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Content Dissemination in Mobile Social Networks

by

Chenguang Kong

Under the Direction of Xiaojun Cao, PhD

ABSTRACT

Mobile social networking(MSN) has emerged as an effective platform for social network

users to pervasively disseminate the contents such as news, tips, book information, music,

video and so on. In content dissemination, mobile social network users receive content or in-

formation from their friends, acquaintances or neighbors, and selectively forward the content

or information to others. The content generators and receivers have different motivation and

requirements to disseminate the contents according to the properties of the contents, which

makes it a challenging and meaningful problem to effectively disseminate the content to the

appropriate users.

In this dissertation, the typical content dissemination scenarios in MSNs are investigat-

ed. According to the content properties, the corresponding user requirements are analyzed.

First, a Bayesian framework is formulated to model the factors that influence users behavior

on streaming video dissemination. An effective dissemination path detection algorithm is

derived to detect the reliable and efficient video transmission paths. Second, the authorized

content is investigated. We analyze the characteristics of the authorized content, and model

the dissemination problem as a new graph problem, namely, Maximum Weighted Connected



subgraph with node Quota (MWCQ), and propose two effective algorithms to solve it. Third,

the authorized content dissemination problem in Opportunistic Social Networks(OSNs) is

studied, based on the prediction of social connection pattern. We then analyze the influence

of social connections on the content acquirement, and propose a novel approach, User Set Se-

lection(USS) algorithm, to help social users to achieve fast and accurate content acquirement

through social connections.

INDEX WORDS: Content Dissemination, Mobile Social Networks, Opportunistic
Social Networks
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Chapter 1

INTRODUCTION

1.1 Content Dissemination in MSNs

Social Networks is a type of networks that are constructed by the communication and

connections of the social networks users. In recent years, Social networks have received in-

credible growth. Studies find that there are over 1.79 billions active social network users in

2014, as more than 64 percent of internet users[1]. In social networks, the connections(or

edges) in networks represent possible social communication links, such as friend-to-friend

communication, encounter between strangers and so on. Based on different social commu-

nication connections, various social network services have been provided to social networks

users by social service providers, such as Facebook[2], Twitter[3], Instagram[4]. Through

those social network service, people enjoy a series of convenient and attractive communi-

cation and interaction experience. They can find friends with similar interests, share and

acquire personal photos and blogs, supply to or ask for advice and so on.

Among those social network service, the content dissemination is one of the most per-

vasive and attractive feature. In the social network based content dissemination, the social

network users generate different types of contents, such as news, messages, music and movies.

The content is disseminated by the content generators to their social network connections.

Those social network connections then will help to disseminate the content to more users in

ad hoc mode.

The content dissemination applications are promoted by the development of wireless

technology and the mobile devices. With the advancing wireless technologies such as Wi-

Fi[5], WiMAX[6] and 4G LTE[7], Mobile Social Networks (MSNs) provide much more flexible

and ubiquitously accessible wireless connection and communication among social network

users. The usages of mobile devices in MSNs makes it possible for social network users to
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communicate and interact with others at anytime and any location. In MSNs, social users

are allowed to generate timely and location based contents through their mobile devices,

such as local news, traffic information, tourist videos, events happening around them, or

restaurant information they just visit. Through MSNs, users are motivated to diffuse those

contents to other social network users in neighbor.

Content dissemination is a meaningful application in Mobile Social Networks(MSNs),

which can efficiently improve the content sharing and spreading. Though there are many

different forms of content dissemination, like cellular network based client-server framework,

subscribe/publish framework, the ad hoc netowrk based content dissemination appears much

more interesting and challenging contribution, which utilize the pairwise communication of

MSN users. Mobile social users will communicate with each other if and only if there exit mo-

bile social connections, which means: (1) mobile social users locate within the transmission

range of each other. The transmission range is decided by the communication technologies

used by the mobile devices of mobile social users( e.g., around 100 meters for typical 2.4

GHz WiFi communication); (2) there exist certain social relationships attached to the con-

nections between the communicating users. The social relationships considered in mobile

social networks include multiple aspects as friendship, colleagues, users with common inter-

ests, strangers and so on. The social relationships play am important role in many content

dissemination applications.

In this paper, we investigate the problems and challenges involving ad hoc network based

content dissemination in MSNs, and discuss the possible solution on this problem. Generally,

the content to be disseminated is generated by content providers(CPs), and diffused to the

nearby social connections within the communication range of content providers. When a

user receives the content from its social connections, it will take actions on those content.

There are various actions that may be taken by MSN users, such as save the content into

buffering, discard the content, forward the content to other social connections, and so on.

If the content is forwarded by a user to its social connections, the dissemination process is

continued until no more forwarding action happens.
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1.2 Objectives of Content Dissemination

There are different objectives existing during the content dissemination process. First

important objective to maximize the delivery rate. The delivery rate is calculated as the ratio

of the number of content receivers over the total number of mobile social users in networks.

This objective is significant for information diffusion. By maximizing the delivery rate, the

content can be received and known by as many users as possible. To achieve this objective,

epidemic flooding[8] may be an effective approach, though it may cause redundant caching

and traffic. CEDO[9] studies to maximize the total delivery rate under the constraints that

users have limited resources to store the content.

Second, it is meaningful to minimize the dissemination time. The dissemination time

measures the time used for the dissemination process. Particular type of content, such as

news and alert, requires that the content disseminated to receivers as soon as possible to

ensure the effectiveness of the content. For instance, Lu et. al.[10] and Chen et. al.[11] try

to minimize the dissemination time and maximize the dissemination speed by choosing the

most influence users in the networks.

Third, mobile social users may have different importance to the networks or content

providers. Hence, it is necessary to disseminate the content to most important or valuable

users. One important factors determining the importance is users interests on the con-

tent. For example, users interested in content are more active during content dissemination

process. Therefore, some content dissemination works aim to disseminate the content to

interesters as much as possible. The work [12] studies to maximize the total weight of the

content receivers, which is in proportion to how users are interested in the content. To

achieve that objective, we need consider not only the interest of users themselves, but also

the capacity that users connect to other interested users.

Last but not least, the concern on privacy and security requires that the content dis-

semination process should involves as few unnecessary users as possible. Therefore, it is one

objective to minimize the number of users involved. Gao et.al. in[13] aim to maximum the

cumulative cost effectiveness, which is defined as the ratio of the number of content inter-
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esters who receive the content upon the total number of relays for the contents. To achieve

the objective, the authors propose to disseminate content through interesters as much as

possible, and intently select non-interesters as rely users to help to forward the content.

Another instance of such work is [14], in which the content dissemination network is built

based on the human connectivity network and the interest network.

The content dissemination performance in MSNs is influenced by series of factors. the

most significant among them can be categorized into three aspects: network connectivity,

user preference and content. The network connectivity on content dissemination describes

the connectivity properties of the networks and users. For instance, the capacity of a user

connects to others in the network determines whether this user is suitable to help dissemi-

nate the content to other users. User preference influences users’ possible behaviors during

dissemination process. For example, a user is probably to accept the content matching its

personal interests and reject the others. Hence, the analysis on user preference and its in-

fluence on user behavior plays an important role to develop efficient dissemination scheme.

The content dissemination process should consider the attributes and requirements of con-

tent as well. To disseminate streaming content, it is necessary to ensure the duration and

bandwidth of the connection, so that the streaming content can be transmitted smoothly

and completely.

1.3 Challenges and Contributions

Given the objectives of content dissemination and the characteristic of the mobile social

networks, the content dissemination process present several major challenges in different

scenarios.

(i) The difference and complicated attributes of the social connections make it a sig-

nificant and challenging work to disseminate content based on the analysis of mobile social

connections. In most scenarios, the mobile social connections are heterogeneous, and have

different importance and influence on content dissemination performance. Hence, the first

challenges of content dissemination lies how to analyze and utilize the heterogeneous mobile
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social connections.

(ii) As one of the most important component in mobile social networks, mobile social

users have their own concern and requirements. For example, social users have distinctly

attitudes and preferences to the contents disseminated in MSNs. They show strong interest

in the contents which provide interesting or useful information to them, and are willing to

contribute the physical resource of their mobile devices to participate in the dissemination

process of the contents. However, most social users will ignore or discard the uninteresting

contents they received, which will damage the dissemination process. Hence, to effective-

ly disseminate content in MSNs, we must analyze users attribute and concerns that may

influence the dissemination performance.

(iii) In many scenarios, content itself contains kind of attributes, some of which impose

particular requirement on the dissemination process. For instance, the video content has

high requirement on the mobile social connection duration and bandwidth; privacy sensitive

content dissemination relies on the privacy aware dissemination protocols. As a result, a

content dissemination framework need to meet the requirement and challenges of content as

well.

Focusing on the challenges of content dissemination in mobile social networks, we have

investigated the characteristics of the content disseminated in MSNs. The user interests and

influence are analyzed to model the behavior pattern of the social users during the dissem-

ination. Furthermore, we have proposed effective and efficient communication and dissem-

ination protocols to satisfy the demands of both content requesters and content providers.

The major contribution of this dissertation can be summarized as follows.

(i) We investigate the dissemination problem for large size of contents such as streaming

videos, which require high transmission bandwidth and stable connections. We categorize

the factors of network and social behaviors in video content dissemination. Three important

categories including neighbor confidence, interest matching, and physical network resources

are considered. We then develop a new Bayesian network model to facilitate the process of

video sharing in mobile social networks, and propose a new framework to effectively distribute



6

video data based on the proposed Bayesian network model. The video request probability

distribution in the Bayesian model is used as the primary parameter for the routing decision.

(ii) The features and challenges of authorized contents are analyzed, which have strictly

constraints on content copy and editing and may generate benefit/reward to content gen-

erator. We study the authorized content dissemination problem to maximize the reward

obtained by content generator and form the Maximum Weighted Connected subgraph with

node Quota (MWCQ) problem. Two efficient heuristic algorithms, Dynamic Programming

based SAID (DP-SAID) and Two-Hop based greedy SAID (THSAID) algorithms, are derived

to provide either accurate or low cost computing solution for the problem.

(iii) The Interest-centric Opportunistic Social Networks (IOSNs), in which users move

around for the activities or locations they are interested in, is also studied in this dissertation.

Upon the content dissemination problem in IOSNs, we propose the Social Connection Pattern

(SCP) to describe the interest distributions of users’s social connections. We then develop

the Social Connection Pattern based Dissemination (SCPD) algorithm to identify a proper

content dissemination strategy when two users contact.

(iv) We investigate the influence of social connections on the content dissemination,

and propose to enhance the content dissemination performance by recommending appropri-

ate social connections. We analyze the accuracy and timeliness performance provided by

social connections, and propose our model to measure them. Then social connections are

recommended to optimize both the accuracy and timeliness of the content disseminated.

The remainder of this dissertation is organized as follows:

We discuss the literature review in Part 2. Then the work on Bayesian networks based

streaming video dissemination framework is studied in Part 3. Part 4 presents the semi-

controlled dissemination algorithm on authorized content. My work on the authorized con-

tent dissemination problem in OSNs is present in Part 5. Part 6 discusses the user recom-

mendation problem on information acquirement. Last, we conclude the proposal in Part

7.
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Chapter 2

LITERATURE REVIEW

Recently content dissemination has drawn great attention from both academia and

industry. In this chapter, we mainly categorize and evaluate the related work.

2.1 Network Connectivity on Content Dissemination

To efficiently disseminate the content in mobile social networks, the first question is how

to detect the dissemination paths from the content providers to every receivers. This ques-

tion could be answered by identifying the users who can support the dissemination process

most(e.g., the users connecting the most other users, the users performs the lest dissemina-

tion delay, etc.). In most cases, the capacity that a user support the dissemination process

highly relies on the network connectivity properties. The network connectivity describes

how the network is connected and the corresponding properties of network users and con-

nections. Whether a social connection can be selected on the dissemination path is highly

relative to the quality of service provided by that social connection. The quality of service of

a social connection is influenced by the properties of the social connections, users’ attitude

and possible behavior, user’s communication pattern and so on. To effectively disseminate

contents in the network, we need to analyze the connection quality of service and detect the

most effective and reliable dissemination path to targeted receivers.

In this section, we classify state-of-the-art according to the network connection proper-

ties focused. The connections present difference properties on duration, frequency, reliability,

etc. For instance, the connections between two close friend would be much more frequent

and reliable than the connection between two strangers. Therefore, when the content is

disseminated through mobile social networks, the properties of the connections should be

taken into consideration. Table 2.1 lists the importance properties of connections that have



8

Table 2.1. Summary of connection properties
Connection
Properties

Characteristics Topic Categories Related works

Degree Centrali-
ty

Measure the number
of users who are the
connection of a user

Measure and uti-
lize centrality to
help disseminate
content

[15] [16]

Closeness Cen-
trality

Measure the distance
between a user and
the other users in the
network

Betweenness
Centrality

Measure the shortest
paths in the network
traveling trough a user

Community

Formed by group of
users who have high
frequency and long
duration to communi-
cate with each other

Community de-
tection

[17][18] [19]

Community
based content
dissemination

[20] [21]

Opportunistic
Connection

Unstable Connection-
s between users which
are highly dynamic
and non-deterministic

Opportunistic
connection
based content
dissemination

BubbleRap[22],
[23]

significant impact on the process of content dissemination in mobile social networks.

2.1.1 Centrality

Centrality is one of the basic connection properties that have been widely studied. Cen-

trality is measured to indicate the topological importance of a user within the network [15]

[16]. A central node typically has a stronger capacity to connect to other users in the network,

and hence may play a more importance role during the content dissemination. The central-

ity of a user can be defined in several ways, including degree centrality, closeness centrality

and betweenness centrality. Degree centrality measures the number of direct connections (or

neighbors) involving a user, which is calculated as:

CD(v) = deg(v) (2.1)
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. User with high degree centrality can be thought as popular users with a large number of

direct connections or neighbors, hence they are more helpful to diffuse content to others.

Closeness centrality of a user is calculated as the reciprocal of its average shortest

distance to all other users in the network. The Closeness centrality is calculated as:

CC(v) =
1∑

u∈V d(u, v)
(2.2)

where d(u, v) is the shortest distance between user u and user v, V is the user set of the

network. Therefore, the higher the closeness centrality of a user v is the shorter user v is

from other users.

Betweenness centrality measures the importance of a user on the network connectivity

among other users. The betweenness centrality is quantified as the number of shortest paths

in the whole network traveling through the user.

CB(v) =
∑
s,t∈V

nst(v)

nst
(2.3)

in which nst is the number of shortest paths from user s to user v while nst(v) is the number

of those paths that travels through v.

The centrality of users can be utilized to help detect the routing to destination in

information dissemination. Daly et. al. [15] propose to send the information to users with

higher betweenness and similarity to destinations when two users encounter.

2.1.2 Community

The social network users who connect to each other with high frequency and duration

form communities in mobile social networks. The communities identified in Mobile social

networks can be used to make smarter dissemination decision comparing to random flooding.

There are multiple approaches having been proposed to detect the communities in the mo-

bile social networks, including modularity based approaches, betweenness centrality based

approaches and so on. Modularity is defined as the fraction of connections in a network that
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connect users within communities minus the expected value of the same quantity in a graph

with the same communities but random connections between the users. The work in [18]

detects communities by the Louvain method, in which each user forms its own community

initially. Then in each step a user is added to the community which maximally increase the

local modularity gain.

The Max-min modularity is a community structure detection methodology proposed in

[17], which takes the connection pair as a positive sign of a strong community structure while

separating disconnection pair as either possible related relationship or unrelated relationship.

Hence the community division criteria is set as maximizing the number of edges between

groups and minimizing the number of unrelated pairs within groups.

The community detection can also be completed based the betweenness centrality, as

proposed in [19]. In the betweenness centrality based community detection algorithm, the

betweenness of all connection in the network is calculated. At each step, the edge with the

highest betweenness is removed and the betweenness of all connections affected by the re-

moval is recalculated. The algorithm terminates until no edges remain or the community size

meets the requirement. By utilizing the properties of betweenness, this method can efficient-

ly detect the communities that formed by the network connections. However, the requirment

to update the betweenness of nodes after each edge removing increases the computation cost

of this method. Other community detection algorithms include Label propagation[24] and

Communities from edge structure and node attributes(CESNA)[25].

The detected community can be utilized to improve the content dissemination process.

Xiao et.at.[20] propose a community aware routing scheme in MSN. Two routing phases are

defined in this scheme. In the initialization phase, the network with V users is simplified into

a virtual network with L communities based on the community detection algorithm. Then

in the routing phase, routing decision is made based on the simplified small size networks to

minimize expected delivery delays.

Based on the property in the communities that the connection frequency between com-

munity members is much higher than that between strangers, the authors in [21] propose
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to minimize the network wide provisioning cost by efficiently caching the content and in-

creasing the sharing among MANETs. In this work, the cashing space is split into three

component. The duplicate caching area is used to store the very popular objects which will

be shared across and outside the communities. The unique in community caching space is

reserved for the cooperation among in-community users. The content stored in this space is

unique in the community, and shared to all community member. The last caching space is

unique in network, which helps users to cooperate with strangers. To minimize the network

cooperation cost, the best split factors are determined based on the encounter frequency of

users with communities and across communities.

