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Abstract 

1. Context. Amygdala and ventrolateral prefrontal cortex dysfunction manifests in adolescents 

with anxiety disorders when they view negatively-valenced stimuli in threatening contexts. Such 

fear-circuitry dysfunction may also manifest when anticipated social evaluation leads socially 

anxious adolescents to misperceive peers as threatening.  

2. Objective. To determine whether photographs of negatively-evaluated smiling peers, viewed 

during anticipated evaluation, engage the amygdala and ventrolateral prefrontal cortex 

differentially in adolescents with and without social anxiety. 

3. Design. Case-control study. 

4. Setting. Government clinical research institute. 

5. Participants. Fourteen adolescents with anxiety disorders associated with marked social 

concerns and 14 diagnosis-free adolescents, matched on sex, age, IQ, and socio-economic status.  

6. Main Outcome Measure(s). Blood oxygenation level-dependent signal measured with event-

related functional magnetic resonance imaging. Before and during neuroimaging scans, 

participants anticipating social evaluation completed peer- and self-appraisals. Event-related 

analyses were tailored to participants’ ratings of specific peers.   

7. Results. Participants classified 40 pictures of same-age peers as ones they wanted to engage or 

not engage with for a social interaction. Anxious adolescents showed greater amygdala 

activation than healthy adolescents when anticipating evaluation from peers rated as undesired 

for an interaction. Viewing undesired peers engaged stronger positive amygdala-ventrolateral-

prefrontal-cortex connectivity in anxious vs. healthy adolescents. 

8. Conclusions. Anticipating social evaluation from negatively-perceived peers modulates 

amygdala and ventrolateral prefrontal cortex engagement differentially in anxious and healthy 
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adolescents. Amygdala and ventrolateral prefrontal cortex abnormalities in adolescent anxiety 

disorders are heightened in specific contexts of potential peer evaluation.
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Introduction 

Dramatic change in social behavior is associated with increased social anxiety during 

adolescence1-4. Social experiences may heighten information-processing biases contributing to 

anxiety. For example, current theories posit that adolescent social anxiety emerges from 

excessive fears of judgment and biased appraisals of peers as overly critical5, 6. These theories 

suggest that anticipation of peer evaluation leads anxious adolescents to misperceive peers as 

overly threatening and uninterested in social interactions with them. Functional neuroimaging 

provides an opportunity to ground these theories in knowledge of the brain’s “fear-circuitry”7.  

Research in animals and adult humans implicates a circuit connecting the amygdala and 

ventrolateral prefrontal cortex (vlPFC) in social-threat processing7, 8. These data suggest that 

chronic anxiety emerges from early life changes in fear-circuitry and its role in social-threat 

perception9. Specifically, research in non-human primates shows that the developmental timing 

of amygdala injury profoundly influences social-threat perception10, 11. These findings raise key 

questions about the relations among human amygdala and vlPFC function, social-threat 

perception, and pediatric anxiety disorders. Understanding these processes in the adolescent is 

important because this developmental period is associated with an increased focus on peer 

relationships and increased onset of anxiety disorders, which heightens risk for adult anxiety 

disorders2. While few neuroimaging studies pursue this line of research, preliminary work 

implicates amygdala-vlPFC circuitry in adolescent anxiety12-14. 

Perturbed amygdala function in anxiety disorders is thought to generate fear responses to 

innocuous stimuli, misperceived as threatening15. Indeed, amygdala hyper-activation consistently 

differentiates adults with and without anxiety about social situations16-22. However, a unique 

association between amygdala function and social-threat perception may arise in adolescence. 
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Specifically, amygdala hyper-activation in adult anxiety typically occurs when attention focuses 

toward non-threatening, rather than threatening, aspects of negatively-valenced, social stimuli19, 

20. In adolescent anxiety, however, amygdala dysfunction manifests specifically when attention 

focuses toward threatening aspects of social cues12. Furthermore, vlPFC activation is implicated 

in threat representation and emotion regulation via influences on the amygdala21, 23 and 

dysfunctional amygdala-vlPFC interactions are found to relate to anxiety24. A fear of being 

negatively evaluated leads some adolescents to misperceive peers as overly critical and to 

anticipate pejorative peer evaluation6. Accordingly, high levels of social concern are expected in 

the anxious adolescent who confronts peers within a reciprocally-evaluative context. 

Three issues shaped our current focus on the fear response to social threats in adolescent 

anxiety. First, although amygdala hyper-activation has been found in response to mild emotional 

provocations (e.g., pictures of fearful faces)12, 13, work has yet to assess fear of social evaluation 

in a salient context for adolescents. Thus, we developed an ecologically-valid paradigm that uses 

anticipation of peer evaluation within a simulated internet “chatroom” to induce feelings of 

social threat highly relevant to an adolescent’s daily life. Second, in light of prior work that 

shows powerful contextual effects on adolescent amygdala and vlPFC responsivity8, 12, 25, 26, we 

probed amygdala and vlPFC function using prototypically non-threatening social cues—smiling 

faces of novel peers27, 28—within the potentially threatening context of peer evaluation. Finally, 

recent work suggests that between-group differences in functional connectivity with ventro-

lateral expanses of prefrontal cortex parallel differences in amygdala response12, 29. However, 

because only two studies, using mild threats, examined this issue in adolescents8, 12, extension to 

ecologically-valid situations was needed. Therefore, we considered the degree to which 



 

 

6 

amygdala-vlPFC connectivity relates to between-group differences within a real-world, social 

context. 

