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ABSTRACT

One-dimensional neural networks comprised of large numbers of Integrate-and-Fire neu-

rons have been widely used to model electrical activity propagation in neural slices. Despite

these efforts, the vast majority of these computational models have no analytical solutions.

Consequently, my Ph.D. research focuses on a specific class of homogeneous Integrate-and-

Fire neural network, for which analytical solutions of network dynamics can be derived. One

crucial analytical finding is that the traveling wave acceleration quadratically depends on



the instantaneous speed of the activity propagation, which means that two speed solutions

exist in the activities of wave propagation: one is fast-stable and the other is slow-unstable.

Furthermore, via this property, we analytically compute temporal-spatial spiking dy-

namics to help gain insights into the stability mechanisms of traveling wave propagation.

Indeed, the analytical solutions are in perfect agreement with the numerical solutions. This

analytical method also can be applied to determine the effects induced by a non-conductive

gap of brain tissue and extended to more general synaptic connectivity functions, by convert-

ing the evolution equations for network dynamics into a low-dimensional system of ordinary

differential equations.

Building upon these results, we investigate how periodic inhomogeneities affect the dy-

namics of activity propagation. In particular, two types of periodic inhomogeneities are

studied: alternating regions of additional fixed excitation and inhibition, and cosine form

inhomogeneity. Of special interest are the conditions leading to propagation failure. With

similar analytical procedures, explicit expressions for critical speeds of activity propagation

are obtained under the influence of additional inhibition and excitation. However, an explicit

formula for speed modulations is difficult to determine in the case of cosine form inhomogene-

ity. Instead of exact solutions from the system of equations, a series of speed approximations

are constructed, rendering a higher accuracy with a higher order approximation of speed.

INDEX WORDS: Traveling waves, Integrate-and-fire neuron model, Propagation failure,
Differential equations, Speed approximations, Numerical simulations



TITLE: ANALYSIS OF TRAVELING WAVE PROPAGATION IN

INTEGRATE-AND-FIRE NEURAL NETWORKS

by

JIE ZHANG

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

in the College of Arts and Sciences

Georgia State University

2016



Copyright by
Jie Zhang

2016



TITLE: ANALYSIS OF TRAVELING WAVE PROPAGATION IN ONE-DIMENSIONAL

INTEGRATE-AND-FIRE NEURAL NETWORKS

by

JIE ZHANG

Committee Chair: Remus Mihai Osan

Committee: Gennady Cymbalyuk

Igor Belykh

Yi Jiang

Electronic Version Approved:

Office of Graduate Studies

College of Arts and Sciences

Georgia State University

December 2016



iv

DEDICATION

This dissertation is dedicated to my parents, Zhengfu Zhang and Junfei Gao, who have

always loved me unconditionally and whose good examples have taught me to work hard for

the things that I aspire to achieve.



v

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my Ph.D. advisor,

Dr. Remus Osan, for his consistent support, guidance, and inspiration for the past five years.

Besides of a broad spectrum of quantitative skills and methods that I’ve learned from Dr.

Remus Osan, the most valuable skill, I think, is critical thinking that enables me to face and

solve novel and challenging problems in the future. I feel so fortunate to have the chance to

work with him.

Moreover, I am grateful that I was enrolled in the Department of Mathematics & Statis-

tics at Georgia State University. Thanks go to our Chair and Directors, Dr. Guantao Chen,

Dr. Gengsheng Qin, Dr. Zhongshan Li, Dr. Florian Enescu for providing academic advice

and help. Also, I want to express my sincere gratitude to Professor Vladimir Bondarenko,

Alexandra Smirnova, Michael Steward for serving on my qualifying exam committee and

Professor Gennady Cymbalyuk, Igor Belykh, Jiang Yi for serving on my Ph.D. dissertation

committee.

In addition, I would like to acknowledge my family for always encouraging me to do

research and all my friends who have offered their support and assistance in this journey.

Again, thanks to Dr. Osan, who is always there being patient and supportive in my five-year

Ph.D. program and help me grow and develop to be professional in Bioinformatics. Without

him, I would not be able to go this far.

Support

My Ph.D. research was partially supported by a Georgia State Brain and Behavior

Fellowship in 2015, a Research Initiation Grant at Georgia State University, a Brain and

Behavior Seed Grant at Georgia State University to Dr. Remus Osan.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . v

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . ix

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . xi

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . 1

1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Biological neuron models . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Integrate-and-Fire Model . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Ermentrout-Kopell Canonical Model . . . . . . . . . . . . . . . . 8

1.2.3 Hodgkin-Huxley Model and its Extensions . . . . . . . . . . . . . 8

1.3 Network dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Numerical Computing with MATLAB . . . . . . . . . . . . . . . . 21

CHAPTER 2 ACTIVITIES OF TRAVELING WAVE PROPAGATION

IN HOMOGENEOUS NUERAL TISSUE . . . . . . 23

2.1 Evolution equations in integrate-and-fire model . . . . . . . . . . 23

2.2 Analytical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 Coupling between speed and acceleration leads to wave stability . 34

2.2.2 Analytical solutions and natural timescales for activity propagation 35

2.2.3 Reaching steady states . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Application: propagation changes in the presence of a connectivity

gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4 Applications to more general connectivity functions . . . . . . . . 48



vii

2.5 Neural network extended to multiple spiking neurons . . . . . . . 56

CHAPTER 3 ACTIVITIES OF TRAVELING WAVE PROPAGATION

IN PERIODIC INHOMOGENEITIES . . . . . . . 60

3.1 Evolution equations with inhomogeneities . . . . . . . . . . . . . . 60

3.2 Illustration of propagation failure with constant periodic inhomo-

geneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Illustration of propagation failure with non-constant periodic inho-

mogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Speed approximations of traveling Wave Speed . . . . . . . . . . . 77

3.5 Induction of traveling wave speed . . . . . . . . . . . . . . . . . . . 83

3.6 Conditions Inducing propagation Failure . . . . . . . . . . . . . . . 87

CHAPTER 4 CONCLUSIONS . . . . . . . . . . . . . . . . 91

REFERENCES . . . . . . . . . . . . . . . . . . . . . 95



viii

LIST OF TABLES



ix

LIST OF FIGURES

Figure 1.1 Exponential Integrate-and-Fire model . . . . . . . . . . . . . . . . 7

Figure 1.2 Fast and slow response functions, A(t) with different τ1 and τ2. . . 17

Figure 2.1 K1 and K2 linearly change over speed . . . . . . . . . . . . . . . . 27

Figure 2.2 Theoretical and numerical results for the dependence of wave acceler-

ation on instantaneous speed . . . . . . . . . . . . . . . . . . . . . 30

Figure 2.3 Minimum global excitability(gsyn) over τ1, τ2 . . . . . . . . . . . . 31

Figure 2.4 Dependence of traveling wave solutions c1 (in red) and c2 (in blue) on

neuron and network parameters . . . . . . . . . . . . . . . . . . . 32

Figure 2.5 Space vs Firing times and Speed vs Space . . . . . . . . . . . . . 34

Figure 2.6 Dependence of natural timescale τ0 on other network parameters . 39

Figure 2.7 Spatial and temporal scales for achieving stable state . . . . . . . 40

Figure 2.8 Dependence traveling-wave acceleration on parameters . . . . . . 42

Figure 2.9 Activity propagation changes induced by a non-excitable region of

length L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Figure 2.10 Synaptic coupling functions . . . . . . . . . . . . . . . . . . . . . 49

Figure 2.11 Voltage changes over speed in the neural network with polynomial

coupling function . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 2.12 Successive derivatives of firing times . . . . . . . . . . . . . . . . . 56

Figure 3.1 Traveling wave speed with alternating inhomogeneity . . . . . . . 67

Figure 3.2 Critical speeds in the constant periodic neural network . . . . . . 69

Figure 3.3 Traveling wave maximum/minimum speed (cf/c0) regarding to λ and

ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 3.4 Dynamics of propagation failure with uniform regions of excitation and

inhibition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



x

Figure 3.5 Firing maps and numerical simulation of propagating speed of traveling

waves with the change of ε and ω . . . . . . . . . . . . . . . . . . 73

Figure 3.6 Synaptic coupling function influenced by periodic inhomogeneity. 74

Figure 3.7 Traveling wave speed with different initial shooting speed for numerical

simulation for 100 periods. . . . . . . . . . . . . . . . . . . . . . . 76

Figure 3.8 Stable speed solution or the speed oscillating around with the increase

of ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 3.9 Propagating speed approximation. . . . . . . . . . . . . . . . . . . 80

Figure 3.10 Speed Approximations vs Numerical Simulations . . . . . . . . . . 83

Figure 3.11 Numerical simulation with ODE45 with the analytical approximations

of traveling wave speed. . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 3.12 Propagation failure simulation at different ε. . . . . . . . . . . . . 89



xi

LIST OF ABBREVIATIONS

• GSU - Georgia State University

• ODE - Ordinary Differential Equation

• PDE - Partial Differential Equation

• HH model - Hodgkin-Huxley model

• LIF - Leaking Integrate-and-Fire model

• EIF - Exponential Integrate-and-Fire model

• SNIC - Saddle-Node on a Limit Cycle Bifurcation

• QIF - Quadratic Integrate-and-Fire model

• HR model - Hindmarsh and Rose Model

• FLOPS - Approximate Number of Floating Point Operations

• V1 - Human Primary Visual Cortex

• GABA - Gamma-Aminobutyric Acid (γ-Aminobutyric acid)

• NDF - Numerical Differentiation Formula

• BDF - Backward Differentiation Formula



1

CHAPTER 1

INTRODUCTION

1.1 Motivations

The human brain has about 100 billion neurons, and each of them may be connected to

up to 10,000 other neurons, passing signals to each other via as many as 1,000 trillion synap-

tic connections. Not surprisingly, the dynamics of electrical neural activity are complicated

and challenging to quantify and interpret. Many scientists and researchers have devoted

to this area, including the research in the visual [1–6], olfactory [7, 8], auditory [9, 10], so-

matosensory [11] and motor cortices [12]. Traveling waves of electrical activity are formed

by neurons interactions that pass signals through the whole network. Research has shown

that traveling waves are playing important roles in sensory processing [13], phase coding [14]

and sleep [15]. Also, the existence of traveling waves for hippocampal theta oscillations has

been found [16,17], which may act as local clocks to govern spatial-temporal dynamics.

Traveling waves are natural dynamics that are ubiquitous to neural networks. Therefore,

this area of research is essential not only for understanding the functions of the brain during

sensory processing but also for providing insights into irregular neural dynamics [18] or

abnormal states such as epileptic seizure [19,20], migraine [21], hallucination [22,23] and the

ones observed after brain injury [24]. This highlights the need for further research in this

area that uses both analytical and computational methods.

Computational models are widely used to understand the dynamics of traveling waves

in neural tissue, yet due to model’s complexity, analytical solutions are scarce. These models

usually describe the neural tissue as a vast interconnected network of homogeneous excitatory

units, such as firing rate models [25–28], integrate and fire models [25, 29–34], theta neuron

models [35, 36] or more complex models of neurons [29, 37–44]. In these models, traveling

wave propagation has been studied numerically in an extensive fashion using the assumptions
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that the strength of the synaptic connections between neurons depends only on the distance

between them and that this interaction does not depend on other local parameters.

The assumptions listed above make it possible to formulate a set of integro-differential

equations describing the propagation of the one-spike traveling wave fronts in a continuous

one-dimensional Integrate-and-Fire neural network. Typically, these models give rise to a

pair of traveling wave speed solutions, where the slower wave is unstable, and the fast one

is stable.

Using these equations, the transition between initiation and evolution toward constant

speed traveling waves for Gaussian connectivity [31] and finite support connectivity [33]

has been studied and results were derived analytically. The analytical results were further

confirmed by numerical simulations, leading to methods for optimizing and improving sim-

ulations of large-scale networks [34]. These results also apply to the case of constant speed

waves with a finite and an infinite number of spikes [32] .

This framework has produced insights into the mechanisms of stable constant-speed

traveling wave solutions in homogeneous media, but there are additional microstructures

that could modify the dynamics of traveling wave propagation. Among those, some have an

approximately periodic structure, for example in the primary visual cortex and the cerebral

cortex [45,46]. These periodic structures motivate us to continue the work on the propagation

activities of traveling waves under the influence of periodic inhomogeneity modulation that

act in addition to the homogeneous interaction described above.

So far the study of inhomogeneity in synaptic connections likely to exist in the brain

tissue has received much less attention since, not surprisingly, the presence of inhomogeneity

vastly increases the complexity of the mathematical models. Among the existing studies

of wave propagations in an inhomogeneous neural network, spatial averaging and homoge-

nization theory have been used to determine an analytical expression of average wave speed

and the transition between propagation success and its failure [45, 47, 48]. This was derived

under the assumption that the perturbation is sufficiently small such that the periodic mod-

ulation occurs on a smaller length scale than the correlation length of the coupling function
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in various continuous and discrete models.

Based on the work by Ermentrout and Osan [31–34], an evolution expression of traveling

wave firing activities is obtained. In a collaboration with Osan, I have derived exact speed

solutions in a homogeneous neural network, which was published in an recent paper [49].

Furthermore, we explore the dynamics under the influence of periodic inhomogeneity

and believe that the methods we have used to find analytical solutions of wave speed accu-

rately capture the transition between propagation success and failure. In turn, this provides

us additional and valuable information about the dynamics of propagation activities and

propagation failure conditions.

These methods could also be extended to multi-spiking neural networks, neural networks

with non-conductive gaps and networks with more general synaptic connectivity functions.

1.2 Biological neuron models

Spiking neurons are known to be the major signaling unit of the nervous system, though

not all the cells are spiking neurons. For example, the cochlear hair cells, retinal receptor

cells, and retinal bipolar cells do not generate spikes. Furthermore, many cells are classified

as glia instead of neurons [50]. To characterize spiking neurons activities, several spiking

neuron models have been developed by researchers. Basically, they are mathematical models

of the electrical properties of neuronal action potentials, which have abrupt changes in the

voltage across the cell membrane.

There are mainly two categories for neuron models according to the input form: elec-

trical input/output membrane voltage models and natural input neuron models. Electrical

input/output membrane voltage models have output voltage as a function of electrical input.

These models are different in the exact functional relationship between their input current

and the output. Some models even do not have an implicit functional relationship, and we

can only tell through two measured voltage levels: the presence of a spike or a quiescent state.

Natural input neuron models involve natural stimulation as mostly used in experiments. The

results from these experiments tend to change from trial to trial, but the averaged response
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tends to converge to a clear pattern. Accordingly, the output of natural neuron models is

the probability of a spike event as a function of the input stimulus. Typically, the output

probability is normalized or divided by a time constant, and the resulting normalized prob-

ability is called the ”firing rate” with units of Hertz. The models in this category differ in

the functional relationship connecting the input current to the output probability. Markov

models are the simplest and yield the most tractable results in the category of natural input

neuron models [50].

The models with electrical input and output membrane voltage describe the relation-

ship between neuronal input currents and the output voltage. In the early 1950s, Hodgkin

and Huxley made the most extensive experimental inquiry in this category of models using

an experimental setup that punctured the cell membrane and allowed to force a specific

membrane voltage or current. Currently, extracellular electrical stimulation is also used in

the experimental electrical neural input to avoid membrane puncturing which can lead to

cell death and tissue damage.

1.2.1 Integrate-and-Fire Model

In the study of network dynamics, computational models are widely used to simulate

the neuron network dynamics. Izhikevich has discussed the biological plausibility from the

perspective of how many neuron/network features can be modeled and the computational

efficiency of some of the most useful models of spiking and bursting neurons[51]. Among

them, Integrate-and-Fire model is the simplest model to implement as one of the most

suitable models to prove analytical results.