2.1.3 Opportunistic Connections

In many scenario, the connections between users are opportunistic, in which the con-

nections have short duration and disconnect frequently. In addition, the connections are

non-deterministic because of the mobility of users. The network with opportunistic connec-

tions is called opportunistic social network (OSN). In the opportunistic social networks, users

connect to and communicate with other users who are within the communication range at

certain time. The communication has high probability to terminate after a short duration.

To effectively disseminate content in opportunistic social networks, the dissemination

decision should be made by every user having content to disseminate when he has a new

opportunistic connection. The decision should be made based on the answers of two ques-

tions: (i) what is the possible future connections of the new opportunistic connection; (ii)

how the opportunistic connected user can help to achieve the dissemination objective by

further disseminating the received content to other users in future.

BubbleRap[22] is a work which tries to answer the questions by analyzing the centrality

and community structures in opportunistic social networks. In BubbleRap scheme, users

have both global rankings and local rankings. The global ranking describes the population

of a user in the whole network(e.g., the degree centrality). The local ranking denotes how

popular a user is in its own community. To forward content from a source user node to a
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destination user node, the BubbleRap scheme first bubbles the content up the hierarchical

ranking tree according to the global ranking of users, until the content is forwarded to a

user within the same community as the destination user. Afterwards, the content will be

forwarded within the community by using the local ranking tree until the destination user is

reached or the content expires. The BubbleRap scheme does not require every user a global

knowledge of the ranking. Instead, users just need to compare the ranking with the other

users they encounter.

The content diffusion in OSNs is studied in [23]. This work considers the problems in

content diffusion of both contact probability and content propagation order. To select the

buffering scheduling between users and content, [23] utilizes both the friendship among users

and the homophily phenomenon, which describes that friends usually share more common

interests than strangers. Hence, [23] proposes a content diffusion strategy that diffuses the

most similar content between friends and the most different content between strangers. In

detail, if a user encounters a friend connection, it first diffuses the most similar content of

their common interests to its friends first. Otherwise, if the new connection is a stranger,

it chooses the propagation order of the most different content from their common interests

first. It is shown that this content diffusion schemes performs better diffusion speed and

content access delay .

2.2 User on Content Dissemination

Users’ preference properties, such as interests and motivation, highly influences their

possible behaviors acted during content dissemination. The influence of users’ preference

properties lies mainly in the aspects as follows. First, users’ interests on the content they

receive varies, which brings different strategy when processing the received content. For

the content they are interested in, they would have stronger motivation to participate in

the content dissemination process by maintaining longer connection duration and spending

more physical resources such as bandwidth and storages. Nevertheless, less attention and

support may be supplied for the content they are uninterested in, which cause a higher
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Table 2.2. Summary of Users Properties
User Preference
Properties

Characteristics Problem Cate-
gories

Related Works

Interests
Describes users’ inter-
ests on the dissemi-
nated content

How to satisfy
users’ interests
concern

Gao[13],
ContentPlace[26]

How to utilize
interest driven
behaviors

Onside[27]

User Influence
Describe how users are
influenced by friends,
strangers and others

user influence
model

LT model and
IC model [28],
time influence
model[29]

content dissemi-
nation with con-
sideration of us-
er influence

[11]

Incentive Describe how users are
motivated to partici-
pate content dissemi-
nation

Incentive scheme Give2Get[30],
Tit-for-
Tat[31],credit[32]

Privacy and se-
curity

Describes users’ de-
mand on the privacy
and security involved
in content dissemina-
tion

Disseminate
content through
privacy ensured
communication

Whisper [33],
MCONs[34], [35]

probability to discard those content. Secondly, users mobility has directly influence on the

network connections and further the dissemination paths for the content delivery. Third,

users’ preference on the privacy and selfishness will restrict the possible solution of content

dissemination in mobile social networks. Because of the privacy concern or selfishness, users

may choose to reject to help disseminate the content. Table 2.2 summarizes the properties

of users that have high influence on the performance of content dissemination in mobile

social networks. Hence, the concern and requirements from users need to be satisfied when

a content dissemination scheme is proposed. Researchers have studied how to achieve the

content dissemination objectives and improve the dissemination efficiency by analyzing and

accomplishing users preference. In this section, we summarize those works according to the
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user preference perspective.

2.2.1 Interests

Disseminating content based on users’ interests on the content is a pervasive approach

since users interested in the content have higher probability to contribute to the dissemination

process, by maintaining connections, contributing memory for content storing and so on.

Most content dissemination works based on user interests analyze users’ behaviors influenced

by users’ interests on the content.

The influence of users interests on content dissemination lies on various aspects. First

of all, users interested in the content are the desired receiver in many cases. Users are self-

motivated to receive the content that they are interested in, and would like to participate the

dissemination process to receive the interesting content. Second, users with different interests

on the content may have distinct performance upon the content dissemination behavior.

For example, it’s regular that users spend their limited buffer on the interesting content

comparing to others. Users with similar interests also have high frequency and probability

to communicate with each other, which can provide highly efficient dissemination process.

To analyzing and further utilizing the influence of user interest on content dissemination

process, there are two major directions focused by researchers. First, users concern on

personal interests should be satisfied during the content dissemination. Users may not would

like to be disturbed by uninterested content, in which the content should be disseminated and

transmitted among the interested users only. Besides, the limited buffer of users may force

users to choose an efficient caching strategy so that they can cache the interested content

as much as possible. Targeting on these problems, Gao et.al.[13] propose a user centric

dissemination approach. The objective of this approach is to maximum the cumulative cost

effectiveness, which is defined as the ratio of the number of content interesters who receive

the content upon the total number of relays for the contents. To achieve the objective,

Gao et.al. divide the dissemination process into two parts: uncontrolled dissemination part

and controlled dissemination part. In the uncontrolled dissemination part, the content is
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disseminated among the interested users automatically without help of additional relays.

Then in the controllable part, a number of relays are intentionally selected among the non-

interested users according to their capabilities of forwarding content to interested users.

ContentPlace[26] focuses on the problem of buffering strategies, and proposes to orga-

nize the content into different channels, to which MSNs users subscribe according to their

interests. In ContentPlace, when two users contact, they advertises the content they are

interested in to each other. In addition, the content currently carried by them is also ex-

changed. To optimize the content dissemination objective, ContentPlace defines a utility

function , according to which each user can associate a utility value to any content. Hence,

during the encounter with another user, a user computes the utility values of all content

stored in both local cache, and adjust its local cache to maximize the utility value.

Another types of research that have been done by researches is to utilize the interests of

users to improve the content dissemination process. Driven by interests, users show particular

interesting phenomena that can be utilized to enhance content dissemination. Onside[27]

takes advantages of the fact that users with common interests tend to meet each other with

higher frequency. In Onside, a user will download the content from an encounter if and only

if the topic of the content is self interested, friends interested or encounter interested.

2.2.2 User Influence

in social networks, users are influenced by other users. For instance, a user may be

interested in some content because of others recommendation. In addition, the information

received from others may inspire particular actions. The user influence plays an important

role in content dissemination as it directly impacts users possible behavior.

Corresponding to different scenarios, there are different influence models shown. Most of

those influence models are developed on probabilistic model, in which a user has a probability

to influence his neighbors/connectors. The probability is determined by multiple factors,

including the social connection strength, friendship and other social relationships, connection

history, influence history, time factors and so on.
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Two basic influence models are discussed in [28]: Linear Threshold(LT) model and

Independent Cascade(IC) model. In LT model, each connection has a weight and each user

has an influence threshold. A user becomes activated if the weighted sum of its active

neighbors exceeds its threshold. In IC model, each connection has an activation probability.

Influence is propagated by activated users independently activating their inactive neighbors,

based on the connection activation probabilities.

Based on the basic influence models, researchers have developed other influence model

by considering additional factor such as time. the authors in [29] propose a continuous

time model and a discrete time model. In the continuous time model, the probability of

influencing depends on time. With time increasing, the probability of influence decays,

following an exponential decay model. Discrete time model is an approximation of continuous

time models while providing little testing cost. In discrete time model, the probability of

user v influencing user u at a time window after v performs the action is constant.

The content dissemination process can be mapped as the influence propagation process

in many scenarios. When a user disseminates content to another user, it can be analyzed

as the influence action between two users. If a user accept the content, that means the

user is activated by other users; otherwise, the user keeps deactivated. Hence, the content

dissemination problem can be solved by user influence analysis. The authors in [11] propose

to maximize the influence spread by selecting the seed nodes. A local directed acyclic

graph(DAG) is constructed surrounding every node v in the network. Rooted at v, the DAG

covers a significant portion of influence propagation in which the influence from seed to user

v is only propagated within the local DAG of v. After that, the seeds that provide the

maximum incremental influence spread can be selected with a greedy approach.

The user influence may be represented as the strength of social connection as well.

For example, a friend typically has stronger influence on users behavior than a stranger.

In other words, a friend has a higher social connection strength than a stranger. Hence,

we can model the user influence as the strength of the social connections. Wang et. al.[8]

propose a distributed social tie strength calculation mechanism to identify the relationship of
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social connections. Based on the tie strength, the dissemination process can be executed in

two phase: weak tie-driven forwarding and strong tie-driven forwarding. In weak tie-driven

forwarding, the content is forwarded though weak social ties to local bridges users. After

the content has been propagated to communities, the strong social ties will be utilized to

disseminate content through influential individuals.

2.2.3 Mobility

The mobility of users has great impact on the content dissemination process. In mobile

social networks, users have high frequency to move around the network, which causes the

available connections vary frequently. On the other side, at different locations, it is probable

that users access to different content. Hence, the study on users mobility is an important

component to understand the movement patterns of mobile users and further the influence on

the content dissemination. The authors in [36] analyze users mobility as periodic mobility

model and social network driven mobility model. As the majority of human movement,

periodic mobility model describes users mobility as periodic movement between a small set

of latent location. For instance, users probably stay at their working location at work time

and returns home after the work. The social network driven mobility analyzes the movement

behavior caused by social communications. The work in studies human’s behavior in large

scale disasters. In this work, the authors propose to use hidden Markov model to model the

dependency between disaster behaviors and related disaster location and states.

Along with the mobility of users, the geography information can be utilized to enhance

the content dissemination process as well. Geo-community is proposed in [37][38], which is

based on the observation that users’ interests are often highly related to geography. For in-

stance, colleagues contact each other in the office; basketball lovers play basketball together

in gyms. Hence, users with similar interests form tightly link to each other in geography re-

lated communities (i.e., geo-communities). Users thus move around several geo-communities,

the mobility of which can be modeled by a time homogeneous semi-Markov model. Based

on mobility model, we can derive the steady state probability of the presence of a user i in
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geo-community j. According to the steady state probability of presence, we can contact user

i with a degree of certainty of we wait in geo-community j for a certain long time. Therefore,

the authors propose a superuser route dissemination algorithm, in which a superuser with

the content moves among the geo-communities and stay in the geo-communities for a certain

long time so that it can contact and directly deliver the content to users.

2.2.4 Privacy and Security

Users in MSNs may have their concern on the privacy and security during dissemi-

nation To provide the privacy-preserving data dissemination, the overlays only include the

connections between nodes who trust each other. Examples of this approach are Turtle [39],

Whisper [33] and MCONs[34]. Whisper [33] and MCONs[34] enable privacy preserving in

group communication by limiting the communication existing between the social connections

within the same group. The group membership is generated by invitation in their work.

The work in [35] proposes a privacy preserving method to improve the robustness of

trust-based data dissemination. For conventional trust-based dissemination, dissemination

happens only among users with certain social relationship, which is ineffective unfortunately.

To bootstrap the trust-based dissemination, it is a good a idea by employing additional links

between users with no social relationship connections. The additional links should provide

an abstraction of privacy-preserving routing as well. The privacy preserving additional links

are estimated based on anonymity and pseudonym with limited lifetime. Finally, the trusted

links together with additional pseudonym links provider a random graph overlay, which can

provider good performance on dissemination, privacy and reliability.

2.2.5 Incentive

The content dissemination in MSNs normally consumes a large size of physical resources

from the participating users, such as, bandwidth, memory buffering, power and so on. Hence,

the selfishness of the users may bring negative impact on the performance content dissemi-

nation. To overcome the impact from selfishness and other negative characters, an effective
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incentive scheme is necessary in many scenarios.

Different from traditional incentive scheme in wireless ad hoc networks, the motivation

in MSNs may require more concentration on the social features. Hence, users would have

more incentive if they are motivated by more social benefit.

Existing incentive schemes for content dissemination in MSNs can be categorized into

three categories: reputation based, tit-for-tat based and credit (victual currency) based. In

reputation based scheme, dissemination services are provided to nodes depending on their

reputation records. Successful dissemination behavior can increase the reputation corre-

spondingly; vice versa. Give2Get[30] is a typical reputation based incentive scheme, which

can detect misbehaving users and remove them from content dissemination. A Nash equi-

libria is achieved in Give2Get to prevent rational users from deviating. In Give2Get, the

content details are hidden from candidate relay users before the relay users agrees to server

the dissemination process. Proof of relay are also required after the selected relay users

agrees to serve and receive the encrypted content.

Tit-For-Tat is a pair-wise motivation scheme, which is built on the pair wise behaviors

of two users. Typically, a user will choose more generous behavior to another user if it is

treated generously by the other user. Shevade et. al.[31] develop a TFT based incentive

scheme for selfish users to optimize their own performance without significant degradation

of network wide performance. In [31], generosity and contrition are incorporated. Generosity

enables bootstrapping and absorbs transient asymmetries, while contrition prevents mistakes

from causing endless retaliation. Bootstrapping happens when two users meet for the first

time. Since no content have ever been successfully relayed by both users, the basic TFT

prevents the start of any relay. Contrition is imported to prevent mistakes from causing

endless retaliation and provide a way to return to stability after perturbation, by refraining

a user from reacting to a valid retaliation to its own mistake.

Credit based incentive makes use of certain credit or virtual currency to motivate users

for relaying and dissemination. The credits are normally issued and maintained by content

providers or social service providers. Users successfully disseminating content would receive
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certain credit as rewards. [32] proposes a novel credit based motivation scheme for advertise-

ment dissemination. When a intended receiver (ad targeted customers) receives some copies

of ads from an intermediate node, it authorizes the latter a number of virtual checks as a

proof of delivery. When a intended receiver (ad targeted customers) receives some copies of

ads from an intermediate node, it authorizes the latter a number of virtual checks as a proof

of delivery. In addition, check can be trade to quickly cash the check with content provider.

2.3 Content Perspective

As the objects to be processed, the properties and requirement of content should be

considered during the content dissemination process in mobile social networks as well. In

many cases, there is no restriction on the content, which can be called free content. The

free content can be received and edited by any users. And any connections can be utilized

to transmit the content, regardless the bandwidth and duration provided by the connection.

However, some other content has their dissemination requirements. In this section, we

analyze the interesting content types that have specific properties and requirements

2.3.1 Simple Content

Simple content is the most common content type existing in content dissemination

applications. Most content generated in daily social networks can be categorized as simple

content, such as messages, news, pictures and so on. There is no limitation and requirement

to disseminate simple content. Every user in social networks has the right to copy, edit and

delete the open source content. And the simple content can be transmitted through almost

any connections, regardless the connection condition, duration and distance.

To disseminate simple content in mobile social networks, the content providers need to

consider more constraints from network condition and user preference, instead of content

perspective. Researchers have proposed various studies on the dissemination problem for

simple content. Gao et. al.[40] propose to efficiently maintain the cache freshness by or-

ganizing the caching users as a tree structure during content access. Focusing on similar
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problem, Chen et. al.[41] deduce the optimal file replication strategy by further considering

users’ ability to meet others as a resource.

2.3.2 Streaming Content

Streaming content is also a challenging content type which has particular requiremen-

t on the connection condition during content dissemination. Different from free content,

streaming content has the properties of large size, long transmission duration and high data

completeness requirement. To efficiently disseminate streaming content in mobile social net-

works, the network should provider high speed and long duration streaming data transmission

paths[42]. However, because of the wireless and mobility environment of Mobile Social Net-

works, many existing connections disobey the requirements. The mobile ad hoc connection

quality is highly limited by distance and the power of mobile devices. In additional, user be-

haviors and mobility would disrupt the connection as well. Hence, to disseminate streaming

content in MSNs, we need to detect the reliable dissemination paths which providers long

duration and high speed transmission performance. It is an essential challenging on how to

detect the reliable streaming data transmission paths in MSNs.

User preference analysis can be leveraged to predict the possible behavior acted dur-

ing streaming content dissemination. By analyzing the mobility, interests on content and

attitude on social influence, we can estimate the possible behavior towards the streaming

content dissemination, and further detect the users who would be active during the dissem-

ination process. The authors in [43] propose a collaborative mobile architecture to model

user behaviors and stimulate user cooperation in multicast live streaming. In [44], the au-

thors analyze user activities on live video streaming systems and identify the impact of those

activities on performance. A Bayesian network is built to model user behaviors and help to

enhance the live streaming system.

Studied have been taken to solve the streaming dissemination problem by optimize the

caching and streaming schemes. To avoid disconnection and service breakdown caused by

users’ mobility in the network, Wu et. al.[45] propose a two level framework for cooperative
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media streaming in MSNs. In the framework, headlight prefetching and dynamic chaining

are designed to deal with the uncertainty of user movement and maximize cache utilization

and streaming benefit.
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Chapter 3

BAYESIAN-BASED CONTENT DISSEMINATION FRAMEWORK

In this chapter, we study the dissemination problem of large size of content such as

multimedia videos.