The present study tested two hypotheses. First, based on past work in anxious 

adolescents8, 12, 13, relative to healthy adolescents, adolescents with anxiety disorders would 

exhibit amygdala hyper-activation when anticipating judgment from smiling peers in a context 

that induces social concerns, i.e., fear of negative evaluation. Participants were asked to rate how 

peers would evaluate them for an interaction to elicit anticipation of social evaluation. We chose 

the cognitive task of considering how others judge one’s self to tap into self-esteem, a 

psychological construct related to anxiety30. Second, as in prior studies in healthy adults and 

anxious adolescents8, 12, 31, we hypothesized that amygdala-vlPFC connectivity would emerge in 

this context of social concern. We hypothesized that these activations would vary based on their 

initial evaluations of peers. We contrasted two instances of anxious adolescents’ expectations 

concerning unfamiliar peers: those where peers had been rated as either undesirable or desirable 

for anticipated interaction. As part of the paradigm, participants were led to believe that their 

peer-ratings would be revealed to the other participants. Hence, appraising how undesirable peers 

would evaluate them was expected to elicit amygdala hyperactivation and positive amygdala-

vlPFC connectivity in the anxious relative to non-anxious adolescent, due to fears of social 

retaliation when anticipating evaluation from a peer previously rated as undesirable. In addition, 

because prior data suggest that anxious adolescents exhibit greater amygdala activation8, 12, 13 and 

biased expectation of being negatively evaluated6, 32, both anxiety severity and self-esteem 

ratings were expected to vary with engagement of amygdala-vlPFC circuitry9, 15. 

 

Methods 
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Participants. Fourteen medication-free adolescents with a current DSM-IV anxiety 

diagnosis (age 8-17 years; 5 males; IQ=113; socio-economic status [SES]=7.4), and 14 

psychiatrically healthy control adolescents (age 8-16 years; 5 males; IQ=117; SES=8.3) 

participated. T-test and chi-square analyses confirmed the groups were matched on age, sex, IQ, 

and SES (Table 1). 

Diagnoses were determined using the Kiddie-Schedule-for-Affective-Disorders–Present-

and-Lifetime-version (K-SADS-PL)33. All patients were recruited when they sought treatment 

for anxiety about social situations, and thus, had current, impairing, clinically significant anxiety 

(Table 1). Patients not diagnosed with current SP (n=6) demonstrated clinically significant fear 

of social interaction/performance) on the Pediatric Anxiety Rating Scale (PARS) 34 and/or K-

SADS-PL. This sample selection approach extends Rapee & Heimberg’s model6, which posits 

that social evaluation concerns exist along a continuum, with SP at the extreme, immediately 

proximal to other anxiety disorders with high social concerns. We included both patient groups, 

as Rapee and Heimberg argue that the same cognitive biases manifest in both groups, though to 

varying degrees. 

Other inclusion criteria for patients comprised: clinically significant anxiety on the PARS 

(score >=10); significant impairment on the Child Global Assessment Schedule (CGAS; score 

<60) 35; and persistent anxiety during 3 weeks of supportive psychotherapy. Exclusion criteria 

comprised: current major depressive disorder, obsessive compulsive disorder, Tourette’s 

syndrome, oppositional defiant disorder, or conduct disorder (CD); exposure to trauma; suicidal 

ideation; lifetime history of mania, psychosis, or pervasive developmental disorder (PDD); 

IQ<70; contraindications for magnetic resonance imaging (e.g. pacemaker, pregnancy, braces), 

and use of any psychoactive substance. Participants and their parent completed the Screen for 
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Child Anxiety Related Emotional Disorders (SCARED), an anxiety severity measure with 

excellent reliability and validity36. Both SCARED scores were averaged to index anxiety 

severity.  

fMRI Procedures. Study procedures were approved by the NIMH institutional review 

board. All participants provided written assent; parents/legal guardians provided written 

informed consent. Participants were informed that they would receive misinformation at some 

point during the course of their testing; all participants were debriefed. No adverse reactions 

occurred. 