Over years, scientists and researchers have explored and discovered more details of the

structure and function of the brain. As the primary processing units in the central nervous

system, neurons are wired in a way that optimizes the interactions with each other in various

forms in the brain. Typically, a neuron has three parts: dendrites, soma, and axon.

Dendrites receive signals from other neurons and transmit them to the cell body, or

soma, where signals are processed in a non-linear form: if the total input signal reaches a
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certain threshold (denoted by η), then an output signal (also called action potential) will be

generated. In the event that the membrane potential reaches the threshold, it is said that

the neuron fires or spikes. In 1907, Louis Lapicque first investigated the neuron model [52],

which is the derivative of the law of capacitance, Q = CV , with respect to time,

I(t) = Cm
dVm(t)

dt
. (1.1)

When an input current is applied, the membrane voltage increases with time until it reaches

a certain threshold Vth. At this point the neuron elicits a pulse and the voltage is reset to

its resting potential, after which the neuron continues integrating voltage. In this original

model, the firing frequency of the neuron is linearly increasing with the increase of input

current without an upper bound.

To fix this shortcoming, a refractory period tref was introduced so that the firing fre-

quency of a neuron is limited [53]. Through some calculations that involve the Fourier

transformation, one can show that firing frequency is a function of constant input current,

which takes the following form:

f(I) =
I

CmVth + trefI
. (1.2)

One of the shortcomings of this model is that it does not have time-dependent memory,

which means that when the model receives a signal at some time below the threshold, it will

retain that voltage forever until it reaches the threshold and fires action potential.

In the leaky integrate-and-fire model (LIF model), a ”leak” term is added to the mem-

brane potential. This simulates the diffusion of ions, which occurs through the membrane

when the threshold is not reached in the cell. This leaking term solves the memory problem,

and the model looks as follows,

I(t)− Vm(t)

Rm

= Cm
dVm(t)

dt
, (1.3)
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where Rm is the membrane resistance. The voltage threshold is

Ith = Vth/Rm. (1.4)

The neuron fires once the voltage exceeds the threshold. Otherwise, it will simply leak

out the excessed ions until the potential reaches the resting voltage. The firing frequency

has the following expression:

f(I) =


0, I ≤ Ith,

[tref −RmCmlog(1− Vtm
IRm

)]−1, I > Ith,

when the input current is getting large, it converges to the previous leak-free model with

refractory period.

Also, by the form of spiking generation, the Exponential Integrate-and-Fire (EIF) model

was proposed [54] that the neurons spike in the form of exponential function, following the

equation:

dX

dt
= ∆T exp(

X −XT

∆T

), (1.5)

where X is the membrane potential, XT is the membrane potential threshold, and ∆T is the

rate of action potential initiation, usually around 1mV for cortical pyramidal neurons. Once

the membrane potential crosses the threshold (XT ), it diverges to infinity in finite time.

Figure 1.1 illustrates the subthreshold dynamics of the Integrate-and-Fire model without

additional injections and spiking activities with extra injecting current( 1nA) from 100ms to

400ms, where the spiking threshold is −55mV , the resting potential is −70mV and the reset

potential is −75mV . Below the threshold(Fig.1.1(a)), the Integrate-and-Fire neuron acts as

a leaky capacitor whose voltage, in the absence of injected current, decays to the resting

potential. But with injected current(Fig.1.1(b)) that drives the voltage reaching the spiking

threshold, the voltage jumps to a higher level and it is immediately reset to a hyperpolarized
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level V = −75mV .
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Figure (1.1) Dynamcis of Integrate-and-Fire neuron model. (a) Subthreshold volt-

age dynamics. Below threshold, the neuron integrates voltage and exponentially decays to

resting potential. (b) Spiking dynamics. Due to injected currents(I = 1nA), the voltage

reaches the action potential threshold VT = −55mV and the neuron spikes immediately to

a higher level(V = 20mV ). Then it is immediately reset to a hyperpolarized level −75mV .

A specific instance of a nonlinear integrate-and-fire model is the Quadratic Integrate-

and-Fire Model (QIF) created by Latham et al. in 2000 to model the network of spiking

neurons with low firing rate [55],

τ
du

dt
= a0(u− urest)(u− uc) +RI, (1.6)

with parameters a0 > 0 and uc > urest. For I = 0 and initial condition u < uc, the voltage

decays to the resting potential urest. For u > uc it increases so that an action potential is

triggered. uccan be interpreted as the critical voltage for spiking initiation.
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Similar models include the theta model, which is a related model that can be obtained

from the QIF model through a nonlinear change of the coordinates.

1.2.2 Ermentrout-Kopell Canonical Model

The Ermentrout-Kopell canonical model, also called the ”Θ neuron”, was first brought

up by Ermentrout and Kopell in 1986 [56]. It is a simple one-dimensional phase model

for spiking neurons with only one state variable (θ) which is a variable changed from the

membrane voltage of a neuron. The model takes the following differential equation:

dθ

dt
= 1− cos(θ) + (1 + cos(θ))I(t). (1.7)

where I(t) is the input to the model. The variable θ lies on the unit circle and ranges between

0 and 2π. When θ = π the neuron spikes, that is, it produces an action potential.

The advantage of the Θ-Neuron over the QIF model is that there is no reset to deal with

and, as a consequence of removing this discontinuity, the resulting dynamics are smooth and

stay bounded. This model also allows for explicit expressions for the dynamics of spiking neu-

rons activities. Particularly, theta model is well formed to describe neuron bursting, which

is often found in neurons responsible for controlling and maintaining steady rhythms [57].

Osan et al. (2002) [35] have found that in a network of theta neurons, there exist two dif-

ferent types of waves that propagate smoothly over the network, given a sufficiently large

coupling strength.

1.2.3 Hodgkin-Huxley Model and its Extensions

The Hodgkin-Huxley model (HH model) [58–61] factors in the ion currents crossing the

neuronal cell membrane and the membrane voltage explicitly. Basically, Hodgkin-Huxley

model includes voltage-gated ion channels and leak channels. Leak channels account for

the natural permeability of the membrane to ions and have the same mathematical form

as the voltage-gated channels. The voltage-gated channels are characterized by the channel



9

conductance gi which is a function of both time and voltage.

The model is based on experiments that allowed forcing membrane voltage using an

intracellular pipette on the axons of giant squid neurons. In 1963, Hodgkin and Huxley won

the Nobel Prize for their work in Physiology.

HH model was generalized to include multiple voltage-dependent currents as stated

above. Here are the equations for the voltage-current relationship:

Cm
dV (t)

dt
= −

∑
i

Ii(t, V ). (1.8)

Each current is given by Ohm’s Law as

I(t, V ) = g(t, V ) · (V − Veq), (1.9)

where g(t, V ) is the conductance, or inverse resistance, which can be expanded in terms of

its constant average ḡ and the activation and inactivation fractions m and h. m and h are

dimensionless gate variables. The conductance determines how many ions can flow through

available membrane channels. This expansion is given by

g(t, V ) = ḡ ·m(t, V )p · h(t, V )q, (1.10)

and m,h are the gate variables defined by the first-order differential equations, such as,

dm(t, V )

dt
=
m∞(V )−m(t, V )

τm(V )
= αm(V ) · (1−m)− βm(V ) ·m, (1.11)

with similar dynamics for h, where we can use either τ and minf or α and β to define the

gate variables.

This formulation allows considerable flexibility in the inclusion of ion currents. Typi-

cally, these terms include inward Ca2+ and Na+ input currents and several varieties of K+
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outward currents, including a ”leak” current.

From the expressions of Hodgkin-Huxley model, there are gate variables for each ion

channel and each gate variable has two parameters that need to estimate. Also, the channel

conductance (g(V, x)) is important to measure for the model simulation. For complex systems

of neurons, it is not easily tractable by computer. Careful simplifications of the Hodgkin-

Huxley model are therefore needed.

Great simplifications to the Hodgkin-Huxley model were introduced by FitzHugh and

Nagumo in 1961 and 1962 [62]. It is a model that incorporates non-linear positive-feedback

membrane voltage and a linear negative-feedback recovery variable (ω). The model is de-

scribed in the following expressions,

dV

dt
= V − V 3 − ω + Iext, (1.12)

τ
dω

dt
= V − a− bω, (1.13)

where the model has a membrane voltage and input current with a slower general gate

variable ω and experimentally-determined parameters a = −0.7, b = 0.8, τ = 1/0.08. Al-

though not clearly derivable from biology as HH model, FitzHugn-Nagumo model allows for

simplified, immediately available dynamics of spiking neurons.

In 1981, Morris and Lecar [63] combined Hodgkin-Huxley model and FitzHugh Nagumo

model into a voltage-gated calcium channel model with a delayed-rectifier potassium channel,

represented by

C
dV

dt
= −Iion(V, ω) + I, (1.14)

dω

dt
= φ · ω∞ − ω

τω
, (1.15)

wehre Iion(V, ω) = ḡCam∞ · (V − VCa) + ḡKω · (V − VK) + ḡL · (V − VL).

Building upon the FitzHugh Nagumo model, Hindmarsh and Rose [64] proposed in 1984
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a model (HR model) of neuronal activity described by three coupled first order differential

equations:

dx

dt
= y = 3x2 − x3 − z + I, (1.16)

dy

dt
= 1− 5x2 − y, (1.17)

dz

dt
= r · (4(x+

8

5
)− z), (1.18)

with r2 = x2 + y2 + z2, and r ≈ 10−2, so that the z variable changes very slowly. This

extra mathematical variable allows for more dynamic behaviors for the membrane potential,

described by the x variable of the model, by including the chaotic dynamics. This makes

the Hindmarsh-Rose neuron model very useful to provide a good quantitative description of

the many different patterns of the action potentials observed in experiments with relatively

simple equations.

There are many other types of models that will not be listed here, for example, the

Galves-Locherbach model(an inherently stochastic model to measure the probability that a

given neuron i spikes in a time period t) and compartmental models to model cylindrically

structured neurons. In general, for different purposes of research, models are selected and

corrected accordingly to the question of biological interest.

As for the computational efficiency and biologically meaningfulness, Izhikevich [51] has

summarized that the Integrate-and-Fire model has the smallest approximate number of

floating point operations(FLOPS): FLOPS = 5, but is limited to tonic spiking, class 1

excitable and integrator. In contrast, the most complicated neuron is Hodgkin-Huxley with

the number of FLOPS 1200, which is 240 times slower than the integrate-and-fire model.

However, Hodgkin-Huxley neuron model is very biological meaningful, exhibiting a variety

of robust neuron dynamics, including tonic spiking, phasic spiking, tonic bursting, phasic

bursting, mixed mode, spike frequency adaptation, class 1 excitable, class 2 excitable, spike

latency, sub-threshold oscillations, resonator, integrator, rebound spike, rebound burst, bi-
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stability, DAP, accommodation, inhibition-induced spiking, inhibition induced burst and

chaos.

1.3 Network dynamics

Scientists have identified some intrinsic neuronal properties that play an important role

in generating membrane potential oscillations for a variety of neuron models. In particular,

voltage-gated ion channels are critical in the generation of action potentials, as we have dis-

cussed in the last section about Hodgkin Huxley model. Also, the Integrate-and-Fire model

is introduced for analytical proof on neural activities. Bifurcation analysis is one method that

is often used by scientists to determine different oscillatory behaviors of the neuronal models,

and make classifications of types of neuronal responses. Not only the periodic spiking, but

also the sub-threshold membrane potential oscillations, for example, the resonance behavior

that does not result in action potentials, may also contribute to oscillatory activity by fa-

cilitating synchronous activities of neighboring neurons. Like pacemaker neurons in central

pattern generators, subtypes of cortical cells fire bursts of spikes rhythmically at preferred

frequencies. Bursting neurons have the potential to serve as pacemakers for synchronous

network oscillations, and bursts of spikes may underlie or enhance neuronal resonance [50].

In addition to intrinsic properties of spiking neurons, network properties are also crucial

for oscillatory activities. Neurons communicate with one another through synapses and affect

the spiking times in the post-synaptic neurons. Depending on the properties of the synaptic

connection, such as the coupling strength, time delay and whether it is excitatory coupling

or inhibitory coupling, the spike trains of the interacting neurons may become synchronized.

Certain network structures promote oscillatory activities at some frequencies. For example,

neuronal activities generated by two populations of interconnected inhibitory and excitatory

spiking neurons can show spontaneous oscillations, which can be described by the Wilson-

Cowan model.

Wilson and Cowan [65] has developed a set of integro-differential equations, forming a

continuum model of cortex which demonstrated traveling waves, using the mean numbers of
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activated and quiescent excitatory and inhibitory neurons,

τ
dE

dt
= −E(t) + (1− rE(t))fE[wEEE −WEII + hE(t)], (1.19)

τ
dI

dt
= −I(t) + (1− rI(t))fI [wIEE −WIII + hI(t)], (1.20)

for the spatially homogeneous case, the equations are described as the following,

τ
∂E(x, t)

∂t
= −E(x, t) + (1− rE(x, t))fE (1.21)

(

∫ ∞
−∞

ρEdx
′βEE(x− x′)E(x′, t)−

∫ ∞
−∞

ρIdx
′βEI(x− x′)I(x′, t) + hE(x, t)]),

τ
∂I(x, t)

∂t
= −I(x, t) + (1− rI(x, t))

∏
fI

(

∫ ∞
−∞

ρEdx
′βIE(x− x′)E(x′, t)−

∫ ∞
−∞

ρIdx
′βII(x− x′)I(x′, t) + hI(x, t)]),

where ρE and ρI are, respectively, the packing densities of excitatory and inhibitory cells in

the cortical slab and E(x, t) and I(x, t) are time coarse-grained,

E(x, t) =

∫ t

−∞
dt′α(t− t′)nE(x, t′), (1.22)

I(x, t) =

∫ t

−∞
dt′α(t− t′)nI(x, t′), (1.23)

where nE(x, t) and nI(x, t) are the proportions of excitatory and inhibitory neurons activated

per unit time. α(t) acts as a low-pass filter.

The neural network forms through fast direct synaptic interactions between neurons.

Also, oscillatory activity is modulated by neurotransmitters on a much slower time scale.

That is, the concentration levels of certain neurotransmitters are known to regulate the

amount of oscillatory activity. For instance, GABAA receptor densities have been shown to

be positively correlated with frequency and negative correlated with amplitude of visually-

induced gamma oscillations in human primary visual cortex (V1) [66]. The major neuro-
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transmitter systems include the norepinephrine system, the dopamine system, the serotonin

system, and the cholinergic system. These neurotransmitter systems affect the physiological

state, e.g., wakefulness or arousal, and have a pronounced effect on amplitude of different

brain waves, such as alpha activity [50].

At the single-cell level, the Integrate-and-Fire model captures most of the features of the

dynamics of neurons, namely the voltage spike. Here, each neuron integrates input signals

and generates an action potential when the membrane potential reaches a certain threshold

of the neuron [13]

σ
dV

dt
= −V (t) + I(t) + V̂R

∑
n

δ(t− tn), (1.24)

where V (t) represents the membrane potential at time t. I(t) represents synaptic inputs

which can be time-varying and location-varing. σ is the membrane time constant. If V (t−) =

VT , the voltage threshold, then V (t+) = VR, the reset voltage, which is always less than the

threshold voltage (VT > VR). This process is represented by the Dirac delta function or δ

function,

δ(t− tn) =


1, if t− tn = 0,

0, t− tn 6= 0,

where tn denotes the sequence of firing times of the neuron; that is, V (t−n ) = VT for each

n > 1. V̂R = σ(VR − VT ).

