucky Pike 14.3(12.3,16.4) Texas Maverick 12.3(10.5,14.2) 

Kentucky Powell 11.2(8.4,14.4) Texas Medina 11.4(9.1,14) 

Kentucky Pulaski 10.9(9.2,12.7) Texas Midland 8.5(7,10.3) 

Kentucky Robertson 13.7(10.7,17.1) Texas Milam 12.4(10.2,14.8) 

Kentucky Rockcastle 11.9(9.9,14.1) Texas Mills 13.2(9.7,17.4) 

Kentucky Rowan 10.2(8.4,12.2) Texas Mitchell 12.1(7.6,17.9) 

Kentucky Russell 11.8(9.4,14.5) Texas Montague 10.9(7.7,14.6) 

Kentucky Scott 8.4(6.8,10.2) Texas Montgomery 8.8(7.3,10.4) 

Kentucky Shelby 8.8(7,10.8) Texas Moore 10.6(7.3,14.8) 

Kentucky Simpson 9.1(7.2,11.1) Texas Morris 10.8(8.4,13.6) 

Kentucky Spencer 8.7(6.9,10.7) Texas Motley 18.5(16.9,20.2) 

Kentucky Taylor 9.9(7.8,12.1) Texas Nacogdoches 10.8(8.7,13.2) 

Kentucky Todd 9.5(7.6,11.6) Texas Navarro 10.6(8.7,12.7) 

Kentucky Trigg 10.2(8.2,12.5) Texas Newton 16.9(13.8,20.4) 

Kentucky Trimble 10(6.8,13.8) Texas Nolan 10.6(7,15.1) 

Kentucky Union 9.1(6.6,12.2) Texas Nueces 9.9(6.8,13.7) 
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Kentucky Warren 7.4(6,8.9) Texas Ochiltree 11.1(6.3,17.5) 

Kentucky Washington 9.1(7.3,11) Texas Oldham 9.5(7.1,12.3) 

Kentucky Wayne 11.7(9.1,14.6) Texas Orange 12.9(10.4,15.6) 

Kentucky Webster 10.1(7.8,12.6) Texas Palo Pinto 12.3(9.5,15.6) 

Kentucky Whitley 11.7(9.8,13.7) Texas Panola 11(8.9,13.5) 

Kentucky Wolfe 15.5(12.5,18.9) Texas Parker 10.2(8.2,12.4) 

Kentucky Woodford 9.3(7.5,11.3) Texas Parmer 11.4(6.2,18.6) 

Louisiana Acadia 9.6(7.9,11.3) Texas Pecos 11.1(10.1,12.1) 

Louisiana Allen 10.5(8.7,12.5) Texas Polk 13.6(11.3,16.3) 

Louisiana Ascension 9(7.5,10.6) Texas Potter 9.5(7.6,11.7) 

Louisiana Assumption 11.1(9.4,12.9) Texas Presidio 15.3(13.9,16.7) 

Louisiana Avoyelles 10.7(9,12.5) Texas Rains 14(10.8,17.5) 

Louisiana Beauregard 9.7(7.9,11.6) Texas Randall 8.5(6.9,10.3) 

Louisiana Bienville 13.1(11,15.3) Texas Reagan 11(8.1,14.6) 

Louisiana Bossier 10(8.3,12) Texas Real 15.2(11.6,19.3) 

Louisiana Caddo 10.4(8.9,12) Texas Red River 14.1(10.7,18) 

Louisiana Calcasieu 10.5(8.8,12.3) Texas Reeves 13.4(8.7,19.3) 

Louisiana Caldwell 10.8(8.7,13) Texas Refugio 14.2(10.8,18.2) 

Louisiana Cameron 11.1(8.8,13.7) Texas Robertson 11.7(9.7,13.9) 

Louisiana Catahoula 10.2(8,12.6) Texas Rockwall 7.9(6.2,9.9) 

Louisiana Claiborne 13.2(10.8,15.8) Texas Runnels 14.4(10.4,19.2) 

Louisiana Concordia 11.8(9.4,14.4) Texas Rusk 11.1(9.3,13.1) 

Louisiana De Soto 11.8(9.6,14.2) Texas Sabine 13.2(10.5,16.3) 

Louisiana 
East Baton 

Rouge 
9.5(8.3,10.8) Texas San Augustine 17.1(13.7,21) 

Louisiana East Carroll 7.3(5.1,9.8) Texas San Jacinto 13.7(11.2,16.6) 

Louisiana East Feliciana 11.6(9.5,13.9) Texas San Patricio 10.9(7.8,14.7) 
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Louisiana Evangeline 9.7(8.1,11.6) Texas San Saba 10.9(8.4,13.8) 

Louisiana Franklin 11.7(7.8,16.4) Texas Schleicher 13(8.3,18.9) 

Louisiana Grant 10.2(8.2,12.5) Texas Scurry 10.2(6.3,15.2) 

Louisiana Iberia 9.8(8.2,11.6) Texas Shackelford 12.8(8.9,17.6) 

Louisiana Iberville 10.9(9.2,12.7) Texas Shelby 13.2(10.7,16) 

Louisiana Jackson 11(8.9,13.4) Texas Sherman 11.5(7.3,16.8) 

Louisiana Jefferson 10.8(9.4,12.4) Texas Smith 9.9(8.7,11.2) 

Louisiana Jefferson Davis 10.1(8.4,12) Texas Somervell 14.2(11,17.7) 

Louisiana Lafayette 7(5.8,8.3) Texas Starr 14.6(10.3,19.6) 

Louisiana Lafourche 10.2(8.6,11.9) Texas Stephens 12.8(9,17.3) 

Louisiana La Salle 10(8,12.3) Texas Sterling 12.7(8.6,17.6) 

Louisiana Lincoln 9.6(7.8,11.6) Texas Stonewall 13.9(7.9,21.8) 

Louisiana Livingston 8.8(7.2,10.5) Texas Sutton 11.9(7.6,17.2) 

Louisiana Madison 12.1(8.9,15.8) Texas Swisher 11.7(8.5,15.7) 

Louisiana Morehouse 13.9(11.3,16.8) Texas Tarrant 9(7.8,10.3) 

Louisiana Natchitoches 10.3(8.7,12.1) Texas Taylor 9.7(6.6,13.4) 

Louisiana Orleans 11(9.1,13) Texas Terrell 14.1(10.4,18.4) 

Louisiana Ouachita 11.2(9.4,13.2) Texas Terry 8.4(5.8,11.4) 

Louisiana Plaquemines 10.9(8.4,13.7) Texas Throckmorton 16.3(9,26.2) 

Louisiana Pointe Coupee 11.5(9.7,13.5) Texas Titus 8.3(5.7,11.4) 

Louisiana Rapides 11.4(9.8,13.1) Texas Tom Green 11.4(10.4,12.5) 

Louisiana Red River 12.7(10.4,15.3) Texas Travis 7.1(6.1,8.1) 

Louisiana Richland 12.7(9.6,16) Texas Trinity 17(13.9,20.4) 

Louisiana Sabine 12.4(10.2,15) Texas Tyler 14.7(11.8,18) 

Louisiana St. Bernard 10.1(7.4,13.4) Texas Upshur 11.2(9.2,13.4) 

Louisiana St. Charles 9.8(7.8,12.1) Texas Upton 10.7(7.9,14.1) 

Louisiana St. Helena 13.7(11.2,16.5) Texas Uvalde 11.3(8.9,14) 
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Louisiana St. James 11.9(9.6,14.5) Texas Val Verde 11.4(10.4,12.5) 

Louisiana 
St. John the 

Baptist 
10.4(8.6,12.3) Texas Van Zandt 11.7(9.6,14) 

Louisiana St. Landry 10.9(9.2,12.8) Texas Victoria 10.2(7.9,12.8) 

Louisiana St. Martin 10.2(8.6,12) Texas Walker 9.3(7.6,11.1) 

Louisiana St. Mary 11.1(9,13.3) Texas Waller 9.9(8.2,11.8) 

Louisiana St. Tammany 9.1(7.6,10.8) Texas Ward 11.5(8.4,15.2) 

Louisiana Tangipahoa 9.8(8.2,11.4) Texas Washington 12(10,14.2) 

Louisiana Tensas 13.5(10.4,16.9) Texas Webb 12.2(10.7,13.8) 

Louisiana Terrebonne 10.1(8.2,12.3) Texas Wharton 9.3(7.6,11.3) 

Louisiana Union 11.7(9.6,14.1) Texas Wheeler 14.2(9.2,20.4) 

Louisiana Vermilion 8.8(7.1,10.7) Texas Wichita 11.2(9.5,13) 

Louisiana Vernon 9.2(7.6,10.9) Texas Wilbarger 11.2(7.6,15.7) 

Louisiana Washington 12(10,14.3) Texas Willacy 13.9(10.4,18) 

Louisiana Webster 11.7(9.5,14.1) Texas Williamson 7.6(6.3,9.1) 

Louisiana 
West Baton 

Rouge 
9.7(7.9,11.6) Texas Wilson 10.9(8.8,13.2) 

Louisiana West Carroll 13.3(9.5,17.7) Texas Winkler 11.6(7.4,16.9) 

Louisiana West Feliciana 9.3(7.5,11.4) Texas Wise 9.9(7.9,12.2) 

Louisiana Winn 11.1(9.1,13.4) Texas Wood 12.7(10.2,15.6) 

Maryland Allegany 11(9.4,12.7) Texas Yoakum 12.8(5.9,22.7) 

Maryland Anne Arundel 8.3(7.2,9.5) Texas Young 12.6(8.1,18.4) 

Maryland Baltimore 9.6(8.6,10.7) Texas Zapata 14.2(10.3,18.9) 

Maryland Calvert 8.7(7.2,10.3) Texas Zavala 12.9(10.1,16.2) 

Maryland Caroline 10.1(8.2,12.2) Virginia Accomack 11.5(8.8,14.7) 

Maryland Carroll 8.5(7.2,9.9) Virginia Albemarle 7.4(6.1,8.9) 

Maryland Cecil 8.7(7.2,10.2) Virginia Alleghany 10.1(7.9,12.7) 
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Maryland Charles 8.9(7.5,10.5) Virginia Amelia 11.3(9.1,13.8) 

Maryland Dorchester 11.5(9.4,13.8) Virginia Amherst 9.6(7.7,11.7) 

Maryland Frederick 7.7(6.7,8.7) Virginia Appomattox 9.7(7.8,11.9) 

Maryland Garrett 11.5(9.6,13.5) Virginia Arlington 4.6(3.4,5.9) 

Maryland Harford 8.7(7.2,10.4) Virginia Augusta 8.9(7.1,11) 

Maryland Howard 7.2(6.1,8.3) Virginia Bath 10.9(8.4,13.9) 

Maryland Kent 9.5(7.4,11.9) Virginia Bedford 8.8(7.3,10.5) 

Maryland Montgomery 6.6(5.8,7.5) Virginia Bland 12.9(10.2,15.9) 

Maryland Prince George's 9.9(8.8,11.1) Virginia Botetourt 10.1(8,12.6) 

Maryland Queen Anne's 8.1(6.5,9.9) Virginia Brunswick 10(8.2,12) 

Maryland St. Mary's 8.5(6.8,10.5) Virginia Buchanan 13.6(11.1,16.5) 

Maryland Somerset 10.8(8.5,13.4) Virginia Buckingham 11(8.8,13.4) 

Maryland Talbot 9.6(7.8,11.6) Virginia Campbell 10.2(8.3,12.3) 

Maryland Washington 9.9(8.5,11.3) Virginia Caroline 9(7.1,11.2) 

Maryland Wicomico 10(8.2,12) Virginia Carroll 11(8.9,13.3) 

Maryland Worcester 11.3(9,13.9) Virginia Charles City 12.6(10.1,15.5) 

Maryland Baltimore City 11.4(9.8,13.2) Virginia Charlotte 9.2(7.5,11.1) 

Mississippi Adams 13.2(10.4,16.4) Virginia Chesterfield 8(6.6,9.5) 

Mississippi Alcorn 11.5(9.5,13.7) Virginia Clarke 8.3(6.6,10.1) 