We developed an ecologically-valid neuroimaging paradigm, the “Chatroom,” to 

simulate adolescent social interactions in two phases. In phase one, participants were led to 

believe we were implementing a nationwide investigation of internet-based communication 

through chatrooms among teenagers. They were told that after an fMRI scan, they would chat 

online with another teenager from a collaborating institution. Participants then viewed 40 

photographs of peers (20 males) allegedly participating in the study and rated, on a 100-point 

scale, their interest in chatting with each peer (Figure 1a). These ratings provided a way to sort 

events during scanning based on participants’ impressions of peers (i.e., desirable or 

undesirable). Participants were also photographed, told that the “participants” they had rated 

would similarly evaluate their pictures and view the ratings they had received, and would later 

chat with a mutually high-interest “participant,” based on their ratings, interests, and hobbies. As 

part of our hypothesis, knowing that the “peer” would learn how the participant rated him or her 

was thought to elicit fear about being evaluated in return. This deceptive approach was intended 

to increase task sensitivity for engaging symptom-relevant cognitions.  
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In phase two, two weeks later, participants were scanned while reviewing the 

photographs they had rated previously and asked to indicate how interested they thought each 

depicted peer would be in chatting with them (Figure 1b). This cognitive task, involving 

appraisal of expected peer evaluation, was designed to engage concerns about social evaluation, 

expected to differ in anxious and healthy adolescents, following Rapee and Heimberg’s social-

anxiety model6. Our hypothesis and analysis focused on neural activation during these appraisal 

events of anticipated social evaluation by each peer, sorted by the peer desirability groupings. 

Post-scan, participants completed a series of questions to validate the degree to which they 

believed the task and were then debriefed one-on-one and told that no real interactions would 

occur. Only data from successfully-deceived participants (80% of participants), those that 

believed others would rate them, see their ratings, and would chat with a peer post-scan, were 

included. 

The Chatroom task used a rapid, event-related design presented in one 7-min run. Each 

event was 9-s, consisting of stimulus face presentation (4-s) and rating response (5-s). These two 

event sub-components were considered a single psychological process because, upon picture 

presentation, which occurs in tandem with presentation of a question, the adolescent likely 

begins assessing the picture before actually making their rating. Additionally, our hypotheses 

were directed to activation differences due to stimuli valence as determined by the adolescent 

rather than to each event sub-component. Task stimuli were 40 digital head shots of 11-17 year-

old actors of varied ethnicities37 posing happy expressions under the direction of an acting coach. 

Fixation crosses were displayed (4-s) randomly throughout the task to serve as a baseline. 

Interstimulus interval was 1-s. 
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fMRI Data Acquisition and Preprocessing. Scanning occurred in a General Electric 

(Waukesha, WI) Signa 3T magnet. Task stimuli were viewed with a head- coil-mounted mirror. 

Participants rated task stimuli using a hand-held two-button response box (Research Services 

Branch, NIMH, Bethesda, MD).  

Functional scans were preceded by a localizer and a manual shim procedure. For 

functional image acquisition, each brain volume contained 29 contiguous 3.3 mm axial slices 

acquired parallel to the AC/PC line using a single shot gradient echo with T2* weighting with a 

repetition time (TR) of 2300 ms and echo time (TE) of 23 ms. Voxel dimension was 

3.3x3.75x3.75 mm. Matrix size was 64x64mm and field of view (FOV) was 24 cm. A high 

resolution anatomical image was also acquired per subject using a T1-weighted standardized 

magnetization prepared spoiled gradient recalled echo sequence to aid with spatial normalization 

using the following parameters: 124 1 mm axial slices, TR of 8100 ms, TE of 32 ms, flip angle 

of 15°, NEX=1, matrix size of 256x256 mm, bandwidth=31.2 KHz, and FOV of 24 cm. 

Data Analysis. Behavioral rating data collected before and during the scan were analyzed 

using SPSS 14.0 (Chicago, IL). FMRI data were analyzed using Analysis of Functional and 

Neural Images (AFNI) software version 2.56b38. Standard preprocessing of echo-planar imaging 

(EPI) data included slice time correction, motion correction, reslicing to a 1mm isotropic voxel 

(1x1x1), spatial smoothing (6 mm full-width half-maximum Gaussian kernel), removal of large 

signal deviations > 2.5 SD from the mean using an AFNI de-spiking algorithm applied on a 

voxelwise basis, a bandpass filtering algorithm to smooth cyclical fluctuations  (>.011 or <.15 s), 

and normalization of blood oxygen level-dependent (BOLD) signal intensity to percentage signal 

change using each subject’s voxel-wise time series mean as a baseline. Motion correction 
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parameters were included as nuisance covariates along with a covariate for mean intensity and 

linear drift. In addition, subjects moving more than 2.5 mm were excluded. 

Amygdala Activation: The statistical model was a gamma variate basis function 

convolved with the hemodynamic response function contained in AFNI. The basis function was 

set to the onset of each event type. Event types consisted of two expected-peer-appraisal events: 

when expecting reactions from peers previously judged as (1) low or (2) high in desirability. 

These events were determined using a median split of each participants’ pre-scan appraisal 

ratings of peers. A general linear model was then used to determine the beta value and t-statistic 

for each event type at each voxel. Contrasts of whole-brain BOLD activation were created for 

each individual for each event type, followed by a second group-level, random-effects analysis 

of individual contrast values. 