Synaptically coupled neurons transmit signals through the network. When a neuron

sends a signal across a synapse, we call the sending neuron as the presynaptic cell and the

receiving neuron as the postsynaptic cell. In the study of network dynamics, two components

are crucial to our studies, one is the neuron model we select to use on the single-cell level,

and the other is how the neurons are connected with one another. The total post-synaptic

current to the ith neuron can be expressed as following:

Ii(t) =
∑
j

wij
∑
f

α(t− t(f)
j ), (1.25)
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where t
(f)
j represents the time of the f − th spike of the j − th pre-synaptic neuron; wij is

the strength of j synaptic efficacy between neuron i and neuron j [53]. Common choices for

α include the instantaneous Dirac δ-pulse:

α(t) = qδ(t), (1.26)

where q is the total charge injected into the synapses; the alpha synapse (Gerstner & Kistler

(2002)),

α(t) = α
t

τ
exp(1− t

τ
), (1.27)

where α is a normalizing constant and τ is the time constant of the synapses.

In my research, the Integrate-and-fire model for a spiking neuron is mainly used for

analytical solutions of activities of traveling wave propagation. The neuron spikes when

the voltage reaches a certain threshold (VT ) and immediately it is reset to a lower voltage

VR < VT . The effect of a spike on other neurons is to turn on a current whose time dependence

is often a simple exponential function and whose magnitude is a function of the distance

between the two connected neurons [31].

τ1
∂V (x, t)

∂t
= −V (x, t) + gsyn

∫
D

J(|y − x|)
∑
k

α(t− tk(y))dy, (1.28)

where tk(y) represents the discrete firing times when neuron at position y fires the kth time.

Here α(t) is the time-dependent current that arises from an impulse. The function Jdescribes

the space dependence of the coupling strength of neuron at position x and y. The parameter

gsyn sets the global scale of the coupling strength.

J(x) =
e−|x|/σ

2σ
, (1.29)

α = e−t/τ2H(t). (1.30)
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H is the Heaviside step function

H(t) = 0, t < 0

H(t) = 1, t ≥ 0.

Osan et. al [34] has obtained the integral formulation of the Integrate-and-Fire neural

model by integrating the differential equation 1.28,

V (x, t) =

N(x,t)∑
n=1

η(t− tn(x)) + gsyn

∫
D

J(|y − x|)
N(y,t)∑
m=1

A(t− tk(y))dy, (1.31)

η(t) < −(Vreset − VT )e−t/τ1H(t), (1.32)

A(t) =
1

1− τ1/τ2

(e−t/τ2 − e−t/τ1)H(t) =
α(t)− β(t)

1− τ1/τ2

, (1.33)

where β(t) = e−t/τ1H(t). We call α(t) ’decaying reset’, and β(t) ‘synaptic integral‘. The

following Figure 1.2 visualized the fast and slow response curve function: A(t) regarding to

different parameter settings. V (x, t) equals VT when the neuron spikes.
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Figure (1.2) Fast and slow response functions, A(t) with different τ1 and τ2, regen-

erated the work by Osan et. al [34]

Fast and slow response functions, A(t) with τ1 = 1, τ2 = 2 for the fast one(blue line) and

τ1 = 10, τ2 = 30 for the slow one(red line). Note the heights have been normalized here to

be the same.

Osan and Ermentrout [34] have used a discretized one-dimensional domain. They ap-

plied a uniform grid with distance δ between nodes. By denoting spatial position of each

neuron by x = iδ, where i is the numbering of each neuron. Under the assumption that each

neuron makes a single spike, they integrate the equations to obtain the following integral

equation for V (x, t) using V (0, 0) = 0 in discrete and continuous forms [31]:

V (i, t) = gsynδ

inf∑
j=1

J(|i− j|δ)A(t− tj), (1.34)

V (x, t) = gsyn

∫
D

J(y − x)A(t− ty)dy. (1.35)

Besides, multiple-spikes traveling waves are also analytical tractable similar to single-
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spike traveling wave but excitations are coming from integration or summation from more

than one neighbor neurons’ spiking.

V (i, t) = gsynδ

inf∑
k=1

J(|i− j|δ)
N(k,t)∑
m=1

A(t− tm(k)), (1.36)

V (x, t) = gsyn

∫
D

J(y − x)

N(k,t)∑
m=1

A(t− ty)dy. (1.37)

Furthermore, two-dimensional integrate-and-fire neural network evolution equations

have also been brought up on single-spike traveling waves [36]. The time at which the

neuron fires, t∗(x) is defined to be the first time for which V (x, t) reaches threshold VT .

With radially symmetric solutions, the two-dimensional evolution equation is,

V (r, t) =

∫ ∞
0

Ĵ(r, r′)A(t∗(r)− t∗(r′))dr′ (1.38)

where

Ĵ(r, r′) = r′
∫ 2π

0

J(
√
r2 + r′2 − 2rr′cos(θ))dθ (1.39)

Those forms of evolutions equations for traveling wave propagation activities are very

powerful to obtain analytical results from the propagation activities of traveling waves. They

can also be extended to more complicated cases when the coupling function is not exponential

function and it is a non-homogeneous neural network. The research questions are: Can

we obtain traveling wave speed solutions and prove that there exist two traveling wave

speeds: slow-unstable and fast-stable? Can we obtain explicit expressions for traveling

wave propagation activities related with speed, acceleration, neuron locations, spiking times,

and network parameters: synaptic global excitability, neuron integration time constant,

neuron synaptic excitation decay time constant, neuron connectivity spatial scale? What

are the dynamics when the integrate-and-fire neural network is under the influence of periodic

inhomogeneities?
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Traveling waves of electrical activities, due to neurons interaction, have been observed

in vivo in various sensory cortical areas. The emergence of this type of traveling waves

is a characteristic feature of some neurological disorders in human, such as epilepsy and

migraines. As discussed in the section of ’Motivations’ about why we study the traveling

waves of electrical activities, here I will describe how this type of traveling waves is usually

recorded. A common experimental method to record electrical activity in vitro is to use thin

slices of cortical tissue, which is typically considered as a reduced one-dimensional network

in mathematical analysis. In the preparation of the recording, inhibition is suppressed by

blocking GABAA receptors with an antagonist such as bicuculline [67]. A weak electrical

stimulus from any site on the cortical slice can induce a synchronization of electrical activities.

Then the traveling wave can propagate away from the stimulate point at a mean speed around

6-9 cm/s.

Under the assumption that the synaptic coupling between neurons are homogeneous, it

has been shown that an excitatory neural network supports the propagation of a traveling

wave front by Ermentrout, Abbott, Bressloff, Folias and Golomb ( [13], [30], [52], [68]). Also,

periodic inhomogeneity is found in the primary visual cortex that the horizontal connections

rotates approximately periodically across the cortex resulting in a periodic inhomogeneous

medium. Bressloff [45] derived an expression for the effective wave-speed and showed that

propagation failure could occur if the speed is too slow or the degree of inhomogeneity is

too large using averaging and homogenization theory. Kilpatrick, Folias and Bressloff [47]

continued the work on the traveling pulses and wave propagation failure in inhomogeneous

neural media using averaging and homogenization theory. They have shown that a spatially

periodic modulation of homogeneous synaptic connections leads to an effective reduction

in the mean speed of a traveling pulse. The bumps at the leading edge of the pulse are

also found as a feature of coherent traveling wave propagation. Here is the one-dimensional
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neural network model,

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞
−∞

W (|x− x′|)[1 +D′(
x′

ε
)]f(u(x′, t))dx′ − βv(x, t),

1

α

∂v(x, t)

∂t
= −v(x, t) + u(x, t),

where D is a 2π−periodic function and ε determines the microscopic length-scale. W is the

homogeneous weight function or coupling function. f(u) is the output firing rate function.

v(x, t) is a local negative feedback mechanism, with β and α determining the relative strength

and rate of feedback. u(x, t) is the population activity at position x.

By the assumption that ε is a small parameter and the homogeneous network supports

the propagation of a traveling pulse of constant speed c.

u(x, t) = U(ξ),

v(x, t) = V (ξ),

where ξ = x− ct, and U(ξ), V (ξ)→ 0 if ξ → ±∞. By substituting x, t by ξ and performing

the change of variables (ξ = x − φ(t)) and τ = t, the model is described in the following

form,

∂u(ξ, τ)

∂τ
= −u(ξ, τ) +

∫
−∞
∞W (ξ − ξ′)f(u(ξ′, τ))dξ′ + φ′

∂u(ξ, τ)

∂ξ

+ε

∫ ∞
−∞

D(
ξ′ + φ

ε
)[W ′(ξ − ξ′)f(u(ξ′, τ))−W (ξ, ξ′)

∂f(u(ξ′, τ))

∂ξ′
dξ′,

1

α

∂v(ξ, τ)

∂τ
= −v(ξ, τ) + u(ξ, τ) +

φ′∂v(ξ, τ)

α∂ξ
.

By performing the perturbation expansions on the voltage U(ξ), V (ξ) and speed c,

u(ξ, τ) = U(ξ) + εu1(ξ, τ) + ε2u2(ξ, τ) + ....,

v(ξ, τ) = V (ξ) + εv1(ξ, τ) + ε2v2(ξ, τ) + ....,

φ′(τ) = c+ εφ′1(τ) + ε2φ′2(τ) + ...
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where (U(ξ), V (ξ))T is a traveling pulse solution of the corresponding homogeneous system

and c is the speed of the unperturbed pulse. It is shown [47] that there exists a traveling

pulse of the approximate form U(x− φ(t)) and of average speed c̄ = 2πε/T with

T =

∫ 2πε

0

dφ

c− εΦ1(φ/ε)

1.4 Numerical Computing with MATLAB

Apart from the analytical methods, it is important to numerically simulate the system

of neural networks to confirm analytical results and provide insights on implicit results from

the neural models. Ordinary differential equation (ODE) solver in Matlab is very helpful for

numerical simulation of traveling wave spiking activities since the integrate-and-fire model is

mainly a system of ordinary differential equations of voltage with respect to time and neuron

locations after making transformations.

In Matlab, there are several types of ODEs, for example, ODE45, ODE23, ODE113,

ODE15s. Among them, ODE45 and ODE15s are the most frequently used in my Ph.D.

research to solve differential equations. ODE45 is based on an explicit Runge-Kutta (4, 5)

formula, the Dormand-Prince pair, it is a single-step solver in computing y(tn), it needs only

the solution at the immediately preceding time point, y(tn−1). It is a quite efficient solver.

However, it is a non-stiff differential equation solver.

ODE15s is based on the numerical differentiation formulas (NDFs) of orders 1 to 5.

It is a variable-step, variable-order (VSVO) solver. Optionally, it can use the backward

differentiation formulas (BDFs, also known as Gear’s method) that are usually less efficient.

It is generally used for stiff problems. General Matlab code is put here,

[X,T ] = ode ∗ ∗(@F, T imeSpan, x0, Options, P1, P2, P3), (1.40)

where @F is a handle to a function which returns a vector of rates of change. x0 is the

timespan in a vector form [start, end]. We can use Options to set various options associated
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with the ode solver (if omitted or set to [], the default settings are used). P1, P2, P3 are

additional arguments which will be passed to @F .

Additionally, the model is basically described as non-linear equations. Numerically,

we use fsolve, fminbnd, lsqnonlin, fzero to help us get solutions from 2-D or n-D nonliear

systems to confirm the analytical results of traveling wave propagation activities. fsolve

solves systems of nonlinear equations with given initial conditions. However, fsolve can-

not include any constraints, even bound constraints. In this case, we need fminbnd and

lsqnonlin. lsqnonlin tries to minimize the sum of squares of the components of a vector

function F (x), which attempts to solve the equation F (x) = 0 with constraints settings.
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CHAPTER 2

ACTIVITIES OF TRAVELING WAVE PROPAGATION IN

HOMOGENEOUS NUERAL TISSUE

2.1 Evolution equations in integrate-and-fire model

In this study we seek analytical solutions for evolution of one-spike activity propagation

in a class of neural networks. Here we use a simple and widely used model for a spiking neu-

ron, the integrate-and-fire model, which integrates the input signal with temporal constant

τ1 until its voltage reaches a threshold VT , at which point the neuron sends an excitatory

spike to the rest of the network.

V (x, t) = gsyn

∫
D

J(x, y)A(t− t∗(y))dy. (2.1)

To describe the network interactions we make use of the following two functions. First,

J(x, y) describes the synaptic coupling between neurons at positions x and y. Second, A(t)

describes the excitation provided by a presynaptic spike onto the postsynaptic neuron. The

functions J(x, y) and A(t) take the following explicit form:

J(x, y) =
e
−|x−y|

σ

2σ
, (2.2)

A(t) =
e
− t
τ2

1− τ1
τ2

− e
− t
τ1

1− τ1
τ2

= A2(t)− A1(t), (2.3)

where

A1(t) =
e
− t
τ1

1− τ1
τ2

,



24

A2(t) =
e
− t
τ2

1− τ1
τ2

.

For function J(x, y), which depends only on the absolute value of |x− y|, the symbol σ

indicates the connectivity spatial scale. Other explicit functions for J(x, y) will be considered

later on. For the temporal function A(t), τ2 is the time constant for the decay of the synaptic

excitation which is assumed to be greater than τ1; also A(t) = 0 for t < 0. The membrane

voltage for a neuron in the network then can be expressed in integral form [31]:

V (x, t)

gsyn
= J ⊗ A =

∫ x

−∞
J(x, y)A(t− t(y))dy (2.4)

where ⊗ denotes convolution and t(y) is the spiking time for the neuron at position

y.Here gsyn is a constant that controls the excitation of the network. It is assumed that

dynamics in the network are completely determined by the excitation due to the previous

neuron spikes that occur at t(y) < t. We note here that initiation of activity propagation may

initially occur through applying an external current to a subset of neurons in the network.

For example a preferred way to do this in the numerical simulation is to induce a large group

of neurons to spike at the same time, t = 0, and then to monitor propagation to the right of

that region. For simplicity we assume that the wave propagates only in one direction, taken

here to be from left to right, and we ignore neural spikes that may occur to the left of the

initiation region. After integrating the excitatory signals, the firing condition of a neuron

at position x, taken to be at the leading edge of the propagation, becomes V (x, t(x)) = VT .

Since t(x) is the time at which the voltage V (x, t) of neuron at position x first crosses

threshold, this constitutes a consistency equation. In this one-dimensional network, it can

be shown that the firing time is a monotonic function of their position x; this holds true for

many other classes of connectivity functions [33,34]

We take two derivatives of equation (2.4) with respect to x, with the goal of obtaining

an equation that connects t′ = dt/dx and t′′ = d2t/dx2 which represent an inverse of speed

and a transformation of acceleration. For the first derivative of equation (2.4), the left side



25

is a constant and becomes 0 after first derivative.

d(VT/g)

dx
= (J ⊗ A)′ = J ′ ⊗ A+ (J ⊗ A′)t′ = 0. (2.5)

0 = J ′′ ⊗ A+ 2t′J ′ ⊗ A′ + t′′J ⊗ A′ + (t′)2J ⊗ A′′ + J0A
′
0t
′. (2.6)

where we used A0 = A(x = 0) = 0 in equations (2.6). The other notations used here

are:

J0 = J(0) = 1/2/σ.

A′0 = A′(0) = 1/τ1.

Equations (2.4-2.6) constitute a system of evolution equations that shape the traveling

wave propagation which containing t′ and t′′.

In the next section we will show how we can convert them to an ordinary differential

equations that could describe the traveling wave speed and acceleration.

2.2 Analytical solutions

Since functions J(x), A1(t) and A2(t) are all exponentials, the system of equations

(2.4-2.6) contains only two unknowns, of the form

K1 = J ⊗ A1.
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K2 = J ⊗ A2.