Since videos carry abundant visual contents and information, the video content is an

attractive content type deployed in plenty of applications. However, video dissemination in

MSNs encounters more significant challenges in the distribution process than other types of

contents such as text and picture do. First, it requires high bandwidth and reliable routing

paths, which are difficult to be guaranteed in dynamic unstable mobile ad hoc networks.

Second, the nature of the social networks such as user interests, connections and behaviors

may have a great impact on how the video is disseminated across the physical network. For

example, how one can motivate a neighbor mobile user to participant or help forwarding the

video content if a direct link to the video source does not exist. Social users can be affected

by many factors (e.g, battery running down) and may respond dramatically different to the

same factor.

In this work, we propose a novel framework for effective video content dissemination

in mobile social networks, which takes into consideration both the social features and the

limited physical resources[46]. Different from other related work, our framework captures the

individual user’s personal decision and interaction during the process of video distribution.

We analyze the factors that impact users’ choices, including video content matching with

users’ interests, the decision or choices of other neighbor users and the physical resources (e.g.,

battery and bandwidth). By synthesizing those factors, we develop an effective Bayesian

network model which enables each user to calculate its probability to request the video (i.e.,

video request probability). This probability is then used to select the optimized routing

path for video sharing and transmissions. To the best of our knowledge, this is the first
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work in modeling the social characteristics and network resources for video sharing using the

Bayesian technique.

3.1 The Framework for Video Sharing in MSN

In this section, we present our novel approaches to enhance users’ experiences when

sharing and receiving videos in mobile social networks. Figure 3.1 shows the proposed

framework for video sharing in the Mobile Social Networks (MSN), which includes three

main modules.

Inquiry module

Sender/

Receiver

Bayes ian network module

Video transmission module

Inference 
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Streaming 
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Path 
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Video abstract
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Figure 3.1. Video sharing in MSN

Inquiry module: The inquiry module is designed to inquire user information and

distribute video abstracts. User information is used to find existing neighbors and formulate
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the user inference in Bayesian networks. Video abstract includes a brief introduction or

description of the video, video tags, video rating and file locations, which enable users to

quickly read the video overview in the abstract. With this information, users can derive the

video inference in the proposed Bayesian model (as shown in Section 3.1.2).

Bayesian network module: The Bayesian network module involves inference for-

mulations and mathematical methods to calculate users’ probability to request the video,

denoted by video request probability.

Video transmission module: In video transmission module, we use the results from

the Bayesian model to help users select effective routing paths for video transmissions.

The proposed framework requires three phases for video sharing among MSN users.

First, video abstracts are distributed among the whole network. Along with this process,

user information is also exchanged between neighbors (i.e., neighbor discovery). Next, the

proposed Bayesian model is leveraged to help users to find the most appropriate paths to

transmit videos. Finally, users establish transmission paths and the videos can be download-

ed through the identified paths. To enhance the transmission performance, we also propose

a multiple paths transmission scheme.

3.1.1 Abstract Distribution

In our framework, a user (or video source provider) disseminates the abstract of a video

to users in the network. The distribution of the abstract is executed in a gossip fashion such

that every user in the network is aware of the abstract. After receiving the abstract, each

user then forwards the abstract to its neighbors who have not received the abstract. Once

the abstract reaches all users in the network, the abstract distribution flow will terminate

automatically.

Figure 3.2 illustrates an example of the abstract distribution process. In this example,

the user U1 is the video source provider. Neighbor users U2, U3, and U4 can obtain the

abstract in the first round. Users in two hops away, including U5 to U9 will receive the

abstract in the second round. Thus the structure of the network consists of several levels
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U1

U2 U4U3

U5 U6 U7 U8 U9

U10 U11 U12 U13 U14

Figure 3.2. Scheme of the abstract distribution flow

according to the distance to the video source provider.

During the process of abstract distribution, when a user forwards the abstract to its

neighbors, it attaches its personal information such as video request probability and resources

status (e.g., battery status, bandwidth allocated to neighbors, as to be discussed in the

following sections).

3.1.2 Bayesian Model

After receiving the abstract from its neighbors, a user will establish a Bayesian network

model, which analyzes the influence of users’ behaviors and network resource conditions.

The probability that a user requests a full video version from the video source provider,

namely video request probability (VRP), is computed to facilitate the selection of an

effective path for later video transmissions.

The video request probability calculation mainly considers three factors: confidence on

neighbors, interest match, and the resource status.
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Figure 3.3. Example for multi-path transmission

(i) The confidence on neighbors represents how a user trust its neighbors and the

neighbors’ choices. A larger confidence indicates a higher probability in trusting the neigh-

bors and thus making similar choice as its neighbors.

(ii) The match between the user’s interest and the video content shows how likely the

video will draw the user’s attention. A higher level of match indicates a larger probability

the user requests downloading the video.

(iii) The resource status of mobile devices, includes the battery level and available

bandwidth. Abundant resources would encourage the user to request and watch more videos.

With fully charged battery, naturally, a user would likely spare more resources for the video

transmission. Otherwise, the resources allocated for the video transmission may be limited.

We use U = Y to represent the event that user U requests the video and contributes to

the video forwarding/transmission, and U = N to denote user U rejecting the video. Hence
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P (U = Y ) is defined as the video request probability. ΨU = {U1, U2, ...Un} is the neighbor

set of user U. In addition, we use I to denote the match of the user’s interest with the

video content. S is used to indicate the resources status of the user’s mobile device. In our

Bayesian model, both I and S are variables.

According to the above definitions, we can calculate the video request probability P (U =

Y ) as:

P (U = Y ) =
∑
ψU ,I,S

P (U = Y |ψU , I, S) · P (ψU , I, S) (3.1)

where P (U = Y |ΨU , I, S) is the conditional probability that user U requests a video and

contributes to the video forwarding/transmission. Since a user may have different interests

from its neighbours and the interests generally have no relation with the physical resources

status of the mobile device, these three factors can be regarded independent from each other.

Accordingly, the conditional probability distribution can be rationally derived as:

P (U = Y |ΨU , I, S) = αP (U = Y |ΨU) + βP (U = Y |I) + σP (U = Y |S) (3.2)

where α + β + σ = 1 and 0 < α, β, σ < 1

α, β, σ are three coefficients indicating users’ preference towards those three factors in

mobile social networks. A bigger α implies that users in this mobile social network emphasize

more on user interactions (or confidence). A mobile social network with a bigger β pays more

attention to video content matching. The video has higher probability to be requested by

those who are really interested in it. Similarly, a bigger σ indicates a larger impact from the

physical resources status of mobile devices.

The conditional probability P (U = Y |ΨU) in Eq. (3.2) can be calculated based on the

set of conditional probability of P (U = Y |Ui = ui), where Ui is the ith neighbour of user U,
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and ui is a possible decision (or choice) 1 of Ui (i.e., Y or N):

P (U = Y |ΨU) =
∑
Ui∈ΨU

fUiUP (U = Y |Ui = ui) (3.3)

In the Equation (3.3), fUiU is the weight of the social relationship between user Ui

and user U . To quantize the weight of the social relationship, we investigate the contac-

t/communication history among users. It is naturally supposed that people in closer rela-

tionship will contact with each other more frequently. We record the number of conversations

occurring between users and normalize them to calculate the weight.

fUiU =
NUiU∑

Uj∈ΨU
NUjU

(3.4)

In Eq. (3.4), N(UiU) is the number of the conversations in history between user Ui and U.

The other factors needed to derive the conditional probability P (U = Y |ΨU , I, S) are

P (U = Y |I) and P (U = Y |S). The conditional probability P (U = Y |I) means how us-

er’s decision is influenced by the match between the user’s interests and the content of the

video described in the video abstract. Similarly, P (U = Y |S) indicates the impact of phys-

ical resources such as battery and bandwidth on the user’s decision to request the video.

In the following, we show how to calculate the video request probability while practically

formulating these conditional probabilities in our framework.

Calculating Video Request Probability Based on the analysis above, we can

derive the conditional probability P (U = Y |ΨU , I, S) as:

P (U = Y |ΨU , I, S) = (3.5)

α
∑
Ui∈ΨU

fUiUP (U = Y |Ui) + βP (U = Y |I) + σP (U = Y |S)

1The terms decision and choice are used interchangeably throughout the paper.
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A user U will receive the video request probabilities of its neighbors, i.e., P (Ui = Y ), from

each neighbor Ui. Suppose ψU is the set of possible choice variables of the neighbors in ΨU ,

which is {Y,N} in this work. Let I ′, S ′ denote the possible value of interest match I and

resources status S, respectively.

Considering that P (ψU), P (I), P (S) are independent, and different users are also inde-

pendent with each other, we can get:

P (ψU , I, S) = P (ψU) · P (I) · P (S) (3.6)

=
∏

Ui∈ΨU

P (Ui) · P (I) · P (S)

Thus, the formulation of video request probability in Equation (3.1) can be derived as:

P (U = Y ) = (3.7)

α
∑

ΨU ,ψU

fUiUP (U = Y |Ui)
∏

Uk∈ΨU

P (Uk = uk)

·
∑
I,S

P (I = I ′) · P (S = S′)

+β
∑
I

P (U = Y |I = I ′)P (I = I ′) ·
∑

ΨU ,S

∏
Ui

P (Ui)P (S = S′)

+σ
∑
S

P (U = Y |S′)P (S′) ·
∑
ΨU ,I

∏
Ui

P (Ui)P (I = I ′)

where,

∑
ΨU ,ψU

fUiUP (U = Y |Ui)
∏

Uk∈ΨU

P (Uk) (3.8)

=
∑
ΨU

fUiUP (U = Y |Ui)P (Ui) ·
∑
ψU

∏
ΨU−{Ui}

P (Uk = uk)

=
∑
Ui∈ΨU

∑
ui

fUiUP (U = Y |Ui = ui)P (Ui = ui)

In Equation (3.8), ΨU − {Ui} is the neighbor set of user U except Ui.

For a particular user, the interest is fixed and known. Given a video, the interest match
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of the user can be certainly calculated, which is denoted by I(U). Therefore, only the variable

I with the same value of I(U) is available. Hence, the probability P (I) can be represented

as:

P (I = I ′) =


1 : if I ′ = I(U)

0 : otherwise

In this work, several tags (or keywords) are created in video abstract to represent the video

content. Similarly, a user will initialize its interests, represented by several tags. Therefore,

we can match user interest and video content by calculating the common tags between the

user’s interests and video content, and calculate I(U) as Equation (3.9),

I(U) =
No(TI ∩ TC)

No(TI)
(3.9)

where No(TI ∩TC) is the number of common tags between the user’s interests and the video

content, and No(TI) is the total number of tags the user is interested in.

Similarly, we can check the hardware resource information and obtain the physical status

of the user’s mobile device, as S(U). Then the probability P (S) can be described as the

following formula.

P (S = S ′) =


1 : if S ′ = S(U)

0 : otherwise

Therefore, the factors involving interests and resources status can be described in Equation

(3.10) and Equation (3.11), respectively:

∑
I

P (U = Y |I)P (I) = P (U = Y |I(U)) (3.10)

where I(U) is the interest matching between user U and the particular video.

∑
S

P (U = Y |S)P (S) = P (U = Y |S(U)) (3.11)

where S(U) is the current resources status of user U .
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Accordingly, Equation (3.7) can be expressed as,

P (U = Y ) = (3.12)∑
Ui∈ΨU

∑
uj

α · fUiUP (U = Y |Ui = uj)P (Ui = uj)

+βP (U = Y |I(U)) + σP (U = Y |S(U))

Inference Learning The Inference formulation module provides a mechanism for a

user to formulate the conditional probabilities used in the Bayesian network. Three condi-

tional probabilities are required in the learning module: P (U |Ui), P (U |I) and P (U |S).

The conditional probability P (U |Ui) indicates the impact from the decision of its neigh-

bor Ui. In specific, p(U = Y |Ui = Y ) implies the probability that user U requests the video

if neighbor Ui requests the video, which depends on Ui’s attitude on others’ choices and the

bandwidth bUUi
contributed to user U by user Ui. The personal preference is a parameter

independently formed by the user himself. For a given user U , p(U = Y |Ui = Y ) is directly

proportional to bUUi
, while p(U = N |Ui = Y ) is inversely proportional to bUUi

.

P (U |I) indicates the influence of interest match on users’ decision. Generally, a higher

interest match leads to a higher video request probability. P (U |I) can be formulated as a

linear function of I. The derivation of P (U |S) is similar to that of P (U |I), which shows the

impacts of the resources status of mobile devices on users’ decision.

When a new user U joins the system, it first chooses its preference, including the pa-

rameters α, β, σ and interests. The P (U |Ui) is also formulated by the user. The friend

relationship fUi
are also initialized. After receiving the video information and video request

probability P (Ui) of its neighbor Ui in the abstract dissemination process, the new user can

calculate the video request probability P (U) based on Equation (3.12).

During the transmission phase in Sec. 3.1.3 and Sec. 3.1.4, several parameters are

updated: fij, P (Ui = Y ), and S. After each successful transmission among two users, the

weight of relationship between them is updated as in Equation (3.4).
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3.1.3 Video Request and Transmission

When a user sends out a video request, our framework provides an efficient approach

to help the user select the most effective transmission paths based on the video request

probability.

First, user U selects the neighbor with the highest video request probability, say user

N , and sends the download request to user N . When neighbor N receives a video download

request, it will check whether it has already obtained a copy of the video. If yes, neighbor

N transmits the video data backward to user U . Then the request forwarding process is

terminated. Otherwise, user N makes decision to forward the request depending on the

probability P (N = Y ). User N will forward the request to N ’s neighbors only when user N

reaches a decision that it also wants a copy of the video. If user N decides not to participate

the video sharing process, the request forwarding process is terminated. A termination

signal is sent back to the previous neighbor. When a user receives a termination signal,

it will choose the neighbor with the next highest video request probability to resend the

download request. The process will repeat until a download request arrives at the video

source provider and a successful transmission path is established. Clearly, if the original

video request user U receives termination signal from all U ’s neighbors, user U will not find

any transmission path for video request.

When a successful transmission path is established, streaming video transmission starts.

The video is divided into several streaming segments. Each segment is transmitted and

played, as the protocols in VOD streaming or the streaming standards like H.264 and MPEG-

4.

3.1.4 Multiple Streaming Transmission

In mobile social networks, mobile devices are usually not able to own stable and high

download/upload bandwidth. Hence, it is necessary to explore better Quality of Service

(QoS) according to different network conditions. To achieve this, we propose Multiple

Streaming Rate (MSR) or Multiple Description Coding (MDC) to provide a smooth and
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effective streaming in MSN. MSR and MDC allow the video source to construct several

independent descriptions of the same video as discussed in [47] [48].

We design a multi-path transmission scheme based on the MDC technique. After the

video abstract distribution process, each user U holds a list LU in which the transmission

probabilities of its neighbors are sorted as Equation (3.13)

LU = {P (Ui = Y )};Ui ∈ ΨU (3.13)

We then use this list to select appropriate users and paths for multi-path video transmis-

sions. In specific, the path with the highest transmission probability is selected to transmit

the basic description of the video. Then, additional one or multiple paths are chosen to

transmit the enhanced video descriptions. The basic idea is to select the users with higher

transmission probabilities in Equation (3.12) to from the additional paths.

Figure 3.3 demonstrates an example of this process, where User U is the video requestor,

and S is the video source provider. U1-U5 are the intermediate users in the network. The

decimal numbers in the figure are the corresponding video request probability. At first,

user U attempts to select {U, U1, U2, S} as the primary transmission path. If this path is

successfully established, user U will try to build a second path through U3-U5. According to

the sequence in LU3 , U4 or U5 will be selected on the second path. If both U4 and U5 or U3

refuse the request, no secondary path would be established.

3.2 Simulation and Performance Analysis

In this section we test the Bayesian models and related parameters in two simulation

platforms: numerical analysis and OPNET simulation [49]. We first present the result

from the numerical analysis and OPNET simulation [49] in a tree or grid network. Then

we evaluate the performance of the proposed schemes in networks with a random network

topology.

In the simulation, each user randomly chooses its confidence on neighbors’ choices
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P (Uj|Ui), interest on the video I(U) and resource status S(U). We can vary the three

coefficients in Equation (3.13): α, β and σ, according to different network scenarios. Table

3.1 shows four typical parameter settings we test in the experiments. Clearly, in Case 1,

users are only affected by neighbors’ choices and users have no content preferences and no

concern on physical resources. In Case 2, video interest and physical resource status are the

only factors influencing users’ choices. The users in Case 3 evenly treat the three factors. In

Case 4, users care more about social confidence than video interest and physical resources.

Note that the factors of interest match and resource status are considered evenly as both are

independently and randomly generated by each user.

Table 3.1. Parameter setting used in simulation
Case α β σ Characteristics of the network

1 1 0 0
Only the factor of social confidence
(i.e., confidence on neighbors) is considered

2 0 0.5 0.5
The social confidence factor is ignored while
the interest match and resource status are equally considered

3 0.33 0.33 0.33 The three factors are equally considered

4 0.5 0.25 0.25
The social confidence is the primary factor
while the interest match and resource status are equally con-
sidered

3.2.1 Performance Evaluation in Tree and Grid Networks

To evaluate the performance of the proposed schemes, we implement the Bayesian model

in networks with a tree or grid topology. The tree network is a binary tree network with 31

users and the root of the tree is the video source provider. The grid network consists of 25

users forming a 5× 5 grid. The center user in this grid network is the video source provider.