Based on past data and our a priori hypothesis, group-level analyses focused on the left 

and right amygdala regions of interest (ROI). Talairach anatomical boundaries in AFNI defined 

voxels within each ROI39. Mean contrast values were generated for all voxels within the left and 

right amygdala separately and analyzed with t-tests. We tested between-group differences in the 

low-versus-high-desirability contrast during rating of expected-peer-appraisal. Statistical 

significance was based on both height intensity and spatial extent in ROIs, using AFNI AlphaSim 

to correct for multiple comparisons within the ROIs based on 1000 Monte Carlo simulations for 

the right and left amygdala. With this algorithm, significant voxels had to exceed p<.005 whole-

brain uncorrected with a 92-voxel cluster size, corresponding to an ROI-corrected p<.05.  

Secondary analyses were conducted by converting each participant’s data to percentage 

signal change using their voxelwise time series mean as a baseline. The AFNI 3dmaskave 

procedure was used to compute and extract for each participant average activation of all voxels 
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within a functionally-defined ROI mask of the low-high desirability contrast40. Threshold 

parameters for the mask were based on the results from the primary ROI analyses, using t=2.78, 

p<.005, and cluster size=92. Mean activation values within left and right amygdala clusters were 

extracted to decompose the pattern of results using SPSS. Two repeated measures analysis of 

variance (ANOVA) models included group (patient, control) as a between-subjects factor and 

peer desirability (low, high) as a within-subjects factor; average left and right amygdala 

activation during appraisal of expected peer evaluation were the dependent variables. The group-

by-peer-desirability interaction on amygdala response was of primary interest. Using extracted 

values, secondary analyses evaluated the influence of between-group differences in task-

performance on between-group differences in amygdala activation. Finally, analyses examined 

correlations among amygdala activation, task performance (e.g., self-esteem ratings), and anxiety 

severity. 

Functional Connectivity: We conducted a psychophysiological interaction analysis to 

examine connectivity between the amygdala and the ventrolateral prefrontal cortex during the  

“low vs. high” peer desirability contrast with the between-group differences in the left and right 

amygdala. We used established procedures adapted for use with AFNI 8, 41, 42. BOLD signal was 

deconvolved using an assumed form of the hemodynamic response function prior to creating the 

interaction term42. Each participant’s EPI time series was converted to Talairach space. The first 

eigenvariate time series was extracted from each of two “seed” voxels for each participant. The 

seeds came from the peak t-value for the left and right amygdala where between-group 

differences emerged on the low vs. high peer desirability contrast. To selectively examine 

activation related to the events of interest, we entered the low and high peer desirability 

conditions as covariates. The correlation coefficient of the interaction term between the 
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amygdala seed and the low vs. high contrast was converted using Fisher’s Z-score transformation 

to reduce skew and normalize sampling distribution. T-tests compared groups on co-activation 

between each amygdala seed and other brain regions. The results of this procedure show event-

related changes in the interaction of the right amygdala seed and left ventrolateral prefrontal 

cortex. A spatial clustering procedure again determined statistical significance with a p<.005 

height threshold and a spatial extent correction (n=216 voxels) based on 1000 Monte Carlo 

simulations taking into account the entire EPI map, corresponding to a whole-brain corrected 

p<.01. Secondary analyses decomposed initial findings. Co-activation correlation values were 

extracted from the vlPFC region that survived statistically and graphed for presentation purposes. 

For the amygdala-vlPFC co-activation that differed between groups, we examined its association 

with task performance (i.e., interest in peers and expected evaluation/self-esteem ratings) and 

anxiety severity. 

 

Results 

Behavioral Responses. Patients and controls reported similar levels of interest in peers 

(i.e., peer desirability) based on their pre-scan ratings, but data collected during scanning 

revealed expected between-group differences (Table 1). Specifically, relative to controls, patients 

expected peers to rate them as less desirable, reflecting between-group differences in self-esteem. 

There was also a positive significant correlation between peer desirability ratings and expected 

peer evaluation ratings (Table 2). 

It is possible that peer desirability ratings varied with the sex of the peer. A repeated 

measure ANOVA yielded no between-group differences in the proportion of same-sex vs. 

opposite-sex peers nominated into low vs. high peer desirability conditions. As expected, both 
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groups reported higher interest in chatting with same-sex than opposite-sex peers (peer-

desirability-by-peer-sex interaction, F[1, 26]=51.47, p<.001). Most importantly, however, no 

significant main effects or interactions with group emerged. 

Amygdala Activation. Our a priori hypothesis that the “low vs. high” peer desirability 

contrast would elicit more amygdala activation in patients vs. controls was confirmed by 

significant group-by-peer desirability interactions. Patients showed significantly greater bilateral 

amygdala activation while appraising potential peer evaluation; this effect occurred specifically 

while viewing undesirable peers. After correcting for multiple comparisons in the amygdala 

regions, the maximum intensity value in the left amygdala was t(26)=3.62 (x=-23, y=3, z=-20) 

and for the right amygdala was t(26)=3.53; (x=27, y=-3, z=-21). Figure 2a presents the 

topography of the maximum intensity t-value in the right amygdala, where one interaction 

emerged. 