Solving for them as a function of t′ in the equations (2.4-2.5) and substituting these

solutions in (2.6) yields an equation where t′′ is a function of t′. This is the plan.

Also by the fact that J(x), A1(t) and A2(t) are exponential functions, we obtain: J ′ =

dJ(x)
dx

= J/(−σ), A′k = dAk(t(x))
dx

= Ai/(−τk)t′, k = 1, 2. Then we can write equations (2.4-2.5)

in a compact way:

VT
gsyn

= K2 −K1. (2.7)

K2(
1

σ
+

1

τ2

t′) = K1(
1

σ
+

1

τ1

t′). (2.8)

Terms K1 and K2 can now be determined from equations (2.7-2.8) as functions of the

instantaneous speed c = 1/t′. By substitution,

(
VT
gsyn

+K1)(
1

σ
+

1

τ2

t′) = K1(
1

σ
+

1

τ1

t′)

Thus, we can solve for K1 and obtain K2 through back-substitution. Here are the

solutions,

K1 =
VT
gsyn

(
c

σ
+

1

τ2

)/(
1

τ1

− 1

τ2

) (2.9)
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K2 =
VT
gsyn

(
c

σ
+

1

τ1

)/(
1

τ1

− 1

τ2

) (2.10)

Actually K2 is a multiple of K1 (Fig. 2.1).
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Figure (2.1) K1 and K2 linearly change over speed.

K1 and K2 from equations 2.7-2.8 are multiples of each other. They are linearly correlated

with speed. These analytical results are also used in the inhomogeneous neural network.

In order to get speed and acceleration related equation, we can rewrite equation (2.6)

by taking the second derivative as a single equation that relates t′′ to c:

d2tx
dx2

=
K1( 1

σ
+ 1

cτ1
)2 −K2( 1

σ
+ 1

cτ2
)2 − 1

2σcτ1
K1

τ1
− K2

τ2

(2.11)

Substituting the explicit solutions for the terms K1 and K2 in equation (2.11), we can

determine d2tx/dx
2 as a function of speed, which is

As an additional step, we convert d2tx/dx
2 into the instantaneous acceleration, which

is a more intuitive measure for the activity propagation, using the following relationship
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between these two quantities:

a(x) =
d2x

dt2x
= − 1

(dtx
dx

)2

d2tx
dx2

dx

dtx
= −c3d

2tx
dx2

. (2.12)

Thus by substitution with,

d2tx
dx2

= −a(x)

c3
. (2.13)

We obtain a remarkably simple analytical relationship between a(x) and c(x):

a(x) = −(c(x)− c1)(c(x)− c2)

σ
(2.14)

where c1 and c2 are the speed for the slow-unstable and the fast-stable constant speed

traveling wave solutions respectively. By solving for c(x),

−(c(x)− c1)(c(x)− c2)

σ
= 0

We obtain two speed solutions,

c1,2 = σ/2
(
B − β ∓

√
(B − β)2 − 4

τ1τ2

)
(2.15)

These constant speed wave solutions(c1 and c2) depend on parameters σ, τ1, τ2 and

B = gsyn/(2Vtτ1), β = (τ1+τ2)/(τ1τ2), which we also have the visualization(FIG. 2.2a). c1 and

c2 are separately unstable and stable constant speed solutions, which means that propagation

will decrease all the way to zero if the speed is less than c1 and when the speed is above

c1, the propagating speed will converge to c2 as we say ’stable’. With parameters values:

τ1 = 4× 10−3, τ2 = 3.0× 10−2s, σ = 2.88× 10−4m, VT = 1.5× 10−2V , gsyn = 9.84× 10−2V ,

we have c1 = 4.6× 10−3m/s and c2 = 1.500× 10−1m/s.
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The pair of speeds, c1 and c2 are supposed to be real and positive for different values

of network excitability gsyn, provided that this parameter exceeds a critical value gcritical

(FIG. 2.2b), which gives the minimum synaptic strength for which stable activity propagation

can exist:

gcritical = 2Vtτ1

(τ1 + τ2

τ1τ2

+

√
4

τ1τ2

)
(2.16)

This critical gsyn(the minimum global excitability for traveling wave propagation) is

positively correlated with the integration time constant (τ1) and negatively correlated with

the excitation decay time constant (τ2)(Fig.2.3)(a-b).
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Figure (2.2) (a) Theoretical results and numerical simulations for the depen-

dence of wave acceleration on instantaneous speed, a = a(c). The acceleration’s

quadratic dependence on speed (curve with merged blue, green and red regions) is in per-

fect agreement with numerical simulations (dotted black line) on all regions with exception

of low speed regime where the agreement again becomes excellent with finer discretization

of the spatial domain. The parameters used here are: τ1 = 4× 10−3, τ2 = 3.0× 10−2s,

σ = 2.88× 10−4m, VT = 1.5× 10−2V , gsyn = 9.84× 10−2V , yielding c1 = 4.6× 10−3m/s

and c2 = 1.500× 10−1m/s. These parameters are in agreement with published data and

they are used as default values, unless noted otherwise. (b) Theoretical results for ac-

celeration vs speed for different excitability levels gsyn. Depending on the overall

excitability level, there are no traveling wave solutions (red line), one solution (green line) or

two solutions (blue line). As excitability increases, c1 and c2 decrease or increase respectively,

provided that the overall excitability exceeds the critical value gcritical = 0.0559V (see Eq.

2.16).
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Figure (2.3) Minimum global excitability(gsyn) over τ1, τ2.

(a). gsyn vs τ1. The minimum global excitability required for traveling wave propagation

increases with the increase of integration constant time. (b). gsyn vs τ2. The minimum

global excitability required for traveling wave propagation decreases with the increase of

excitation decay constant time.

In agreement with previous results, the decrease of the excitability parameter gsyn brings

the two solutions c1 and c2 closer and closer together, until these solutions collide and cease

to exist. Below gcritical, c1 and c2 become complex, and in turn, the acceleration can only

take negative values, resulting in eventual propagation failure regardless of how activity

propagation is initiated. This relationship is evident in FIG. 2.4a, where the connection

between c1,2 and gsyn is illustrated. The slow-unstable wave has a horizontal speed asymptote

at zero as gsyn goes to∞, while the fast-stable wave has a oblique asymptote with slope σB.

The same properties exhibited by equation (2.15) were found numerically [29], in agreement

with later results [30, 32]. The dependence of the c1 and c2 on other network parameters

such as connectivity footprint σ, the neuron integration time τ1 and the decay time of

synaptic excitation τ2 is illustrated in FIG. 2.4b-d. We can find that the higher global

excitability increases wave propagation speed and become more linear when gsyn increases.
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The connectivity footprint σ reveals a linear correlation with propagating speed. Also,

the constant speed solution will decrease if the integration time increase which means the

integration is less slow, While with the decay time increases (τ2), meaning the voltage is

decreasing slower, the stable speed(c2) will be larger, but there is a limit stable speed that

the neural network can reach to.
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Figure (2.4) Dependence of traveling wave solutions c1 (in red) and c2 (in blue) on

neuron and network parameters. (a) Speed vs synaptic excitability gsyn, with

bifurcation occurring at gcritical = 55.9mV . (b) Speed vs σ, revealing linear correlations

between propagating speed and parameter σ. (c) Speed vs τ1, showing a decrease of c2 as

the neuron integration time, τ1, increases. (d) Speed vs τ2, indicating that fast solutions

increase with the increase of decay time, τ2, in contrast to the slow solutions showing the

opposite trend.

A consequence of the relationship between acceleration and speed (Eq. 3.7) is that the

traveling waves fails if c < c1 or evolves toward c(∞) = c2 if c > c1. These outcomes are

illustrated in FIG. 2.5a, which shows the neuronal positions versus their firing times. As a

reminder, activity propagation is initiated here by inducing a large enough region to spike at
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t = 0 through the application of a large enough external current to all neurons in that region.

The size of the initial region, which needs to exceed a threshold value, allows us to control

the initial phase of the traveling wave, as larger regions will provide more excitation to the

neurons close to the initiation region and it will consequently result in a larger initial speed

for the activity propagation. In order to have stable constant wave propagation, solutions

are assumed to be real, thus

(B − τ1 + τ2

τ1τ2

)2 − 4

τ1τ2

> 0. (2.17)

Not surprisingly, when we examine the evolution of speed as a function of space

(FIG. 2.5b), we notice again the existence of three distinct regimes in agreement with our

previous results:

• propagation failure if c < c1,

• Acceleration toward stable speed c2 if c > c1,

• Deceleration toward stable speed c2 if c > c2.

From Figure 2.5a-b, we also can conclude that propagation failure can be achieved in

a finite amount of space, while the stability at c2 can be achieved asymptotically. In the

next section, we will discuss about the coupling between speed and acceleration and explicit

equations for firing times and space with respect to speed and other parameters.
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Figure (2.5) (a) Space vs Firing times. Different initial conditions will determine if

the transients evolve toward stable or transient propagation. When the speed (tangent) is

less than c1, propagation fails as expected (red line, failure when tangent becomes vertical).

When the tangent is greater than c2 (blue line), the traveling wave slows down and evolves

asymptotically toward the a constant speed traveling wave indicated by slope c2. When the

tangent is greater than c1 but less than c2 (green line), the traveling wave speeds up and

evolves asymptotically toward fast-stable solution at c2. Results from numerical simulations,

not shown here, are in perfect agreement with color lines shown in this graph. (b) Speed vs

Space. In agreement with results from part (a), propagation failure is achieved in a finite

amount of space, while stability at c2 is achieved asymptotically.

2.2.1 Coupling between speed and acceleration leads to wave stability

Most surprisingly, equation (3.7) reveals that the relationship between the acceleration

and the instantaneous speed is independent of how the wave was initiated. More precisely,

any two instances of activity propagation that achieve the same speed will follow the same

future dynamics despite the fact that the prior firing maps are different.

This is not a trivial result, since in principle each spike in the network exerts an influence
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on the rest of the network, so the naive intuition would be that different initial conditions

would result in activity propagation dynamics, even for the cases of speed-matching at a

common point in the network.

We can see from FIG. 2.2a that the two roots of the quadratic equation correspond

to the constant low speed unstable and high speed stable traveling wave solutions. This

provides a global stability explanation for why any transient propagation will evolve toward

a constant speed solution with speed c2, provided that the initial speed of the propagation

is larger than c1, or fail otherwise. When c < c1 acceleration stays negative and increases in

amplitude as the wave slows down toward propagation failure at c = 0. When c1 < c < c2

acceleration stays positive but decreases in amplitude as the wave speeds up toward the

constant speed solution with c = c2. When c > c2 acceleration stays negative but decreases

in amplitude as the wave slows down toward the constant speed solution with c = c2.

All these trends are true regardless of the exact value of initial speed c, therefore these

results go beyond typical proofs of stability for traveling waves, which are usually done

using perturbation theory [29,69], meaning that the results hold only for small perturbation

around the stable constant speed traveling wave. In contrast, our stability argument holds

for random shuffling of firing times or perturbations of arbitrary large amplitude in voltage,

and as such are more general in nature than the ones resulting from the perturbation theory.

2.2.2 Analytical solutions and natural timescales for activity propagation

We now take advantage of this remarkable result from equation(2.14) to determine an-

alytical expressions for t(x), c(t), x(t) and x(c) by variable separation and taking derivations

with respect to the parameter that is of interest. In this case, it helps us understand the

mathematic form of characteristics of traveling wave propagation, like spiking time, propa-

gating speed, space distance that traveled. Since we have the form of ordinary differential

equation for speed, acceleration of space distance(2.14), we can perform different integrations

by the relationship between speed, space distance and traveling time.

With the fact that,
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a =
dx

dt

dc

dt

We can rewrite (3.7) into the form as following,

c
dc

dt
= −(c− c1)(c− c2)

σ
.

This is a nice ordinary differential equation and the only trouble to analytical solutions(c(x))

comes from the term (c − c1)(c − c2)/c. However, we can get analytical expressions for the

forms like t(x), c(t), x(t) and x(c).

Integrating equation (3.7) after separating variables c and t by the following steps,

dt = − σc

(c− c1)(c− c2)
,

∫ t

0

dt = −σ
∫ c(t)

c(0)

c

(c− c1)(c− c2)
dc.

With the trick to separate the right quadratic term in the denominator into one linear

term to perform integration,

c

(c− c1)(c− c2)
=
−c1

c2 − c1

1

c− c1

+
c2

c2 − c1

1

c− c2

.

As expected, we obtain

t(c) =
σ

c2 − c1

ln(
c− c1

c− c2

k), (2.18)
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where k = (c0 − c2)/(c0 − c1) and c0 is the initial propagation speed at t = 0,

t(c0) =
σ

c2 − c1

ln(
c0 − c1

c0 − c2

c0 − c2

c0 − c1

) = 0.

From this analytical result, we can see that the firing time changes in a logarithmic

form with respect to the speed change, which is in agreement with our previous figures.

Similarly, inverting c(t) in equation (2.18) and using the definition τ0 = σ/(c2 − c1) we

obtain:

et/τ0 = k
c− c1

c− c2

.

Thus,

c(t) =
c2e

t/τ0 − c1k

et/τ0 − k
. (2.19)

Integrating both equations of (2.19) since c(t) = dx/dt after separating variables x and

t,

x(t) = σ ln(
et/τ0 − k
et0/τ0 − k

) + c1(t− t0). (2.20)

where t0, which in general is different from 0, is the firing time of neuron located at position

x = 0. In order to relate the speed of propagation with the spatial position, we take the

integral of equation (3.7) after separating variables x and c, also using a(x) = c · dc/dx:

x(c) = τ0(c1 ln(
c− c1

c0 − c1

)− c2 ln(
c− c2

c0 − c2

)). (2.21)

Again, theoretical results are in excellent agreement with numerical simulations for

speed vs space plots (FIG. 2.5b), where all transients can be thought to be located at an

initial point along the speed versus space curve. From equations (2.19 - 2.20) it is clear that

stability depends on the natural time scale τ0:
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τ0 =
τ1√

(1 + τ1
τ2
− gsyn

2Vt
)2 − 4 τ1

τ2

. (2.22)

Based on this formula, it is easy to infer how τ0 depends on these network constants: in-

tegration time scale(τ1), decay time scale(τ2), the global excitability(gsyn), the threshold(Vt).

If gsyn → ∞, τ0 = O(g−1
syn), with constant slope 2Vtτ1 (FIG. 2.6a). When τ1 becomes

really small, we obtain: limτ1→0 τ0 = 0 (FIG. 2.6b). Furthermore, as the synaptic decay

constant τ2 becomes really large, we obtain limτ2→∞ τ0 = 2Vt/gsyn · τ1 (FIG. 2.6c).
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Figure (2.6) Dependence of natural timescale τ0 on other network parameters. (a)

τ0 vs gsyn. As the excitability of the network (gsyn) increases, it takes less time to achieve

stability (at c = 0 or at c = c2). Here τ0 = 0.12/gsyn, where gsyn > gcritical = 55.9mV .

(b) τ0 vs τ1. As the integration time τ1 increases it takes more time to reach the stable

states. When τ1 becomes really small we obtain τ0 = 0.4386τ1. (c) τ0 vs τ2. Finally, when

synaptic excitation lasts longer (at higher values of τ2), stable states are also reached faster.

When τ2 becomes really large we obtain τ0 = 1.7544.