For both networks, we draw the Cumulative Distribution Function (CDF) from the numerical

analysis (i.e., Equation (3.5-3.13)) and OPNET simulation to study the distribution of users’

video request probability. In specific, we use x-axis to represent the potential values of video

request probability (VRP). The y-axis is the CDF of the video request probability, which

denotes the percentage of users in a network having a video request probability less or equal
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(b) Case 2 (α = 0, β = σ = 0.5)
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(c) Case 3 (α = β = σ = 0.33)
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(d) Case 4 (α = 0.5, β = σ = 0.25)

Figure 3.4. Video request probability (VRP) distribution in a tree network

to a particular value.

Figure 3.4 and Figure 3.5 show the results of video request probability distribution

in the tree and grid network, respectively. For Case 1 in the tree network, Figure 3.4(a)

demonstrates that the CDF curve from OPNET simulation matches well with the results

from the numerical analysis. Both curves are close to a logarithmic curve. In the binary

tree network with Case 1 (α = 1), the video request probability is solely determined by the

confidence on neighbors. In other words, a user in the tree network is influenced by only the

choice (i.e., VRP) of its parent, when the video request probability is calculated. For a user

U whose distance to the root is d, its decision is influenced by d users along the path from

the root to user U . The bigger d is the less opportunity U will request the video due to the
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(b) Case 2 (α = 0, β = σ = 0.5)
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(c) Case 3 (α = β = σ = 0.33)
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(d) Case 4 (α = 0.5, β = σ = 0.25)

Figure 3.5. Video request probability (VRP) distribution in a grid network

increasing accumulation of negative opinions. When α = 1, Equation (3.13) is converted to:

P (U = Y ) =
∑
uj

P (U = Y |Ui = uj)P (Ui = uj) (3.14)

where Ui is user U ’s parent node. Suppose the average of P (U = Y |Ui = uj) is ε,

then the children of user Ui including U have similar VRP values as
∑

uj
εujP (Ui = uj).

Likewise the children of user U have similar VRP values as
∑

uj
εujP (U = uj). Recursively,

the VRP value of a user is closely exponential to the distance to the root (with a base less

than 1). Since the number of users with a distance d to the root is exponential to d in the

tree network, the CDF function of the VRP values shows a logarithmic curve as in Figure
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3.4(a). Figure 3.5(a) shows the CDF of video request probability in the grid network with

Case 1. The user in the grid network is influenced by more neighbors (mostly two). Each

neighbor imposes different influence on the user, which makes the curve in the grid network

less close to a logarithmic curve.

The results in a tree network and grid network with Case 2 are presented by Figure

3.4(b) and Figure 3.5(b), respectively. In both figures we can see that the CDF curve is linear

to the video request probability, indicating the VRP value is uniformly distributed. This is

because α = 0 makes VRP calculation totally ignoring the factor of neighbor confidence (as

well as the network structure). In fact, each user only cares about the interest match and

resource status, which are randomly generated by each user. Therefore, users’ decisions are

not affected by other users, and the CDF curve is uniformly distributed in both tree and

grid networks.

Figure 3.4(c) shows the scenarios that users evenly care about the three factors as the

Case 3 in Table 3.1. Influenced by both users’ confidence and personal interest/status,

the CDF curve lies between the logarithmic curve and linear curve in the tree network.

Figure 3.5(c) shows a similar result in the grid network. The similar conclusion can also

be observed from the results on Case 4 in Figure 3.4(d) and Figure 3.5(d), where all three

factors are considered. Since users in Case 4 put more weight (i.e., bigger α value) on the

social confidence factor, the curves in Figure 3.4(d) are more close to a logarithmic curve

than the curves in Figure 3.4(c).

3.2.2 Performance Evaluation in Random Networks

In a random network, the numerical analysis is intractable and hence we implement the

framework with OPNET. There are 30 users in the random network and the average node

degree, denoted by ∆, can be 5 or 2.4. We call the network with ∆ = 5 as a densely connected

network and the network with ∆ = 2.4 as a sparsely connected network. By comparing the

performance of those networks, we can study the influence of network connections on users

behavior.
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In the OPNET implementation, the user’s confidence (P (U |Ui)) is randomly generated

to simulate two typical community: close-knit MSN and loose-knit MSN [50]. We call the

close-knit MSN as the high confidence network where users trust neighbors’ choices more

and more likely prefer the video accepted by their neighbors. On the other hand, the users

in a loose-knit MSN, called as low confidence network, will be less influenced by the decision

of their neighbors.

Meanwhile, we also experiment different Bayesian parameters settings as shown in Table

3.1. As explained above, Case 2 is independent of the network structure. Hence, Case 2 in

the random network yields similar results as the tree/grid network. which is omitted in this

section. From hereafter, if not other specified, the results are based on Case 4 in a densely

connected and high confidence random network.

Impact of Bayesian Parameters Figure 3.6 shows the results for different MSN

types, where x-axis represents the video request probabilities and y-axis is the cumulative

distribution function (CDF) of the proportion of users with the video request probabilities.

We can see the users in MSN with high confidence have higher overall video request probabil-

ity than users in MSN with low confidence. Figure 3.6(a) shows that the average probability

is around 0.6 in the high confidence network and 0.4 in the low confidence network, which

implies users in high confidence networks likely benefit from the high video request probabil-

ity and have better success rate to obtain interested videos. This can be explained as follows.

In a high confidence network, a user closer to the video source has larger impacts on both

close-by neighbors and far-away users, resulting in more users with similar video request

probability. Among the three cases in Figure 3.6, Case 1 yields the highest average video

request probability and Case 3 has the lowest average VPR. Therefor, a user may have a

higher probability to request the video if the user relies more on neighbors’ recommendation.

Impact of network node degree Figure 3.7 shows the performance comparison

between the densely and sparsely connected networks. Clearly, the VPR in a densely con-

nected network significantly outperforms the sparsely connected network for Case 1 or Case
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(c) Case 4 (α = 0.5, β = σ = 0.25)

Figure 3.6. Video request probability distribution in a random network

4. However, this is not true for Case 3. This is because the impact of node degree can be

more significant only if the user cares more about the neighbors’ choices (i.e., larger α). We

also find that the video request probabilities vary more in sparsely connected networks due

to the fact that every neighbor in sparsely connected networks can impose relatively a higher

influence on users decision than that in densely connected networks.

Single-path and Multi-path Transmission To investigate the transmission per-

formance of our framework, we randomly pick a user as the video source provider and pick

10 users to request the video. Figure 3.8 shows the average transmission time versus the hop

numbers to the source provider, when the single-path scheme is employed. From the figure
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(c) Case 4 (α = 0.5, β = σ = 0.25)

Figure 3.7. Video request probability distribution in random networks with different node
degree

we can see that the transmission time used is about 250s−280s, which is less than the video

play length (i.e., 10 minutes). This implies that the single-path scheme is efficiently and

feasible for real applications. In addition, the transmission time is almost linear to the hop

distance, which indicates the transmission delay and the processing delay in mobile devices

are the major delay in our system.

The results of the multi-path transmission scheme is shown in Figure 3.9, where x-axis

is the IDs of the user selected and is sorted according to the number of established paths.

User 1 and 2 only establish a single transmission path. Two transmission paths are built

by user 3-7. User 8 and 9 can successfully build 3 transmission paths and user 10 has video
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Figure 3.9. Multi-path transmission

transmission 4 paths concurrently. As we can see from the simulation, a half of the 10 nodes

can establish two concurrent transmission paths and 4 or more transmission paths are rare.

Multiple concurrent transmission paths can help reduce the transmission time. However the

reduction in transmission time is not proportional to the number of concurrent paths due to

the possible bandwidth competition among the concurrent paths.
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Chapter 4

SEMI-CONTROLLED CONTENT DISSEMINATION

The content disseminated in mobile social networks has different types of generators

and receivers, transmission pattern, expectation from generators and so on. Hence, there

may be specific constraints or limitation on the dissemination process. Some content types

such as news and blogs tend to draw public interests, and the content holder/receiver has a

full control of the content and can re-disseminate the content freely. For some other types of

content, the content creators may want to limit or control the dissemination process due to

the value, cost or resources associated with the content creation. For example, a merchant

may distribute a certain number of coupon brochures to potential customers; a bookseller

delivers some free books to the book fans; a conference organizer may send a limited number

of invitations to potential interested people. When received the information, a user will adopt

the information which brings some profit/reward to the content provider. For instance, after

receiving a coupon, a user will drop by the local store and purchase goods, which increases

the income of the coupon provider. We call such process of information dissemination as

Semi-controlled Authorized Information Dissemination (SAID). A common feature of such

content dissemination is that the content has certain copyright protection, and can only

be generated by the content creators or provider (CP). The CP will control the number of

information copies to be disseminated in the networks, and disable the copy capability of

the content receivers.

Since there are a limited number of authorized content copies generated by the content

creators or providers in SAID, the content providers have much incentive to deliver those

content copies to the users interested in or highly related to the content, who potentially bring

more profit/reward to the content provider than others. For example, a brand loyal customers

has higher probability to purchase more goods than other non-loyal customers. For this SAID
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problem, current conventional dissemination approaches such as online publishing/applying

fails due to the following reasons. First, the interested users may not be aware of the content

published by the CP. Second, the content might be applied by the greedy uninterested users

who may not adopt the content. Last but not least, the CP’s management and maintainess

cost is increased. Hence, the content providers may prefer to leverage the social network

users to help disseminate and forward the content to those interested users who may or may

not have direct connections to the CP.

In this work, we investigate the Semi-controlled Authorized Information Dissemination

(SAID) in Content-based Social Networks. There are several characteristics in the semi-

controlled authorized information dissemination. First, the total number of information

copies existing in the network (e.g. the number of conference invitations to deliver), is

limited and fixed. Second, each user u has a different level of personal interests (denoted by

weight: wu) in the content and may retain one or more content quotas (denoted by quota:

tu) if it receives the information. When receiving a number of content copies, each user u

will retain tu content copies, and forward the rest to others. Third, for a user (say D in

Figure 4.1) to receive a copy of the content, there must exist some social users (e.g., A, E, in

Figure 4.1) who would like to cooperate and disseminate the content copy to the user (i.e.,

D) when receiving the content. In other words, there must be a dissemination flow from the

content provider to the user. Considering these constraints, the CP must explore the best

choice of the content receivers to maximize the total weights of the content receivers when

disseminating the authorized information in content-based social networks.

We can use Figure 4.1 as an example to illustrate the process of authorized information

dissemination. As shown in Figure 4.1, there is a content provider (CP) who would like to

disseminate a limited number of (say 6) content copies to interested users. Each user has

a different level of personal interests in the content (i.e., weight w), and may hold different

number of quotas or copies according to its own need (i.e., quota t). For instance, user A is

very interested in the content at level wA = 4, and will retain tA = 2 copies if receiving the

content. Obviously, the goal of the content provider is to deliver the 6 content copies to the
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users with high interests in the content, which can be measured as the total weight of all the

users received a copy of the content. Therefore, the best strategy for the content provider

is to disseminate the 6 content copies to users A, B, D, E as shown by the dissemination

flow in Figure 4.1. Along the dissemination flow, each content receiver has a connected path

to the CP to receive one or more copies of the authorized content from the CP. In specific,

user A will receive 2 content copies directly from the CP with a weight of wA = 4, Similarly

user B receives one copy with a weight of wB = 2. User E receives one copy via user A from

the CP and contribute a weight of wC = 3. With a weight of wD = 3, user D will receive 2

copies via user E and A from the CP.

4.1 Maximum Weighted Connected subgraph with node Quota (MWCQ)

In this section, we first describe our methodology to represent the content and user

interests, by employing the approaches used in Content-Based Networks. The weight of user

nodes can then be calculated by measuring the match between the information content and
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user interests. Then we formally define the Maximum Weighted Connected subgraph with

node Quota (MWCQ) problem.

4.1.1 Weight Calculation

Each information or content has properties on multiple topics such as types, cate-

gories, locations, etc. These information properties are used to compare with users’ in-

terests and a better match indicates the corresponding information is more attractive to

the users. To effectively measure the match between information properties and user in-

terests, we take advantage of the methodology of the naming scheme in Content-Based

Networks(CBN)[51][52][53]. Specifically, the properties of information are defined and named

within a naming space. The naming space has a hieratical structure. For example, an in-

formation instance may have the property on category topic as “category/goods/electronic

device/laptop/apple/macbook air”. In this case, the naming space has a 6-level structure in

“category”. Similarly, users’ interests are named within the same naming space.

We use the largest matching level shared by user’s interest and information proper-

ties to measure the match. Hence, if a node has interest in category topic as “catego-

ry/goods/electronic device/laptop/lenovo/Thinkpad x220”, we will have a matching level 4

on the topic “category” between this user and the previous information instance. A higher

level matching between them indicates a higher confidence that a user is interested in the

information, thus a higher weight of the user on the information can be assigned.

Suppose the function fk(I, U) returns the match level of topic k between the interest of

user node U and information I. The weight of user node U on information I is calculated

as:

wU(I) =
∑
k

fk(I, U) (4.1)

where k is the index of information topic. If a user node has a higher weight, there is a

higher probability that the node brings high profit/reward to the content provider.
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4.1.2 MWCQ Problem Formulations

Given a social network G with N users, there exists a source node s to generate and

disseminate R copies of authorized content. Each user u has a weight ωu (1 ≤ u ≤ N)

calculated by matching the properties of information content and the social interests of the

corresponding user. Assume that quota tu is the number of content copies node u will retain.

A matrix CN×N represents the connectivity among the users in the network.

Cuv =

 1 ; if u 6= v, u,v are connected

0 ; otherwise

The objective of the problem is to achieve the maximum weight sum of the users who receives

the content. The objective can be formulated as Equation (4.2), where δu is used to indicate

whether the node u receives the information or not. δu = 1 means that user node u receives

the information and retains tu information copies. On the other hand, δu = 0 indicates

user node u does not participate the information dissemination process at all (i.e., does not

receive the information and is not on the path of dissemination flow). Suppose xuv is the

number of information copies flow from node u to node v. Then,
∑

v 6=u xuv is the number of

information copies node u receives, and
∑

v 6=u xuv is the number of information copies node

u sends out. Accordingly, we can formulate the Maximum Weighted Connected subgraph

with node Quota (MWCQ) problem as follows.

max
∑
u

wuδu (4.2)

Subject to

xuv(Cuv − 1) = 0 (4.3)∑
v 6=u

xvu −
∑
v 6=u

xuv = δu × tu,∀u, v (4.4)

δu ≤
∑
v 6=u

xvu ≤ Rδu (4.5)
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∑
v 6=s

xsv = R (4.6)

xuv ∈ N, δu ∈ {0, 1} (4.7)

The constraint in Equation (4.3) means that the dissemination flow only exists between

nodes with social connections. The node quota, i.e., the number of copies retained by a

node, is constrained by Equation (4.4). The constraint in Equation (4.5) represents that

one node will retain information copies only when there is a dissemination flow reaching the

node. In other words, if a node e receives the information, there must be a path from the

source to node u and all the intermediate nodes also retain some copies of the information.

As shown in Figure 4.1, node D receives the information if and only if there exists a path

to CP (i.e., CP → A → E → D) and intermediate nodes (i.e., A, E) also retain copies of

the information. Finally, the number of information copies in the network is R as shown in

Equation (4.6).

Theorem 1. The MWCQ problem is NP-complete.

In the following, we sketch the proof of Theorem 1 by converting the NP-complete

Steiner tree problem to the MWCQ problem.

The Steiner tree problem is defined as follows: given a connected undirected graph

G = (V,E), a subset S ⊂ V , and a weight set for each edge in E; find a connected subgraph

G′ = (V ′, E ′) with minimum sum of the edge weights, where S ⊂ V ′. From the graph G, we

can construct the graph GM by:

(a) For any edge e with weight we between node u and v, we add a new node ve with

weight W −we and replace edge e with new non-weighted edges between u and ve as well as

ve and v. W is a value larger than any edge weight in G.

(b) Add weight 2|V | ·W to all nodes in S.

(c) Add weight WB to all nodes in S; WB � W .

(d) Set the quota of each node as 1.

As a result, we form a dual graph GM of the graph G in Steiner tree problem. Then we

set the source node as one node v in S, and solve the MWCQ problem by setting information
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copies as v, where 2|S|−1 ≤ v ≤ 2|V |−1. The optimal result of Steiner tree problem would

be the largest result of the set of MWCQ problems by shuffling j between 2|S|−1 and 2|V |−1.

Since the transformation between Steiner tree and our MWCQ problem is polynomial, the

MWCQ problem is NP-complete as well.

In the following sections, we study the MWCQ problem by using efficient heuristic

algorithms and lower bounds analysis techniques.

4.2 Dynamic Programming based SAID (DP-SAID) Algorithm

In this section, we propose a Dynamic Programming based SAID (DP-SAID) algorithm

for the MWCQ problem. With the technique of dynamic programming, DP-SAID can take

advantages of the properties of overlapping subproblems to efferently solve the complex

MWCQ problem. In specific, we first calculate the solutions of the subproblems with smaller

information copies at each node and then combine the solutions of the subproblems to reach

an overall solution.