Mississippi Amite 12.8(10.4,15.3) Virginia Culpeper 8.9(7.1,10.9) 

Mississippi Attala 14.7(12.5,17.1) Virginia Cumberland 9.7(7.8,12) 

Mississippi Benton 14.4(11.8,17.4) Virginia Dickenson 13.3(10.5,16.5) 

Mississippi Bolivar 11.6(9.4,14.1) Virginia Dinwiddie 10.1(8.3,12.1) 

Mississippi Calhoun 13(10.7,15.5) Virginia Essex 10.4(7.2,14.1) 

Mississippi Carroll 14.5(11.6,17.8) Virginia Fairfax 6(4.9,7.3) 

Mississippi Chickasaw 12.9(10.7,15.3) Virginia Fauquier 7.3(5.9,8.9) 

Mississippi Choctaw 13.1(10.2,16.4) Virginia Floyd 10.9(8.9,13.2) 
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Mississippi Claiborne 14.4(11.2,18.1) Virginia Fluvanna 7.4(5.8,9.4) 

Mississippi Clarke 13.7(11.5,16) Virginia Franklin 10.4(8.5,12.5) 

Mississippi Clay 12.8(10.6,15.3) Virginia Frederick 8.1(6.6,9.7) 

Mississippi Coahoma 12.8(10.1,15.9) Virginia Giles 12.5(9.8,15.6) 

Mississippi Copiah 12.4(10.3,14.6) Virginia Gloucester 8.9(5.5,13.1) 

Mississippi Covington 13(10.8,15.3) Virginia Goochland 8.4(6.8,10.2) 

Mississippi DeSoto 9.3(7.8,10.9) Virginia Grayson 12(9.8,14.5) 

Mississippi Forrest 10.3(8.7,12.1) Virginia Greene 7.7(6,9.6) 

Mississippi Franklin 13.2(10.2,16.6) Virginia Greensville 11.8(9.4,14.4) 

Mississippi George 11(8.8,13.4) Virginia Halifax 10.6(8.7,12.7) 

Mississippi Greene 12.3(9.8,15.1) Virginia Hanover 8(6.5,9.6) 

Mississippi Grenada 12.8(10.2,15.8) Virginia Henrico 8.2(6.7,9.8) 

Mississippi Hancock 10.4(8.4,12.7) Virginia Henry 11.2(9.1,13.5) 

Mississippi Harrison 10.4(8.7,12.2) Virginia Highland 12.1(7.5,18.1) 

Mississippi Hinds 11.9(10.3,13.7) Virginia Isle of Wight 10.8(7.9,14.4) 

Mississippi Holmes 14.4(11.9,17.1) Virginia James City 8.6(6.3,11.2) 

Mississippi Humphreys 11.6(9.4,14.1) Virginia 
King and 

Queen 
12.4(9.4,15.9) 

Mississippi Issaquena 12.8(9.8,16.3) Virginia King George 8(5.8,10.6) 

Mississippi Itawamba 11.4(9.5,13.5) Virginia King William 8.3(6.2,10.8) 

Mississippi Jackson 10.7(9,12.7) Virginia Lancaster 12.8(6.2,22.1) 

Mississippi Jasper 13.7(11.8,15.8) Virginia Lee 12.8(10.1,15.7) 

Mississippi Jefferson 16.3(12.7,20.2) Virginia Loudoun 5.5(4.5,6.6) 

Mississippi Jefferson Davis 12.7(10.4,15.3) Virginia Louisa 9.8(8,11.9) 

Mississippi Jones 11.5(9.8,13.4) Virginia Lunenburg 13.1(10.4,16.1) 

Mississippi Kemper 15.2(12.6,18) Virginia Madison 9.5(7.3,12) 

Mississippi Lafayette 8.5(7.1,10) Virginia Mathews 11.3(6.1,18.4) 
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Mississippi Lamar 8.7(7.1,10.5) Virginia Mecklenburg 12.2(10,14.7) 

Mississippi Lauderdale 13.1(11.4,15) Virginia Middlesex 13.7(7.3,22.4) 

Mississippi Lawrence 12.4(10.3,14.8) Virginia Montgomery 6.9(5.4,8.6) 

Mississippi Leake 13.9(11.8,16.2) Virginia Nelson 9.4(7.5,11.4) 

Mississippi Lee 10.7(9.1,12.4) Virginia New Kent 8.3(6.4,10.5) 

Mississippi Leflore 12.6(10.3,15.2) Virginia Northampton 13.8(9.4,19) 

Mississippi Lincoln 11.7(9.8,13.7) Virginia 
Northumberlan

d 
10.6(5.9,16.9) 

Mississippi Lowndes 12.1(10.2,14.1) Virginia Nottoway 11(8.8,13.4) 

Mississippi Madison 10.5(9,12.2) Virginia Orange 10.3(8.3,12.5) 

Mississippi Marion 11.9(9.9,14.1) Virginia Page 10.4(8.2,12.9) 

Mississippi Marshall 13.3(11.2,15.6) Virginia Patrick 11.2(9.1,13.6) 

Mississippi Monroe 12.9(11,14.8) Virginia Pittsylvania 10.8(9.1,12.7) 

Mississippi Montgomery 14.6(10.9,18.9) Virginia Powhatan 8.7(6.7,10.9) 

Mississippi Neshoba 13.3(11.3,15.5) Virginia Prince Edward 8.7(7,10.7) 

Mississippi Newton 12.9(11,14.9) Virginia Prince George 9.2(7.4,11.3) 

Mississippi Noxubee 12(9.9,14.5) Virginia Prince William 6.2(4.9,7.7) 

Mississippi Oktibbeha 10.1(8.2,12.3) Virginia Pulaski 11(8.8,13.4) 

Mississippi Panola 13.1(10.6,15.9) Virginia Rappahannock 10(7.8,12.6) 

Mississippi Pearl River 10.9(9.4,12.6) Virginia Richmond 8.4(4.8,13.4) 

Mississippi Perry 12.2(10.2,14.5) Virginia Roanoke 9(7.4,10.7) 

Mississippi Pike 11.9(10.1,13.9) Virginia Rockbridge 9.5(7.6,11.5) 

Mississippi Pontotoc 11.2(9.3,13.3) Virginia Rockingham 8.3(6.7,10.1) 

Mississippi Prentiss 11.5(9.6,13.6) Virginia Russell 11.5(9.4,13.8) 

Mississippi Quitman 10.9(7.9,14.4) Virginia Scott 12.3(10,14.8) 

Mississippi Rankin 9.8(8.3,11.4) Virginia Shenandoah 8.9(7,11) 

Mississippi Scott 12.7(10.9,14.6) Virginia Smyth 10.4(8.3,12.8) 
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Mississippi Sharkey 14.4(10.6,18.8) Virginia Southampton 11.3(9,13.8) 

Mississippi Simpson 12.3(10.3,14.4) Virginia Spotsylvania 7.5(6.1,9.1) 

Mississippi Smith 11.7(9.9,13.6) Virginia Stafford 6.3(5.1,7.7) 

Mississippi Stone 10.1(8.5,12) Virginia Surry 12.6(9.6,16.1) 

Mississippi Sunflower 11.4(9.2,13.8) Virginia Sussex 10.1(8,12.6) 

Mississippi Tallahatchie 12.6(10.4,15) Virginia Tazewell 12(9.7,14.6) 

Mississippi Tate 11.8(9.6,14.1) Virginia Warren 8.8(7,10.8) 

Mississippi Tippah 11.5(9.3,14.1) Virginia Washington 11.2(9.2,13.5) 

Mississippi Tishomingo 12.4(10.4,14.6) Virginia Westmoreland 12.5(8.1,17.9) 

Mississippi Tunica 13.8(11.4,16.4) Virginia Wise 12.3(10.1,14.7) 

Mississippi Union 11.3(9.4,13.3) Virginia Wythe 10.7(8.4,13.3) 

Mississippi Walthall 12.7(10.5,15) Virginia York 7.8(5.6,10.3) 

Mississippi Warren 11.3(8.6,14.4) Virginia Alexandria 5.6(4.2,7.1) 

Mississippi Washington 11.3(8.9,13.9) Virginia Bedford City 11.7(7.5,17) 

Mississippi Wayne 12.5(10.5,14.7) Virginia Bristol 10(7.2,13.3) 

Mississippi Webster 13.8(11.3,16.6) Virginia Buena Vista 10.4(6.5,15.5) 

Mississippi Wilkinson 12.7(10.1,15.7) Virginia Charlottesville 7(4.5,10.2) 

Mississippi Winston 14.9(12.3,17.7) Virginia Chesapeake 8.1(6.4,10.1) 

Mississippi Yalobusha 14.2(11.5,17.3) Virginia 
Colonial 

Heights 
8.2(6.1,10.6) 

Mississippi Yazoo 12.1(10,14.4) Virginia Covington 9.9(6.2,14.8) 

North 

Carolina 
Alamance 9.7(8.4,11.2) Virginia Danville 11.4(7.8,15.8) 

North 

Carolina 
Alexander 10.3(8.3,12.5) Virginia Emporia 13.4(8.5,19.7) 

North 

Carolina 
Alleghany 8.9(7,11.1) Virginia Fairfax City 5.8(3.7,8.6) 

North 

Carolina 
Anson 11.9(10,14.1) Virginia Falls Church 6.3(4.4,8.7) 
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North 

Carolina 
Ashe 11.8(9.6,14.3) Virginia Franklin City 14.9(10.6,20.2) 

North 

Carolina 
Avery 11.4(9.6,13.5) Virginia Fredericksburg 7.1(5.1,9.6) 

North 

Carolina 
Beaufort 12.1(9.5,15.1) Virginia Galax 13.3(9.6,17.8) 

North 

Carolina 
Bertie 12.5(9.8,15.5) Virginia Hampton 10.1(7.5,13.1) 

North 

Carolina 
Bladen 12.8(10.7,15.1) Virginia Harrisonburg 6.5(4.1,9.8) 

North 

Carolina 
Brunswick 11.5(9.3,13.8) Virginia Hopewell 12(8.8,15.9) 

North 

Carolina 
Buncombe 9.6(8.2,11.1) Virginia Lexington 6.7(4.2,10) 

North 

Carolina 
Burke 11(9.4,12.7) Virginia Lynchburg 8.3(6.3,10.6) 

North 

Carolina 
Cabarrus 9.2(7.9,10.6) Virginia Manassas 6.9(4.3,10.3) 

North 

Carolina 
Caldwell 11(9.3,12.9) Virginia Manassas Park 7.4(4.8,10.8) 

North 

Carolina 
Camden 10.4(7.3,14) Virginia Martinsville 11.8(7.6,17.2) 

North 

Carolina 
Carteret 10.7(7.9,14) Virginia Newport News 9.9(7.2,12.9) 

North 

Carolina 
Caswell 11.5(9.6,13.6) Virginia Norfolk 7.8(6,9.9) 

North 

Carolina 
Catawba 9.7(8.3,11.2) Virginia Norton 13.2(8.4,19.4) 

North 

Carolina 
Chatham 8.4(7.2,9.7) Virginia Petersburg 13(10.3,16) 

North 

Carolina 
Cherokee 11.1(8.9,13.5) Virginia Poquoson 10.7(7.1,15.2) 

North 

Carolina 
Chowan 16.5(6.4,30.1) Virginia Portsmouth 10.5(8.1,13.1) 
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North 

Carolina 
Clay 10.1(7.8,12.6) Virginia Radford 5.8(4,7.9) 

North 

Carolina 
Cleveland 11.2(9.6,13.1) Virginia Richmond City 8.7(6.7,10.9) 

North 

Carolina 
Columbus 12.3(10.3,14.5) Virginia Roanoke City 10.9(7.9,14.5) 

North 

Carolina 
Craven 10.1(8.1,12.5) Virginia Salem 9(5.8,13.1) 

North 

Carolina 
Cumberland 9.8(8.5,11.3) Virginia Staunton 7.5(4.7,11.1) 

North 

Carolina 
Currituck 9.5(6.5,13.1) Virginia Suffolk 9.8(7.7,12.3) 