2.2.3 Reaching steady states

We now use the explicit dependence between x, t and c to determine how quickly dy-

namics reach the stable regimes of activity propagation, namely propagation failure at c = 0

or constant speed propagation at c = c2. More precisely, we want to determine where the

propagation stops and the amount of time it takes to achieve propagation failure. Similarly,

when the initial speed is above c1, we seek to determine the distance and time that will be

needed for the propagation to reach stability, defined as reaching a value which is close to c2,
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namely α · c2, α ≈ 1. If the initial value for propagation speed is less than c2 we take α < 1,

otherwise we choose α > 1. The dependence of these distances as a function of the initial

speed c0 is shown in FIG. 2.7a, while the times to reach stability are shown in Fig. 2.7b.
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Figure (2.7) (a) Spatial scales for achieving stable state. We examine the distance

needed to achieve stability depends on the initial speed c0. For propagation failure this

is defined as the distance traveled until speed becomes 0 (red line). For the asymptotically

stable states, this is defined as the distance needed to reach c = αc2, where α = 0.99 if c0 < c2

(green line) and α = 1.01 if c0 > c2 (blue line). (b) Temporal scales for achieving stable

state. Similar graphs are shown for the time needed to achieve stable states. In the limit

where c0 →∞ (black dotted line) stability is achieved in a finite amount of time (t = 9.1ms).

Using equation (2.21), we obtain the following analytical result about the amount of

space needed to reach asymptotic stable state with α close to 1, due the logarithmic form

which cannot take c = c2,

x(c = αc2) = τ0 · ln(
(αc2 − c1)c1

(αc2 − c2)c2
)(

(c0 − c2)c2

(c0 − c1)c1
). (2.23)
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This reveals that when initial speed is very large, the amount of traveling space required

to evolve towards stability also becomes very large, since limc0→∞ x(c = αc2) = ∞. Along

similar lines, using equation (2.18), we can compute the amount of time needed to reach

stability as follows,

t(c = αc2) = τ0 · ln(
αc2 − c1

αc2 − c2

c0 − c2

c0 − c1

). (2.24)

In contrast with the amount of space needed to reach the stable state, when c0 is very

large, only a finite time is needed in order to reach stability, since limc0→∞ t(c = αc2) =

τ0 ln((αc2 − c1)/(αc2 − c2)), where α > 1.

In addition, we determine that upon reaching c = 0, the acceleration of the wave

reaches a minimum value that does not depend on the excitability of the tissue gsyn, that is,

amin(gsyn) = −σ/(τ1τ2). We note here that this is not a global minimum, since at the other

end of the spectrum, as speed becomes very large the acceleration goes to minus infinity.

Finally, we note that the maximum positive acceleration, obtained at speed (c1 + c2)/2, is

determined by the following equation:

amax(gsyn) = σ((B − τ1 + τ2

τ1τ2

)2 − 4

τ1τ2

)/4, (2.25)

where B = gsyn/(2Vtτ1).

The dependence of amax and amin as a function of parameters gsyn, σ, τ1 and τ2 is

shown in FIG. 2.8. Figure 2.8(a) gives the view of maximum and minimum acceleration

change with the increase of global excitability gsyn. It is interesting to know that maximum

acceleration increases with the increase of gsyn, while the minimum acceleration decreases to

0 when the propagation failure does not depend on gsyn. As what we have for speed related σ,

acceleration is also linear with σ. Additionally, integration and decay time scale, maximum

and minimum accelerations both go toward zero when the integration time increases. In

contrast, maximum acceleration increases as the decay time scale becomes larger, and the

minimum acceleration becomes zero .

All in all, we have explored the neural wave propagation with our specific type of
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integrate-and-fire neural network, regarding to its speed and acceleration analytically and

numerically. Acceleration is in a quadratic form of speed. With this analytical result, we

dig further to understand how the network parameters relate to the propagation speed and

acceleration, the dynamics that the traveling wave reaches stability or getting propagation

failure, how much space and how much time needed to reach propagation stability. The

mathematical expressions for the traveling wave propagation speed, space and time allow us

to check the dynamics of traveling wave propagation easily and quickly.
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Figure (2.8) Dependence traveling-wave acceleration on parameters. (a) acceler-

ation vs gsyn. The maximum value for acceleration (blue line) increases with excitability,

while surprisingly the minimum value (red line, achieved when c = 0, when propagation fails)

does not depend on gsyn. (b) acceleration vs synaptic footprint σ. Both maximum and

minimum acceleration are linear in σ. (c) acceleration vs integration time τ1. As the

neural integration time becomes very large, both maximum and minimum acceleration de-

cay toward zero values. (d) acceleration vs decay of excitability parameter τ2. In

contrast, only the minimum acceleration decays to zero as τ2 becomes large, as maximum

acceleration saturates to a non-zero fixed value.
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2.3 Application: propagation changes in the presence of a connectivity gap

In reality, we may face a connectivity gap(non-excitable) which would decreases the

traveling wave propagating speed and to some extent causes propagation failure. The re-

search questions are how the non-excitable gap affects the traveling wave propagation and

what is the minimum gap length inducing propagation failure via our mathematical neural

network model and related analytical solutions explained in our previous sections.

We consider now a small section of non-excitable gap region that can be thought to be

the result of local dead tissue. We are interested to determine the conditions that lead to

activity propagation failure for a wave with an instantaneous speed c > c1 that at t = t0

reaches a non-excitable gap of length L located at position x0. Here our new parameters for

the non-excitable gap is the length of gap L and the location(x0) where the gap starts.

To remind of what we have for the integrate-and-fire neuron at position (x) and how

the voltage changes over time(t).

V (x, t) =
gsyn
2σ

∫ x

−infty
e−

x−y
σ A(t− t(y))dy.

The neuron voltage reaches at V (x, t) = Vt when it spikes, when t = t∗(x) is called the firing

time.

Due to the choice of the exponential kernel for the spatial synaptic connectivity function

(denoted by J(x, y), the voltage of the first neuron past the non-excitable gap, located at

x1 = x0 + L since x0 is where the gap starts and L is the total length of the gap, is as

following,

V (x0 + L, t) =
gsyn
2σ

∫ x0

−∞
e−

L
σ e−

x0−y
σ A(t− t(y))dy (2.26)

At t = t0 when the neuron at position x = x0 spikes, the voltage reaches Vt, we have

V (x0, t0) = Vt = J ⊗ A = J ⊗ A2 − J ⊗ A1 = K2 −K1.

By what mathematical derivations that we have used in the section 2.2, we have used K1



44

and K2, where

K1 = J ⊗ A1.

K2 = J ⊗ A2.

A1(t) =
e
− t
τ1

1− τ1
τ2

.

A2(t) =
e
− t
τ2

1− τ1
τ2

.

Thus, we can have the following expression from equation (2.26):

V (x0 + L, t0) = gsyn(K2 −K1)e−
L
σ = VT e

−L
σ (2.27)

where the variables K1 and K2 depend on the pre-gap speed (c) as defined in equations

(2.7-2.8), and they are linear of the pre-gap speed (c).

Without voltage integration during the gap, the time dependence of the voltage of

neuron at position x1 = X0 + L becomes:

V (x1, t) = gsyn(K2e
− t−t0

τ2 −K1e
− t−t0

τ1 )e−
L
σ (2.28)

Depending on the speed before the gap, we have the evolution equation for the first neuron

past the gap.

Due to the non-excitable gap, the neuron at position x1 needs an additional time interval

∆t = ∆t(L) in order to integrate the excitable current received so far and reach the threshold

Vt:

V (x0 + L, t0 + ∆t) = gsyn(K2e
−∆t
τ2 −K1e

−∆t
τ1 )e−

L
σ = VT (2.29)
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In general, equation (2.29) does not have an analytical solution for the extra time for

the neuron at x1 = x0 + L to spike with fixed gap length L, but we can the expression of

pre-gap speed regarding to ∆t and L,

c =
Vte

L/σ/gsyn − (b1e
−∆t/τ2 − b2e

−∆t/τ1)

a1e−∆t/τ2 − a2e−∆t/τ1
. (2.30)

where

K1 = a1c+ b1.

K2 = a2c+ b2.

where a1, a2, b1, b2 are constant values related with Vt, gsyn,τ1 and τ2.

a1 =
Vt

gsynσ
(

1

τ1

− 1

τ2

).

a2 =
Vt

gsynσ
(

1

τ1

− 1

τ2

).

b1 =
Vt

gsynτ2

(
1

τ1

− 1

τ2

).

b2 =
Vt

gsynτ1

(
1

τ1

− 1

τ2

).

Following the procedure outlined in equations (2.7 - 2.8), we obtain the first order

equation in the speed of propagation after passing the gap, cgap:

K2

( 1

σ
+

1

cgapτ2

)
e
−∆t
τ2 = K1

( 1

σ
+

1

cgapτ1

)
e
−∆t
τ1 (2.31)
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The solution for cgap = cgap(c, L) then becomes:

cgap(c, L) = σ

K1(c)
τ1

e
−∆t(L)

τ1 − K2(c)
τ2

e
−∆t(L)

τ2

K2(c)e
−∆t(L)

τ2 −K1(c)e
−∆t(L)

τ1

(2.32)

The failure condition after passing the gap is simply cgap(c, L) < c1. Numerical result

for this condition is illustrated, for fixed c in Fig.2.9a, different colored lines denote different

pre-gap speed, they are, c = 0.0386, c = 0.0773, c = 0.15, c = 0.3. Also for fixed L in

Fig.2.9b, we plot the after-gap speed versus the pre-gap speed with different fixed L from

0.05mm to 0.35mm. We can see that the rate of speed change is getting larger and larger

with longer non-excitable gap.

In addition, we compute the minimum amount of non-excitable gap length that would

prevent any further propagation of activity for waves that reach the gap with speed c, as

shown in FIG.2.9c.
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Figure (2.9) Activity propagation changes induced by a non-excitable region of

length L. (a) Speed after gap vs length of gap. Not surprisingly, larger non-excitable

regions decrease the speed of the traveling waves past the gap and they could even lead to

propagation failure at c = 0. We plot this relationship for four initial conditions: c = 0.0386,

c = 0.0773, c = 0.15 and c = 0.3. (b) Speed after gap vs speed before gap. Slow

traveling waves are more affected by a constant length gap and may even fail, while fast ones

only show a moderate loss in speed as they propagate further away. The red dotted line is

the y = x, corresponding to zero speed loss and it is included here for comparison with the

other contour lines. Obviously, with the increase of gap length, the change rate of speed

before and after gap increases. Length of the gaps considered here range from L = 0.05 mm

to L = 0.35 mm, with eight uniformly spaced values considered here. (c) Minimum length

of gap that causes propagation failure as a function of the speed before gap. We

determine that propagation eventually fails when speed becomes less than c1. Taking into

account the speed before gap, the graph determines the minimum length of gap needed to

reach propagation failure.

The result is quite interesting when we face a short dead tissue which is not excitable.
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From our model, we can determine the minimum length of gap inducing propagation failure

given pre-gap speed, which mean we can also determine the ∆t for the first neuron after the

gap to spike, as well as the after-gap speed. We have applied analytical results from the

case without dead tissue to help solve the dead tissue problem quickly. Next, we will discuss

about a more general case when the synaptic connectivity function is not only limited to

exponential kernel.

2.4 Applications to more general connectivity functions

The analytical results obtained so far depend on the specific choice of an exponential

kernel for the spatial connectivity function. However, our approach can be extended to

more general classes of functions. We now consider a more complicated spatial connectivity

function, a first order polynomial times the exponential function which actually can fit to

any functions, which has the coefficient term to scale the connectivity function,

coef =
a∆d + b

2σ(aσ + b)
.

So as to,

∫
D

J(x, y) = 1.

Thus, we have the spatial synaptic connectivity function,

J(x, y) =
a|x− y|e

−|x−y|
σ

2σ(aσ + b)
+

b · e
−|x−y|

σ

2σ(aσ + b)
. (2.33)

Let

J1 =
a|x− y|e

−|x−y|
σ

2σ(aσ + b)
. (2.34)
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J2 =
b · e

−|x−y|
σ

2σ(aσ + b)
. (2.35)

Figure 2.10 illustrated the difference between the homogeneous exponential coupling

function and the one that we have modified by multiplying a polynomial function. The one

that we have modified with polynomial function becomes less compact compared with the

exponential coupling.
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Figure (2.10) Synaptic coupling functions. More general coupling function(2.33)(red

curve) is applied to the system with parameters a = 1, b = 1. Compared with the exponen-

tial coupling function(blue curve), the new modified coupling function has wider synaptic

connectivity of the distance between neurons. Within small distances, the exponential cou-

pling function gives stronger synaptic connectivity. σ = 1 is used here for showing not too

small numbers in axises.

A consistency equation for a traveling wave that comes from −∞ with speed c can

be obtained by using t∗(x) = x/c. Without loss of generality, at t = 0 the wave will pass
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through x = 0. Therefore, we obtain

V (x = 0, t = 0) = VT .

and we obtain our new evolution equation for traveling wave spiking times along the neural

slice.

VT = gsyn

∫ 0

−∞

a|y|+ b

2σ(aσ + b)
e
−|y|
σ · e

−|t(y)|
τ2 − e

−|t(y)|
τ1

1− τ1
τ2

dy

With substitution

t∗(y) = y/c.

Neuron at position y has the traveling wave speed equals c, when it spikes at t = t∗(y). We

obtain the evolution equation VT is a function of the location y and traveling wave speed (c).

VT = gsyn

∫ 0

−∞

a|y|+ b

2σ(aσ + b)
e
−|y|
σ · e

−|y|
cτ2 − e

−|y|
cτ1

1− τ1
τ2

dy (2.36)

We can then express the membrane voltage as a function of traveling wave speed through

integration by parts,

VT = B
∫ 0

−∞ a|y|(e
1/c(e−|y|/(σ+τ2) + e−|y|/(σ+τ1))) +

B
∫ 0

−∞ b(e
1/c(e−|y|/(σ+τ2) + e−|y|/(σ+τ1)))

where B is a constant related with parameters: gsyn, σ, a, b, τ1, τ2,

B =
gsyn

2σ(aσ + b)(1− τ1
τ2

)
.

As a result, the membrane voltage has the following form as a function of traveling wave
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speed, with parameters a and b are the weights of synaptic connectivity function.

V (c) =
gsyn

2σ(aσ + b)(1− τ1
τ2

)
[

aσ

( 1
σ

+ 1
cτ2

)2
− (2.37)

aσ

( 1
σ

+ 1
cτ1

)2
+

b
1
σ

+ 1
cτ2

− b
1
σ

+ 1
cτ1

]

We choose similar parameters to the exponential case in order to obtain a stable traveling

wave with exact same fast-stable speed (Fig. 2.11), such that a = 1, b = 1. The other

parameters are the same as before. From figure 2.11, we can find two interaction points with

Vt = 150mV , which are our two speed solutions as we’ve found.

It is easy to see when speed goes to either zero or ∞ the membrane potential V (c)

becomes zero. This guarantees that for large enough global network excitability gsyn there

will be at least traveling waves solutions. Therefore, we will proceed to check if we can

general speed solution from this more complicated neural model network.
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Figure (2.11) Voltage changes over speed by applying polynomial coupling

function More general coupling function(2.33) is applied to the system with parameters

a = 1, b = 1, τ1 = 4× 10−3s, τ2 = 3.0× 10−2s, σ = 2.88× 10−4m, gsyn = 9.85× 10−2V, V t =

1.5× 10−2V . Two speed solutions exist when voltage reaches threshold (VT = 1.5× 10−2V ).

Equation V (c) = Vt can be written as a fourth order polynomial equation, as we have

derived a second order polynomial equation from the neural network with exponential kernel

synaptic connectivity.

