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Data in Brief
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The establishment,maintenance andmodulation of cell-type specific neural architectures are critically important
to the formation of functional neural networks. At the neuroanatomical level, differential patterns of dendritic
arborization directly impact neural function and connectivity, however the molecular mechanisms underlying
the specification of distinct dendrite morphologies remain incompletely understood. To address this question,
we analyzed global gene expression from purified populations of wild-type class I and class IV Drosophila
melanogaster dendritic arborization (da) sensory neurons compared to wild-type whole larval RNA using oligo
DNAmicroarray expression profiling. Hereinwe present detailed experimentalmethods and bioinformatic anal-
yses to correspond with our data reported in the Gene Expression Omnibus under accession number GSE46154.
We further provide R code to facilitate data accession, perform quality controls, and conduct bioinformatic
analyses relevant to this dataset. Our cell-type specific gene expression datasets provide a valuable resource
for guiding further investigations designed to explore themolecularmechanisms underlying differential patterns
of neuronal patterning.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Direct link to deposited data

Deposited data can be found here: http://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE46154

Experimental design, materials and methods

Drosophila strains and genetics

Drosophila melanogaster strains were raised on standard cornmeal–
molasses–agar media at 25 °C. The GAL4ppk.1.9,UASmCD8::GFP [1,2]
strain was used for specific labeling of class IV da neurons, whereas
ppk-GAL80;GAL4[221],UAS-mCD8::GFP [3–5] was used for specific label-
ing of class I da neurons. UAS-cut was independently used in qRT-PCR
quality control experiments for the purity of the cell isolations [5].
Oregon-R was used as the wild-type strain for these studies.

Cell isolation, purification, and qRT-PCR

The isolation and purification of class I and class IV da neurons were
performed as previously described [6]. Briefly, 40–50 age-matched
third instar larvae expressingmCD8::GFP under the control of the either
the class IV-specific GAL4ppk.1.9, or class I-specific GAL80ppk.1.9; GAL4
[221] drivers were collected and washed several times in ddH20. The
larvae were then rinsed in RNAse away, ddH20 and finally dissected.
The tissue was then dissociated using a combination of enzymatic and
mechanical perturbations to yield single cell suspensions which were
filtered using a 30 μm membrane. The filtrate is then incubated
with superparamagnetic beads (Dynabeads MyOne Streptavidin T1,
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Specifications

Organism/cell line/tissue Drosophila melanogaster
Sequencer or array type Agilent-018972 D. melanogaster oligo microarray

4x44K
Data format Raw and processed
Experimental factors Cell type
Experimental features Gene expression profiling of purified class I and class IV

Drosophila dendritic arborization (da) neurons was per-
formed at the third instar larval stage of development and
compared against age matched whole larval RNA to
identify differentially enriched genes that potentially
contribute to class-specific dendrite morphogenesis.
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Invitrogen) coupled with biotinylated mouse anti-CD8a antibody
(eBioscience) for 60 min. Finally the da neurons attached to the mag-
netic beads were then separated using a powerful magnetic field. The
isolated neuronswerewashed at leastfive timeswith 1× PBS to remove
any potential non-specific cells and the quality and purity of isolated
neurons was assessed under a stereo-fluorescent microscope equipped
with phase contrast for examining the number of fluorescent (GFP-
positive) vs. non-fluorescent (GFP-negative) cells. Only if the isolated
cells were free of cellular debris and non-specific (i.e. non-fluorescing)
contaminants were they retained for subsequent RNA extraction.

The purified class I and class IV neuron populations were then lysed
in SuperAmp™ (Miltenyi Biotec) RNA lysis buffer followed by storage at
−80 °C. For whole larvae controls, 10 age-matched third instar larvae
were homogenized in PicoPure RNA isolation buffer (Invitrogen), fol-
lowing which RNA was eluted as per manufacturer protocols. In order
to process the whole larvae RNA identically to the da neuron samples,
10 μl of whole-larvae RNA, diluted to the same levels as da neuron sam-
ples, was added to SuperAmp™ (Miltenyi Biotec) buffer and stored at
−80 °C. As a quality control for the specificity of the cell-type specific
isolations,we conducted qRT-PCR analyses [5]. Briefly, RNAwas extract-
ed from isolated class I or class IV da neurons (in the presence or
absence of a UAS-cut transgene) as an independent measure of cell pu-
rity. These analyses were performed as previously described [7,8] using
the following pre-validated Qiagen QuantiTect Primer Assays (Qiagen,
Germantown, MD, USA): cut (QT00501389) and expression data was
normalized using primers for GAPDH2 (QT00922957) and RpL32
(QT00985677).