North 

Carolina 
Dare 8(4.6,12.6) Virginia Virginia Beach 6.9(5.2,9) 

North 

Carolina 
Davidson 9.9(8.6,11.2) Virginia Waynesboro 10.2(6.4,15.2) 

North 

Carolina 
Davie 10.7(8.8,12.7) Virginia Williamsburg 5.9(4,8.4) 

North 

Carolina 
Duplin 11.4(9.5,13.6) Virginia Winchester 7.3(4.6,10.9) 

North 

Carolina 
Durham 7.6(6.5,8.8) West Virginia Barbour 11.2(8.9,13.7) 

North 

Carolina 
Edgecombe 12.6(10.3,15.1) West Virginia Berkeley 9.4(7.6,11.4) 

North 

Carolina 
Forsyth 8.9(7.6,10.2) West Virginia Boone 13.4(11.2,15.8) 

North 

Carolina 
Franklin 9.9(8.4,11.7) West Virginia Braxton 12.8(9.6,16.4) 

North 

Carolina 
Gaston 10.1(8.5,11.9) West Virginia Brooke 12.8(10.2,15.7) 

North 

Carolina 
Gates 14.6(9.2,20.9) West Virginia Cabell 11.6(9.8,13.5) 

North 

Carolina 
Graham 12.4(10,15) West Virginia Calhoun 16.4(11.9,21.7) 
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North 

Carolina 
Granville 9.8(8.2,11.5) West Virginia Clay 16.3(13.4,19.6) 

North 

Carolina 
Greene 11.9(9.6,14.5) West Virginia Fayette 14.3(12,16.8) 

North 

Carolina 
Guilford 9(7.9,10.2) West Virginia Gilmer 11.8(8.3,16.1) 

North 

Carolina 
Halifax 13(10.9,15.4) West Virginia Grant 12.6(10.3,15.2) 

North 

Carolina 
Harnett 9.3(7.9,10.9) West Virginia Greenbrier 14.1(11.6,16.9) 

North 

Carolina 
Haywood 10.7(9,12.4) West Virginia Hampshire 11.5(9.2,14) 

North 

Carolina 
Henderson 9.6(8,11.3) West Virginia Hancock 12.1(9.8,14.6) 

North 

Carolina 
Hertford 12.4(9.5,15.8) West Virginia Hardy 11.3(9,14) 

North 

Carolina 
Hoke 10.1(8.5,11.9) West Virginia Harrison 10.8(8.9,12.8) 

North 

Carolina 
Hyde 11.3(7.5,15.9) West Virginia Jackson 12.9(10.8,15.1) 

North 

Carolina 
Iredell 9.3(8.1,10.5) West Virginia Jefferson 9.1(7.3,11.2) 

North 

Carolina 
Jackson 9.2(7.6,10.9) West Virginia Kanawha 12(10.6,13.5) 

North 

Carolina 
Johnston 9.9(8.6,11.4) West Virginia Lewis 11.2(8.6,14.1) 

North 

Carolina 
Jones 9.9(8,12.2) West Virginia Lincoln 13.5(11.5,15.7) 

North 

Carolina 
Lee 9.3(7.3,11.5) West Virginia Logan 14.6(12.1,17.4) 

North 

Carolina 
Lenoir 11.7(9.6,14) West Virginia McDowell 16.2(13.5,19.2) 

North 

Carolina 
Lincoln 9.3(7.9,11) West Virginia Marion 11.4(9.4,13.7) 
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North 

Carolina 
McDowell 11.8(9.9,13.9) West Virginia Marshall 11.6(9.5,13.9) 

North 

Carolina 
Macon 10.7(8.6,12.9) West Virginia Mason 12.3(10.2,14.7) 

North 

Carolina 
Madison 10.8(8.9,12.9) West Virginia Mercer 14(11.9,16.3) 

North 

Carolina 
Martin 13(10.6,15.8) West Virginia Mineral 10.7(8.5,13.3) 

North 

Carolina 
Mecklenburg 7.8(6.9,8.9) West Virginia Mingo 14.3(12.2,16.6) 

North 

Carolina 
Mitchell 11.5(9.3,13.9) West Virginia Monongalia 8(6.6,9.6) 

North 

Carolina 
Montgomery 11.1(9.5,12.9) West Virginia Monroe 13.8(11.2,16.6) 

North 

Carolina 
Moore 11(9.5,12.6) West Virginia Morgan 11.6(9.3,14.1) 

North 

Carolina 
Nash 10.9(9.2,12.8) West Virginia Nicholas 13.4(10.9,16.3) 

North 

Carolina 
New Hanover 9.1(7.4,11) West Virginia Ohio 11.7(9.6,14.1) 

North 

Carolina 
Northampton 14.1(11.6,16.9) West Virginia Pendleton 12.1(9.4,15.1) 

North 

Carolina 
Onslow 7.6(6.2,9.2) West Virginia Pleasants 10.2(7.5,13.4) 

North 

Carolina 
Orange 6.2(5.1,7.3) West Virginia Pocahontas 14.2(10.3,18.8) 

North 

Carolina 
Pamlico 11.4(8.2,15.2) West Virginia Preston 10.5(8.5,12.6) 

North 

Carolina 
Pasquotank 13.4(5.2,24.4) West Virginia Putnam 11(9.1,13) 

North 

Carolina 
Pender 11.3(9.5,13.3) West Virginia Raleigh 13.1(11.1,15.2) 

North 

Carolina 
Perquimans 16.2(6.5,28.7) West Virginia Randolph 10.5(7.8,13.7) 
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North 

Carolina 
Person 9.8(8,11.7) West Virginia Ritchie 15.5(10.3,21.8) 

North 

Carolina 
Pitt 8.9(7.6,10.4) West Virginia Roane 14.2(11,17.9) 

North 

Carolina 
Polk 10.3(8.3,12.6) West Virginia Summers 14.1(11.6,16.8) 

North 

Carolina 
Randolph 9.6(8.3,10.9) West Virginia Taylor 11.3(9.1,13.6) 

North 

Carolina 
Richmond 12(10.1,14) West Virginia Tucker 12.3(9.7,15.3) 

North 

Carolina 
Robeson 12.1(10.7,13.7) West Virginia Upshur 11.1(8.7,13.8) 

North 

Carolina 
Rockingham 10.8(9.1,12.5) West Virginia Wayne 13.2(11,15.5) 

North 

Carolina 
Rowan 11.5(10,13.1) West Virginia Wetzel 11.4(9.4,13.6) 

North 

Carolina 
Rutherford 11.8(10.1,13.6) West Virginia Wirt 13.2(10.2,16.7) 

North 

Carolina 
Sampson 11.5(9.8,13.4) West Virginia Wood 13.3(11.1,15.8) 

North 

Carolina 
Scotland 12.5(10.5,14.8) West Virginia Wyoming 14.8(12.4,17.4) 

North 

Carolina 
Stanly 10.4(8.8,12.2)  
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Table 3-3 WINBUGS estimate for the coefficients of covariates for model 8(Final model) 

node  mean  sd  MC error 2.50% median 97.50% 

beta0[1] -2.905 0.4188 0.02743 -3.698 -2.896 -2.135 

beta0[2] -2.904 0.4181 0.02686 -3.696 -2.892 -2.147 

beta0[3] -2.856 0.3711 0.02417 -3.55 -2.839 -2.182 

beta0[4] -2.909 0.4032 0.02632 -3.672 -2.904 -2.164 

beta0[5] -2.869 0.4363 0.0286 -3.684 -2.872 -2.068 

beta0[6] -2.812 0.4139 0.02689 -3.613 -2.801 -2.057 

beta0[7] -2.666 0.2695 0.01703 -3.164 -2.678 -2.147 

beta0[8] -2.951 0.4893 0.03209 -3.892 -2.936 -2.056 

beta0[9] -2.982 0.4019 0.02634 -3.743 -2.984 -2.226 

beta0[10] -2.917 0.3799 0.02479 -3.613 -2.931 -2.214 

beta0[11] -2.817 0.3383 0.02193 -3.448 -2.834 -2.189 

beta0[12] -2.963 0.4158 0.02718 -3.752 -2.965 -2.177 

beta0[13] -2.961 0.3988 0.0261 -3.72 -2.958 -2.219 

beta0[14] -2.657 0.4023 0.0264 -3.422 -2.647 -1.918 

beta0[15] -2.788 0.2808 0.01801 -3.303 -2.797 -2.249 

beta0[16] -2.936 0.4319 0.02822 -3.739 -2.947 -2.141 

Beta1 1.381 0.04464 0.00162 1.292 1.38 1.468 

Beta2 1.743 0.04718 0.00173 1.65 1.743 1.836 

Beta3 -0.4211 0.05782 0.00172 -0.5345 -0.422 -0.3087 

Beta4 -0.4211 0.04901 0.0019 -0.518 -0.4209 -0.3246 

Beta5 0.2547 0.05675 0.00154 0.1453 0.2549 0.3653 
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Beta6 0.4339 0.05674 0.00153 0.3227 0.4344 0.5457 

Beta7 -0.0865 0.05253 0.00196 -0.1892 -0.0867 0.01595 

Beta8 -0.2466 0.05444 0.00206 -0.353 -0.2467 -0.1395 

Beta9 0.4009 0.03618 7.81E-04 0.3302 0.4005 0.4728 

beta10 -0.1956 0.01812 1.18E-04 -0.2313 -0.1955 -0.1601 

beta11 -0.3995 0.02626 1.62E-04 -0.4508 -0.3995 -0.3481 

beta12 -0.6614 0.02602 1.84E-04 -0.7125 -0.6613 -0.6104 

beta13 -0.1726 0.02169 2.50E-04 -0.2145 -0.1727 -0.1294 

beta14 -0.2215 0.02383 2.67E-04 -0.2676 -0.2216 -0.1748 

beta15 -0.4434 0.02578 2.92E-04 -0.4933 -0.4436 -0.3923 

beta16[1] 0.251 0.08432 4.64E-04 0.08471 0.2513 0.4167 

beta16[2] 0.2809 0.1252 6.95E-04 0.03275 0.2825 0.5221 

beta16[3] 0.4771 0.03786 2.50E-04 0.4029 0.4773 0.5515 

beta16[4] 0.06498 0.1121 6.61E-04 -0.1587 0.06576 0.2825 

beta16[5] 0.2669 0.08951 5.09E-04 0.09024 0.2673 0.4408 

beta16[6] 0.1746 0.08581 4.29E-04 0.00594 0.1746 0.3422 

beta16[7] 0.7909 0.08934 4.94E-04 0.6146 0.791 0.9645 

beta16[8] 0.07951 0.08436 4.76E-04 -0.0877 0.07974 0.2433 

beta16[9] 0.3097 0.07136 3.77E-04 0.1693 0.3098 0.4481 

beta16[10] 0.4585 0.07559 3.94E-04 0.3096 0.4587 0.606 

beta16[11] 0.6282 0.07221 3.95E-04 0.4872 0.6283 0.7702 

beta16[12] 0.2122 0.07377 4.03E-04 0.06701 0.2121 0.3557 

beta16[13] 0.3095 0.09674 5.22E-04 0.1191 0.3099 0.4981 
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beta16[14] 0.2535 0.05193 3.99E-04 0.1526 0.2532 0.3549 

beta16[15] 0.01841 0.1336 7.10E-04 -0.2466 0.0202 0.2769 

beta16[16] 0.3885 0.1125 5.68E-04 0.165 0.389 0.6054 

beta17 0.03624 0.02245 0.00149 -0.005 0.03578 0.07961 
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 ´µ¶·¸ ¹·" = º»¸ ·"¤ + ¼·½¢¾ º½¢ + ¼·½£¾ º»¸ ·",½£ + ¿À¸ ·" + ÁÂÃ Ä" 3.4 