Consider an N-node network having a source node s. Each node u in the networks has a

weight wu, and a quota tu limiting the number of the information copies this node can retain

(or consume). There are a total of R information copies to be delivered from node s to other

nodes. We suppose a connected subgraph S = {s, u1, u2, ...ur}(r ≤ R) is the optimal solution

of the MWCQ problem with R information copies, and the nodes are ordered according to

their hop distance to the source node. Then the set S ′ = {s, u1, u2, ...ur−1} should be the

optimal solution to an MWCQ problem with at most R − tur information copies and node

ur has direct social connections to nodes in S ′. Therefore, we can employ the dynamic

programming approach to solve sub-MWCQ problems with smaller R and memorize them

for later lookup, thus reducing the number of computations.

In DP-SAID, we first sort the nodes through the Breadth-First-Searching (BFS) algo-

rithm to find nodes’ hop distances to the source node. The neighbors of a node are visited

according to the weight in non-increasing order. For each node ui with a order i in BFS,

the minimum hop distance to the source node is denoted by dui (1 ≤ dui ≤ R). Hence,
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to disseminate the content to node ui, there must exist at lest dui content copies in the

network. For each content copy number j where dui ≤ j ≤ R, the DP-SAID algorithm finds

the connected subgraph Sj(ui) with largest weight, which satisfies: (i) Sj(ui) includes node

ui and the source node s; and (ii) the total number of information copies disseminated in

Sj(ui) is at most j. Let X[ui, j] denote the weight sum of the subgraph Sj(ui) and ~X[ui]

denote the vector of X[ui, j] with dui ≤ j ≤ R, as in Equation (4.8).

~X[ui] = (X[ui, dui ], X[ui, dui + 1], ..., X[ui, R]) (4.8)

Assume after the BFS algorithm, the sorted node order is (u1, u2, ..., ui, ..., un), then

X[ui, j] can be calculated based onX[uk, j−tui ] (k < i), by employing the following approach.

(I) if i = 1,

X[ui, j] = wui(1 ≤ j ≤ R) (4.9)

(II) if i > 1,

X[ui, j] = (4.10)

max {X[uk, j − tui ]|ui directly connects to subgraph Sj−tui (uk)}

+wui

After calculating X[ui, j] where dui ≤ R in order, DP-SAID generates an MWCQ solu-

tion P as:

P = max{X[ui, R]|dui ≤ R} (4.11)

The DP-SAID algorithm can be described in Algorithm 1.

Figure 4.2 shows an example on how DP-SAID works. In this example, there are 11

nodes including the source node. The weight of each node is the same as its ID and the

information quotas (i.e., ti) are shown in the parentheses. There are R = 5 information

copies to be delivered from node s to other nodes in the network.

BFS algorithm would visit nodes in the order as (s, 9, 5, 4, 1, 2, 8, 7, 3, 6, 10). As Table
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Algorithm 1 DP-SAID Algorithm

Require: Network with N nodes,
Nodes’ weights and quotas,
Number of information copies (R).

Ensure: Maximum sum of weight of the nodes who receive the information copies
1: Sort the nodes as the BFS order {u1, u2, ..., uN}
2: for each node ui do
3: if dui ≤ R then
4: for each j in dui ≤ j ≤ R do
5: Calculate X[ui, j] according to Equation (4.9) and (4.10)
6: end for
7: end if
8: end for
9: Find out the maximum X[ui, R] as the solution

Algorithm 2 TH-SAID Algorithm

Require: network with N nodes,
nodes’ weights and quotas,
number of information copies (R).

1: So = {s}, Sc = {ni|ni is adjacent to s}
2: The total consumed information quotas T of So is initialized as T = 0
3: while T ≤ R do
4: Set the maximum 2-hop WQR max WQR = 0
5: for each node ui in Sc do
6: if T + tui ≤ R then
7: Calculate the WQR WQRui of node ui
8: Find the maximum WQR WQR′ of ui’s neighbors who are not in So
9: WQR2ui = WQRui +WQR′

10: if max WQR < WQR2ui then
11: max WQR = WQR2ui
12: Set the index of the node with maximum WQR2 as Index = i
13: end if
14: end if
15: end for
16: Add node uIndex to S0, and add node uIndex’s neighbor nodes to Sc
17: T+ = tuIndex

18: end while
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Figure 4.2. An example of DP-SAID algorithm

4.1 shows, the proposed DP-SAID can find the connected nodes set with the largest weight

sum. Note that there might be some nodes that is impossible (or unavailable) to be in the

solution. For example, node 10 has a shortest path to source node with node s→ 9→ 5→

2 → 3 → 10. The required copies by node 9, 5, 2 and 3 are 6, which is bigger than the

available number of content copies R = 5. Thus node 10 can not be included in the solution.

The detailed process of the algorithm is listed in Table 4.1, where “x” means unavailable.

Proposition 1. The DP-SAID algorithm requires O(NR2/2) storage space and O(N +E+

R2N2) running time for a network with N nodes, E edges, and R information copies.
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Table 4.1. The process of DP-SAID algorithm

Node
X[u, 1] X[u, 2] X[u, 3]

S1(u) X[u, 1] S2(u) X[u, 2] S3(u) X[u, 3]
9 [s, 9] 9 [s, 9] 9 [s, 9] 9
5 x x [s, 5] 5 [s, 9, 5] 14
4 [s, 4] 4 [s, 9, 4] 13 [s, 9, 4] 13
1 [s, 1] 1 [s, 9, 1] 10 [s, 9, 4, 1] 14
2 x x x x [s, 5, 2] 7
8 x x x x [s, 4, 8] 12
7 x x x x x x
3 x x x x x x
6 x x x x x x
10 x x x x x x

Node
X[u, 4] X[u, 5]

S4(u) X[u, 4] S5(u) X[u, 5]
9 [s, 9] 9 [s, 9] 9
5 [s, 9, 5] 14 [s, 9, 5] 14
4 [s, 9, 5, 4] 18 [s, 9, 5, 4] 18
1 [s, 9, 5, 1] 15 [s, 9, 5, 4, 1] 19
2 [s, 9, 5, 2] 16 [s, 9, 5, 4, 2] 20
8 [s, 9, 4, 8] 21 [s, 9, 4, 1, 8] 22
7 [s, 1, 7] 8 [s, 9, 1, 7] 17
3 x x [s, 5, 2, 3] 10
6 [s, 4, 8, 6] 18 [s, 9, 4, 8, 6] 27
10 x x x x

Proof. Each node maintains storage space for the vector ~X[u], and the corresponding con-

nected subgraph set Sj−1(uk). The total storage space needed for vectors is NR. The total

space required to store connected subgraph sets is O(NR2/2). Thus the space requirement

is O(NR2/2).

The running time complexity is determined by the calculation of the vectors for each

node. The computation complexity for the BFS is O(N +E). To calculate X[ui, j], we only

need to search the Sj−1(uk) of previous node uk that is connected to node ui. The running

time to check the connectivity would be O(jN). So the total running time for node ui is

O(R2N). Therefore, the time complexity for the whole network is O(N + E +R2N2).

Proposition 2. The DP-SAID algorithm can achieve a R
2R−2

lower bound.



56

Proof. The DP-SAID algorithm can obtain an optimal solution in most cases through the

dynamic programming process. However, DP-SAID maynot yield an optimal solution when

multiple dissemination flow paths overlap or share some common intermediate nodes. We

call those overlapping structures that cause the DP-SAID solution smaller than the optimal

solution, as shared path structures. To study the lowerbound of the DP-SAID algorithm,

we need to analyze the characteristics of the shared structure and the performance of DP-

SAID in the worst case. Figure 4.3 shows an example of such shared structure. In order to

disseminate information copies from node s to node G, path P1 = {A,B} is the maximum

weight path calculated by DP-SAID (denoted by DP-SAID path). Similarly, to deliver

information copies to node H, DP-SAID will use path P2 = {E,F} as the dissemination

flow path. Note that, to disseminate information copies to both node G and H, one can

alternatively use the partially shared path P3 = {C,D} (denoted by shared path). However,

because the weight sum of nodes on P3 is smaller than that of P1 or P2, DP-SAID will

greedily employ Path P2 and P3 to deliver information copies to node G and H, respectively.

As a result, although {A,C,D,G,H,E} is the optimal solution of the MWCQ problem in

Figure 3 with 8 information copies, the DP-SAID algorithm would generate the solution as

{A,B,G,E, F,H} instead. The reason for the sub-optimal results from the DP-SAID in

Figure 3 is that DP-SAID cannot take full advantage of the shared path structure in the

network. The shared path structure has several characteristics as follows.

First, the weight sum of nodes on shared path P3 (defined as |P3|) is smaller than

the weight sum of nodes on DP-SAID paths P1 or P2(i.e., |P3| ≤ |P1| and |P3| ≤ |P2|).

Second, to include P3 in the optimal solution, it must be satisfied that choosing P3 and some

other nodes yields larger weight sum than |P1| + |P2| (if the same amount of information

copies are disseminated). Third, the weights of the shared paths’ end nodes (e.g., G and H)

should be large enough so that the end nodes need to be included in the optimal solution

and DP-SAID solution.

Based on the characteristics of the shared paths, we can derive the worst case to analyze

the lower bound of the DP-SAID algorithm. In the worst case, the network consists of the



57

maximal number of shared paths, the topology of which can be described in Figure 4.4.

As shown in Figure 4.4, in the worst case, there is a shared path ({C}) by multiple end

nodes ({F,G,H,I}) to the source node S. The nodes can be divided into four types with four

different weight: {a,b,c,d}. a is the weight of the nodes only on shared path(e.g., C), while

b is the weight of the nodes only on DP-SAID paths(e.g., A, B). The end nodes on both

shared paths and DP-SAID paths(e.g., H, I) have weight d. There are also some additional

nodes(e.g., J, K) with weight c who are included in optimal solution but not in DP-SAID

solution. The quota of each node is ti = 1 to maximize the difference between the DP-SAID

solution and optimal solution. According to the characteristics described above, we have:


b ≥ a

2b < a+ c

c < d

(4.12)

In the worst case, there are R
2

(R = 2n, n ∈ N) nodes with weight d, and R
2

nodes with weight

b correspondingly. Thus, the optimal solution should be {C,F,G,H,I,J,K,L} with weight sum

(a + R
2
d + (R

2
− 1)c). The solution of the DP-SAID algorithm is {A,H,B,F,D,G,E,I} with

weight sum (R
2
b+ R

2
d). Hence, the lower bound of DP-SAID algorithm is:

LB = min
R
2
b+ R

2
d

a+ R
2
d+ (R

2
− 1)c

(4.13)

a<b�c<d
>

R
2
d

R
2
d+ (R

2
− 1)c

+ ε

>
R

2R− 2

where
a<b�c<d
> means that in the worst case, nodes with weight d must be included in

both the DP-SAID solution and the optimal solution.
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4.3 Two-Hop based greedy SAID (TH-SAID) Algorithm

In this section, we propose a Two-Hop based greedy SAID (TH-SAID) algorithm, which

has low running time and space cost comparing to DP-SAID. The algorithm is developed

based on the greedy algorithm which adds the adjacent node with largest weight at each

step. However, such greedy algorithm may miss some large weight nodes connected to

source node through a small weight nodes. On the other side, due to the social influence and

social properties in social networks, such small weight nodes that connect two large weight

nodes are uncommon. Hence, TH-SAID is developed by investigating the nodes within 2

hops instead of 1 hop. The advantage of this method is to avoid some high weight nodes

blocked by a low weight nodes. To take both the information quota and node weight into

account, we define a Weight-Quota Ratio (WQR) as the average weight a node can provide

per information copy. A higher WQR ratio means a node can contribute more weight while

consuming fewer information copies.

As shown in Algorithm.2, we maintain a set So as the subgraph set of nodes who have

been selected in previous steps. So is initialized as So = {s}. A candidate set Sc is also main-

tained as the neighbor node set of the nodes in So. Initially, Sc = {ui|ui is a neighbor of s}.

At each step, we calculate the 2-hop WQR ratios (WQR2) of each node ui in Sc, which is

defined as the sum of node ui’s WQR and the maximum WQR of its neighbor nodes who

are not in So. Then we add the node not in So who has the highest WQR2 to So at each

step. The process recurses until the R content copies are disseminated.

Proposition 3. The TH-SAID algorithm requires O(N) storage space and O(R2D2) running

time for a network with N node, average node degree D, and R information copies.

In this algorithm, we need to store the sets So and Sc, which are non-overlapping with

each other, so the space cost is O(N). At each step, we need to search O(RD) nodes in the

candidate set and O(RD2) neighbors of those candidate nodes. There are at most R steps,

so the running time is O(R2D2).
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4.4 Performance Evaluation

In this section, we evaluate the performance of the proposed algorithms for the Maxi-

mum Weight Connected subgraph with node Quotas (MWCQ) problem. We first examine

the performance with different network scales. The running time and impact of R are also

evaluated correspondingly.

4.4.1 Network Setting

We set up networks with different network size and connectivity as shown in Table 4.2.

The connections between nodes in the networks are randomly generated. The namespace of

Table 4.2. Network Setting
Network No. Network Size (N) Average Node Degree (D)

1 100 10
2 500 20
3 1000 50
4 1000 10

information properties and user interests includes 10 topics, each of which has 5 levels. The

weights are generated randomly based on the assumption that we have no knowledge about

the user profiles. Similarly, we generate the information quotas (i.e. ti) for each node in the

networks with a range [1, 5]. My experiments are conducted on a Dell workstation with Intel

Xeon E5506 CPU, and 24GB memory. A large number of instances are simulated and the

average performance is reported.

My algorithms are compared with straightforward Highest-Weight-First Greedy algo-

rithm (denoted by HWFG). The basic idea of HWFG is that the neighbor node of the result

set with the highest weight are selected and added to the result set at each step.

4.4.2 The Sum of Weight Performance

To study the performance of the algorithms upon different amount of information copies

and different network scales, we deploy the DP-SAID and TH-SAID algorithms in multiple
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networks.

Figure 4.5 plots the sum of weight results in the network with 100 nodes (N = 100),

average node degree of 10 (D = 10). In Figure 4.5, the axis x is the number of information

copies (i.e., R) to disseminate in the network, while the axis y represents the weight sum

from DP-SAID, TH-SAID and HWFG. As we can see that the DP-SAID algorithm outper-

forms the TH-SAID and HWFG algorithms, particularly when R > 20. This is due to the

advantage of dynamic programming in finding possible global optimum. On the other hand,

the greedy nature of TH-SAID and HWFG may settle for some local optimized value in the

selecting process. TH-SAID algorithm is better than HWFG algorithm because TH-SAID

takes into consideration of the two-hops neighbors instead of one-hop neighbors (as HWFG

does) in the process of selecting better candidate nodes. In addition, when enlarging the

amount of information copies, the performance gain of DP-SAID over TH-SAID and HWFG

increases significantly. Similar performance trends can be observed for the networks with

N = 500 and N = 1000 as shown in Figure 4.6 and Figure 4.7, respectively.

4.4.3 Running time

Figure 4.8 shows the running time used for the network with N = 100 and D = 10.

The results for network with N = 500 and N = 1000 are presented in Figure 4.9 and 4.10,

respectively.

Figure 4.8 shows that the overall running time of DP-SAID, TH-SAID and HWFG

remains at a low level (< 60ms) in small networks. The TH-SAID requires less running

time than DP-SAID, but slightly more than HWFG. However, the running time increases

rapidly in DP-SAID algorithm when the size of the network increases, as shown in Figure 4.9

and Figure 4.10. Different from DP-SAID, the running time shows a slow increase trend in

TH-SAID when the network size increases. Overall, the running time of TH-SAID algorithm

is much less than that of DP-SAID, especially when the network is large.

When increasing the information copies (i.e., R), the running time of TH-SAID increas-

es slightly, and keeps close to the HWFG algorithm. The main reason is that the most
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costly computation in TH-SAID is the configuration and initiation, which is to detect the

connections, gather the weight and quota information. However, the DP-SAID algorithm

increases significantly with the number of information copies (i.e., R) as most of the nodes

in the network need to calculate the ~X[ui].

4.4.4 Impact of Network Structure

We also evaluate the impact of network structure on the DP-SAID and TH-SAID algo-

rithms. Networks with different scales present similar results, thus we use the network with

1000 nodes (N = 1000) as the evaluation environment. The performance of the DP-SAID

and TH-SAID algorithms is shown in Figure 4.11 and Figure 4.12. From the figures, we can

see that the weight from both algorithms in networks with average node degrees D = 50 s-

lightly bigger than those with average node degree of D = 10. Figure 4.13 shows the increase

of average node degree can reduce the running time needed for DP-SAID. This is because

with more connections, nodes can find out the maximum weighted sets connected to them

more quickly. Interestingly, the situation in TH-SAID algorithm is the opposite of DP-SAID,

as shown in Figure 4.14. With higher node degree, TH-SAID requires more running time

to get the solutions. The reason is that the TH-SAID algorithm needs to detect all the

connections in the network, check the weights and quotas of neighbors for each node.

We also evaluate the average node degrees of the connected subgraph solutions. Figure

4.15 shows the results in the network with 1000 nodes and average node degrees D = 50.