We now follow the same procedure for the exponential case, namely generate enough

derivatives of the original equation in order to solve all convolution terms as function of the

time derivatives t′, t′′ and higher order terms. We use these terms in order to obtain an

equation that contains only these derivative, that is in general,

t(n) = f(t′, t′′, ..., t(n−1)). (2.38)

Because the system of three equations (2.4-2.6) contains 4 unknowns, because we have
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J1 and J2, and each of them has two unknowns, Ji ⊗ Aj ({i, j} ∈ {1, 2}). Besides, only

computation of an extra derivative is needed which is the fourth order derivative, since due

to the specific form of the connectivity kernel no new kind of functions will been created as

a result of taking the derivatives of the spatial function J .

Those unknowns can be computed as function of t′, t′′ and t′′′ using three equations

(2.4-2.6), along with the third order derivative of equation (2.4):

(J ⊗ A)′′′ = J ′′′ ⊗ A+ 3t′J ′′ ⊗ A′ + 3(t′)2J ′ ⊗ A′′+

t′′′J ⊗ A′ + (t′)3J ⊗ A′′′ + 3t′′J ′ ⊗ A′ + t′t′′J ⊗ A′′

+ 2t′J ′0A
′
0 + 2t′′J0A

′
0 + (t′)2J0A

′′
0 = 0 (2.39)

Taking one more derivative, namely the derivative of equation (2.39), will connect 4th

order derivative with the lower order derivatives of t, thus generating an ordinary differential

equation, similar to the case analyzed earlier:

J ′′′′ ⊗ A+ 4(t′)3J ′ ⊗ A′′′ + 4t′′′J ′ ⊗ A′ + 4t′J ′′′ ⊗ A′+

6t′′J ′′ ⊗ A′ + 6(t′)2J ′′ ⊗ A′′ + 3(t′′)2J ⊗ A′′ + (t′)4

J ⊗ A′′′′ + t′′′′ · J ⊗ A′ + 4t′t′′′J ⊗ A′′ + 6(t′)2t′′J ⊗ A′′′

+ 12t′t′′J ′ ⊗ A′′ + 5t′′J ′0A
′
0 + 2t′′′J0A

′
0 + 3t′t′′J0A

′′
0+

3t′J ′′0A
′
0 + 3(t′)2J ′0A

′′
0 + (t′)3J0A

′′′
0 + t′t′′J0A

′
0 = 0 (2.40)

We verified that network dynamics are in agreement with this ODE system, using

numerical simulations to compute values for the first three derivatives of t as initial conditions

and making use of the explicit solution t′′′′ = f(t′, t′′, t′′′) from equation (2.40), as illustrated

in FIG. 2.12.

Although the transition toward constant speed waves is now much more complicated
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and analytical solutions do not likely exist for this case, again local dynamics determine the

evolution of the wave. More precisely, two waves that have the same values for the first three

derivatives of t at a spatial location x0 will follow identical trajectories for x > x0.

This approach works for any synaptic connectivity function J who is a product of a

polynomial in x and the exponential function, since no new functions will be generated

through higher order derivatives of function J . Here, the number of equations needed to

transform the evolution equation into an ODE is,

N = 2n+ 3,

where n is the degree of the polynomial, with 2n + 2 derivatives of original equation (2.4)

needed.

In fact this approach works for any function J that generates a finite set of functions

through the process of taking derivatives. For example, combinations of polynomials, sine

and cosine functions times the exponential, would also generate a finite set of functions

through derivative steps. One function that cannot be used is the gaussian function

J(x) = e(−x2/(2σ2))/
√

2πσ,

since at each step of the procedure the computation of higher order derivatives keeps gener-

ating new functions such as

xe−x
2/(2σ2),

x2e−x
2/(2σ2),

and higher order polynomials times the original gaussian function.

As a result, it is not possible to solve and express the convolution unknowns as func-
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tions of derivatives of t. Nevertheless, the more advantageous property of continuous first

order derivative that the gaussian function has over the exponential kernel, can be offset by

properly chosen set of functions such as (1 + |x|)e−|x|.

Therefore, somehow surprisingly, activity propagation depends on local quantities only

for longer range kernels such as products of polynomial and exponential functions, but not for

gaussian and other similar, more localized, types of functions. In effect, the more localized

kernels ensure that the local details of the firing map are important for further propagation,

while the longer range kernels analyzed here ensure that a neighborhood of neurons close

to firing are less susceptible of the details of the excitation that brought them close to the

threshold.
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Figure (2.12) Successive derivatives of firing times. Numerical simulations (blue) are

in excellent agreement with the the dynamics of ODE system, as illustrated by the first four

derivatives of firing map (equations 2.4-2.6, 2.39-2.40, red lines): (a) t′, (b) t′′, (c) t′′′ and

(d) t′′′′. Similar to the previous cases considered, an initial region is induced to spike to

the left of x > 0 region in order to provide the initial activity propagation. This is used to

extract the initial conditions for the ODE system, such as the initial speed, 1/t′(0) as well

as the next two derivatives, t′′(0) and t′′′(0).

2.5 Neural network extended to multiple spiking neurons

The previous integrate-and-fire neural networks are all based on the assumption that

the integrate-and-fire neurons only spikes once. As our major simplification, you may ask if

our model can extend to multiple spiking neural network. The answer is positive. We can

easily extend our mathematical model into the multiple spiking case.

We can write the integral form of integrate-and-fire model with single spike as follows,

V1(x, t) =
gsyn

1− τ1
τ2

∫ x

−∞

e−
x−y
σ

2σ
(e
− t−t

∗
1(y)

τ2 − e−
t−t∗1(y)

τ1 )dy, (2.41)
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where t∗1(y) is the single spiking time for the neuron at location y, which the same one as

we’ve used.

When the neurons can spike multiple times, the integral form of the first wave front is

V1(x, t) =
gsyn

1− τ1
τ2

∞∑
k=1

∫ x−η1,k(x)

−∞

e−
x−y
σ

2σ
(e
− t−t

∗
k(y)

τ2 − e−
t−t∗k(y)

τ1 )dy, (2.42)

where t∗k(y) is the kth spiking time for the neuron at location y. η1,k(x) is the gap from kth

spiking wave.

At the spiking moment, V1(x, t) = VT , yielding

VT =
gsyn

1− τ1
τ2

∞∑
k=1

∫ x−η1,k(x)

−∞

e−
x−y
σ

2σ
(e
− t
∗(x)−t∗k(y)

τ2 − e−
t∗(x)−t∗k(y)

τ1 )dy. (2.43)

In the following derivations, t is used as spiking time for simplification. Let

P (x) = e−x/σ,

αi(x) = e−t/τi ,

Qi(x) =
∞∑
k=1

∫ x−η1,k(x)

−∞
ey/σetk(y)/τi , i = 1, 2.

Then, the evolution equation of spiking neurons becomes

VT
g

2σ(1− τ1

τ2

) = P (x)α2(x)Q2(x)− P (x)α1(x)Q1(x). (2.44)

Taking the first derivative with respect to x,

0 = (P (x)α2(x)Q2(x)− P (x)α1(x)Q1(x))′.
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Since,

Q′i(x) =(
∞∑
k=1

∫ x−η1,k(x)

−∞
ey/σetk(y)/τi)′

=
∞∑
k=1

e
x−η1,k(x)

σ e
tk(x−η1,k(x))

τi (1− η′1,k(x))

=
∞∑
k=1

e
x−η1,k(x)

σ e
t1(x)
τi (1− η′1,k(x))

=e
x
σ e

t1(x)
τi

∞∑
k=1

e
−η1,k(x)

σ (1− η′1,k(x))

=e
x
σ e

t1(x)
τi

∞∑
k=1

e
−η1,k(x)

σ (
t′k(x− η1,k(x))

t′1(x)
).

In any case,

P (x)α2(x)Q′2(x)− P (x)α1(x)Q′1(x) = 0

Thus the first derivative equals,

0 = −Pα2Q2(
1

σ
+
t′1(x)

τ2

) + Pα1Q1(
1

σ
+
t′1(x)

τ1

). (2.45)

Now take the second derivative:

0 =(−Pα2Q2(
1

σ
+
t′1(x)

τ2

) + Pα1Q1(
1

σ
+
t′1(x)

τ1

))′

0 =Pα2Q2((
1

σ
+
t′1(x)

τ2

)2 − t′′1(x)

τ2

)−

Pα1Q1((
1

σ
+
t′1(x)

τ1

)2 − t′′1(x)

τ1

)− (
1

σ
+
t′1(x)

τ2

)Pα2Q
′
2 + (

1

σ
+
t′1(x)

τ1

))Pα1Q
′
1.

Let

Z(x) =
∞∑
k=1

e
−η1,k(x)

σ (
t′k(x− η1,k(x))

t′1(x)
)

=
∞∑
k=1

e
−η1,k(x)

σ
c1(x)

ck(x− η1,k(x))
.
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Thus the second derivative equals,

0 =Pα2Q2((
1

σ
+
t′1(x)

τ2

)2 − t′′1(x)

τ2

)− (2.46)

Pα1Q1((
1

σ
+
t′1(x)

τ1

)2 − t′′1(x)

τ1

) + (
1

c1(x)τ1

− 1

c1(x)τ2

)Z(x).

By Eq.(3.4) and Eq.(3.5), we can solve for Pα1Q1 and Pα2Q2, which are the same as

the single spike case(K1 and K2),

Pα1Q1 =
VT
g

2σ(1− τ1

τ2

)
1
σ

+ 1
cτ2

1
c
( 1
τ1
− 1

τ2
)

Pα2Q2 =
VT
g

2σ(1− τ1

τ2

)
1
σ

+ 1
cτ1

1
c
( 1
τ1
− 1

τ2
)

Then we can rewrite Eq.(3.6) into a1(x) of c1(x), first wave front’s acceleration of speed

by the relation,

d2t

dx2
= − a

c3
,

a1(x) = −
(c1(x) + 1

τ1
)(c1(x) + σ

τ2
)

σ
+
gc1(x)Z(x)

2VT τ1

, (2.47)

where

Z(x) = 1 in the single spiking network in homogeneity;

Z(x) =
∑∞

k=1 e
−η1,k(x)

σ
c1(x)

ck(x−η1,k(x))
in the multiple spiking network in homogeneity;



60

CHAPTER 3

ACTIVITIES OF TRAVELING WAVE PROPAGATION IN PERIODIC

INHOMOGENEITIES

3.1 Evolution equations with inhomogeneities

In reality, neurons face periodic inhomogeneities when there is shift in phase and am-

plitude change. This is what we are going to study that in this section. The methods that

we have used in homogeneous integrate-and-fire neuron network can also be adapted to the

case of a heterogeneous medium. In this section, we applied two periodic inhomogeneity

modulations to our network: a constant periodic change and a cosine function, characterized

by periodic length and amplitude. Critical speeds could be obtained from our model and

we could provide a precise explanation of when the wave speed are increasing, decreasing or

will stop eventually regarding to different network parameters and neuron parameters. In

the cosine form of inhomogeneity, exact speed solution is difficult to obtain since it becomes

more complicated with changing inhomogeneity values by locations. Furthermore, we looked

at the approximations of speed numerically.

As we have used in our homogeneous integrate-and-fire neural network, we will extend

the integrate-and-fire neural network with the same single spike assumption and the firing

time is a monotonic function of their position x, that is, t∗x > t∗y if x > y. Please go back to

last section to find out why.

V (x, t) = gsyn

∫ x

−∞
J(x, y)A(t− t∗y)dy, (3.1)

where gsyn is the global excitability of the network, t∗y denotes the firing time for the neuron

at position y. J(x, y) describes the spatial connectivity between neurons at positions x

and y. A(t) describes the excitation provided by a presynaptic spike onto the postsynaptic
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neuron at position x. The functions J(x, y) and A(t) take in the following explicit form,

which is different from the homogeneous model, the synaptic function is multiplied by a

inhomogeneous term(K(y)),

J(x, y) =
e−|x−y|/σ

2σ
(1 +K(y)), (3.2)

A(t) =
e−t/τ2 − e−t/τ1

1− τ1/τ2

, (3.3)

where τ1 is the integration time constant of the membrane, τ2 the time constant for the

decay of the synaptic excitation where τ2 > τ1, σ is the spatial constant for the neuronal

interaction. K(y) is the kernel function that adds inhomogeneity to the neurons’ synaptic

connectivity.

In order to figure out the firing times in the integral form and characterize the dynamics

of propagation of activities (t is used as spiking time at position x in the following expres-

sions), we examine the speed (c(x) = dx/dt = 1/t′) and acceleration (a(x) = d2x/dt2 =

−c3t′′) from the derivatives of firing times by the following transformation,

a(x) =
d2x

dt2x
=
dx

dtx
(

1
dtx
dx

) = − 1

(dtx
dx

)2

d2tx
x2

dx

dtx

= −c3d
2tx
dx2

= −c3t′′.

Since neurons are exponentially coupled, the derivatives do not generate extra terms in

x from derivatives as we’ve used in the multiple spike neurons evolution equation derivation,
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let

P (x) = e−x/σ,

αi(x) = e−t/τi ,

Qi(x) =

∫ x

−∞
ey/σet

∗(y)/τiK(y)dy,

i = 1, 2.

Thus, Eq. 3.1 becomes

2σ(1− τ1
τ2

)VT

gsyn
= (Pα2Q2 − Pα1Q1)(x). (3.4)

The first derivative of Eq. 3.1 or Eq. 3.4 with respect to x is

0 = −Pα2Q2(
1

σ
+
t′(x)

τ2

) + Pα1Q1(
1

σ
+
t′(x)

τ1

), (3.5)

since,

Q′i(x) = (

∫ x

−∞
ey/σet

∗
y)/τiK(y)dy)′ = e

x
σ e

t
τiK(x),

P (x)αi(x)Q′i(x) = K(x).

By Eq.(3.4) and Eq.(3.5), we can solve for Pα1Q1 and Pα2Q2, which are the same as in the

homogeneous network,

Pα1Q1 =
VT
gsyn

2σ(1− τ1

τ2

)
1
σ

+ 1
cτ2

1
c
( 1
τ1
− 1

τ2
)
,

Pα2Q2 =
VT
gsyn

2σ(1− τ1

τ2

)
1
σ

+ 1
cτ1

1
c
( 1
τ1
− 1

τ2
)
.

Then we take the second derivative of Eq. 3.4 and obtain the following equation con-
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taining t′ and t′′,

0 =Pα2Q2((
1

σ
+
t′

τ2

)2 − t′′

τ2

) (3.6)

− Pα1Q1((
1

σ
+
t′

τ1

)2 − t′′

τ1

) +K(x)(
t′

τ1

− t′

τ2

).

By the results of Pα1Q1 and Pα2Q2 we can write Eq.(3.6) into an equation of first wave

front’s acceleration as a function of speed with certain inhomogeneity,

a(x) = −(c(x)− c1)(c(x)− c2)

σ
+Bc(x)K(x) (3.7)

where c1 and c2, the speed for the slow-unstable and the fast-stable constant speed traveling

wave solutions respectively, depend only on network parameters σ, τ1, τ2, VT , gsyn as shown

here explicitly.

c1,2 = σ/2
(

(B − β)∓
√

(B − β)2 − 4

τ1τ2

)
, (3.8)

where B = gsyn/(2Vtτ1), β = (τ1 + τ2)/(τ1τ2), K(x) is the inhomogeneous term which we will

discuss next in different forms.

From what we have for homogeneous and non-homogeneous neural network, the analyt-

ical results for acceleration as a function of speed is not changed a lot. The only difference

is that we have an extra term besides the quadratic term. The extra term relates to the

inhomogeneous form with coefficient(gsyn/(2VT τ1)).