Table 3-4 Models Investigated 

Model ¡¢ ¡£ 

CAR 

County State DIC 

1  ¤ −  �� No Yes No 85,354.1 

2  ¤	  ¢ −	 �� No No 85,574.1 

3  ¤	  ¢ −	 �� No Yes 85,574.5 

4  ¤	  ¢ −	 �� Yes No 85,419.0 

5  ¤	  ¢ −	 �� Yes Yes 85,430.6 

6 No  ¤ −	 �� No No 85,598.6 

7 No  ¤ −	 �� Yes No 85,424.5 

8  ¤	ol�	 ¢¥	  ¢ −	 �¦		 Yes No 85,350.8 

9  ¤	ol�	 ¢¥	  ¢ −	 �¦		 Yes Yes 85,362.0 

10  ¤	ol�	 ¢§ −	 ¢¥	  ¢ −	 ��,  ¢¨,  ¢©	ol� ¢ª Yes Yes 85,365.8 

11  ¤ −  «	ol�	 ¢¥  ¢¤ −  ¢©	ol�	 ¢ª Yes No 85,315.4 

12  ¤ −  §,  © −  ¬	ol�	 ¢ª  ¨	ol�	 « −	 ¢¥ Yes No 85,308.5 

13  ¤ −  ¨	ol�	 ¢¥  © −  ¢©	ol�	 ¢ª Yes No 85,455.1 

 

Where βs’ are stands for   

 ¤ Overall effects across the states 

 ¢ Aged 45-64 

 £ Aged 65 and above 

 § Male 

 ¨ White 

 © Male Aged 45-64 

 ¥ Male Aged 65 and above 

 ª White Aged 45-64 

 ¬ White Aged 65 and above 

 « White Male 

 ¢¤ Income2=[$35,000,$50,0000) 

 ¢¢ Income3=[$50,000,$75,0000) 

 ¢£ Income4=$75,000 and above 

 ¢§ Education2= Grade 12 or GED (High school graduate) 

 ¢¨ Education3= College 1 year to 3 years (Some college or technical school) 

 ¢© Education4= College 4 years or more (College graduate) 

 ¢¥ Insurance=No Insurance 

 ¢ª State Poverty percentage 
 Aged 18-44, Female, Black, Inceome1=<35,000, Education1=< High School and Insurance=Yes are reference groups. 

ighlighted in yellow are models selected for analysis due to low DIC 



76 

 

 

Table 3-5 Number of Counties with/Without Good Sample size 

State 

Estimate   

Reliable 
Not 

 Reliable 
Total 

Alabama 28 33 61 

Arkansas 9 46 55 

Florida 62 1 63 

Georgia 8 103 111 

Kentucky 27 61 88 

Louisiana 16 39 55 

Maryland 23 1 24 

Mississippi 33 30 63 

North Carolina 30 61 91 

Ohio 13 75 88 

Pennsylvania 35 29 64 

South Carolina 25 19 44 

Tennessee 9 73 82 

Texas 21 128 149 

Virginia 8 100 108 

West Virginia 17 25 42 

Total County 364 824 1188 

 

Figure 3-12 Scatter Plot Matrix with Histogram and Normal Fitting Curves, All counties 
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Mean
Lower

Limit

Upper

Limit
Mean

Lower

Limit

Upper

Limit
Mean

Lower

Limit

Upper

Limit

Model

8 vs 9

Model

8 vs 9_1

Model

9 vs 9_1

Allegany 10.97 9.4 12.67 10.88 9.31 12.6 10.82 9.28 12.49 0.060000 0.060000 -0.080000

Anne Arundel 8.3 7.18 9.51 8.26 7.13 9.48 8.18 7.07 9.39 0.010000 0.010000 -0.030000

Baltimore 9.6 8.57 10.69 9.42 8.39 10.52 9.41 8.39 10.49 0.020000 0.020000 -0.030000

Calvert 8.71 7.21 10.35 8.76 7.26 10.41 8.6 7.12 10.22 0.040000 0.040000 -0.050000

Caroline 10.1 8.2 12.21 9.89 8.01 11.97 9.83 7.97 11.9 0.080000 0.080000 -0.030000

Carroll 8.46 7.2 9.85 8.52 7.23 9.93 8.37 7.11 9.75 0.010000 0.010000 -0.060000

Cecil 8.65 7.24 10.2 8.6 7.17 10.17 8.49 7.08 10.02 0.020000 0.020000 -0.060000

Charles 8.91 7.45 10.5 8.84 7.4 10.43 8.73 7.3 10.31 0.040000 0.040000 -0.020000

Dorchester 11.51 9.38 13.82 11.23 9.15 13.5 11.19 9.12 13.49 0.070000 0.070000 0.020000

Frederick 7.66 6.65 8.73 7.55 6.55 8.63 7.5 6.5 8.57 0.010000 0.010000 -0.010000

Garrett 11.47 9.58 13.55 11.44 9.53 13.52 11.39 9.51 13.46 0.020000 0.020000 -0.040000

Harford 8.71 7.22 10.36 8.59 7.14 10.21 8.55 7.09 10.17 0.060000 0.060000 0.010000

Howard 7.17 6.14 8.3 6.9 5.88 8.03 7.01 5.98 8.13 0.010000 0.010000 0.000000

Kent 9.52 7.4 11.93 9.33 7.25 11.69 9.37 7.29 11.72 0.100000 0.100000 -0.010000

Montgomery 6.6 5.79 7.46 6.41 5.6 7.27 6.49 5.67 7.34 0.000000 0.000000 0.000000

Prince George's 9.89 8.76 11.09 9.54 8.4 10.77 9.55 8.41 10.77 -0.030000 -0.030000 -0.010000

Queen Anne's 8.11 6.52 9.91 7.93 6.35 9.69 7.94 6.37 9.68 0.080000 0.080000 -0.030000

St. Mary's 8.53 6.81 10.45 8.54 6.83 10.47 8.45 6.75 10.37 0.020000 0.020000 -0.020000

Somerset 10.82 8.54 13.37 10.43 8.22 12.9 10.4 8.18 12.89 0.120000 0.120000 0.030000

Talbot 9.59 7.81 11.56 9.34 7.6 11.27 9.43 7.69 11.35 0.090000 0.090000 -0.010000

Washington 9.86 8.54 11.29 9.76 8.45 11.19 9.7 8.4 11.09 0.060000 0.060000 -0.050000

Wicomico 10 8.19 12.02 9.74 7.95 11.71 9.73 7.93 11.7 0.060000 0.060000 0.010000

Worcester 11.33 9.05 13.85 11.23 8.99 13.75 11.21 8.96 13.68 0.080000 0.080000 -0.040000

Baltimore City 11.42 9.77 13.2 11.12 9.46 12.91 11.08 9.45 12.84 0.040000 0.040000 -0.060000

Model 8 Model 9 Model 9_1 Interval Width Difference

COUNTY NAME

Table 3-6 Maryland state Credible Interval Width Difference among Selected Models 
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Mean
Lower

Limit

Upper

Limit
Mean

Lower

Limit

Upper

Limit
Mean

Lower

Limit

Upper

Limit

Model

8 vs 9

Model

8 vs 9_1

Model

9 vs 9_1

Abbeville 11.78 9.86 13.87 11.91 9.97 14.03 11.87 9.93 14.01 -0.070000 -0.070000 0.020000

Aiken 9.91 8.64 11.27 9.77 8.49 11.13 9.92 8.62 11.33 -0.080000 -0.080000 0.070000

Allendale 9.97 8.25 11.88 10.28 8.45 12.29 10.22 8.42 12.22 -0.170000 -0.170000 -0.040000

Anderson 10.11 8.65 11.69 10.04 8.56 11.63 10.1 8.61 11.69 -0.040000 -0.040000 0.010000

Bamberg 13.09 11.03 15.35 13.48 11.37 15.79 13.38 11.25 15.7 -0.130000 -0.130000 0.030000

Barnwell 12.04 9.95 14.33 12.2 10.06 14.54 12.16 10.03 14.47 -0.060000 -0.060000 -0.040000

Beaufort 8.18 6.94 9.51 8.03 6.8 9.37 8.21 6.95 9.56 -0.040000 -0.040000 0.040000

Berkeley 9.86 8.57 11.23 9.78 8.47 11.21 9.91 8.58 11.36 -0.120000 -0.120000 0.040000

Calhoun 14.42 12.18 16.89 14.55 12.29 17.01 14.47 12.21 16.95 -0.030000 -0.030000 0.020000

Charleston 9.78 8.57 11.07 9.62 8.39 10.92 9.85 8.6 11.2 -0.100000 -0.100000 0.070000

Cherokee 10.77 8.94 12.8 10.77 8.9 12.84 10.75 8.88 12.85 -0.110000 -0.110000 0.030000

Chester 11.95 9.68 14.47 12.14 9.85 14.69 12.01 9.72 14.58 -0.070000 -0.070000 0.020000

Chesterfield 12.64 10.83 14.6 12.69 10.86 14.69 12.61 10.78 14.62 -0.070000 -0.070000 0.010000

Clarendon 13.63 11.75 15.65 13.8 11.88 15.88 13.73 11.82 15.82 -0.100000 -0.100000 0.000000

Colleton 12.2 10.56 13.96 12.32 10.65 14.13 12.26 10.58 14.08 -0.100000 -0.100000 0.020000

Darlington 13.15 11.1 15.4 13.19 11.12 15.45 13.2 11.11 15.49 -0.080000 -0.080000 0.050000

Dillon 12.9 10.95 15.03 13.12 11.12 15.29 13.02 11.02 15.17 -0.070000 -0.070000 -0.020000

Dorchester 9.81 8.23 11.57 9.68 8.09 11.46 9.83 8.22 11.61 -0.050000 -0.050000 0.020000

Edgefield 10.1 8.38 11.97 10.12 8.4 12 10.18 8.43 12.08 -0.060000 -0.060000 0.050000

Fairfield 13.21 11.22 15.37 13.67 11.64 15.89 13.52 11.49 15.75 -0.110000 -0.110000 0.010000

Florence 11.52 10.08 13.07 11.56 10.1 13.13 11.6 10.12 13.19 -0.080000 -0.080000 0.040000

Georgetown 11.2 9.61 12.87 11 9.42 12.65 11.13 9.55 12.81 0.000000 0.000000 0.030000

Greenville 9.37 8.23 10.6 9.3 8.12 10.56 9.46 8.27 10.75 -0.110000 -0.110000 0.040000

Greenwood 9.83 8.28 11.51 9.9 8.3 11.63 9.93 8.33 11.67 -0.110000 -0.110000 0.010000

Hampton 11.98 10.13 14 12.38 10.44 14.48 12.24 10.31 14.35 -0.170000 -0.170000 0.000000

Horry 11.05 9.68 12.54 10.81 9.41 12.31 10.98 9.58 12.5 -0.060000 -0.060000 0.020000

Jasper 10.8 8.78 13.03 11.18 9.08 13.5 11.12 9.05 13.45 -0.150000 -0.150000 -0.020000

Kershaw 11.61 9.93 13.42 11.46 9.77 13.26 11.52 9.81 13.37 -0.070000 -0.070000 0.070000

Lancaster 10.79 9.11 12.62 10.72 9.03 12.57 10.74 9.05 12.61 -0.050000 -0.050000 0.020000

Laurens 11.26 9.76 12.9 11.35 9.81 13.03 11.35 9.82 13.02 -0.060000 -0.060000 -0.020000

Lee 13.33 11.27 15.59 13.8 11.63 16.13 13.61 11.48 15.91 -0.110000 -0.110000 -0.070000

Lexington 9.29 7.92 10.77 9 7.62 10.5 9.2 7.79 10.73 -0.090000 -0.090000 0.060000

McCormick 13.92 11.32 16.83 13.84 11.22 16.75 13.93 11.29 16.87 -0.070000 -0.070000 0.050000

Marion 13.58 11.59 15.76 13.93 11.83 16.16 13.79 11.72 16 -0.110000 -0.110000 -0.050000

Marlboro 12.87 11.12 14.76 13.17 11.35 15.13 13.04 11.22 14.99 -0.130000 -0.130000 -0.010000

Newberry 11.67 9.96 13.49 11.75 10.06 13.6 11.73 10.01 13.6 -0.060000 -0.060000 0.050000

Oconee 9.84 8.34 11.45 9.57 8.07 11.22 9.72 8.19 11.36 -0.060000 -0.060000 0.020000