From the figure we can see that TH-SAID algorithm prefers choosing the nodes with higher

degrees than DP-SAID algorithm. DP-SAID algorithm emphasizes on what a node connects

to instead of how many the node connects to. Besides, with the increase of R, the average

node degrees in the found solutions decrease for both algorithms. This indicates that nodes

with higher node degrees are more likely to be selected than nodes with lower degrees. In

other words, increasing the node degrees in social networks can be helpful in the process of

semi-controlled information dissemination.
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Figure 4.5. Network with N = 100,
D = 10
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Figure 4.6. Network with N = 500,
D = 20
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Figure 4.7. Network with N = 1000,
D = 50
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Figure 4.8. Running time with N = 100,
D = 10
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Figure 4.9. Running time of network
with N = 500, D = 20
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Figure 4.10. Running time of network
with N = 1000, D = 50
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Figure 4.11. DP-SAID on network with
N = 1000
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Figure 4.12. TH-SID on network with
N = 1000
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Figure 4.13. Running time of DP-SAID
on network with N = 1000
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Figure 4.14. Running time of TH-SAID
on network with N = 1000
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Chapter 5

CONTENT DISSEMINATION IN OPPORTUNISTIC SOCIAL NETWORKS

The communication among Mobile Social Networks(MSNs) users often happens be-

tween opportunistic encounter, which forms Opportunistic Social Networks(OSNs).In the

Opportunistic Social Network (OSN), the users can leverage the short range communication

technologies such as Wi-Fi [5] and NFC [54] to form an on-the-fly social network. Through

the opportunistic contacts among mobile nodes in opportunistic social networks, individual

user can share free or self-generated content such as news, pictures and videos. Merchants

or organizations are also willing to disseminate their commercial or advertisement content

to the interested customers through opportunistic communication of social users.

The intermittent network connectivity and contact uncertainty in OSNs make the con-

tent dissemination process unpredictable and difficult. A series of work has studied the data

dissemination in OSNs. The users’ interests and preference are used for content dissemina-

tion in OSNs, as shown in [55][27][32]. In [56]-[26], users with frequent communication or

common interests form communities, which are used to find the effective routing for content

dissemination. Geography information is used by several studies to help detect the receiver-

s in OSNs [38]. The work in [37] develops the geographic location based geo-community

and geo-centrality to model the regularity of users mobility in opportunistic social networks.

However, these studies are either only considering the preference/interest of the directly con-

tact users or rely on geography/community information, which may not result in an overall

maximized reward for the CP.

In this chapter, we study the authorized content dissemination problem in the Interest-

centric Opportunistic Social Network (IOSN). In the IOSN, users move around for the ac-

tivities or locations they are interested in. For instance, conference attendees move among

several sections they are interested in. Hence, if user B has a probability, say pB, to meet
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marketing researchers in the past, the likelihood that user B will meet researchers with sim-

ilar marketing interest in future is about pB. In other words, the users with similar interests

may have similar trajectories in IOSNs. Based on this observation, we propose the Social

Connection Pattern (SCP) to describe the interest distributions of users’ social connection-

s. We then develop the Social Connection Pattern based Dissemination (SCPD) algorithm

to identify a proper content dissemination strategy when two users contact. The proposed

SCPD calculates the maximum expected reward if a certain number of content copies are

delivered to a new contactor. Then the SCPD calculates the number of content copies to de-

liver such that the overall expected reward is maximized. My dataset based simulation shows

that the SCPD algorithm is effective and efficient to disseminate the authorized content in

interest-centric opportunistic social networks.

There are several unique contributions in our approach. First, our model is built to

estimate and predict the overall interest property of the opportunistic connections instead

of individual user, which can efficiently avoid the unpredictable opportunistic connections

of individual user. Though an individual user may have arbitrary connections, the overall

interest property or pattern of the contacted users can be effectively captured in the model.

Second, the overhead of our approach is small in terms of storage and computation cost.

Each user only need maintain a network size independent small matrix, to record its interest

pattern of the connections. The computation cost to calculate and update the SCP is small as

well. Third, by predicting the possible interests of future connectors, our social connection

pattern based dissemination algorithm novelly and efficiently helps users to calculate the

number of content copies to be disseminated so that the total reward is maximized.

5.1 Authorized Content Dissemination in IOSNs

In this section, we introduce the authorized content dissemination problem in IOSNs.

In an IOSN, there is a content provider (CP) who generates a limited number of authorized

content copies, and disseminates those copies to users during the opportunistic contacts.

It is assumed that user retains 1 copy for possible self usage after receiving some content
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copies, no matter whether the user is interested in the content or not. And the users are

motivated to help disseminate the rest of copies to others in the future opportunistic contacts

because of the incentive mechanism provided by the CP. There are many possible incentive

mechanism to motivate users in helping disseminate the content, such as virtual check[32],

tit-for-tat(TFT)[31]. The work on incentive mechanism is out of scope of this paper. The

dissemination process terminates if all users in the networks hold at most one copy. For

example, in Figure 5.1, the CP has 4 content copies to disseminate. When D and A meet

CP during time t1, the CP deliver 1 and 3 copies to D and A, respectively. Later on (i.e.,

during time t2), user A rendezvous with B, user A retains one content copy and gives the

rest 2 content copies to user B. After retaining one content copy, user B sends the other copy

to user C who user B meets at time t3.

There are two types of time-related connection relationship between users: contactors

and connector. User u’s contactors are the users who have directly contacted with user u

(e.g., A and D are contactors of CP since time t1 as shown in Figure 5.1). User u’s connectors

are the users who have not directly contacted with user u but there have been a connection

path from those users to u(e.g., B and C are connectors of CP at time t3). The connectors are

further distinguished according to the length of the communication path between users(i.e.,

the number of hops). For example in Figure 5.1, user C is a 3-hop connector of CP since

C is connected CP through the communication between CP-A, A-B and B-C. In this work,

with no confliction, we also consider the contactors of a user as the 1-hop connectors of the

user.

Each user has different interests in the content, which have significant influence on the

possible reward obtained by the CP. Generally, the possible that a user adopts or redeems

a content copy and generates rewards to the content provider is proportional to the user’s

interest on the content. hence, the reward amount can be measured as the overall interest of

the content receivers. To maximize the overall reward from disseminating the content copies,

it is necessary for the CP to take into consideration the interests of both possible contactors

and connectors. In Figure 5.1, D is a contactor of CP who is interested in the content, so



67

A

D

CP

A A

B

B

C

E

time sequence

t1 t2 t3 t4

move trajectory

contact
uninterested userinterested user

Figure 5.1. An example of authorized content dissemination in IOSNs

CP prefers to deliver a copy to D. On the other hand, user A is not very interested in the

content but is able to help disseminate the content to other interested connectors in future

(e.g., B and C). Hence one good strategy for the CP is to deliver 1 copy to D, and 3 content

copies to A during the contact. User A will retain 1 copy for itself, and deliver the rest of 2

to B and C. User E will not receive any content since it is neither interested in the content

nor able to contact with other interested users.

When a content holder who has received a certain number of content from the content

provider or other users meets a new contactor, it needs to make its dissemination decision to

help maximize the reward generated by the content it holds. Hence, each user who holds a

number of content copies has to figure out the following two questions when it meets a new
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contactor:

(i) What type of users can the new contactor probably directly contact or indirectly

connect in future;

(ii) How many content copies should be delivered to the new contactor so that the

overall reward is maximized.

To facilitate the user in answering these two questions and making the dissemination

decision, we propose Social Connection Pattern (SCP) and Social Connection Pattern based

Dissemination (SCPD) algorithm in the following sections.

5.2 Social Connection Pattern

To calculate the best number of content copies to deliver when a content-holder meets

a non-content-holder, we need to find out how possibly the non-content-holder is able to

connect the users who are interested in the content. In this section, we introduce the Social

Connection Pattern (SCP) to describe the interest distribution of users’ contactors and

connectors.

The SCP of a users ui consists of two elements: a social connection pattern matrix Pit

and a counting vector Cit. Pit records the interest distribution of the users who have directly

contacted or connected through intermediate users with user i till time t. The counting

vector Cit counts the number of contactors and connectors of user i till time t. The jth row

in Pit is used to record the interest distribution of the j-hop connectors of user i at time t

as shown in Equation (5.1), where N is the largest hop number1 .

we use weight as the measurement of the user’s interest in the content, which is cor-

responding to the reward generated by the user. Accordingly, the value of weight can be

obtained by matching the topics of content and users’ interested topics. We assume that W

is the largest possible weight. In Pit, a vector xijt = [pij1t, ..., pijwt, ..., pijWt] is used to de-

scribe the interest distribution of j-hop connectors of user i at time t. pijwt is the probability

1Note that N and the matrix can be simplified when removing the isolated users from the network.
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that a j-hop connector of user i at time t has a weight of w.

Pit = [xi1t, xi2t, ..., xiNt]
T (5.1)

=


pi11t pi12t ... pi1Wt

pi21t pi22t ... pi2Wt

...
...

...
...

piN1t piN2t ... piNWt


According to the “small world” property of opportunistic social networks discussed in

[57][58][59], the opportunistic social networks have a high average clustering coefficient and

a low average path length. Hence, in most scenarios, N in Equation (5.1) can be set as

a small number to reduce the storage cost and computation cost while ensuring the social

connection pattern matrix covering most connectable users.

The counting vector Cit counts the number of connectors of user i at time t, which

describes the potential that user i communicates with others as shown in Equation (5.2):

Cit = [ci1t, ci2t, ..., cijt, ..., ciNt] (5.2)

where ci1t is obtained by counting the direct contactors of user i while cijt is the number of

j-hop connectors.

When a new user u with weight wu joins the opportunistic social network (e.g., a

new customer entering a shopping mall), the social connection pattern matrix and counting

vector is initialized by setting the weight distribution of connectors at each hop uniformly

and setting the counting vector to zero. When this user u encounters another user v with

weight wv at time t, they will exchange their social connection pattern matrix and counting

vector (Put, Cut, Pvt, Cvt). Then the connection pattern matrixes Put and counting vector Cut

are updated by merging the j-hop information in Pvt and Cvt into the (j − 1)-hop elements

in Put and Cut, as follows.
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(i) For j = 1,

p′ujwt =


pujwt∗cujt+1

cujt+1
if wv = w

pujwt∗cujt
cujt+1

otherwise
(5.3)

c′ujt = cujt + 1 (5.4)

In Equation (5.3)-(5.4), p′u1mt is the updated interest distribution of user u’s contactors

and c′u1t is the updated number of contactors of user u at time t.

(ii) For 1 < j ≤ N

p′ujwt =
pujwt ∗ cujt + pv(j−1)wt ∗ cv(j−1)t

cujt + cv(j−1)t

(5.5)

c′ujt = cujt + cv(j−1)t (5.6)

In Equation (5.5)-(5.6), p′ujmt is the updated interest distribution of user u’s j-hop connector

and c′ujt is the updated number of j-hop connectors of user u at time t. Similarly, user v will

update its Pvt and Cvt

For each user, the SCP matrix requires storage cost as O(NW ), which is independent

on the network size and contact frequency. The computation cost for the SCP updating is

O(NWΘ), where Θ is the total number of contacts.

5.3 SCP Based Content Dissemination Algorithm

In this section, we introduce the SCP based content Dissemination algorithm (SCPD)

to disseminate the authorized content in IOSNs. Assume there are total M content copies

generated by content provider (CP). As mentioned earlier, after the dissemination process

terminates, all users in the network have at most 1 content copy. Otherwise, they will

continue to disseminate the additional copies to others. The objective is to disseminate

those M copies to the users in IOSNs so that the total reward of the users who receive the

content copies is maximized.

Suppose user u holds s+1 (M > s ≥ 1) copies of the content and needs to disseminate s
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Figure 5.2. Expected reward change during the content dissemination
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content copies in the dissemination process starting from u. The s content copies are expected

to generate some reward through the dissemination process starting from u, denoted as gu(s).

When user u encounters another user v at time t, user u needs to calculate how many content

copies should be delivered to v. Assume user u delivers m content copies to user v, we define

fv(m) as the expected reward to be generated by the m content copies through user v and

the dissemination process starting from v. As shown in Figure 5.2, the total expected reward

of s content copies is gu(s) before user u meets user v. After user u disseminates m content

copies to user v, the total expected reward of the s content copies now comes from the sum of

the s−m copies held by u and m copies held by v, which can be denoted by gu(s−m)+fv(m).

So user u prefers to disseminate m content copies to user v if the total expected reward of

the s content copies increases after the dissemination (i.e., gu(s−m) + fv(m) > gu(s)). The

basic idea of this SCPD algorithm is to find out the optimal m, denoted by m∗ such that

the increase of total expected reward is maximized as follows:

m∗ = argmaxm{(gu(s−m) + fv(m))− gu(s)} (5.7)

s.t. 0 ≤ m ≤ s

where m∗ is the optimized number of the content copies to be delivered to v by u if u has s

content copies to disseminate.

In Equation (5.7), the expected reward of the m content copies disseminated to user v

(fv(m)) is calculated based on the SCP of user v, which describes the possible interest of v’s

potential connectors. The value of fv(m) can be calculated as:

fv(m) = max
mj

wv +
N∑
j=1

W∑
w=1

pvjwt ×mj (5.8)

s.t.
N∑
j=1

mj ≤ m− 1 (5.9)

mj

mj−1

≤ cvjt
cv(j−1)t

, for all 1 < j ≤ N (5.10)
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∀mj ∈ Z (5.11)

where wv is the interest weight of user v; pvjwt is the element in the social connection pattern

matrix Pvt and mj is the number of content copies retained by the j-hop connectors of user v

in the dissemination process starting from v. The reward generated by the j-hop connector

is
∑W

w=1 pvjwt × mj. Hence, Equation (5.8) shows that the total reward created by the m

content copies is wv +
∑N

j=1

∑W
w=1 pvjwt ×mj. Recall that v will retain 1 copy for self usage

if it receives any content as shown in Equation (5.9). The constraint in Equation (5.10) is

to ensure that there will be sufficient intermediate users to connect to the j-hop connectors.

According to the counting vector Cvt, the total number of cvjt users in j-hop are connected

to user v through cv(j−1)t users in (j − 1)-hop. Hence, to deliver mj content to the users in

the j-hop, we need the collaboration of at least
cv(j−1)tmj

cvjt
users in the (j − 1)-hop as shown

in Equation (5.10).

Similarly, user u has its expectation on the reward from the content copies it holds. If

user u holds s content copies, the expected reward gu(s) is calculated as in Equation (5.12).

gu(s) = max
sj

wu

N∑
j=1

W∑
w=1

pujwt × sj (5.12)

s.t.
N∑
j=1

sj ≤ s

sj
sj−1

≤ cujt
cu(j−1)t

, for all 1 < j ≤ N

∀sj ∈ Z

To efficiently resolve this maximization problems in Equation (5.8) and Equation (5.12),

we propose the Reward Maximization Algorithm (RMA), which is based on the Branch and

Bound algorithm [60]. Take fv(m) as the example, the sketch of this algorithm is described

as follows:

(I) Initialization: We set i = 1 and the value of mi as 1 to m−1 to generate m possible

solutions s as shown in Line 5-6 in Algorithm. 3. The fv(m) of each possible solution is
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calculated by ignoring the constraint in Equation (5.10). The size of the possible solutions

|s| is the value of mi.

(II) Bound: As shown in Line 10-12, we check if any possible solution satisfies the

constraint in Equation (5.10) as well. If yes, select the possible solution with the largest

fv(m) satisfying the constraint in Equation (5.10) as the available solution, and remove any

other possible solutions with smaller fv(m). If the available solution is the only possible

solution left, the algorithm terminates; otherwise, go to step (III).

(III) Branch: We set the value of mi+1 as 1 to m − |s| − 1 to generate new possible

solutions, as shown in Line 16-28. The fv(m) of each new possible solution is calculated

by ignoring the constraint in Equation (5.10). The size of the new possible solutions |s′| is

|s|+mi+1. Update i = i+ 1 and go to step (II) to continue.

With the RWA algorithm calculating fv(m) and gu(s), users u can identify the optimal

m∗ in Equation (5.7) by traversing all m in 0 ≤ m ≤ s.

5.4 Simulation and Evaluation

In this section, we present our dataset based simulation and analysis of the proposed

schemes.

Two typical opportunistic social network datasets are used in this simulation: info-

com2006 [61] and sigcomm2009 [62]. The information about these two datasets is listed in

Table 5.1. In this simulation, the reward received by the content provider is represented by

the weight sum of the content receivers who retain 1 content copy after the termination of

the dissemination process. We use the topics gathered from the participates to calculate the

interest weight of a social user on a content. The weights of users are normalized within the

range [0, 100]. If topic information is missed in the datasets, we randomly generate the topic

when needed.

When deploying this Social Connection Pattern based content Dissemination (SCPD)

algorithm, we use a number of contact records as the training pool to formulate the social

connection pattern for each user. Two different lengths of the training process are adopted:
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Table 5.1. Information about the OSN datasets
Name Nodes Duration Contacts Topics

Infocom 98 4 days 227657 27
Sigcomm 76 4 days 285879 154
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Figure 5.3. Dissemination results of Infocom dataset

10000 contacts records and 30000 contacts records. To evaluate the efficiency of this algo-

rithm, we compare it with the Flooding algorithm [8]. With Flooding algorithm, when a

user A meets a new contactor B and B does not obtain the content before, A will deliver

half of A’s content copies to B, regardless the interest of B.