The group-by-peer desirability interactions were decomposed through post-hoc analyses 

of extracted percent signal change for each event, relative to a null-event baseline. Repeated 

measures ANOVAs revealed group-by-peer-desirability interactions (left amygdala: 

F(1,26)=13.26, p=.001; right amygdala: F(1,26)=12.91, p=.001), consistent with AFNI analyses 

(Figure 2b). Amygdala activation was greatest among patients specifically when appraising 

predicted evaluation from undesirable peers as compared to desirable peers (p<0.001). By 

contrast, controls showed no difference in amygdala activation when viewing undesirable vs. 

desirable peers. A significant positive correlation also emerged between anxiety severity ratings 

and right amygdala activation (Spearman r=0.42, p<.05; Table 2). 

The AFNI 3dRegAna procedure was used to conduct a regression analysis of the effects 

of group and peer desirability level on amygdala activation with expected peer evaluation (i.e., 
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self-esteem) ratings included as a covariate. These analyses showed that the group differences in 

bilateral amygdala activation remained significant (left amygdala: t[26]=3.72, p<.005; right 

amygdala: t[26]=2.53, p<.01). 

We also examined differences between participants with social phobia, (n=8), those with 

other anxiety disorders plus elevated social concerns on the PARS (n=6), and controls (n=14). 

As expected, a significant between-group difference was found in left (F[2, 25]=7.16, p=.003) 

and right (F[2, 25]=5.93, p=.008) amygdala activation while appraising evaluation from low vs. 

high desirable peers. Both social phobia and other anxiety patients had significantly greater 

amygdala activation than controls, but did not differ from each other. Social phobia patients had 

the highest mean amygdala activation values (Left amygdala: M=.88±.91; Right amygdala: 

M=.76±.94), followed by other anxiety patients (Left amygdala: M=.58±.54; Right amygdala: 

M=.68±.83), and controls (Left amygdala: M=-.21±.59; Right amygdala: M=-.15±.35). 

We entered the study with specific a priori hypotheses concerning greater amygdala 

activation in patients than in healthy adolescents. Nevertheless, we considered other areas where 

patients might exhibit greater activation based on peer desirability, using the Monte Carlo-based 

ROI-corrected threshold (Table 3). At this threshold, greater activation in patients vs. controls 

also emerged within the cerebellum (x=-5, y=-70, z=-29; t=3.66). Greater activation in controls 

vs. patients emerged in the left anterior cingulate (x=-15, y=30, z=-8; t=-3.53) and the left middle 

frontal gyrus/Brodmann Area 46 (x=-41, y=43, z=5). 

Functional Connectivity. Table 4 summarizes all group differences that surpassed the 

whole-brain-corrected statistical threshold. Between-group comparisons of the correlative 

strength between significantly co-activated regions showed that, relative to controls, patients 

demonstrated a positive correlation between the right amygdala seed and left vlPFC 



 

 

16 

encompassing bilateral Brodmann’s Area (BA) 47 (Figure 3a) while appraising low vs. high 

desirable peers. This difference was driven by positive amygdala-vlPFC connectivity in patients 

and negative amygdala-vlPFC connectivity in controls during appraisal of low desirable peers 

(Figure 3b). Consistent with these findings, anxiety severity and self-esteem ratings correlated 

significantly with amygdala-vlPFC co-activation, such that lower self-esteem (Table 2) and 

higher anxiety severity (Table 2; Figure 3c) were related to positive amygdala-vlPFC 

connectivity. 

 

Comment 

This is the first study to map neural processing engaged in real-world social interactions 

among adolescents, using a novel paradigm to simulate social judgments in which adolescents 

participate routinely. Two main fMRI findings emerged. First, group differences in bilateral 

amygdala activation varied with participants’ ratings of unfamiliar peers. Anxious adolescents 

showed greater activation than healthy adolescents when viewing photographs of smiling peers 

they rated as not interesting to chat with, relative to those deemed interesting to chat with. 

Second, these between-group differences were paralleled by differing patterns of co-activation in 

a distributed neural circuit connecting the amygdala with the vlPFC. Accordingly, these findings 

suggest a stronger relationship in anxious adolescents than controls between amygdala activity 

and responses in prefrontal regions implicated in evaluating salient social events and modulating 

responses to such events. 

These findings emerged against a backdrop of behavioral findings. Compared to controls, 

anxious adolescents perceived unfamiliar peers as less likely to want to chat with them. This 

resonates with prior findings that anxious youth view themselves as socially unaccepted and 
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report low self-esteem30. Thus, by design, the current task engages expected between-group 

differences in psychological processes. Indeed, social stimuli typically considered non-

threatening (i.e., smiling peers), elicited robust amygdala responses in patients with extreme 

worry about potential social evaluation, particularly when viewing peers whom they rated 

negatively. Because participants were told the “peers” would learn of their ratings, having rated 

certain peers as undesirable was expected to generate concern about negative peer evaluation in 

anxious patients. A strong relationship was also noted between participants’ initial ratings of 

each peer’s desirability and later ratings of expected peer evaluation; this provides some 

evidence that participants’ initial impressions of peers relate to psychological processes engaged 

in the participants when they view these same peers, two weeks later. 