Orangeburg 13.69 12.25 15.23 14 12.51 15.62 13.92 12.42 15.53 -0.130000 -0.130000 0.000000

Pickens 8.81 7.16 10.67 8.72 7.03 10.62 8.86 7.16 10.78 -0.110000 -0.110000 0.030000

Richland 9.64 8.53 10.84 9.67 8.5 10.91 9.8 8.62 11.07 -0.140000 -0.140000 0.040000

Saluda 10.93 9.09 12.93 10.95 9.11 12.99 10.93 9.07 12.99 -0.080000 -0.080000 0.040000

Spartanburg 10.12 8.74 11.6 10.12 8.72 11.64 10.18 8.74 11.74 -0.140000 -0.140000 0.080000

Sumter 12.07 10.49 13.76 12.24 10.62 14.01 12.22 10.58 13.99 -0.140000 -0.140000 0.020000

Union 12.76 10.98 14.7 12.87 11.05 14.88 12.77 10.96 14.76 -0.080000 -0.080000 -0.030000

Williamsburg 14.41 12.49 16.47 14.74 12.78 16.87 14.63 12.68 16.73 -0.070000 -0.070000 -0.040000

York 9.63 8.15 11.23 9.47 7.98 11.11 9.62 8.1 11.29 -0.110000 -0.110000 0.060000

Model 8 Model 9 Model 9_1 Interval Width Difference
COUNTY

NAME

Table 3-7 South Carolina state Credible Interval Width Difference among Selected Models 
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4 DISCUSSION 

The aim of this dissertation was to fill up information gap, in terms of coverage, time 

and sample size, in surveys made to investigate the prevalence of diabetes in Counties around 

the United States. During the study, we found out that not only surveys have limitations on 

coverage and sample size but it is also difficult to conduct a survey every year because of the 

amount of resources it requires. For instance the questions conduct in the survey may not done 

every year or depends on each state decision to include the questionnaire every year. 

Moreover, Counties that were expected to conduct surveys every year were not able to carry 

out that responsibility for a variety of reasons. Therefore, surveys have limitations in providing 

recent data for relevant decision making. This left policy makers and budget allocators with the 

option of making decisions relying on data generated by direct estimations on such surveys. 

In terms of coverage, the 2010 BRFSS survey was able to cover only 1,188 Counties 

among 1,497 Counties under our study. In fact states do conduct additional surveys in order to 

fill BRFSS’s coverage gap, such as Florida (see Chapter 2). However that may not be carried out 

every year.  From the 1,497 Counties covered in the BRFSS survey 824 were underrepresented 

or with small sample size (based on the Healthy people 2010 Criteria for Data Suppression). 

Moreover, from among 1,497 counties in 16 states that we included in our analysis, 305 of the 

counties lacked information when we aggregated individuals surveyed in the BRFSS survey, we 

have checked from 2000 to 2010. 

The choice for policy makers is to either conduct all-small-area-covering survey every 

year- which is almost impossible to do so, if one considers budget and other resources that it 

requires - or to generate direct estimates for decision making. This dissertation attempted to 
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provide a third plausible option using Bayesian Hierarchical Model of estimation which is 

believed to provide a reliable data as compared to direct estimation. 

Our models helped us to estimate the prevalence of diabetes in underrepresented or 

Counties through borrowing data on recent surveys made in neighboring Counties. In doing so 

we were able to minimize errors from direct estimations generated for these areas.  

Because of small sample size some of the counties incorporated for analysis do not have 

observations from certain groups. For instance, Charlotte, Collier, Martin, Sumter Counties do 

not have data for age group 18-44 (see the Florida Department of Health direct estimate for 

counties12). We however overcame this information gap by constructing BH models to borrow 

information from neighboring counties for estimating the prevalence of diabetes.  

Our models therefore helped to estimate the prevalence of diabetes for all counties 

including those with small sample size and other Counties with missing information (such as 

Charlotte and Collier).  

Our estimates demonstrated that people with high prevalence of diabetes reside in 

counties with the highest poverty levels. Our estimates moreover revealed racial disparities in 

diabetes prevalence. Accordingly, Blacks in all counties have been found to have higher 

prevalence of diabetes than Whites.  In addition to this in almost all counties, the estimated 

prevalence of diabetes was higher in males than females.  

This paper shows not only the advantage of BH over direct estimate but also the 

socioeconomic factor in dealing with this chronic epidemic disease.  This in turn helps policy 

makers and fund allocators to allocate fund to appropriate areas with meaningful policy to 

tackle this epidemic.  



81 

 

In Chapter 2 we used the 2010 BRFSS data and drew estimates for Florida counties. The 

2010 estimated prevalence of diabetes showed all counties in Florida have high prevalence 

compared to the national diabetes prevalence16, and this clearly shows the burden on Florida 

State. Having estimate at this level and for all counties would create an opportunity for policy 

makers to address the issue appropriately. The model estimates also show the estimated 

prevalence of diabetes varied across the counties, which indicates the need to design 

specifically targeted public health policies and allocation of fund. 

Our findings also reveal that socioeconomic disparities among the Florida population are 

one of the factors for the high prevalence of diabetes in certain counties. Most of the counties 

with high prevalence of diabetes are those with high poverty rate. In addition to this 

socioeconomic factors and racial disparities reflect variations in the prevalence of diabetes. 

Our study has some limitations as the BRFSS survey data generally underestimates the 

true prevalence of diabetes. About one-third of people with diabetes do not know they have it 

diabetes(1). Since the BRFSS is a telephone survey, households without telephones may not be 

included. Although telephone coverage is generally high, non-coverage may be high for certain 

population groups. For example, American Indians, rural Blacks in some southern states, and 

persons in lower socioeconomic groups typically have lower telephone coverage (2). As diabetes 

is more common among racial and ethnic minority groups and among lower socioeconomic 

groups, BRFSS may underestimate diabetes prevalence for these subpopulations13, 14. 
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5 CONCLUSION  

The Bayesian Hierarchical Model is helpful to extend small area estimation to produce the 

needed reliable estimates for all areas including those small local areas with small sample size 

Using this model the study was able to estimate the prevalence of diabetes in 1,479 counties all 

over the 16 states from 2010 BRFSS survey data.  

The estimates were generated for the following categories of Counties. 

5.1 Counties covered by the 2010 BRFSS survey with having a complete set information 

A total of 1,188 Counties were analyzed in this category. 5 counties in Texas have a 

complete information but no adjacent counties. Based on the criterions stated in the 

Healthy people 2020 data suppression for BRFSS not all counties have a good sample size. 

Even though estimates were generated based on data from the 2010 BRFSS survey they 

could be used for all practical purposes for current and future decision making. 

5.2 Counties covered by the 2010 BRFSS survey but have small sample size  

A total of 824 Counties among 1,188 counties were analyzed here and estimates for the 

prevalence of diabetes were generated. 

5.3 Counties that were not covered by the 2010 BRFSS survey  

Here a total of 289 Counties were covered in our estimation. 6 counties didn’t have the 

population proportion for Blacks when we aggregated by age and sex from the Census. Without 
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such estimates, decision makers would not have the ability to decide on important issues such 

as budget allocation for these areas. Or else make their decisions based on direct estimates. 

The study was helpful in presenting relevant data for decision making with regards to control 

and prevention of diabetes. Instead of making decisions based on incomplete or insufficient 

data it is advisable to make use of an estimate with lower probability of error than direct 

estimates. This study is believed to help the decision making process in policy making through 

providing such estimates.  

The burden of diabetes on the economy is huge. Type 2 Diabetes affects 29.1 million 

Americans. Besides the money spent on direct treatment of the disease, its tremendous effect 

on labor productivity is obvious. The socio economic burden of this disease can be mitigated by 

formulating the right policies of prevention and treatment accompanied by the budget needed. 

The estimates generated in this study will help provide a reliable data to this end. 

From the results of this study it is safe to conclude that surveys will continue to have coverage, 

sample size and time gaps in providing information on the prevalence of diabetes.  The use of 

estimates therefore will continue to be an essential part of data processing at the policy level. 

Being a better tool of estimation, the Bayesian hierarchical small area model becomes handy 

for such kind of situations. This study delivered the importance of this method in providing 

better estimates and it is recommended to use them during survey data analysis or when 

conducting surveys becomes expensive. 
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6 FUTURE RESEARCH  

Our result shows that southern parts of the U.S. have people with more diagnosed 

diabetes than other parts. On average people in southern states are 12% more likely to 

diagnose for diabetes than people in Southern states. However, further research needs to be 

made to investigate what other factors lead to such results. Public health professionals who 

need to investigate what other factors influence diabetes outcome besides age, sex, race, 

education attainment, income and health insurance can focus their research based on the 

results of this study. One other area of investigation suggested by researchers during our study 

was access to healthy food. Even though dining on healthy food might relate to other factors 

such as income and cultural diversity (or racial differences), that should also be investigated in a 

related research to be made in the future. Results from such studies could be principal sources 

of information for decision makers to control and prevent diabetes. 

Our results can also be used to direct the focus of investigation for future studies. For 

instance, Counties with high level of estimation in prevalence of diabetes may call for special 

attention for future investigation. That in return could help policy makers to isolate factors in 

their effort of diabetes prevention in other parts of the country. 

The Models we used in this research may be used as tool of estimation by other 

researchers to investigate prevalence of other diseases similar to diabetes – diseases that share 

similar factors for their prevalence 
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Appendix A SAS Codes used for all Analysis 

%Macro avg2(k); 

Proc freq Data=logitfil.Diabeticbelt09012016; 

tables _state*ctycode*Diab*sex*race*AGE3*EDUCAG*incom*insur/Out=State&k noprint; 

  where _state in(&k) and ctycode not in(.,777,999) ; 

 Run; 

 

 Data state&k._1; 

  Set state&k; 

  _state=&k; 

 Run; 

 

 Ods HTML CLOSE; 

 Ods HTML; 

 

 Proc Append Base=logitfil.Allstatecomb1 Data=State&k._1 Force; 

 Run; 

 

 Dm log 'clear' Output; 

 DM 'LOG;CLEAR;Out;CLEAR;RESULTS CLEAR'; /* CLEARING LOG AND Output WINDoWS */ 

 

%Mend avg2; 

%Macro avg2_1(var1,var2); 

 %Local i; 

 %Do i=&var1 %To &var2; 

  %avg2(&i); 
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 %End; 

%Mend avg2_1; 

%avg2_1(1,16);/*Number of States*/ 

 

 

/*********************************************************************************************

**********************************************************/ 

/*********** Overall Intial estimate for other 

parameters***********************************************************/ 

Ods Listing close; 

Proc genmod Data=logitfil.diabfinalstat_2; 

 Model diab/pop= g2 g3 s1 r1 g2*s1 g3*s1 g2*r1 g3*r1 s1*r1 inc2 inc3 inc4 edu2 edu3 edu4  insu2 / 

dist=binomial link=logit ; 

 Title "State Al"; 

 Ods Output ParameterEstimates=myOballt/*(Keep=Parameter Estimate StdErr)*/; 

Run; 

/*********************************************************************/ 

Data allbetaEst(keep=Parameter Estimate ); 

 Set myOballt_1; 

 If Parameter = "Intercept" Then Parameter = "beta1"; 

 If Parameter = "g2" Then Parameter = "beta2"; 

 If Parameter = "g3" Then Parameter = "beta3"; 

 If Parameter = "s1" Then Parameter = "beta4"; 

 If Parameter = "r1" Then Parameter = "beta5"; 

 If Parameter = "g2*s1" Then Parameter = "beta6"; 

 If Parameter = "g3*s1" Then Parameter = "beta7"; 

 If Parameter = "g2*r1" Then Parameter = "beta8"; 
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 If Parameter = "g3*r1" Then Parameter = "beta9"; 

 If Parameter = "s1*r1" Then Parameter = "beta10"; 

 If Parameter = "inc2" Then Parameter = "beta11"; 

 If Parameter = "inc3" Then Parameter = "beta12"; 

 If Parameter = "inc4" Then Parameter = "beta13"; 