Microarray analysis

mRNA isolation, amplification, labeling, hybridization, and microar-
ray analysis were conducted by Miltenyi Biotec. mRNA was isolated
from independent pools of da neurons (1000–1500 neurons/pool) via
magnetic bead technology. Sample quality was verified on an Agilent
Bioanalyzer 2100 prior to amplification. The whole larval RNA lysate
whichwas used as the control sample, had the same quantity as the iso-
lated neuron subtype mRNA. SuperAmp RNA amplification was per-
formed on all the samples according to Miltenyi Biotec's global PCR
protocol using mRNA-derived cDNA. The amplified cDNA samples
were quantified using the ND-1000 Spectrophotometer (NanoDrop
Technologies) and the sample integrity verified via Agilent 2100
Bioanalyzer analysis (Agilent Technologies). 250 ng of each of the
cDNAs was used as template for Cy3 labeling followed by hybridization
to Agilent whole D. melanogaster genome oligo microarrays (4x44K).
The microarray data, including metadata, raw data, and normalized
datasets, has been deposited into the Gene Expression Omnibus (GEO)
under the accession number GSE46154.

Agilent Feature Extraction Software (AFE) was used to read out and
process the replicatemicroarray image files into text files, which contain
annotation for the probe IDs associated to particular location of the mi-
croarray chip, as well as raw and background corrected intensities.
There are a total of (7) arrays comprised of (2) technical replicates of
class 1 da neurons, (2) technical replicates of class 4 da neurons and
(3) technical replicates of whole third instar larval RNA. The analysis of
the microarray data was performed in R [9] using the Bioconductor
[10] suite of packages. We provide R code to facilitate data accession,
perform quality controls, and conduct bioinformatic analyses relevant
to this dataset (Supplementary data). The primary R file, FuncCall.r,
calls the function AgilentProcess (which is contained in the
analyzeAgilentMicroarray.R file) which internally calls the other re-
quired functions. The FuncCall.r file and the analyzeAgilentMicroarray.R.
For pre-processing of the microarray data, the Agi4X44PreProcess [11]
package was used for pre-processing the microarray data. The data was
read in using a modified version of the read.AgilentFE (readAgilentFE)
function to read in data which were processed by a newer version of
AFE (version later than 9.5.3.1). The datawas then background corrected

by using the normexp method and normalized by the quantile normali-
zation method, in the function BgandNorm.

For the next step in pre-processing, we used a modified version of
the function filter.probes (the new function is probe_filters) (Supple-
mentary data). This modified version of the filter.probes function
enables the analyses of data processed by versions of the AFE later
than 9.5.3.1. The probe_filters function removes saturated signals, as
well as signals below the background and removes negative controls.
This function requires an annotation database for annotating
the probe IDs. This database (dros.db) was created using the
AnnotationForge [12] package of the Bioconductor suite of tools derived
from Agilent's annotation file for 4x44K oligonucleotide microarrays
(https://earray.chem.agilent.com/earray/).

Quality controls and visualization

Box-plots (Fig. 1) were constructed showing a comparison study be-
tween raw intensity and background corrected processed signals. The
comparison study shows box-plots of AFE extracted raw signal intensity
or mean signal intensity (colored in green) and background corrected
intensity (colored in red), before and after background correction and
normalization. The intensity values (before normalization) and expres-
sion values (after normalization) are depicted on the y-axis and the
x-axis contains the sample names. The intensity values (before normal-
ization) are log normalized to base 2 for construction of the box-plot. It
is evident from the box-plot that after the usage of the Normalization
and the Background Correction functions the data is properly normal-
ized having a reduction in the number of outliers and median for both
the raw and AFE background corrected signals, being the same.