The current findings suggest that amygdala abnormalities in adolescent anxiety disorders 

reflect the contexts in which salient stimuli appear. Here, anticipating social judgment from peers 

rated negatively differentially modulated amygdala engagement in socially anxious and healthy 

adolescents. However, these findings do not clarify the degree to which amygdala activation 

produces or results from the initial low interest response. The current study also leaves open 

questions concerning specific factors about peers (i.e., age, appearance, sex) that may influence 

participants’ desirability ratings. Regardless, the present findings suggest that psychological 

interpretations initiate or maintain social information-processing biases associated with neural 

function, extending prior work in anxious adults and adolescents, as well as adolescents at-risk 

for social anxiety, that documents pronounced amygdala response to facial expressions viewed in 

various conditions (e.g., emotional vs. non-emotional)12, 19, 20, 22, 26. Together, the current and 

prior findings suggest that psychological interpretations, shaped by the context in which stimuli 

are viewed, influences brain circuitry implicated in adolescent anxiety disorders. 
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The present study also underscores the powerful influence of attention on amygdala 

reactivity. Past work shows that adult social phobia involves a pronounced amygdala response to 

socially threatening faces when attention is constrained to a non-emotional context20. Further, 

like the current study, our previous research demonstrated that focusing attention on disorder-

relevant cognitions elicits amygdala hyper-activation in adolescents either at-risk for or suffering 

from anxiety12, 26. The current study shows that appraisal variations influence amygdala response 

even for social stimuli that prototypically appear non-threatening. This again suggests that 

viewing context powerfully modulates neural and cognitive correlates of anxiety. The lack of 

amygdala engagement during appraisal of peer evaluation in controls suggests that adolescents 

without social anxiety do not engage in the same cognitive biases and associated neural response 

that reflect fear of social evaluation, regardless of the desirability of the peer. 

Group differences in amygdala response were paralleled by differential co-activation in 

circuitry connecting the amygdala and vlPFC implicated in attention-modulation43. These results 

complement prior findings in adult health and disease12, 14, 20, 22, 43 and patterns of dysfunctional 

circuitry involving amygdala regions and the vlPFC. Like prior studies29, our measures of 

anxiety severity and task performance correlated with amygdala-vlPFC connectivity. Of note, 

considerable previous work in both adult humans and in animal models also implicates expanses 

of the medial PFC (mPFC) in amygdala regulation44-46. Accordingly, one may also expect 

between-group differences in mPFC-amygdala connectivity in the current study. However, prior 

work from our group more consistently implicates the vlPFC than the mPFC in adolescent 

anxiety; across four different studies, including the current one, we find consistent evidence of 

perturbed vlPFC function but no evidence of perturbed mPFC function in adolescent anxiety8, 12, 

14. 
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Findings across prior studies in adolescents suggest that distinct perturbations in 

amygdala-vlPFC circuitry manifest in distinct psychological contexts. In the context of an 

attention-orienting task, vlPFC appears to regulate amygdala engagement, when briefly-

presented threats serve as implicit distracters from task-related goals. In this instance, negative 

amygdala-vlPFC connectivity occurs in healthy adolescents but not in adolescent GAD8, where 

increased amygdala activation occurs in the context of positive correlations between amygdala 

engagement and anxiety severity. In other psychological contexts, however, including the current 

study, task parameters lead attention to focus on explicit aspects of threat content. In this 

instance, increased amygdala activation in anxiety patients occurs in tandem with increased 

vlPFC and amygdala activation12. As in prior work12, the current finding of positive amygdala-

vlPFC connectivity in patients but not healthy adolescents suggests that positive connectivity 

serves to represent threat-related information in contexts where task parameters lead attention to 

focus explicitly on threat content. The positive correlation between anxiety severity and 

amygdala-vlPFC connectivity supports this view, as well as prior lesion-based work in children 

suggesting that brain injury to the vlPFC protects from trauma-related anxiety47.    

Specifically, we found stronger positive connectivity in patients than controls between 

the right amygdala and the left vlPFC, encompassing BA47, in response to evaluating low vs. 

high desirable peers. This finding is consistent with past clinical neuroimaging work 

documenting strong relations between the vlPFC and amygdala function12, 14, 22, 48, 49 and with 

prior basic research suggesting that the vlPFC exerts regulatory influences over the amygdala23, 

50, 51. Thus, greater amygdala-vlPFC connectivity in patients might reflect a lower threshold in 

patients for engaging vlPFC-based representations of threat-relevant schemas. This is consistent 

with the role of amygdala-vlPFC circuitry in decision-making and behavioral response, in 
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various contexts, demonstrated in animal models and anxious adolescents12, 23. Moreover, work 

in animal models finds that developmental events impact amygdala-vlPFC function and shape 

individual differences in emotional processes throughout life9. Thus, the similarities in 

dysfunctional circuitry documented in both adult and adolescent samples may provide a 

developmental link between childhood anxiety and adult psychopathology. 