 If Parameter = "edu2" Then Parameter = "beta14"; 

 If Parameter = "edu3" Then Parameter = "beta15"; 

 If Parameter = "edu4" Then Parameter = "beta16"; 

 If Parameter = "insu2" Then Parameter = "beta17"; 

 

Run; 

 

Data allbetaPerc(Keep= perc Parameter1); 

Length Parameter1 $6; 

 Set myOballt_1; 

 If Parameter = "Intercept" Then Parameter1 = "taub1"; 

 If Parameter = "g2" Then Parameter1 = "taub2"; 

 If Parameter = "g3" Then Parameter1 = "taub3"; 

 If Parameter = "s1" Then Parameter1 = "taub4"; 

 If Parameter = "r1" Then Parameter1 = "taub5"; 

 If Parameter = "g2*s1" Then Parameter1 = "taub6"; 

 If Parameter = "g3*s1" Then Parameter1 = "taub7"; 

 If Parameter = "g2*r1" Then Parameter1 = "taub8"; 

 If Parameter = "g3*r1" Then Parameter1 = "taub9"; 

 If Parameter = "s1*r1" Then Parameter1 = "taub10"; 

 If Parameter = "inc2" Then Parameter1 = "taub11"; 

 If Parameter = "inc3" Then Parameter1 = "taub12"; 
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 If Parameter = "inc4" Then Parameter1 = "taub13"; 

 If Parameter = "edu2" Then Parameter1 = "taub14"; 

 If Parameter = "edu3" Then Parameter1 = "taub15"; 

 If Parameter = "edu4" Then Parameter1 = "taub16"; 

 If Parameter = "insu2" Then Parameter1 = "taub17"; 

 Perc=Round(perc,.001); 

Run; 

/***********************************************************************/ 

/************ CREATING CAR b from Missing counties for Alabama States***/ 

/****** Follow Simillar Patter for other states and counties*/ 

 

Proc IMPORT Out= WORK.taub  

            DataFILE= "\\cdc.gov\private\M120\gwj6\Training from local D 

rive\Dissertation\Openbugs\2010 BRFSS Analysis New Run\Israe final Paper 

_Result and Map\Winbugs\All Process for Winbugs\Model 8\Model 8  beta CAR.xlsx"  

            DBMS=EXCEL REPLACE; 

     RANGE="'tau#b posterior$'";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

Run; 

 

%Macro st; 

 %Do i= 1 %To 16; 

  Data taub&i; 
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   Set taub; 

   Keep Runs taub  FIPS; 

   FIPS=&i; 

  Run; 

  Proc Append Base=stord.Allsttaub Data=taub&i Force; 

  Run; 

 %End; 

%Mend st; 

%st; 

 

Data stord.AllmisCARB; 

 Set stord.AllCARB; 

 Where FIPS=1000; 

 cty=.; 

 Keep FIPS Runs cty; 

Run; 

 

%Macro adj1(st,cty,adjcty); 

 Data carb&cty._&st; 

  Set stord.AllCARB; 

  Where FIPS=&st; 

  CTY=&cty; 

  Keep Runs FIPS &adjcty CTY; 

  Proc Sort; 

  By Runs; 

 Run; 
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 Data stord.AllmisCARB; 

 Retain  FIPS CTY Runs; 

  Set stord.AllmisCARB carb&cty._&st; 

 Run; 

 

%Mend adj1; 

%adj1(1,62,CARB3 CARB40 CARB47 CARB50 CARB52) 

%adj1(1,63,CARB10 CARB13 CARB24 CARB54 CARB56 CARB57) 

%adj1(1,64,CARB30 CARB42 CARB49 CARB55 CARB58) 

%adj1(1,65,CARB1 CARB6 CARB19 CARB22 CARB47) 

%adj1(1,66,CARB4 CARB10 CARB22 CARB30 CARB42) 

%adj1(1,67,CARB6 CARB12 CARB22 CARB42 CARB46) 

 

%Macro adj2(st,cty,cars,n); 

 

 Data estmiss&cty; 

  Merge stord.AllCARB1(Where=(FIPS=&st)) stord.Allsttaub(Where=(FIPS=&st)); 

  carb&cty=(&cars)/&n;  

  taubn= 1/SQRT(taub*&n);  

  Newbcar= Rand("Normal",carb&cty,taubn); 

 Run; 

 

 Data estmiss&cty._1; 

  Set estmiss&cty; 

  FIPS=&st; 

  Rename newbcar=CARB&cty; 

  Keep Runs Newbcar FIPS; 
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  Proc Sort; 

  By FIPS Runs; 

 Run; 

 

 Data Misscty; 

  Merge misscty estmiss&cty._1; 

  By FIPS Runs; 

 Run;  

 

%Mend adj2; 

 

%adj2(1,62,CARB3+CARB40+CARB47+CARB50+CARB52,5) 

%adj2(1,63,CARB10+CARB13+CARB24+CARB54+CARB56+CARB57,6) 

%adj2(1,64,CARB30+CARB42+CARB49+CARB55+CARB58,5) 

%adj2(1,65,CARB1+CARB6+CARB19+CARB22+CARB47,5) 

%adj2(1,66,CARB4+CARB10+CARB22+CARB30+CARB42,5) 

%adj2(1,67,CARB6+CARB12+CARB22+CARB42+CARB46,5) 

/****************** Creating CAR b for counties Ends**************************/ 

/*****************************************************************************/ 

/**********Covariates in the analysis***************************************** 

combination of the followings 

Age(1,2,3) 

Sex(1,2) 

Race(1,2) 

Income(1,2,3,4) 

Education(1,2,3,4) 

Insurance(1,2)****************************************************************/ 
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Libname grpn 'Dissertation'; 

 

%Macro crtecov1(var1,var2,num);/*creating covariates*/ 

 Data covr&var2; 

  Set grpn.ALL384Subgroups; 

  Rename &var2=&var2.c1; 

  FIPS=&var1; 

  Keep FIPS &var2 ; 

 Run; 

 

 %Local i; 

 %Do i=2 %To &num; 

  Data covr&i; 

   Set grpn.ALL384Subgroups; 

   Keep &var2; 

   Rename &var2=&var2.c&i; 

  Run; 

 

  Data covr&var2; 

   Merge covr&var2 covr&i; 

  Run; 

  Proc DataSets library=work; 

   Delete covr&i; 

  Run; 

 %End; 

/*dm "Out;clear;log;clear;";*/ 

%Mend crtecov1; 
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/*%crtecov1(1,G1S1R1Inc1Edu1Insu1,1);*/ 

 

%Macro crtecov2(var1,var2); 

 %Local i; 

 %Local j; 

 %Local k; 

 %Local l; 

 %Local m; 

 %Local n; 

   %Do i = 1 %To 1; 

    %Do j = 1 %To 1; 

         %Do k = 1 %To 1; 

           %Do l = 1 %To 1; 

               %Do m = 1 %To 1; 

       %Do n=1 %To 1; 

      %crtecov1(&var1,G&i.S&j.R&k.Inc&l.Edu&m.Insu&n,&var2); 

     %End;/* Do Insu */ 

               %End; /* Do Edu */ 

             %End; /* Do Inc */ 

         %End; /* Do Race */ 

       %End; /* Do Sex */ 

   %End; /* Do Age */ 

%Mend crtecov2; 

%crtecov2(1,67);/*similarly for other states and counties*/ 

Option Nofmterr; 

Libname covrtd 'Dissertation'; 

Libname stordn 'Dissertation'; 
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%Macro crtecov(var,st,beg,end); 

 Data covr&var; 

  Set covrtd.D&var._2; 

  Where FIPS=&st; 

  KEEP &var.c&beg-&var.c&End; 

 Run; 

 

 Data betaest; 

  Set stordn.Allcombbetas; 

  Where FIPS=&st; 

  Drop FIPS; 

 Run; 

 

 Data Carall1; 

  Set stordn.AllCARB3; 

  Where FIPS=&st; 

  Keep CARB&beg-CARB&End; 

 Run; 

 

 /**************************** Puting covariates in matrix 

form*********************************************/ 

 

 Proc iml; 

   * Read Data into IML ; 

   use covr&var; 

   read all ; 

   y=&var.c1; 
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 %Macro test; 

  %Local o; 

  %Do o=2 %To &End; 

   y=y || &var.c&o; 

  %End; 

  /*print y;*/ 

 %Mend test; 

 %test; 

 

 /***********************************************************/ 

 

   * Read Data into IML ; 

 

   use betaest; 

   read all ; 

   beta=beta1; 

 %Macro test1; 

  %Local p; 

  %Do p=2 %To 18; 

   beta=beta || beta&p; 

  %End; 

 %Mend test1; 

 %test1; 

 

 betax=beta * y; 

 /***************************************************************/ 

   * Read Data for CAR model into IML ; 
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 use Carall1; 

 read all ; 

 BCAR=CARB1; 

 %Macro test2; 

  %Local q; 

  %Do q=2 %To &End; 

   BCAR=BCAR || CARB&q; 

  %End; 

 %Mend test2; 

 %test2; 

 

 /* Estimating the probability*/ 

 logitp=beta * y + BCAR; 

 Pprob=(exp(logitp))/(1+exp(logitp)); 

 

 /* Estimating Posterior Probability*/ 

 create &var.Pprob&st from Pprob; /** create Data Set **/ 

 append from Pprob;       /** write Data in vectors **/ 

 close &var.Pprob&st; /** close the Data Set **/ 

  Data prob&st..&var.Pprob; 

   Set &var.Pprob&st; 

  Run; 

 Proc DataSets library=work; 

  Delete &var.Pprob&st; 

 Run; 

 Dm log 'clear' Output; 
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 DM 'LOG;CLEAR;Out;CLEAR;RESULTS CLEAR';  /* CLEARING LOG AND Output WINDoWS*/ 

 Quit; 

%Mend crtecov; 

%Macro strd3(var1,var2,var3); 

 %Local i; 

 %Local j; 

 %Local k; 

 %Local l; 

 %Local m; 

 %Local n; 

   %Do i = 1 %To 3; 

    %Do j = 1 %To 2; 

         %Do k = 1 %To 2; 

           %Do l = 1 %To 4; 

               %Do m = 1 %To 4; 

       %Do n=1 %To 2; 

     

 %crtecov(G&i.S&j.R&k.Inc&l.Edu&m.Insu&n,&var1,&var2,&var3); 

     %End;/* Do Insu */ 

               %End; /* Do Edu */ 

             %End; /* Do Inc */ 

         %End; /* Do Race */ 

       %End; /* Do Sex */ 

   %End; /* Do Age */ 

%Mend strd3; 

%strd3(1,1,67) 

/*******************************************************************/ 
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/****** creating population Probability by Age, Sex and Race****************/  

 

Data Probprotst1cty1; 

 Set Probprotst1cty1; 

 G1WHTMALE=ProbG1S1R1inc1edu1Insu1* NewG1S1R1Inc1Edu1Insu1 + 

     . 

     . 

     . 

    

  + ProbG1S1R1INC4EDU4INSU2* NEWG1S1R1INC4EDU4INSU2; 

 G1WHTFEM=ProbG1S2R1INC1EDU1INSU1* NEWG1S2R1INC1EDU1INSU1 + 

     . 

     . 

     . 

    

 + ProbG1S2R1INC4EDU4INSU2* NEWG1S2R1INC4EDU4INSU2; 

 G1BLKMALE=ProbG1S1R2INC1EDU1INSU1* NEWG1S1R2INC1EDU1INSU1+ 

     . 

     . 

     . 

    

 + ProbG1S1R2INC4EDU4INSU2* NEWG1S1R2INC4EDU4INSU2; 

 G1BLKFEM=ProbG1S2R2INC1EDU1INSU1* NEWG1S2R2INC1EDU1INSU1+ 

     . 

     . 

     . 

    

 + ProbG1S2R2INC4EDU4INSU2* NEWG1S2R2INC4EDU4INSU2; 

 G2WHTMALE=ProbG2S1R1INC1EDU1INSU1* NEWG1S1R1INC1EDU1INSU1 + 

     . 

     . 

     . 