3.2 Illustration of propagation failure with constant periodic inhomogeneity

In this section, we consider first a special form of inhomogeneity to our neural network,

which is constantly alternating inhomogeneity (ε) with changing period denoted by λ. Here

are the equations,
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K(x) =

 ε,

−ε.

or

K(x) = (−1)[x/λ]ε (3.9)

Thus the ordinary differential equation for speed is

σ
dc

dx
= −(c(x)− c1)(c(x)− c2)

c(x)
+ σB(−1)[x/λ]ε (3.10)

Since

a = c
dc

dx
.

With this constant periodic inhomogeneity, we can obtain the analytical solution from

(3.10),

x = f(m, c) (3.11)

=
(c1 + c2 +m)tan−1( −c1−c2−m+2c√

−c21+2c1(c2−m)−(c2+m)2
)√

−c2
1 + 2c1(c2 −m)− (c2 +m)2

+ ln{c1(c2 − c) + c(−c2 −m+ c)}/2 + k1,

when it is positive inhomogeneity,

m = σB.

and when it is negative inhomogeneity,

m = −σB.
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where k1 is a constant value depending on the initial condition.

If we take integral of one period λ when K(x) = ε, where speed changes from c0 to cf ,

where c0 denotes the lowest speed point and cf denotes the highest point that a period of

traveling wave speed goes from c0 to cf and back to c0.

∫ λ

0

dx =

∫ cf

c0

σ
dc

− (c−c1)(c−c2)
c

+ σBε
,

λ =

∫ cf

c0

σ
cdc

−(c− cp1)(c− cp2)
,

where

cp1 =
c1 + c2 + σBε−

√
(c1 + c2 +Bε)2 − 4c1c2

2
, (3.12)

cp2 =
c1 + c2 + σBε+

√
(c1 + c2 +Bε)2 − 4c1c2

2
. (3.13)

Then continued with the next period when K(x) = −ε, where speed changes from cf to

c0, with

−(c− c1)(c− c2)− cσBε = −(c− cm1)(c− cm2),

∫ 2λ

λ

dx =

∫ c0

cf

σ
dc

− (c−c1)(c−c2)
c

− σBε
,

λ =

∫ c0

cf

σ
cdc

−(c− cm1)(c− cm2)
,

where

cm1 =
c1 + c2 − σBε−

√
(c1 + c2 −Bε)2 − 4c1c2

2
, (3.14)

cm2 =
c1 + c2 − σBε+

√
(c1 + c2 −Bε)2 − 4c1c2

2
. (3.15)
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After expanding the integral equations(Eq.3.12-3.14), we obtain two equations related

with λ, lowest speed(c0), highest speed(cf ) and ε.

λ = − cp1

cp1 − cp2

ln
cf − cp1

c0 − cp1

+
cp2

cp1 − cp2

ln
cf − cp2

c0 − cp2

. (3.16)

λ = − cm1

cm1 − cm2

ln
c0 − cm1

cf − cm1

+
cm2

cm1 − cm2

ln
c0 − cm2

cf − cm2

. (3.17)

By Eq.3.16-3.17, we can get solutions of c0 and cf given ε and λ,

We performed simulations with ”shocked region”, initially firing region (shocked length

= 1 unit). Neurons are set in one dimensional slice with discretization (δ = 1e − 3). In

the total domain, which is set to be 20, neurons are coupled through exponential function

and decay exponentially. With constant alternating inhomogeneity, propagating speed is

changing periodically due to the periodic inhomogeneity. Positive inhomogeneity increases

the wave speed and the negative inhomogeneity decreases the wave speed. In one period,

sustainable traveling wave depends on the value of ε and λ. Intuitively large perturbation

amplitude and a long period of decreasing phase would cause propagation failure, when the

speed is decreasing after every period and eventually reaches zero.
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Figure (3.1) Traveling wave speed with alternating inhomogeneity. (a) Speed

changes with the constant inhomogeneity. Red line denotes the propagating periodic

speed versus space (x) under the influence of constant inhomogeneityK(x) denoted by dashed

blue line. (b) Numerical simulation vs analytical solution x(c) Eq.3.11. Black line

denotes numerical simulation result and red line is the wave speed when inhomogeneity equals

ε, the other blue line is the wave speed when inhomogeneity equals −ε. The parameters used

here are: λ = 1, ε = 0.9, τ1 = 1, τ2 = 2, σ = 1, VT = 1, gsyn = 10, yielding c1 = 0.1492 and

c2 = 3.3508. These parameters are used as default values, unless noted otherwise.

In Fig.3.1(a), we can see that traveling wave speed(red curve) changes in space(x),

by the blue line of alternating constant homogeneity. Eventually it reaches stable periodic

speed, where c0, cf denote the lowest point and highest point. Here with λ = 1, ε = 0.9,

τ1 = 1, τ2 = 2, σ = 1, VT = 1, gsyn = 10, we can get c1 = 0.1492, c2 = 3.3508, and

c0 = 1.22, cf = 5.41.

In Fig.3.1(b), analytical solution (Eq.3.11) from Fig.?? is compared with numerical sim-

ulations, showing one period of excitation region(+ε) and one period of inhibition region(−ε)

and they have a perfect agreement. Next, we performed simulations so that to confirm our
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analytical solutions, and also reduced simulation time using our analytical product. In the

numerical simulation, we used ”shocked region”, initially firing region (shocked length = 1

unit). Neurons are set in one dimensional slice with discretization (δ = 1e− 3). In the total

domain, which is set to be 20, neurons are coupled through exponential function and de-

cay exponentially. With constant alternating inhomogeneity, propagating speed is changing

periodically by the inhomogeneity changing periodic (λ). Positive inhomogeneity increases

the wave speed and the negative inhomogeneity decreases the wave speed. In one period,

sustainable traveling wave depends on the value of ε and λ. Intuitively large perturbation

amplitude and a long period of decreasing phase would cause propagation failure, when the

speed is decreasing after every period and eventually reaches zero.
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Figure (3.2) Critical speeds in the constant periodic neural network. (a) Critical

speeds (cp2, cp1, cm2, cm1, c2, c1) (Eq.[3.12, 3.14, 2.15]) in space. (b)Traveling wave critical

speeds with increasing ε (Eq.3.12-Eq.3.14). Here λ = 1 is used. Magenta line is cp2, green

line is cp1, red curve is cm2, blue curve is cm1 and the grey line connects the negative and

positive cm1, cm2 which are imaginary when ε is between 0.42 and 0.98. When ε > 0.98,

the negative period suppress the propagation more and more, but when propagation failure

occurs depends on the period length and if the speed is getting below cp1.

We have a look at those critical speeds, c1, c2, cp1, cp2, cm1, cm2 with respect to x and ε

and give explanations of how they affect the traveling wave speed(Fig.3.1-3.2). In Fig.3.2,

when we use ε = 1.3, traveling wave propagation(ctw) fails at x = 9.996. In the positive

region, cp1 and cp2 are the unstable and stable speed solution. During this period, if speed

goes down of cp1, propagation will definitely fail. While during the negative region, the

unstable speed solution is cm1 and stable solution is cm2. If the traveling wave speed gets

lower that cm1 or if cm1 and cm2 are imaginary solutions, can we tell if propagation will fail?

Since the next period positive ε with bring up the speed, and only if the speed is greater
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than cp1 after the negative period, the traveling wave propagation would not fail. when

lambda = 1, the failure condition is ε > 1.31, rather than bifurcation points in Fig.3.2.
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Figure (3.3) Traveling wave maximum/minimum speed (cf/c0) regarding to λ and

ε. (a) Speed changes with λ fixed. Red line denotes the maximum speed(cf ) while ε

changes, and blue line is the minimum speed with fixed λ = 0.5 (b) Speed changes with ε

fixed. Red line denotes the maximum speed while λ changes, and blue line is the minimum

speed with fixed ε = 0.5

Besides, Fig.3.3 gives us the graph of cf/c0 regarding to λ and ε. At ε = 0 and λ = 0,

the minimum and maximum of traveling wave speed are the same as the stable speed c2.

Increasing ε or λ, cf and c0 bifurcate, which means the oscillation gets larger and it is more

prone to propagation failure. When the minimum speed gets smaller than cp1, propagation

failure will eventually occur. Fig.3.3(a) agrees with the blue dots (c0, cf ) in Fig.3.3, when ε

increases from 0 to the maximum ε = 1.31 with λ = 1 in alternating constant inhomogeneous

network.
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Figure (3.4) Dynamics of propagation failure with uniform regions of excitation

and inhibition(Eq. 3.16-3.17). The black line is y = x, when ε = 0, the traveling wave

speed is a constant value. The red dash line and the blue dash line are from equations 3.16-

3.17 when ε = 0, the constant speed c2 = c0 = cf = 3.35. When the ε increases, the

solutions for c0 and cf are denoted by blue circles. Up to the point that blue and red lines is

to separate, that is, c0 = 0.08, cf = 6.25, ε = 1.31, propagation will fail. λ = 1 is used here.

As a simple example of periodic inhomogeneity in integrate-and-fire neural network, the

alternating constant inhomogeneity by changing period λ, the amplitude of inhomogeneity

is constant ε. cp1(3.12) is the cross-line of propagation failure. Besides, the traveling wave

speed oscillates around speed c2, the larger ε and λ, the more traveling wave speed oscillates.

The more complicated case is when the inhomogeneity value is changing every location,

and our guess is that the c2 is not any more the periodic speed oscillates around. In the next

section, we will dig further on the cosine periodic inhomogeneity effect on traveling wave

propagation in one-dimensional integrate-and-fire neural network.
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3.3 Illustration of propagation failure with non-constant periodic inhomogene-

ity

By the result of Eq. 3.7, K(x) is the perturbation function that affects the activities of

traveling waves. If we take the periodic inhomogeneity in the form of cosine function, that

is, K(x) = ε cos(ωy), where ε controls the amplitude of the perturbation, and ω denotes the

frequency of periodic change and one period equals λ = 2π/ω. Here is our equation for the

traveling wave propagation acceleration as a function of speed under the influence of periodic

cosine inhomogeneity.

a(x) = −(c(x)− c1)(c(x)− c2)

σ
+
gc(x)

2VT τ1

ε cos(ωx) (3.18)
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Figure (3.5) Firing maps and numerical simulation of propagating speed of trav-

eling waves with the change of ε and ω. (a) (c). By fixing ω and increasing ε, traveling

wave oscillates wider and wider and eventually it induces propagation failure. (b) (d). By

fixing ε and decreasing ω, traveling wave oscillates more frequently and gets more likely

suppressed by inhomogeneities. The parameters used here are: τ1 = 1, τ2 = 2, σ = 1, VT =

1, g = 10, yielding c1 = 0.1492 and c2 = 3.3508. These parameters are used as default values,

unless noted otherwise.
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From Fig. 3.6, we can tell that ε and ω together affect the propagation activities of

traveling waves. Figure 3.6(a-b) are firing maps by the change of ε and the change of ω

separately. We can tell that It is getting easier to stop propagation with larger ε and smaller

of ω, or larger wavelength (λ). Figure 3.6(c-d) show the speed versus space, with the change

ε and ω. Traveling wave speed shows a periodic wave. The period is fixed or controlled by

the value of ω.

From the perspective synaptic connectivity, the coupling function has changed due to

periodic inhomogeneity. Figure ?? has illustrated how the inhomogeneity affects the synaptic

connectivity.
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Figure (3.6) Synaptic coupling function influenced by periodic inhomogeneity.

The blue curve and orange curve are homogeneous coupling functions. When the network

is influenced by periodic inhomogeneities, the synaptic connectivity also shows a damping

oscillation of the distance between neurons. Here the synaptic connectivity is for the neuron

at location x = 0 and y.

The next question is what are the critical speeds that could induce propagation fail-

ure. Also analytical solutions or asymptotic solutions are our main research targets in the
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following sections.

Numerically, we can utilize the initial differential equation (3.10) and shoot an ini-

tial speed and then observe what the speed approaches towards and determine if it fi-

nally becomes stable or fails eventually. c1 is the unstable speed in the homogeneous

network. Two inhomogeneity related parameters: ε and ω will be studied, which to-

gether affect the propagation of traveling waves. It is getting easier to stop propaga-

tion with larger ε and smaller of ω, or larger wavelength (λ). In Fig.3.7, with three ini-

tial shooting speed, c = 0.50, c = 0.45, c = 0.40, the ε range for sustainable traveling

wave propagation will shrink with a smaller initial speed. Here parameters we used are

τ1 = 1, τ2 = 2, σ = 1, VT = 1, gsyn = 6, so that we have our constant speed solutions c1 = 0.5

and c2 = 1.0 in homogeneous medium. By that, when the initial shooting speed is c = 0.3812,

only ε = 0.2653 traveling wave will have a stable speed, otherwise, propagation fails.
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Figure (3.7) Traveling wave speed with different initial shooting speed for nu-

merical simulation for 100 periods. (a) Initial shooting speed: c0 = 0.50. The range

of traveling propagating ε is [0.0, 0.38]. (b) Initial shooting speed: c0 = 0.45. The range

of traveling propagating ε is [0.0204, 0.3673]. (c) Initial shooting speed: c0 = 0.40. The

range of traveling propagating ε is [0.1837, 0.3469]. (d) Initial shooting speed: c0 = 0.3812.

The range of traveling propagating ε is [0.2653, 0.2653]. The parameters used here are:

τ1 = 1, τ2 = 2, σ = 1, VT = 1, gsyn = 6, yielding c1 = 0.5 and c2 = 1.0. These parameters are

used as default values, unless noted otherwise.
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3.4 Speed approximations of traveling Wave Speed

It becomes complicated to obtain implicit speed solutions from non-constant periodic

inhomogeneous neural network.

Initially, we consider c2 is the speed that the traveling wave oscillates around. However,

it is not the case. we conducted simulation about how the center speed changes with ε in

the case that c1 = 0.5, c2 = 1. Obviously, the center speed or the stable speed solution is

not fixed at 1, instead, it is changes from c2 = 1 to a speed(c = 0.84) with the increase of

ε]. The result is different from the homogeneous case and also the constant inhomogeneous

neural network. This result is also consistent with figure 3.7 that when ε exceeds 0.38, there

would eventually cause propagation failure losing stable speed solution. Here we discussed

the results with rounded values to two decimal places.
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Figure (3.8) Stable speed solution or the speed oscillating around with the increase

of ε. The speed that the traveling wave oscillates around is changing from rom c2 = 1

to a speed(c = 0.84) with the increase of ε] from 0 to 0.38. When epsilon = 0 is exact the

homogeneous neural network, when the speed centered is c2 = 1. It also shows that the

maximum epsilon = 0.38. Here we have rounded our results to two decimals.

Therefore, we start to consider the traveling wave speed in the form of

v = a0 + a1cos(ωx) + a2sin(ωx). (3.19)

a0, a1, a2 are our parameters that need to be clarified. In one period, we take x =

0, π/ω, π/ω, so that we can obtain three equations containing three parameters(a0, a1, a2).

Here is our vector form of speed and the derivative of speed dv/dx by using x = 0, π/ω, π/ω.
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v = [a0 + a1; a0 + a2; a0 − a1], (3.20)

dv

dx
= [ωa2;−ωa1;ωa1]. (3.21)

Thus we can substitute v and v′ in equation 3.10, and obtain that

a0 = 0.9474, (3.22)

a2 = −0.2813, (3.23)

a3 = 0.03577. (3.24)

with ε = 3, gsyn = 6, ω = π. Thus our speed approximation to

c(x) = 0.9474− 0.2813cos(πx) + 0.03577sin(πx). (3.25)

The fit has a very small RMSE that we could believe that speed approximation is almost

perfect good, as shown in figure 3.9. In this way, we can estimate our propagation speed

analytically and numerically.
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  RMSE: 0.003277

Figure (3.9) Propagating speed approximation. The results show an almost perfect

fit with our analytical equations for traveling wave speed(Eq.3.25) with a quite small mean

square error.