Figure 5.3 shows the dissemination results of the Infocom dataset. In the simulation, we

randomly select a user as the content provider, who intends to disseminate M(10 ≤M ≤ 90

as shown in the x-axis) content copies to users in the network. The y-axis records the total

reward obtained from the content receivers who hold 1 content copy when the dissemination

process terminates. The results show that the total reward obtained by the SCPD algorithm
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Figure 5.4. Dissemination results of Sigcomm dataset

is significantly higher than the total reward obtained by the Flooding algorithm. In fact, the

proposed SCPD can outperform the Flooding scheme as much as 40%. This indicates that

SCPD can efficiently disseminate the content to users with higher interest in the content. It

also demonstrates that the usage of social connection pattern is able to help predict users’

possible connections in future, and help effectively determine the number of content to deliver

when two users contact. In Figure 5.3, the SCPD algorithm achieves similar total reward as

the flooding scheme when M = 10 or M = 90 while outperforming the flooding scheme the

most when M = 50. This can be explained as the follows. When M = 50, half of the users in

the network will receive the content when the dissemination process terminates. Hence how

those users are selected and disseminated content are very important. The SCPD can take

advantages of the Social Connection Pattern and user’s interest information to maximize the

reward achieved. However, when M is small, most users in the network can not receive the
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Figure 5.5. Dissemination results of Infocom dataset on training length

content. Even though the proposed SCPD can identify the users with high interest in the

content, the interested users may be too far away from the CP (in terms of connection hops).

Hence, with a very small number of content copies to disseminate, both algorithms likely

deliver them to users who are closer to the CP (,i.e., users who are less number of hops away

from the CP). In this case, the social connection pattern and user’s interests may not matter

much. Similarly, when the number of the content copies is large (e.g., M = 90), most of the

social users receive the content whereas the social connection pattern and user’s interests

have little impact on the dissemination process. Thus the performance difference between

SCPD and the Flooding algorithm is small when M is very small or very large. Similar

conclusions can be found in the results from the Sigcomm dataset, as shown in Figure 5.4.

We also evaluate the performance of the SCPD algorithm with different training length.

The training length influences the social connection pattern formulated by each user. By
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Figure 5.6. Dissemination results of Sigcomm dataset on training length

testing the results with different training length, we can evaluate whether each user actually

formulates a stable social connection pattern. The total reward results on different training

length of the Infocom and Sigcomm datasets are shown in Figure 5.5 and Figure 5.6 respec-

tively. In the simulation, we set two different length of training: 10000 contact records and

30000 contact records. The results show that the total reward of the content receivers with

different training length is quite close to each other for both Infocom dataset and Sigcomm

dataset. It means that the social connection pattern of each user after 30000 records train-

ing is similar to the pattern formulated in the previous 10000 contact records. Thus the

proposed SCPD can reliably predict the future connections according to the previous social

connection pattern.

Figure 5.7 shows the distribution of the content copies disseminated to each user. The x-

axile is the user ID, which is sorted by the number of content copies received by the user. The
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(a) M=30 (b) M=50

(c) M=70

Figure 5.7. Distributions of the received content copies of Infocom Dataset
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(a) M=40 (b) M=60

Figure 5.8. Distributions of the received content copies of Sigcomm Dataset

y-axile is the number of content copies received by the user. We compare the dissemination

results with different total content copies (i.e., M = 30, 50, 70), from the Flooding algorithm

and the SCPD algorithm. In the Figure 5.7, the total number of users receiving 1 or more

content copies is M as only M users in the network participate the dissemination process. In

each figure, there are several critical forwarders who have received a large number of content

copies (typically > 1
2
M), and forward those content to other users.

From Figure 5.7 we can find that there are more users receiving a large number of content

copies in the SCPD dissemination algorithm than the Flooding dissemination algorithm.

The largest number of content copies delivered to users is much larger in SCPD (65 as in

Figure 5.7(c)) than that in Flooding algorithm (35 as in Figure 5.7(c)). That indicates that

the SCPD algorithm is able to detect the critical forwarders(e.g., the users receiving a large

number of content copies) who can efficiently disseminate the content to the interested users.

In the SCPD algorithm, besides the users with a large number of content copies(the

critical forwarders) and the users with 0 content copy received, most of the other users have

received 1 content copy. It implies that most of users receiving 1 content copy obtains the

content copy directly from the critical forwarders with a large number of content copies.

However, there are more users in Flooding algorithm receiving more than 1 copies. Those
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users act as intermediate forwarders who forward content to others. Hence, the average

dissemination path length between the receivers and the source provider in SCPD is smaller

than that in Flooding algorithm. The reason is that the SCPD algorithm can efficiently

detect the users with high contact probability to the desired users who are interested in

the content(i.e., users with high reward). Since the users with high reward have similar

interests, they are able to contact some common users with high probability. Hence, the

content provider can disseminate a large number of content copies to the common contacted

users who can then forward the content to the interested users within a short dissemination

path. When there are more content copies to disseminate, as shown in Figure 5.7(b) and

Figure 5.7(c), there are more users acting as intermediate forwarders who have received

fewer content copies than the critical forwarders. When M is big, we need to disseminate

the content to users who may not be contacted by the critical forwarders because of their

interests. Hence, we need to rely on some other users as the intermediate forwarders to

disseminate the content. As a result, the number of users receiving more than 1 content

copies increases.

The evaluation results based on Sigcomm dataset are shown in Figure 5.8. Given the

total number of content copies as M = 40 and M = 60, we calculate the distribution of the

content copy number received by users, which are shown in Figure 5.8(a) and Figure 5.8(b)

respectively. Figure 5.8 shows similar distribution as that in Figure 5.7, which demonstrates

the effectiveness and efficiency of this Social Connection Pattern based Dissemination(SCPD)

algorithm.
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Algorithm 3 Reward Maximization Algorithm(RMA)

1: INPUT: The number of content copies m
2: The Social Connection Pattern matrix of user v Pv
3: The counting vector of user v Cv
4: OUTPUT: The maximum reward obtained if user v disseminates the m content copies,

denoted by fv(m)
5: Initialize the possible solution set L = null and optimal reward solution F = 0
6: for each i ∈ [1,m] do
7: Set a new possible solution s as s = {m1, ...mN}, where m1 = i and mj = 0 ∀j 6= 1
8: Calculate the maximum reward of s by ignoring the constraint in Equation (5.10)
9: Add s to L

10: if {s is an available solution satisfying all constraints} AND {the maximum reward of
s > optimal reward solution F} then

11: Set F =maximum reward of s
12: Remove any possible solution in L with maximum reward smaller than F
13: end if
14: end for
15: while L contains other possible solutions besides the available solution do
16: Select the possible solution s′ with the largest maximum reward from L
17: Find the smallest j with mj = 0 in s′

18: Calculate the total number of content copies assigned n in s′

19: for i ∈ [1,m− n] do
20: Set a new possible solution s′′ with s′′ = s′.
21: Set the j-hop value mj in s′′ as mj = i.
22: Calculate the maximum reward of s′′

23: if {s is an available solution } AND {the maximum reward of s > F} then
24: Set F =maximum reward of s′′

25: end if
26: Remove any possible solution in L with maximum reward smaller than F
27: end for
28: Remove s′

29: end while
30: return F
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Chapter 6

USER RECOMMENDATION FOR EFFICIENT CONTENT

ACQUIREMENT

In addition to keeping people stay in touch, online social networks have emerged as an

important media for information diffusion. The online social network service such as Twitter,

Facebook and Instagram, allow users to conveniently acquire and disseminate information

such as news, pictures, movie reviews, research publications and reports, through the inter-

action with their social connections. In these social networks, information is embedded in

the posts or microblogs and users acquire information mainly through checking the post-

s/microblogs (e.g., tweets in Twitter) published by their social connections (e.g., followees

in Twitter). Studies have shown that more and more users obtain the information from the

social networks[63][64].

When users acquire information from the social networks, two aspects: accuracy and

timeliness, are important to the users. The accuracy indicates how attractive is the obtained

information, which can be measured by ratio of attractive/interesting information and spam

information received by the user. The attractive (or accurate) information may be related

to their personal interests, emerging hot topics, popular news or events and so on. When

the social connections post/repost information that is not attractive to the user, it brings

spam to the user. Meanwhile, a lot of information spreading in online social networks is

time sensitive (e.g., news and events). Over a certain period after the information is first

published, the information may be worthless to the user. Therefore, for efficient information

acquisition, the timeliness is important to measure how promptly a user obtains the needed

information. The timeliness can be determined by the interval between the time when the

information is generated and the time when a user receives the information. As users obtain

information from their connections/followees, the social connections/followees of a user have
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a direct impact on what type of information a user obtains and how promptly the information

is disseminated to the user (i.e., accuracy and timeliness).

Social networks like Facebook and LinkedIn increase users’ social connections by rec-

ommending users that share common friends with the target user. The authors in [65]

analyze individual’s perception of friendship and propose genetic algorithms to recommend

high quality and relevant friends. Collaborative filtering (CF) [66][67][68] can recommend

objects or other users using the opinion of a set of users.The studies in [69] propose a graph

based recommendation system, which analyzes the similarity of users according to their co-

tagging behaviors. The work in [70] recommends followees to a user using a randomized

method based on the birthday paradox. Similarly, techniques based on Random Walks with

Restarts (RWR) [71], Trust [72][73][74], Bayesian inference[75] and location[76][77] have been

proposed for friends recommendation.

However, existing work present little contribution on the information acquisition ef-

ficiency. These conventional recommendation approaches are mainly based on the social

relationships (such as friends, trust, location, colleagues and acquaintances), which may

not be optimal for a user to acquire information in a timely and accurate fashion. This is

because friends or acquaintances may have different definition on accurate (or attractive)

information and they may not obtain/post information in a timely fashion. Similarly, the

connections formed according to personal interests[78][65][79] may fail to satisfy users’ time-

liness requirements. Third, the new connections detected based on local information (such

as friend-to-friend, common activity) cannot provide global optimization performance. In

addition, these existing work are lack of high volume and complex information processing

capacity, which is critically important in current social network services.

In this work, we study how to identify a set of connections such that a user can effi-

ciently acquire timely and attractive information while limiting the information spam[80].

To the best of our knowledge, this is the first work extensively investigating social connection

optimization for efficient information acquisition. My contributions can be summarized as

follows.
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(1) We formally define the problem of optimizing social connections for timely and

accurate information acquisition, namely, Social Connection Optimization for efficient Infor-

mation Acquisition (SCOIA). We prove that the SCOIA problem is NP-complete.

(2) To identify a proper social connection set from a large social system, we propose

our distributed information processing approach based on MapReduce model to analyze

the information timeliness, accuracy and correlation generated by Big Data environments

(Twitter, Facebook, blogs, etc.).

(3) We propose an efficient User Set Selection (USS) algorithm for the SCOIA problem

and conduct extensive experiments on a real data set (Twitter Dataset) to evaluate the

performance of the proposed algorithm. We demonstrate that our system can significantly

improve users’ information acquisition accuracy and timeliness while limiting the spam rate.

6.1 Social Connection optimization for Efficient Information Acquisition

In this section, we introduce the proposed framework of Social Connection Optimization

for efficient Information Acquisition (SCOIA), which can identify appropriate social connec-

tions to a target user to optimize the information acquisition efficiency. Table 6.1 shows the

key notations used in the framework.

In a social network N , we use U as the set of user. For a user ui ∈ U , it may have a

need to optimize its social connections so that it can receive and only receive the information

it wants from its social connections in timely fashion. So the user ui would send a request

to the social network service provider. The service provider then checks the posting history

of ui and other users in the network to detect and recommend to ui the best user set that

can optimize the information acquisition efficiency of ui.

For user ui, Pi represents its history records of the information posts/reposts. Pi can

record the posts/reposts within a period of time Γ (e.g., the latest month). Since a user ui

posts or reposts the information mostly because the information is interesting or attractive

to ui, we name the information posted/reposted by ui as the attractive information for ui.

For each posted/reposted information pij ∈ Pi, the posting/reposting time is tij.
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Table 6.1. Notations used in SCOIA
U total user set in a network
ui ith user in U
Pi history record of information posted/reposted by ui
pij jth record of Pi
tij posting/reposting time stamp of pij
Lij tag list of pij
xmn information correlation between posts/reposts pm and pn

ε(pm, pn, α) decision on whether pm and pn describe the same information
ε(pm, ui, α) decision on whether pm is interesting to user ui

α decision variable for information correlation

|Pk
⋂̄
Pi| number of posts/reposts of user uk that are interesting to user ui

λui(uk) timeliness of uk on ui
λui(S) timeliness of user set U on ui
δui(uk) support ratio of uk on ui
δui(S) support ratio of user set S on ui
θui(uk) spam ratio of uk on ui
θui(S) spam ratio of user set S on ui

Λ timeliness threshold
Θ spam ratio threshold

The information is identified by the tags or hashtags in the posts/reposts. For each

information pij ∈ Pi, there is a list of tags Lij = {lij1, lij2, ...} to describe the content of the

information. In the following, we describe how to efficiently identify whether the information

of two posts/reposts are correlated.

6.1.1 Information Correlation

The information correlation indicates the similarity of two posts/reposts. By explor-

ing the information correlation between the posts/reposts from two users, we can identify

whether the information supplied by a user is interesting or attractive to another user.

Suppose that post/repost pm has a tag list Lm = {lm1, lm2, ...}, and post/repost pn has

a tag list Ln = {ln1, ln2, ...}. The information correlation between pm and pn is denoted as

xmn, which is calculated as:

xmn =
|Lm

⋂
Ln|

|Lm
⋃
Ln|

(6.1)
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where |Lm
⋂
Ln| is the number of tags shared by Lm and Ln, and |Lm

⋃
Ln| is the number

of tags in the union of Lm and Ln.

Accordingly, we can identify whether two post/reposts are about the same information

by adopting a decision variable α as:

ε(pm, pn, α) =

 1 xmn ≥ α

0 xmn < α
(6.2)

where ε(pm, pn, α) is a heaviside function. Hence, Lm and Ln are about the same information

topic when ε(pm, pn, α) = 1.

Similarly, we can identify whether a post/repost is attractive/interesting to a user ui as

Equation (6.3).

ε(pm, ui, α) = max
pij∈Pi

ε(pm, pij, α) (6.3)

Within the framework of SCOIA, the information acquisition efficiency is measured by

two features: timeliness and accuracy. The timeliness measures the time latency for a user

to acquire the information. The accuracy is used to differentiate the attractive information

from spam provided by user connections. Given a target user ui, user uk can provide higher

information acquisition efficiency if uk provides faster information acquisition speed (ı.e.,

higher timeliness), more attractive information and less spam (ı.e., higher accuracy). In the

following, we introduce our method to calculate the timeliness and accuracy provided by uk

to ui.

6.1.2 Timeliness Calculation

We define the timeliness of user uk on user ui as λui(uk), which measures the time interval

between uk and ui when they acquire the same information. To calculate the timeliness

λui(uk) of user uk on user ui, we use the reposting time tkj as the time that user uk receives

the information related to pkj. Next, we need to identify when user ui receives the same
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information. Suppose piq is the first post/repost obtained by ui that describes the same

information as pkj. The time stamp that user ui receives the information related to pkj

is measured as the posting/reposting time of piq (i.e., tiq). The acquisition time interval

of information pkj between uk and ui is calculated as Tki = tkj − tiq. A negative value in

Tki means uk receives the information earlier than ui while a positive value indicates slower

information acquisition speed of uk.

As shown in Equation (6.4), the timeliness λui(uk) provided by user uk to ui is calculated

as the average acquisition time difference of the information posts/reposts in Pk that are

interesting to ui.

λui(uk) =

∑
pkj∈(Pk

⋂̄
Pi)
Tkj

|Pi
⋂̄
Pk|

(6.4)

In Equation (6.4), |Pk
⋂̄
Pi| is the number of posts/reposts from user uk, which are interesting

to user ui. It is noted that |Pk
⋂̄
Pi| and |Pi

⋂̄
Pk| have different meanings as they count the

information acquired by different users (uk and ui, respectively).

We can further calculate the timeliness of a user set S on user ui as:

λui(S) =

∑
uk∈S λui(uk) · |Pi

⋂̄
Pk|∑

uk∈S |Pi
⋂̄
Pk|

(6.5)

6.1.3 Accuracy Calculation

Information accuracy is represented by two factors: support ratio (δ) and spam ratio

(θ). For a social user uk ∈ U with a post/repost record Pk, the support ratio of uk on ui

(δui(uk)) is calculated as the percentage of attractive information of user ui can be offered

by uk, as shown in Equation (6.6).

δui(uk) =
|Pi

⋂̄
Pk|

|Pi|
(6.6)

The support ratio measures how use uk can offer the attractive information to user

ui. For example, in Figure 6.1, the posts/reposts from user A cover information {a, b, c, d}

and User B’s posts/reposts cover information {a, c, d, e, f}. Hence, for user B, 3 attractive



89

b

c

d

aInforma on domain 

e

c

d

a

f

A B
Users

Pos ng Reques ng

In
fo

rm
a

 
o

n
 m

a
tc

h
in

g

Figure 6.1. An example of support ratio calculation

information (i.e., a, c, d) can be offered by the posts/reposts from user A. Therefore, the

potential support ratio of user A to user B is 3/5 = 60%.