    

 + ProbG2S1R1INC4EDU4INSU2* NEWG1S1R1INC4EDU4INSU2; 

 G2WHTFEM=ProbG2S2R1INC1EDU1INSU1* NEWG1S2R1INC1EDU1INSU1 + 

     . 

     . 

     . 

    

 + ProbG2S2R1INC4EDU4INSU2* NEWG1S2R1INC4EDU4INSU2; 



102 

 

 G2BLKMALE=ProbG2S1R2INC1EDU1INSU1* NEWG1S1R2INC1EDU1INSU1 + 

     . 

     . 

     . 

    

 + ProbG2S1R2INC4EDU4INSU2* NEWG1S1R2INC4EDU4INSU2; 

 G2BLKFEM=ProbG2S2R2INC1EDU1INSU1* NEWG1S2R2INC1EDU1INSU1 + 

     . 

     . 

     . 

    

 + ProbG2S2R2INC4EDU4INSU2* NEWG1S2R2INC4EDU4INSU2; 

 G3WHTMALE=ProbG3S1R1INC1EDU1INSU1* NEWG1S1R1INC1EDU1INSU1 + 

     . 

     . 

     . 

    

 + ProbG3S1R1INC4EDU4INSU2* NEWG1S1R1INC4EDU4INSU2; 

 G3WHTFEM=ProbG3S2R1INC1EDU1INSU1* NEWG1S2R1INC1EDU1INSU1 + 

     . 

     . 

     . 

    

 + ProbG3S2R1INC4EDU4INSU2* NEWG1S2R1INC4EDU4INSU2; 

     . 

     . 

     . 

    

 + ProbG3S1R2INC4EDU4INSU2* NEWG1S1R2INC4EDU4INSU2; 

 G3BLKFEM=ProbG3S2R2INC1EDU1INSU1* NEWG1S2R2INC1EDU1INSU1 + 

     . 

     . 

     . 

    

 + ProbG3S2R2INC4EDU4INSU2* NEWG1S2R2INC4EDU4INSU2; 

 Keep ctycode G1BLKFEM G1WHTFEM G1BLKMALE G1WHTMALE 

 G2BLKFEM G2WHTFEM G2BLKMALE G2WHTMALE 

 G3BLKFEM G3WHTFEM G3BLKMALE G3WHTMALE; 

Run; 
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/************ Getting population from Census to calculate************** 

******weighted Pop of Florida County by Age*Sex*Race ******************/ 

Option nofmterr; 

Libname Censu 'Dissertation\census'; 

Data DiabBelt; 

 Set censu.V2011statecountybridgecensus2010; 

 Where year=2010 AND STfips IN(1,5 ,12,13, 21,22,24,28,37,39,42,45,47,48,51,54); 

 If 18<=Age_Actual<=44 Then agegrp=1; 

 Else If 45<=Age_Actual<=64 Then agegrp=2; 

 Else If Age_Actual >=65 Then agegrp=3; 

 Else agegrp=.; 

 Keep Year StFips CO_FIPS Den agegrp sex race Age_Actual; 

 Proc Sort Data=DiabBelt; 

 By StFips CO_FIPS; 

Run; 

Proc Means Data=DiabBelt; 

 By StFips CO_FIPS; 

 Class agegrp sex race; 

 Var den; 

 Output Out=TempDSSum; 

Run; 

Data pop; 

 Set Allpopwithinteraction_3; 

 where agegrp>0 and sex>0 and race in(1,2); 

 If agegrp=1 and sex=1 and race=1 Then newcd='G1WM'; 

 If agegrp=1 and sex=2 and race=1 Then newcd='G1WF'; 

 If agegrp=1 and sex=1 and race=2 Then newcd='G1BM'; 
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 If agegrp=1 and sex=2 and race=2 Then newcd='G1BF'; 

 If agegrp=2 and sex=1 and race=1 Then newcd='G2WM'; 

 If agegrp=2 and sex=2 and race=1 Then newcd='G2WF'; 

 If agegrp=2 and sex=1 and race=2 Then newcd='G2BM'; 

 If agegrp=2 and sex=2 and race=2 Then newcd='G2BF'; 

 If agegrp=3 and sex=1 and race=1 Then newcd='G3WM'; 

 If agegrp=3 and sex=2 and race=1 Then newcd='G3WF'; 

 If agegrp=3 and sex=1 and race=2 Then newcd='G3BM'; 

 If agegrp=3 and sex=2 and race=2 Then newcd='G3BF'; 

 Proc SORT; 

 By FIPS CTY; 

Run; 

Proc Transpose Data=pop Out=pop1(Drop=_NAME_ ); 

 Var pop; 

 By FIPS cty; 

 Id newcd; 

Run; 

%Macro prct(i,var2,st); 

 Data agesexNEW&st.cty&i; 

  Merge stprob&st..Post&st.cty&i._2(in=a) censpop.Censuspoptranspose(in=b); 

  By cty; 

  If a; 

  Where FIPS=&st and CTY=&i; 

  /********** Age Group 1 by Sex ****************************/ 

  G1male= (G1BLKMALE*G1BM + G1WHTMALE*G1WM)/(G1BM + G1WM); 

  G1female= (G1BLKFEM*G1BF + G1WHTFEM*G1WF)/(G1BF + G1WF); 
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G1=((G1BLKMALE*G1BM + G1WHTMALE*G1WM) + (G1BLKFEM*G1BF + G1WHTFEM*G1WF))/(G1BM + G1WM 

+G1BF + G1WF);  

  /********** Age Group 2 By Sex ****************************/ 

  G2male=(G2BLKMALE*G2BM + G2WHTMALE*G2WM)/(G2BM + G2WM); 

  G2female=(G2BLKFEM*G2BF + G2WHTFEM*G2WF)/(G2BF + G2WF); 

  G2=((G2BLKMALE*G2BM + G2WHTMALE*G2WM) + (G2BLKFEM*G2BF + 

G2WHTFEM*G2WF))/(G2BM + G2WM +G2BF + G2WF);  

  /********** Age Group 3 By Sex ****************************/ 

  G3male=(G3BLKMALE*G3BM + G3WHTMALE*G3WM)/(G3BM + G3WM); 

  G3female=(G3BLKFEM*G3BF + G3WHTFEM*G3WF)/(G3BF + G3WF); 

G3=((G3BLKMALE*G3BM + G3WHTMALE*G3WM) + (G3BLKFEM*G3BF + G3WHTFEM*G3WF))/(G3BM + G3WM 

+G3BF + G3WF); 

  /************************ By Sex *****************************************/ 

  Male=((G1BLKMALE*G1BM + G1WHTMALE*G1WM)+(G2BLKMALE*G2BM + 

G2WHTMALE*G2WM)+(G3BLKMALE*G3BM + G3WHTMALE*G3WM))/(G1BM + G1WM+G2BM + G2WM+G3BM + 

G3WM); 

  Female=((G1BLKFEM*G1BF + G1WHTFEM*G1WF)+(G2BLKFEM*G2BF + 

G2WHTFEM*G2WF)+(G3BLKFEM*G3BF + G3WHTFEM*G3WF))/(G1BF + G1WF+G2BF + G2WF+G3BF + G3WF); 

  /********************* Age By Race**************************/ 

  G1Blk=(G1BLKMALE*G1BM + G1BLKFEM*G1BF)/(G1BM+G1BF); 

  G1WHT=(G1WHTMALE*G1WM + G1WHTFEM*G1WF)/(G1WM+G1WF);  

  G2Blk=(G2BLKMALE*G2BM + G2BLKFEM*G2BF)/(G2BM+G2BF); 

  G2WHT=(G2WHTMALE*G2WM + G2WHTFEM*G2WF)/(G2WM+G2WF); 

  G3Blk=(G3BLKMALE*G3BM + G3BLKFEM*G3BF)/(G3BM+G3BF); 

  G3WHT=(G3WHTMALE*G3WM + G3WHTFEM*G3WF)/(G3WM+G3WF); 
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Blk=((G1BLKMALE*G1BM + G1BLKFEM*G1BF)+(G2BLKMALE*G2BM + G2BLKFEM*G2BF)+(G3BLKMALE*G3BM + 

G3BLKFEM*G3BF))/(G1BM+G1BF+G2BM+G2BF+G3BM+G3BF); 

WHT=((G1WHTMALE*G1WM + G1WHTFEM*G1WF)+(G2WHTMALE*G2WM + G2WHTFEM*G2WF)+ 

(G3WHTMALE*G3WM + G3WHTFEM*G3WF))/(G1WM+G1WF+G2WM+G2WF+G3WM+G3WF); 

  /*************** Overall Mean *********************************/ 

  G1sum=(G1BLKMALE*G1BM + G1WHTMALE*G1WM) + (G1BLKFEM*G1BF + G1WHTFEM*G1WF); 

  G2sum=(G2BLKMALE*G2BM + G2WHTMALE*G2WM) + (G2BLKFEM*G2BF + G2WHTFEM*G2WF); 

  G3sum=(G3BLKMALE*G3BM + G3WHTMALE*G3WM) + (G3BLKFEM*G3BF + G3WHTFEM*G3WF); 

OVERALL=(G1sum+G2sum+G3sum)/(G1BM+G1BF+G2BM+G2BF+G3BM+G3BF+G1WM+G1WF+G2WM+G2WF+G3

WM+G3WF); 

  keep FIPS CTY g1male G1female G1BLKMALE G1WHTMALE G1Male G1Female  

  g2male g2female G2BLKMALE g2WHTMALE g2Male g2Female  

  g3male g3female G3BLKMALE g3WHTMALE g3Male g3Female  

  Male Female  

  G1Blk G1WHT g2Blk g2WHT g3Blk g3WHT Blk WHT 

  overall overall 

  G1BM G1BF G2BM G2BF G3BM G3BF G1WM G1WF G2WM G2WF G3WM G3WF G1 G2 G3; 

 Run; 

 Proc Univariate Data=agesexNEW&st.cty&i; 

    var &var2; 

    Output Out=percentiles&i Mean=mean Pctlpts=2.5 97.5 Pctlpre=P; 

   Run; 

 Data percentiles&i; 

  Length Category $40; 

  Set percentiles&i; 

  Category="&var2"; 

  ctcd=&i; 
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  FIPS=&st; 

 Run; 

 Proc Append Base=stprob&st..allpercentilestate&st Data=percentiles&i Force; 

 Run; 

 Data stprob&st..allposteriorprobst&st.cty&i;  

  Set agesexNEW&st.cty&i; 

 Run; 

 Proc DataSets library=work; 

  Delete percentiles&i agesexNEW&st.cty&i;; 

 Run; 

 Dm log 'clear' Output; 

 DM 'LOG;CLEAR;Out;CLEAR;RESULTS CLEAR';  /* CLEARING LOG AND Output WINDoWS*/ 

%Mend prct; 

%Macro prct1(var1,var2,st); 

 %Local i; 

 %Do i=&var1 %To &var2; 

  %prct(&i,g1male,&st) 

  %prct(&i,G1female,&st) 

  %prct(&i,G1BLKMALE,&st) 

  %prct(&i,G1WHTMALE,&st) 

  %prct(&i,G1Male,&st) 

  %prct(&i,G1Female,&st) 

  %prct(&i,G1,&st) 

  %prct(&i,g2male,&st) 

  %prct(&i,g2female,&st) 

  %prct(&i,g2BLKMALE,&st) 

  %prct(&i,g2WHTMALE,&st) 
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  %prct(&i,g2Male,&st) 

  %prct(&i,g2Female,&st) 

  %prct(&i,g2,&st) 

  %prct(&i,g3male,&st) 

  %prct(&i,g3female,&st) 

  %prct(&i,g3BLKMALE,&st) 

  %prct(&i,g3WHTMALE,&st) 

  %prct(&i,g3Male,&st) 

  %prct(&i,g3Female,&st) 

  %prct(&i,g3,&st) 

  %prct(&i,Male,&st) 

  %prct(&i,Female,&st) 

  %prct(&i,G1Blk,&st) 

  %prct(&i,G1WHT,&st) 

  %prct(&i,g2Blk,&st) 