An individual’s ability to regulate emotion contributes to anxiety. Indeed, recent 

neurobiological frameworks suggest that bi-directional communication between vlPFC and 

subcortical regions orchestrates cognition-emotion interaction52, 53. For example, cognitive 

inhibition of emotional responses engages the vlPFC, whereas experienced emotional reactions 

engage the amygdala54. Deficits or imbalances in fear circuitry may lead to dysfunction and 

psychopathological states such as anxiety. In the current study, enhanced amygdala-vlPFC 

coactivation in patients suggests that perturbations in both regions may regulate heightened 

anxiety in a social context. 

The present study has several limitations. First, the sample size is relatively small. 

However, because results derived from small samples are associated more commonly with type 

II rather than type I error, there is increased potential for masking true effects and our significant 

findings reduce this possibility. Given limitations in statistical power associated with small 

sample size, particular caution is needed when interpreting negative findings emerging in the 

current study. Second, roughly half of the anxiety group did not meet full criteria for SP. 

However, all anxiety patients reported significant concerns about social interactions and 

evaluation during the psychiatric assessment. Limiting our proband sample to those who met 

criteria for social phobia could provide a more homogenous sample, reduce variance, and 

increase statistical power; again, this limitation is also likely to contribute more to Type II than 
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Type I errors, further suggesting the need to emphasize the positive findings more than the 

negative findings in the current study. In this respect, it is important to note that our sample 

selection approach did not hinder our ability to detect the main hypothesized group differences. 

An important future step would be to conduct a larger study that examines participants with 

varying levels of social anxiety across the full range of the social anxiety continuum. Third, the 

social evaluation task has some limitations. Although we did not find evidence of differential sex 

preferences by group, adolescents showed a greater preference to interact with same-sex peers. 

Including more task trials would allow the binning of stimuli to sex-match subjects by each 

picture and would likely increase the task sensitivity to detect between-group differences. 

Finally, task sensitivity to group differences may have been reduced because our key event 

incorporated two sub-components rather than examining each component separately and 

additional “jitter” time was not interspersed between sub-components. This limitation may have 

been offset, however, by the advantages gained in task feasibility and psychological fidelity that 

was maintained, particularly given confirmation of our expected findings. Nonetheless, future 

studies should attempt to decompose neural response to picture-presentation and to rating. 

Despite these limitations, the present study has several strengths. First, the task paradigm 

is unique in that it simulates social interactions and judgments that adolescents engage in 

routinely. Indeed, the task engaged psychological processes central to clinical adolescent anxiety 

concerning social events. Of note, the current task differs from our previously-used tasks. In past 

studies, we used photographs of adults and amygdala hyper-activation emerged in response to 

fearful faces12, 14, 26. In the present study, we used photographs of adolescents and included only 

happy faces. Despite these task differences, a consistent theme across several neuroimaging 

studies of adolescent and adult anxiety is that variations in attention exert powerful influences on 
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amygdala reactivity in anxiety and risk for anxiety. Second, the present findings support 

theoretical models of cognitive biases in social anxiety. Anxious adolescents demonstrated 

neural abnormalities when assessing how peers whom they rated negatively would evaluate them 

in return. This effect occurred despite the positive, accepting cues depicted in the photographed 

peers. By using a neuroimaging paradigm that accounted for variation in participants’ 

psychological interpretations of stimuli, we found differential effects related to both brain-

emotion circuitry and adolescent psychopathology. Third, the functional connectivity patterns in 

the present study support work on regulatory processes involved in neural networks that 

modulate relationships between cognition and emotion. Future connectivity analyses may be 

useful for investigating theories of cognitive modulation of emotion, and extending to the design 

of cognitive-behavioral treatments. By simulating a real-life experience involving peer 

evaluation, we are able to tap into core, symptom-specific cognitions related to social anxiety. 

Clinicians could use such specific cognitive features as a guide in psychotherapy. These results 

also inform a more precise model of the brain’s response to complex social interactions, which 

quite important during adolescence and relate to psychopathological outcomes. Thus, the current 

findings can allow for precision in understanding the neurophysiological and cognitive 

mechanisms that can serve as a basis in models of adolescent social anxiety. 
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Figure Legends 

Figure 1. The Chatroom paradigm consisted of two visits to the laboratory. (a) During the first 

visit, approximately 2 weeks before the scan, participants viewed photographs of peers and rated 

how interested they were in chatting online with each peer. A median split divided these ratings 

into low and high peer desirability categories. Participants were also photographed and told that 

the same peers would rate them in a similar fashion and learn how they had been rated. (b) 

During the second visit, while in the scanner, participants reviewed the photographs they had 

judged previously and rated how interested they thought each peer would be in chatting online 

with them. 