The spam ratio of uk on ui(θui(uk)) is calculated as the percentage of the information

posted/reposted by uk that is spam to ui, as shown in the following equation:

θui(uk) =
|Pk| − |Pk

⋂̄
Pi|

|Pk|
(6.7)

where |Pk| is the total information posted/reposted by user uk. As the example shown in

Figure 6.1, 3 of 4 information offered by user A (i,e., a, c, d) is attractive to user B. Therefore,

the spam ratio of user A to user B is (4− 3)/4 = 25%.

Similarly, the support ratio and spam ratio of a user set S on user ui are calculated as:

δui(S) =

∑
l:ul∈S |Pi

⋂̄
Pl|

|Pi|
(6.8)
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θui(S) =

∑
l:ul∈S |Pl| −

∑
l:ul∈S |Pl

⋂̄
Pi|∑

l:ul∈S |Pl|
(6.9)

where PS is the total information posted/reposted by the users in S.

Note that more accurate information does not derive higher support ratio. If two or

more posts in user A cover the same information, user B will receive the same amount of

attractive information from user A. Hence, user A contributes the same support ratio to

user B. The attractive posts which do not contribute on the support ratio is redundant

information in that case.

6.1.4 MapReduce-based Information Processing

The huge size of users and records data make the information processing extremely

challenging. Conventional sequential information processing approaches have high demand-

s for the storage and computation capacity of servers, making it difficult to be deployed

in practice. In this paper, we propose a nested MapReduce-based information processing

approach to provide efficient and fast computation.

MapReduce is an efficient framework for parallel processing huge dataset by using a

large number of computing nodes. In a Mapreduce program, there are major two steps for

the processing: “Map” step and “reduce” step. In Map step, a data block is send to a Map

node who applies the Map() function. The Map() function matches each datum, and outputs

corresponding key-value pairs. The output of Map() function is shuffled so that the pairs

with same “key” are located on the same Reduce nodes. The Reduce nodes then load the

Reduce() function on the <key, value> pairs with same “key”.

In the nested MapReduce scheme, we do two Map-Reduce steps. At the beginning, the

user post/repost records will be sent to the Map nodes, who will call the Map() function. In

the Map() function, we take the information attractive to the target user as the key. Then

the Map() function will generate a <info ID, (user ID, time)> pair for each record. In the

pair of <info ID, (user ID, time)>, info ID is the index of the information attractive to the

target user; user ID is the ID of the post record and time is the posting time of the post.
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Figure 6.2. The nested MapReduce algorithm

After the Map process, all records covering the same information (i.e., with the same “key”)

will be stored in the same storage block and sent to the reduce nodes. A reduce node then

will do Reduce() function on a single storage block. In Reduce() function, we compare the

posting time of the post/repost with same “key” value to calculate the posting delay of each

user on the same information. As a result, the Reduce() function will output a triplet <

info ID, (user ID, delay) > for each record <info ID, (user ID, time)>. In the triplet, the

delay is the calculated as the difference between the posting time of user ID and the posting

time of the target user’s record on info ID. For the delay of the records with the key “spam”,

the Reduce() function returns the triplets of every post/repost and the delay in the triplets

is set as 0.

The Reduce() function will further call a nested MapReduce program to calculate the

accuracy and timeliness. In this step, the data to be processed is the triplet output from

previous Reduce() function, and the user ID is selected as the key. In the nested Map()

function, the structure of the <key, value> pair is defined as <user ID, info ID,delay>. We

map the triplet with same user ID to the same data block and deliver the data block to
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Reduce() function. The Reduce() function will calculate the timeliness λuo(u), support ratio

δuo(u) and spam ratio σuo(u) for each user ID based on Equation (6.4), (6.6) and (6.7),

respectively.

6.1.5 Social Connection Optimization for Efficient Information Acquisi-

tion(SCOIA)

The problem of Social Connection Optimization for efficient Information Acquisition

(SCOIA) can be defined as: given a social network user set U with the post/repost history

of all users, how to find the most appropriate user set S that provides the highest support

ratio δuo(S) for a target user uo while satisfying the following two constraints: (i) the spam

ratio from S is less than the spam threshold, and (ii) the information receiving latency is

under the timeliness threshold. The SCOIA problem can be formulated as:

max
S⊂U

δuo(S) (6.10)

subject to: λuo(S) ≤ Λ

θuo(S) ≤ Θ

where Λ is the maximum information receiving latency and Θ is the maximum spam

rate allowed.

The value of Λ and Θ can be fixed threshold or adaptive threshold. For the fixed threshold,

the users themselves set fixed values for Λ and Θ, representing the personal tolerance on the

information acquisition delay and spam rate. The adaptive thresholds allow the values to be

changed according to the current information acquisition latency and spam ratio of user uo.

Theorem 2. The SCOIA problem is NP-complete

The SCOIA problem can be converted to Knapsack problem [81], which is proved as NP-

complete problem. Given a set of items, each with a mass and value. The Knapsack problem

is defined to determine a number of items so that the total weight is less than or equal to a

given limit and the total value is as large as possible. For the SCOIA problem, we set the



93

timeliness threshold Θ as infinite. In that way, the SCOIA problem can be converted to a

Knapsack problem, in which Λ represents the weight limit and the total value is represented

by δuo(S). As a special case of SCOIA problem, the Knapsack is NP-complete. Hence, the

SCOIA problem is NP-complete.

6.2 User Set Selection (USS) Algorithm

Algorithm 4 User Set Selection (USS) Algorithm

Require: network with U users,
target user uo,
nodes’ post/repost record,
spam ratio threshold Θ,
timeliness threshold Λ.

Ensure: user set So with maximal support ratio on uo
1: calculate λuo(u), δuo(u) and θuo(u) for each u by using the nested Mapreduce algorithm
2: max support ratio = 0;
3: find out user ui satisfying the spam ratio constraint and timeliness ratio constraints
4: add ui to user set S
5: add S to candidate solution set C
6: max support ratio = δuo(S)
7: while C is not empty do
8: for all c in C do
9: for all u in U − c do

10: if {c
⋃
u satisfies θuo(c

⋃
u) ≤ Θ and λ(c

⋃
u) ≤ Λ} and {c

⋃
u not in C} then

11: add c
⋃
u to C

12: if δ(c
⋃
u) > max support ratio then

13: max support ratio = δ(c
⋃
u)

14: So = c
⋃
u

15: end if
16: end if
17: end for
18: remove c from C
19: end for
20: end while

Considering the non-linear constraints in the SCOIA problem, the conventional schemes

for Knapsack problem such as Dynamic programming algorithms, can not be directly applied.

In this section, we propose User Set Selection (USS) algorithm to efficiently solve SCOIA.
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The algorithm is developed based on the following theorem.

Theorem 3. If all users in a user set S (∀ui ∈ S) satisfy θuo(ui) ≤ Θ and λ(i) ≤ Λ, then

θuo(S) ≤ Θ.

Similarly, we have Theorem 3, whereas, if any user in a user set S (∀ui ∈ S) satisfies

λ(i) ≤ Λ, then λ(S) ≤ Λ.

Theorem 4. If all users in a user set S (∀ui ∈ S) satisfy θuo(ui) ≤ Θ and λ(i) ≤ Λ, then

λ(S) ≤ Λ.

Based on the above two theorems, we propose the User Set Selection (USS) algorithm

as shown in Algorithm 4. As shown in Line 3-6 of Algorithm 4, USS first selects users

who satisfy the constraints θuo(ui) ≤ Θ and λ(i) ≤ Λ, to be added into user set S, which

guarantees that θuo(S) ≤ Θ and λ(S) ≤ Λ according to the theorems. Then we have Sk as

the user set in step k.

Then, for each user ui in U −S, USS generates a new user set S1 = S
⋃
{ui} at the size

of |S|+ 1. If S1 satisfies the constraints θuo(S1) ≤ Θ and λ(S1) ≤ Λ, S1 is called a candidate

solution with a size of |S|+1. USS will add S1 to a candidate set C1, in which all candidates

have a size of |S|+ 1.

Recursively, from the candidate Sk in Ck, USS generates a new user set Sk+1 with a size

of |S|+ k+ 1 by combining Sk with a user who is not in Sk. If Sk+1 satisfies the constraints

θuo(Sk+1) ≤ Θ and λ(Sk+1) ≤ Λ, Sk+1 is a new candidate solution. USS will add Sk+1 to a

candidate set Ck+1, in which all candidates have a size of |S| + k + 1. Repeat this process

as shown in Line 7-20 until no more candidate is generated. At the end, the solution of the

user selection problem is the candidate set with the highest support ratio.

6.3 Performance Evaluation

In this section, we present our dataset based evaluation. We first trace Twitter’s post-

ing/reposting history by using Tweepy [82]. We select 1000 active Twitter users randomly



95

2 4 6 8 10 12 14 16 18 20
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Target user ID

S
u

p
p

o
rt

 r
a

ti
o

 (
δ
)

 

 

Θ=0.4
Θ=0.3
Θ=0.2

Figure 6.3. Support ratio of selected
users

target users Θ=0.2 Θ=0.3 Θ=0.4
0

50

100

150

200

250

A
v

e
ra

g
e

 N
o

.o
f 

 a
tt

ra
c

ti
v

e
 i

n
fo

rm
a

ti
o

n

Figure 6.4. Number of attractive
information offered

−50 −40 −30 −20 −10 0
0.4

0.5

0.6

0.7

0.8

0.9

1

Λ 

A
v

e
ra

g
e

  
s
u

p
p

o
rt

 r
a

ti
o

 

 

 

Θ=0.4

Θ=0.3

Θ=0.2

Figure 6.5. Average support ratio of
selected connections

and extract their posting/reposting history between 03-01-2015 and 04-01-2015. We obtain

101509 records in the dataset. In the experiment, 20 users are randomly selected as the

target users. The records within the first 15 days (i.e., the records between 03-01-2015 and

03-15-2015) are selected as the training set to calculate the information correlation and in-

formation acquisition efficiency parameters (i.e., λ, θ and δ). Based on those parameters,

the User Set Selection (USS) algorithm is employed to identify user set S, which is selected

to optimize social connections for the target users. The rest records between 03-16-2015 and

04-01-2015 are used as the testing set to evaluate the connection optimization approach.



96

−50 −40 −30 −20 −10 0
0

50

100

150

200

250

300

Λ 

A
v

e
ra

g
e

 N
o

. 
o

f 
a

tt
ra

c
ti

v
e

 i
n

fo
rm

a
ti

o
n

 

 

 

Θ=0.4

Θ=0.3

Θ=0.2

Figure 6.6. Average number of attractive
information offered

Λ 

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

A
v

e
ra

g
e

 s
u

p
p

o
rt

 r
a

ti
o

 

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

USS

greedy

random

Figure 6.7. Average support ratio of
selected connections

Λ 

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0

A
v

e
ra

g
e

 N
o

. 
o

f 
a

tt
ra

c
ti

v
e

 i
n

fo
rm

a
ti

o
n

 

0

50

100

150

200

250

300

USS

greedy

random

Figure 6.8. Average number of attrac-
tive information offered by selected con-
nections

6.3.1 Spam Ratio Threshold

To evaluate the performance of spam ratio threshold Θ, we adaptively choose the timeli-

ness threshold Λ. Three different Θ are tested: Θ = {0.2, 0.3, 0.4}. For each Θ, we calculate

the selected user set S for a given target user uo, and record the support ratio of S on uo

(i.e., δuo(S)) as well as the number of attractive information offered by S to uo.

Figure 6.3 shows the support ratio performance of the proposed USS. The x-axis is the

ID of the target users and y-axis is the support ratio of the selected users on the target users.

It is shown that most of the selected users present high support ratio (above 85%) to the

target users. This indicates that our social connection optimization framework is efficient to

identify users who can offer attractive information. When the spam ratio threshold increases
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from Θ = 0.2 to Θ = 0.4, the support ratios of the selected users increase as well. This

is because USS can detect more users with higher spam ratio threshold, resulting more

attractive information.

We then record the average number of attractive information from the selected users by

USS, as shown in Figure 6.4. In Figure 6.4, the y-axis is the average number of attractive

information from the selected users and the x-axis is the spam ratio threshold. The first bar

along the x-axis is the average number of information post/repost by the target users in the

training phase, which provides a baseline for the comparison. From Figure 6.4, we can see

that the selected users are able to provide more attractive information to the target users

when Θ is larger. This is because bigger Θ allows the target users to tolerate more spam.

Then USS will be able to identify more connections for the target users, leading to more

attractive information obtained by target users.

6.3.2 Timeliness Threshold

To evaluate the impacts of the timeliness threshold, we set the timeliness threshold Λ

in the range of [−50, 0]. The threshold Λ = −50 requires that the selected users/connections

acquire information at least 50h earlier than the target user on average while Λ = 0 means

that the selected users/connections have similar information acquisition speed with the target

user. Three spam ratio thresholds are tested (i.e., Θ = {0.2, 0.3, 0.4}).

In Figure 6.5, the y-axis shows the average support ratio of the selected users from USS

and the x-axis is the timeliness threshold. We can see that a larger timeliness threshold

yields a higher support ratio from the proposed USS. The reason is that more users are

selected when a larger timeliness threshold is chosen. In other words, if the target users

have higher tolerance on the information acquisition delay, more likely the target user will

receive more attractive information. This is further verified in Figure 6.6, where the y-axis

denotes the average number of attractive information provided by the selected users and

x-axis represents the timeliness threshold.
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6.3.3 Algorithms Comparison

We compare our social connection optimization algorithm USS with other user selection

strategies. Two typical strategies are deployed as the baselines for the comparison: greedy

selection algorithm and random selection algorithm, denoted by “ greedy” and “random”

in Figure 6.7 - 6.8. The greedy selection algorithm repeatedly selects the user providing

the most attractive information while satisfying the timeliness and spam ratio constraints

from the remaining connection pool, and ends till no more users can be selected. The greedy

algorithm represents the metrics of interest-based social connection recommendation schemes

as in [78][65][79]. The random selection algorithm randomly selects a user satisfying the

timeliness and spam ratio constraints at each iteration until no more users can be selected.

Figure 6.7 shows the average support ratio of the selected connections from different

selection strategies. In the simulation, the spam ratio threshold (Θ) is set as 0.4. The results

show that our USS algorithm can achieve better support ratio than the greedy and random

selection algorithms because the USS algorithm can identify the globally optimized social

connection set. When comparing the average attractive information provided by the selected

connections in Figure 6.8, however, it is interesting to see that the greedy selection algorithm

can provide more attractive information than the USS algorithm. In other words, when

compared to USS, the greedy selection algorithm can provide a larger number of attractive

information while yielding a lower support ratio. This is because the users selected by the

greedy selection algorithm provide more redundant information which counts as a part of

the target users’ attractive information. However, the greedy algorithm misses more other

attractive information which is also needed by the target users, resulting in a lower support

ratio. The USS algorithm is able to take advantages of the MapReduce information process

for the whole user/record dataset to identify a globally optimized connection set, which can

supply more attractive information with less spam.
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Chapter 7

CONCLUSION

Mobile social networks(MSNs) have emerged as an active and efficient fashion for so-

cial network users to make friends, share experience and communicate with each other. As

an significant partition of user communication, content dissemination in MSNs has shown

its advantages and challenges as well. MSNs mainly connect users through the social rela-

tionship, which makes the connections close and greatly inspires users’ communication and

interaction. On the other hand, users personal interests on the content have significant

impact on the user interaction performance. And users’ concern on the privacy, efficiency

and cost make the content dissemination in MSNs a challenging and meaningful problem.

In this dissertation, the content dissemination problem in mobile social networks is stud-

ied. By analyzing users interests on the content and corresponding possible behaviors, a

series of frameworks and protocols are designed to satisfying users’ requirement on content

dissemination and enhance the dissemination performance.

The content dissemination for streaming video in MSNs is studied in this dissertation.

The requirements and objective for streaming video dissemination is analyzed. To predict

the possible behaviors of the social users on video transmission, a Bayesian network based

model is derived, which can efficiently analyze the influence of the content, social relationship

and physical resources factors.

Another important issue related to content dissemination in MSNs is the requirements

from the content. The contents with constraints on the content copy and content reward

are studied and analyzed as authorized content, the objective of which is to maximize the

reward obtained by content generator. The Maximum Weighted Connected subgraph with

node Quota (MWCQ) problem is derived. Two efficient heuristic algorithms, Dynamic Pro-

gramming based SAID (DP-SAID) and Two-Hop based greedy SAID (THSAID) algorithms,
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are derived to provide either accurate or low cost computing solution for the problem. The

authorized content dissemination is further studied in Opportunistic Social Networks(OSNs),

in which the connections are unstable and unpredictable. The Social Connection Pattern

(SCP) is proposed to describe the interest distributions of users social connections. We then

develop the Social Connection Pattern based Dissemination (SCPD) algorithm to identify a

proper content dissemination strategy when two users contact.

My work on content dissemination in mobile social networks does not only bring con-

tribution on the social communication analysis and dissemination scheme development in

MSNs, but also provide certain perspective and guideness for the potential research and

development in this area.
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