However, for a fast traveling wave, the inhomogeneity is small that ε ≤ 0.1, the speed

of traveling wave keeps around the stable state (c2) , which could be described as a series of

perturbation terms as follows,

c = c2 + εh1(x) + ε2h2(x) + ...+ εnhn(x) + ... (3.26)

where ε is the amplitude of the periodic inhomogeneities and the higher-order terms in the

series become successively smaller and smaller.

Also, by Taylor’s expansion,

1

c(x)
= 1

c2
− h1

c22
ε+ (

h2
1

c32
− h2

c22
)ε2 −

( 1
c42
h3

1 − 2
c32
h1h2 + 1

c22
h3)ε3 +R3(ε),
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where R3(ε) is the remainder of the taylor’s series, which approximates to zero. Thus,

Eq. 3.26 can be rewritten into

σ
dc

dx
= −c+ c1 + c2 − c1c2(

1

c2

− 1

c2
2

h1(x)ε+

(
1

c3
2

h2
1 −

1

c2
2

h2)ε2 − (
1

c4
2

h3
1 −

2

c3
2

h1h2 +
1

c2
2

h3)ε3) + σBεcos(ωx).

Solvable differential equations thus are established for the series of perturbation terms

(h1(x), h2(x), h3(x)), let λ0 = −(c2 − c1)/c2, we obtain the following ordinary differential

equations for h1, h2andh3, we can also list the general form to solve h term similarly, so that

we can go higher order of approximation if needed.

σh′1(x) = λ0h1(x) + σB cos(ωx),

σh′2(x) = λ0h2(x)− c1

c2
2

h2
1,

σh′3(x) = λ0h3(x) +
c1

c3
2

h3
1 −

2c1

c2
2

h1h2.

As a result, h1(x), h2(x), h3(x) take the following trigonometric form,

h1(x) = A1 cos(ωx+ φ1),

h2(x) = A2 cos(2ωx+ φ2) + C1,

h3(x) = A3 cos(ωx+ φ3) + A4 cos(3ωx+ φ4),
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where

A1 = σB/
√
λ2

0 + (σω)2,

φ1 = − arccos (λ0/
√
λ2

0 + (σω)2),

A2 = −c1A
2
1/2c

2
2

√
λ2

0 + (2σω)2,

φ2 = 2φ1 − arccos (λ0/
√
λ2

0 + (2σω)2),

C1 = −c1A
2
1/(2c

2
2λ0),

B = gsyn/(2Vtτ1),

You can find details of the analytical results of (A3, A4, φ3, φ4) in the appendix. We do not

put here since they have a long form and will not be analyzed any further. The results are

illustrated in figure 3.10
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Figure (3.10) Speed Approximations vs Numerical Simulations. By the analytical

results, first order, second order and third order approximations of speed are plotted com-

pared with the results from numerical simulations. A subfigure is plotted in bottom right

which shows the zoomed region x = 10.9900 : 11.0000. (a). ε = 0.01. (b) ε = 1. Here ω = π

is used.

We can tell from Fig. 3.10(a) when ε ≤ 0.01 is very small, the first order approximation

is pretty good to approximate the speed. With a larger ε = 1(Fig. ??(a)), the assumption

does not hold any more.

3.5 Induction of traveling wave speed

We can see from the solutions that h1 has frequency ω, h2 has frequency 2ω and constant,

h3 has frequency 3ω and ω, thus we made the following assumptions:



84

h2n =
n∑
j=0

A2njcos(2jwx+ φ2nj).

h2n+1 =
n∑
j=0

A(2n+1)jcos((2j + 1)wx+ φ(2n+1)j).

This assumption needs to be confirmed through the who[Speed approximations vs nu-

merical simulations] le space. As we’ve explained above, each h(x) has an expressive equation

in general,

σh′k = −hk −
c1c2(1/c)(k)(ε = 0)

k!
, k = 2, 3, 4... (3.27)

1

c

(1)

(ε = 0) = f1(h1)

1

c

(2)

(ε = 0) = f2(h2
1, h2)

1

c

(3)

(ε = 0) = f3(h3
1, h1h2, h3)

1

c

(4)

(ε = 0) = f4(h4
1, h

2
1h2, h

2
2, h1h3, h4)

...

Where (1/c)(k)(ε = 0)/k! is a sum of terms (hkii h
kj
j ), satisfying iki + jkj = k, 0 ≤ i, j ≤

k, h0 = 1. For example: when k = 2, (1/c)(2)(ε = 0) is a combination of h1h2, h
3
1, h3. A sum

of those terms has the notation fk(h
ki
i h

kj
j ), thus,

σh′k = −hk − c1c2fk(h
ki
i h

kj
j ) (3.28)

Then by Eq. 3.28,

σh′2n+2 = −h2n+2 − c1c2f2n+2(hkii h
kj
j ) (3.29)

σh′2n+3 = −h2n+3 − c1c2f2n+3(hkaa h
kb
b ) (3.30)
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where iki + jkj = 2n+ 2, aka + bkb = 2n+ 3, 0 ≤ i, j ≤ 2n+ 2, 0 ≤ m,n ≤ 2n+ 3, h0 = 1.

By the properties of cosine functions,

if mn is even,

cos(mwx)n =

mn/2∑
j=0

B1jcos(2jwx),

if mn is odd,

cos(mwx)n =

(mn−1)/2∑
j=0

B2jcos((2j + 1)wx),

if m+ n is even,

cos(mwx)cos(nwx) =

(m+n)/2∑
j=0

B3jcos(2jwx),

if m+ n is odd,

cos(mwx)n =

(m+n−1)/2∑
j=0

B4jcos((2j + 1)wx),

where Bij are constant coefficients.

Thus we can get the general form about hkii h
kj
j with iki + jkj = 2n+ 2,

if both iki and jkj are odd,

hkii h
kj
j =

(iki−1)/2∑
j=0

A1jcos((2j + 1)wx)·

(jkj−1)/2∑
j=0

A2jcos((2j + 1)wx)

=
n+1∑
j=0

A3jcos(2jwx).

Similarly if both iki and jkj are even,
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hkii h
kj
j =

iki/2∑
j=0

A1jcos((2j)wx)

jkj/2∑
j=0

A2jcos((2j)wx)

=
n+1∑
j=0

A3jcos(2jwx).

Therefore,

hkii h
kj
j =

n+1∑
j=0

A4jcos(2jwx).

Similarly,

hkaa h
kb
b =

n+1∑
j=0

A5jcos((2j + 1)wx).

The solutions for h2n+2, h2n+3 from Eq. 3.30-3.30 become

h2n+2 =
n+1∑
j=0

A(2n+2)jcos(2jwx+ φ(2n+2)j).

h2n+3 =
n+1∑
j=0

A(2n+3)jcos((2j + 1)wx+ φ(2n+3)j).

Therefore, by induction we confirmed the generic analytical speed approximation is,

c = c2 + h1ε+ h2ε
2 + h3ε

3 + ...

where

h2n =
n∑
j=0

A2njcos(2jwx+ φ2nj).

h2n+1 =
n∑
j=0

A(2n+1)jcos((2j + 1)wx+ φ(2n+1)j).
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In general, we can have a good approximation of traveling wave speed by taking more

terms with higher order of ε, but with one condition that it is a fast traveling wave and

ε is relatively small, also we compared with numerical simulation (ODE45) as shown in

figure 3.11. In this way, we can visualize higher order approximations easily when the

mathematical expression becomes crazy long and complicated. It is faster to get a good

speed approximation compared to simulate from the original evolution equation.

Figure (3.11) Numerical simulation with ODE45 with the analytical approxima-

tions of traveling wave speed.

(a) First order approximation. (b) The second order approximation. (c) The third order

approximation. Numerically we can use our series of speed approximations to help us

visualize the speed of activities of traveling wave propagation.

3.6 Conditions Inducing propagation Failure

By knowing that the traveling wave speed could be approximated with equation 3.25,

we manage to find the conditions when propagation failure occurs, because the critical speed
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is not any more a constant value, instead, it is a changing value over the value of ε.

We conduct simulations on how the maximum speed (cf ) changes with the minimum

speed(c0). The time length between the cf and c0 is λ. When it is a homogeneous neural

network,

c0 = cf , (3.31)

as a constant speed solution, which equals c2. Figure 3.12 shows the relationship between cf

and c0 regarding to different values of ε.

In Fig. 3.12, three examples of epsilon are plotted, as ε = 0.29, there two interaction

points with line y = x, which means that there are two speed solutions, and the largest one

is the stable speed that the traveling wave speed would oscillate around this value. When

ε increases and reaches ε = 0.3822, there is only one interaction point and traveling wave is

going to lose stability. So as an example of failure propagation, when ε = 0.50, no stability

could be reached.
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Figure (3.12) Propagation failure simulation at different ε. Red curve denotes the

line y = x, when the stability could be reached. blue line is when ε = 0.29, propagation

could reach stability to the stable solution(the larger interaction point). However, when we

increase ε, the two solutions would collide into one, when ε = 0.3822, the traveling wave

propagation is going to lose stability as in the example of ε = 0.50, there is no way realizing

a stable traveling wave propagation.

In summary, in the inhomogeneous neural network, we looked two types of inhomo-

geneity, constant periodic function and cosine function. In both cases, traveling wave speed

would oscillate around a stable speed, if epsilon increases too large or the traveling wave

period is two small, propagation would fail. Analytically we can find and prove that the

critical speed inducing propagation failure is cp1 rather than c1 (cp1 < c1).

However, in the cosine inhomogeneity, it is not a constant critical speed inducing prop-

agation failure. Figure 3.8 gives us the changing of stable speed regarding to different ε. The

stable speed is changing with ε. We have simulated and approximated speed with the math-

ematical form(Eg.3.25), which shows an excellent goodness of fit. Furthermore, we simulate



90

the dynamics of how the system loses stability due to the increase of ε.
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CHAPTER 4

CONCLUSIONS

In conclusion, for a specific class of Integrate-and-Fire neural networks that neurons are

exponentially connected, it is analytical solved that the instantaneous acceleration depends

only on a quadratic function of the instantaneous speed of the traveling wave propagation,

analytically rendering two speed solutions: one is slow-unstable and the other is fast-stable.

This is a powerful and surprising result since in principle each neural spike influences the

rest of the network, and would seemingly need to be accounted when solving for the exact

network dynamics. This quadratic dependence on speed provides a clear explanation of why

this type of neural network can sustain two types of traveling waves, a slow-unstable wave

as well as a fast-stable wave, while ruling out other possible solutions.

Furthermore, this approach provides a global explanation of the traveling wave stability.

When the propagation dips below the slow-unstable speed c1, a negative acceleration will

further reduce the speed until the propagation fails. In contrast, the propagation speeds

up or down toward the fast-stable traveling wave c2, depending if the initial speed is below

or above c2 respectively. It is not possible to achieve this level of insight into the stability

of traveling waves for other models since the proofs of their stability rely on perturbation

theory.

Another fundamental result of this type of model is that evolution toward propagation

failure or constant speed traveling wave is determined by a natural global timescale that

depends only on the neuron integration time τ1, the time constant for the decay of the

excitation τ2, and on the ratio between the global excitation constant gsyn and the voltage

threshold Vt. This provides us an easy way of quantifying how fast do dynamics of neural

spikes evolve toward the stable states of either propagation failure or constant speed traveling

waves.
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Not only limited to homogeneous network, the analytical methods can also be used

to derive conditions for propagation failure in the presence of a non-conductive gap. Not

surprisingly, a small to moderate gap reduces the speed of the propagation by an amount

that is small enough to allow recovery toward the fast-stable traveling waves. In contrast, a

large gap would either block propagation altogether, or would result in a wave that jumps

the gap but has a speed that is below the slow-unstable solution and it will eventually fail.

In addition to exponential synaptic connectivity, these results can be extended for more

general kernels, provided that the derivatives of the spatial and temporal kernels generate a

finite set of functions. Under these assumptions, the evolution equations for the propagation

of activity in the neural network can be converted to a system of ordinary differential equa-

tions with dynamics depending on the local conditions. Those local conditions are derived

from a finite number of derivatives of the firing map t(x). It is fascinating that despite the

long-range connections considered in these models, the evolution of these waves follows local

rules for their dynamics. It is also quite unexpected that this is the case for longer-range

kernel such as exponential functions, but not for the more compact kernels such as Gaussian

functions, since naively it would seem that the longer the range the more likely a neuron

spike would influence the dynamics of the whole network.

Not only improving our insight into the mechanism of these traveling waves, but also

this approach has the potential to significantly improve the simulation times for large-scale

networks. Instead of maintaining the state of all neurons in the working memory during

simulations, one needs to simulate only a system of ordinary differential equations for the

position of the traveling wave-front, resulting in substantial reduction of the simulation times.

Additionally, we can derive analytical equations for multiple spiking neural networks,

providing the relationship between propagation acceleration as a function of speed. However,

it is challenging to obtain further analytical results from the multiple spiking neural networks.

Furthermore, inhomogeneities, where the dynamics described are subject to modulations

induced by additional weak and non-homogeneous kernels. Two special types of kernels are

discussed: uniform additional excitation and inhibition, and continuous cosine function.
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Under the influence of the additional uniform excitation and inhibition, traveling wave

speed behaves periodic. The larger of the inhomogeneous amplitude, or the smaller fre-

quency of oscillation, it is getting easier to propagation failure. Through integrating the

analytical expression of acceleration as a function of speed, two critical traveling wave speed

solutions are obtained when there is additional excitation. In this case, the stable speed(cp2)

is increased, while the unstable speed(cp1) is decreased below c1. When the inhomogeneity

changes to uniform inhibition, there are two new critical speed solutions, which can bring

the traveling wave speed to a new stable state or it is all the way decreasing if the speed is

less than the slow-unstable speed. By larger amplitude of inhibition, the effect of synaptic

inhibition becomes so pronounced that the wave speed is decreasing faster. After one period,

the network changes to synaptic excitation; However, the propagation can still fail provided

that the instantaneous speed falls below cp1. In summary, we have explored the dynamics of

traveling wave propagation stability changes over space and time, as well as the period(λ)

and the amplitude of the inhomogeneity(ε).

However, it is not easy for the cosine inhomogeneous network to derive a mathematical

expression of analytical speed solutions. We can no longer define a fixed critical speed as

the effect of inhomogeneities are changing over locations. Numerically we can explain how

the speed changes with ε and how the system loses stability. Contrary to the homogeneous

network, we discovered from numerical simulations that c1 is not the minimum speed that

the traveling wave can sustain, and c2 is not the average speed for activity propagation.

But with the assumption of small and periodic inhomogeneity modulation, we can construct

a series of speed approximations and get more accurate speed estimates with higher order

terms of ε.

Furthermore, we could fit the traveling wave speed in a linear form of cosine term and

sine term, which turns out to be an excellent fit with a quite small mean square error.

The challenge here is that we need a way to determine the initial conditions. The cosine

form inhomogeneity has involved changing speed solutions by locations. Compared with

the homogeneous neural network, inhomogeneous neural network in continuous cosine form
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could allow the traveling wave speed to reach a value smaller than c1 without achieving

propagation failure. Through analytical results and numerical simulations, the minimum ε

value can be determined for neural network traveling wave propagation.

In the future, I am interested in extending the analytical methods to more complex

models and translate these results into two-dimensional networks. Also, we can consider

including both excitatory and inhibitory neurons to the network according to real biological

scenarios, not only periodically changing inhomogeneities. More ideally, we can apply our

methods to analyze experimental data of traveling wave electrical activities to determine the

traveling wave speed, the transition between wave propagation success and failure, and also

the conditions inducing propagation failure.
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