  %prct(&i,g2WHT,&st) 

  %prct(&i,g3Blk,&st) 

  %prct(&i,g3WHT,&st) 

  %prct(&i,Blk,&st) 

  %prct(&i,WHT,&st) 

  %prct(&i,overall,&st) 

 %End; 

%Mend prct1; 

%prct1 (1,67,1)/*Similarly for other states and counties*/ 

/********** Creating weighted posterior probability ends***************/ 
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/******* Mapping the posterior probability***********************/ 

/*******************************************************************/ 

******************** Step 1 creating Ranges********************;  

%Macro imp2(var1,var2,var3); 

 Data &var2; 

  Set &var1; 

  where Category="&var2" /*and FIPS1=&st*/; 

  Run; 

  Proc rank Data=&var2 

      groups=4 

   Out=&var2.qt(rename=(Ctycode=county FIPS=state)keep=prob  x1q Ctycode CTCD FIPS1 FIPS); 

  var prob; 

  ranks x1q; 

 Run; 

 Data &var2.qt; 

  Set &var2.qt; 

  x1q=x1q+1; 

 Run; 

 Data &var2.qtall; 

  Set &var2.qt /*ctmiss*/; 

  x1q=x1q+1; 

  Proc sort; 

  By x1q; 

 Run; 

 Data test; 

  Set &var2.qtall; 

  By x1q ; 
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  Proc sort; 

  By x1q prob; 

 Run; 

 Data test_1; 

  Set test; 

  By x1q; 

  If first.x1q Then mean1=prob; 

  If last.x1q Then mean2=prob; 

 Run; 

 Data test1; 

  Set test_1; 

  keep x1q mean1; 

  If mean1 ne .; 

 Run; 

 Data test2; 

  Set test_1; 

  keep x1q mean2; 

  If mean2 ne .; 

 Run; 

 Data &var2.range; 

  Length type $50; 

  merge test1 test2; 

  By x1q; 

  type="&var3"; 

 Run; 

 Data noData; 

  Length type $50; 
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  type="&var3"; 

  x1q=1; 

  mean1=0; 

  mean2=0; 

 Run; 

 Data &var2.range; 

  Set  noData &var2.range; 

  Run; 

 Proc append base=allrange2 Data=&var2.range force;Run; 

%Mend imp2; 

%imp2(allprob,overall, overall);%imp2(allprob ,G1, Aged 18-44); 

%imp2(allprob ,g2, Aged 45-64);%imp2(allprob ,g3, Aged 65 and Above) 

%imp2(allprob ,Male, Male);%imp2(allprob ,Female, Female) 

%imp2(allprob ,WHT, White);%imp2(allprob ,Blk, Black) 

 /* Setting the graphics environment */ 

goptions reSet=all cback=white border htitle=12pt htext=10pt;   

Data newmap; 

   Set maps.counties; 

   If state ne 2 and state ne 15 and state ne 72; 

Run; 

Proc sort Data=newmap; 

By state; 

Quit; 

Proc gproject Data=newmap Out=map; 

  id state county; 

Run; 

Quit; 
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Proc gremove Data=map Out=states; 

  By state; 

  Id state county; 

Run; 

Quit; 

Data states; 

  Set states; 

  By state; 

  Retain flag num 0; 

 

  If first.state Then Do; 

     flag=0; 

     num=0; 

  End; 

  If x=. and y=. Then Do; 

    flag=1; 

    num + 1; 

    Delete; 

  End; 

  If flag=1 Then segment + num; 

  Drop flag num; 

Run; 

 

 

 /* Create an annotate Data Set named ANNO for the state Outlines */ 

Data anno; 

  Length function color $8; 
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  Retain xsys ysys '2' when 'a' color 'black' size 1.5; 

  Drop xsave ysave; 

  Set states; 

  By state segment; 

  If first. Segment Then function='poly'; 

  Else function='polycont'; 

  Output; 

Run; 

Data ctmiss1; 

 Set adjcty.Allcountinfo; 

 Where Car=1; 

 Prob=0; 

 x1q=0; 

 Rename STFIPS=FIPS CtyFIPS=CTYCODE; 

 Keep STFIPS CtyFIPS prob x1q; 

Run; 

Data ctmiss2; 

 Set Notbeltstate; 

 Prob=0; 

 x1q=0; 

 Rename state=statename state1=FIPS county=CTYCODE; 

 Keep state1 county prob x1q; 

Run; 

Data ctmiss; 

 Set /*ctmiss1*/ ctmiss2; 

 Rename ctycode=county FIPS=state; 

Run; 
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%Macro imp1(var1,var2,var3,var4); 

 Data &var2; 

  Set &var1; 

  where Category="&var2"; 

  Run; 

  Proc rank Data=&var2 

       groups=4 

    Out=&var2.qt(rename=(ctycode=county FIPS=state)keep=prob  x1q FIPS Ctycode); 

  var prob; 

  ranks x1q; 

 Run; 

 Data &var2.qt; 

  Set &var2.qt; 

  x1q=x1q+1; 

 Run; 

 Data &var2.qtall; 

  Set &var2.qt ctmiss; 

  x1q=x1q+1; 

  If prob=. Then prob=0; 

  If x1q=. Then x1q=0; 

  Proc sort; 

  By x1q; 

 Run; %all; 

  

* fill patterns for the map areas (gray-scale fills); 

   pattern1  value=solid color=white/*white*/;   

   pattern2  value=solid color=Hb17d9dd; 
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   pattern3  value=solid color=He00aadd; 

   pattern4  value=solid color=He0066ee; 

   pattern5  value=solid color=navy; 

 

Title1 "Estimated Prevalence of Diagnosed Diabetes, &var3, for Counties in Diabetic Belt using Bayesian Analysis, 

2010"; 

 Ods Listing close; 

 Ods pdf file="Dissertation\Output";  /* Generate a county map with thick state boundaries */ 

 Proc Gmap Data=&var2.qtall map=map; 

   Id state county; 

   choro x1q / anno=anno cOutline=H0784F00 discrete; 

      format x1q &var4..; 

    label x1q='Estimated Prevalence of Diagnosed Diabetes Rank'; 

 Run; 

 Quit; 

 Ods pdf close; 

 Ods Listing; 

%Mend imp1; 

%imp1(allprob,overall, overall, overall);%imp1(allprob ,G1, Aged 18-44, Aged18_44v) 

%imp1(allprob ,g2, Aged 45-64, Aged45_64v);%imp1(allprob ,g3, Aged 65 and Above, Aged65Above) 

%imp1(allprob ,Male, Male,Male);%imp1(allprob ,Female, Female,Female) 

%imp1(allprob ,WHT, White,White);%imp1(allprob ,Blk, Black,Black) 
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Appendix B WinBUGS Code for Models in Chapter  

Appendix B.1 Bayesian Hierarchicalwith CAR(spatial dependency) model 

# Bayesian Hierarchicalwith CAR (spatial dependency) model 

model 

{ 

    for(j in 1 :9545) { 

        diab[j]~ dbin(p[j],pop[j]) 

        logit(p[j]) <- beta1 + beta2 * g2[j] + beta3 * g3[j]  + beta4 * s1[j] + beta5 * r1[j] +  

     beta6 * g2s1[j] + beta7 *g3s1[j] + beta8 * g2r1[j] + beta9 * g3r1[j] +  

     beta10 * s1r1[j] + beta11 * inc2[j] + beta12 * inc3[j] + beta13 * inc4[j] +   

     beta14 * edu2[j] + beta15 * edu3[j] + beta16*edu4[j] + beta17 *  

     povt[ct[j]] + b[ct[j]] } 

#CAR for Florida counties 

    b[1:N]~car.normal(adj[],weights[],num[],tau.b) 

    for(k in 1:sumNumNeigh){ 

        weights[k]<-1 

    } 

For(l in 1:17){ 

    beta[l] ~ dnorm(0.0, 1.0E-2) 

}     

    tau.b~dgamma(0.5,0.5) 

    sigma.b<-sqrt(1/tau.b);{ 
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Appendix B.2 Bayesian HierarchicalCounty Specific and CAR 

model 

{ 

for(j in 1 :9545) { 

diab[j]~ dbin(p[j],pop[j]) 

 logit(p[j]) <- beta1[ct[j]] + beta2[ct[j]] * g2[j] + beta3[ct[j]] * g3[j]  + beta4[ct[j]] * s1[j] +  

beta5[ct[j]] * r1[j] + beta6[ct[j]] * g2s1[j] + beta7[ct[j]] * g3s1[j]  +  beta8[ct[j]] * g2r1[j] + 

beta9[ct[j]] * g3r1[j] + beta10[ct[j]] * s1r1[j] +    beta11[ct[j]] * inc2[j] + beta12[ct[j]] * inc3[j] + 

beta13[ct[j]] * inc4[j] +  beta14[ct[j]] * edu2[j] + beta15[ct[j]] * edu3[j] +       

beta16[ct[j]]*edu4[j] + beta17[ct[j]] * povt[ct[j]] + b[ct[j]] 

    } 

    b[1:N]~car.normal(adj[],weights[],num[],tau.b) 

    for(k in 1:sumNumNeigh){ 

        weights[k]<-1 

    } 

   for(i in 1:63){ 

 for(j in 1:17){ 

    beta[i,j] ~ dnorm(b[j],taub[j]) 

    b[j]~ dnorm(0.0, 1.0E-2) 

   taub[j]~dgamma(0.5,0.5)  

} 

} 
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    tau.b~dgamma(0.5,0.5) 

    sigma.b<-sqrt(1/tau.b); 

} 

Appendix B.3 Bayesian Hierarchicalwith CAR (spatial dependency) model 

# Bayesian Hierarchicalwith CAR (spatial dependency) model 

model 

{ 

    for(j in 1 :9545) { 

        diab[j]~ dbin(p[j],pop[j]) 

        logit(p[j]) <- beta1 + beta2 * g2[j] + beta3 * g3[j]  + beta4 * s1[j] + beta5 * r1[j] +  

     beta6 * g2s1[j] + beta7 *g3s1[j] + beta8 * g2r1[j] + beta9 * g3r1[j] +  

     beta10 * s1r1[j] + beta11 * inc2[j] + beta12 * inc3[j] + beta13 * inc4[j] +   

     beta14 * edu2[j] + beta15 * edu3[j] + beta16*edu4[j] + beta17 *  

     povt[ct[j]]  } 

#CAR for Florida counties 

    b[1:N]~car.normal(adj[],weights[],num[],tau.b) 

    for(k in 1:sumNumNeigh){ 

        weights[k]<-1 

    } 

For(l in 1:17){ 

    beta[l] ~ dnorm(0.0, 1.0E-2) 

}     
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    tau.b~dgamma(0.5,0.5) 

    sigma.b<-sqrt(1/tau.b); 

{ 

Appendix B.4 Model with both uncorrelated and correlated spatial random effects 

model 

{ 

    for(j in 1 :9545) { 

        diab[j]~ dbin(p[j],pop[j]) 

logit(p[j]) <- beta1 + beta2 * g2[j] + beta3 * g3[j]  + beta4 * s1[j] + beta5 * r1[j] + beta6 * g2s1[j]  

         + beta7 * g3s1[j]  +  beta8 * g2r1[j] + beta9 * g3r1[j] + beta10 * s1r1[j]  

      + beta11 * inc2[j] + beta12 * inc3[j] + beta13 * inc4[j]+  beta14 * edu2[j]  

     + beta15 * edu3[j] + beta16*edu4[j] + beta17 * povt[ct[j]] + b[ct[j]] +e[j] 

 e[j]~dnorm(0,tau.h)   

    } 

    b[1:N]~car.normal(adj[],weights[],num[],tau.b) 

    for(k in 1:sumNumNeigh){ 

        weights[k]<-1 

    } 

    For(i in1:17){ 

    beta[i] ~ dnorm(0.0, 1.0E-2) 

 } 
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    tau.h~dgamma(0.5,0.0005) 

    sigma.h<-sqrt(1/tau.h) ; 

    tau.b~dgamma(0.5,0.5) 

    sigma.b<-sqrt(1/tau.b); 

} 
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