A heatmap (Fig. 2) was also constructedwhich depicts the variation
of gene expression values across the arrays for the top 25 most variant
genes, from the background corrected and quantile normalized expres-
sion values. The heat map was constructed using a modified heat map
function of Agi4x44PreProcess [11] (Heatmap_mod), to print the classes
in the x-axis instead of the file names. The color ranges fromgreen (least
expressed) to red (most expressed). This analyses reveals clear cluster-
ing of class I vs. class IV vs. whole larvae and demonstrates that the
variation is more observed across classes (i.e. between class I, class IV
and whole larvae), compared to those between the arrays (technical
replicates), confirming the fact that the gene expression remains similar
within a cell type (class I vs. class IV) or tissue type (whole larvae).
Within a class, these data indicate a higher degree of variance (at least
among the top 25most variant genes) in the class IV da neuron samples,
relative to class I or whole larvae.

Expression analysis

The expression analysis was performed using the Limma [13] pack-
age of the Bioconductor suite [10]. Benjamini Hochbergmultiple testing
(False Discovery Rate test) correction was used with a q-value (False
Discovery Rate adjusted p-value) threshold of 0.01. The analysis was
conducted between Class 1 vs Whole Larvae and Class 4 vs Whole
Larvae, with the t-value (t test value) determining whether a gene is
up or downregulated (e.g. in Class 1 vsWhole Larvae, Class 1 genes hav-
ing a t-value greater than 0 and a q-value less than 0.01, are upregulated
compared to Whole Larvae and ones having t-value less than 0 and q
value less than 0.01 are downregulated).

Bioinformatic analysis

Functional enrichment analysis was performed using DAVID [14,15]
to identify statistically over-represented functional gene classes. The
up/downregulated gene list of class 1 and class 4 da neurons from the
microarray analysis was used as input and all genes represented in the
microarray were used as background. DAVID computes the enrichment
value, which is deduced by doing a modified Fisher exact test (also
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known as EASE test). This is used to determine whether the proportion
of genes falling into each category differ by group [14]. The test provides
an enrichment score (whereby the higher the score, the greater the

chance of the gene being enriched) and a p-value (whereby the lower
the p-value, the greater the chance of the gene being enriched). A
p-value threshold of 0.01 was used as a cut-off for enrichment in the

Fig. 1.Box-plots showing themean raw (A) and normalized signal (B) intensity expression data. Themean raw signals andmean processed signals represent the rawmean signal intensity
of the spot on themicroarrays and the normalized and background correctedmean signal intensities, respectively. TheAFE processed signal intensity is theAgilent Feature Extracted back-
ground corrected signal (C), whereas the normalized AFE processed signal intensity (D) represents the normalized processed signal. Raw signal intensity is color-coded in green, whereas
AFE processed signal intensity is color-coded in red. Class I samples are (Cl1_1; Cl1_2); class IV samples are (Cl4_1; Cl4_2); whole larvae samples are (WL_1; WL_2; WL_3).

Fig. 2. Heat map shows the expression values of the top 25 high variance genes across class I, class 4 and whole larvae arrays. The green color represents the lowest expression values,
whereas red represents the highest expression values. The expression values are background corrected, quantile normalized and filtered (removal of saturated, below background
intensities).

380 S. Bhattacharya et al. / Genomics Data 2 (2014) 378–381

image of Fig.�2


annotation categories. Fig. 3 illustrates DAVID-based gene ontology
(GO) functional characterization of differentially expressed gene-sets
in class I vs. class IV neurons. These analyses shed molecular insight
into biological processes that are uniquely up or downregulated in
class I vs. class IV da neurons which may contribute to differential pat-
terns of dendritic arborization.
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Appendix A. Supplementary data

To run the R code package analyses, download the microarray data
files extracted by the Agilent Feature Extractor (http://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE46154) and place the files in the
Supplementary folder. Supplementary data to this article can be found
online at http://dx.doi.org/10.1016/j.gdata.2014.10.011.
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Fig. 3. Functional characterization of differentially expressed gene-sets in class I and class IV da neurons. Analyses of gene ontology (GO) categories for genes that are enriched/depleted in
class I (A) and class IV (B) daneurons. The histogram represents GO categories that are significantly over-represented (p b 0.01) in the population of differentially expressed genes that are
uniquely regulated in class I (A) or class IV (B) neurons,when compared towhole larval controls. Bars indicate the fold enrichment (top x-axis) of the genes belonging to a givenGO term in
thepopulation of regulated genes in comparison to the total population of genes in theAgilent 4x44K array. Black diamonds indicate themodified Fisher's exact p-value (EASE score, bottle
X axis) for each category.
Figure adapted from [5].
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