 

Figure 2. (a) A significant group difference in right amygdala activity is illustrated on high 

resolution images from a representative subject. Bilateral amygdala activation was greater in 

patients vs. controls when appraising expected peer evaluation from low vs. high desirability 

peers (p<.005). After correcting for multiple comparisons in the amygdala regions (p<.05), the 

maximum intensity value for the cluster encompassing the left amygdala was t=3.62 (x=-23, 

y=3, z=-20) and for the right amygdala was t=3.53 (x=27, y=-3, z=-21) (see t-map). (b) Group 

(patient, control) x peer desirability (low, high) interaction effects on event-elicited percentage 

signal change in the left (F[1,26]=13.26, p=.001) and right amygdala (F[1,26]=12.91, p=.001). 

Data were extracted at fMRI acquisition during appraisal of expected peer evaluation. Each 

subject’s data were converted to percentage signal change using each subject’s voxelwise time 

series mean as a baseline. Data were then averaged within each functionally defined amygdala 

region of interest.  

 



 

 

28 

Figure 3. Significant group differences in functional connectivity between the right amygdala 

and left ventrolateral prefrontal cortex (vlPFC) during task performance. Correlation data were 

averaged within each region that survived a spatial clustering procedure using a corrected p<0.05 

and extracted to illustrate coactivation patterns within each group. (a) Cross-hairs centered on 

activation indicating significant group difference in coactivation between the right amygdala 

seed (x=27, y=-3, z=-21) and left vlPFC, x=-32, y=44, z=-5, t(26)=3.79, p < .01 (activation 

survives p<.001). (b) Extracted correlation data indicated that patients had significantly greater 

positive connectivity than controls between activation in the amygdala and vlPFC, specifically 

during the low peer desirability events. (c) Association between amygdala-vlPFC connectivity 

and total SCARED score, Spearman r=.60, p=.001, N=27. 
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Table 1. Demographic and Clinical Characteristics of Sample and Task Ratings by Group. 

 Patients 

(n=14) 

Controls 

(n=14) 

Statistic p-value 

Age, yrs. 12.30±2.76 12.58±2.54 t(26)=0.27 0.79 

IQ 113.36±14.69 117.86±8.06 t(26)=1.01 0.32 

Female sex, No. (%) 10 (71.4) 10 (71.4) χ²=0.0 1.00 

Parent education levela 6.27±0.90 6.00±1.00 t(22)=-0.70 0.49 

Current DSM-IV diagnosis, No. (%)b     

   Generalized anxiety disorder (GAD) 9 (64.3) 0   

   Social phobia (SP) 8 (57.1) 0   

   Separation anxiety disorder (SAD) 4 (28.6) 0   

Pediatric Anxiety Rating Scale scorec 15.21±2.69 NA   

Interest in peersd 37.57±19.73 40.29±14.97 t(26)=0.41 0.68 

Expected peer evaluationd 42.14±12.25 53.55±15.30 t(26)=2.17 0.04 

 Low desirable peers 36.06±17.42 43.79±21.57 t(26)=1.04 0.31 

 High desirable peers 48.43±14.27 63.44±15.04 t(26)=2.71 0.01 

Data are given as mean ± standard deviation except where indicated otherwise. NA, not 

applicable. aLevel ranges from 1 (<7 years education) to 7 (graduate/ professional degree). bOne 

SP patient had comorbid attention-deficit/hyperactivity disorder. Five GAD, SP, and/or SAD 

patients had comorbid specific phobia. cItems range from 0 (none) to 5 (extreme) anxiety 

symptoms, total score range is 0 to 25. dScale ranges from 0 (not interested) to 100 (very 

interested) for participants’ interest in chatting with peers and participants’ expectation of peers’ 

interest in them. 
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Table 2. Spearman Correlations among Task Ratings, Anxiety Severity, Amygdala Activation, 

and Amygdala-Ventrolateral-Prefrontal-Cortex Connectivity across Participants (N=28). 

 Interest in 
peersa 

Expected 
peer 
evaluationb 

Total 
SCARED 
scorec 

L 
amygdala 
activationd 

R 
amygdala 
activationd 

R 
amygdala-
vlPFCd 

Interest in 
peers 

--      

Expected 
peer 
evaluation 

 
.56** --     

Total 
SCARED 
score 

 
-.13 -.38* --    

L 
amygdala 
activation 

 
.12 -.11 .34 --   

R 
amygdala 
activation 

 
.07 -.17 .42* .69** --  

R 
amygdala-
vlPFC 

 
-.09 -.39* .60** .30 .41* -- 

* p < .05, ** p < .01. L=left; R=right; SCARED=Screen for Child Anxiety Related Emotional 

Disorders; vlPFC=ventrolateral prefrontal cortex. aScale ranges from 0 (not interested) to 100 

(very interested) for participants’ interest in peers. bScale ranges from 0 (not interested) to 100 

(very interested) for participants’ expectations of peers’ interest in them. cItems range from 0 

(not true) to 2 (very/often true) anxiety symptoms, total score range is 0 to 82. dActivation while 

viewing undesirable vs. desirable peers. 
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Table 3. Activation Areas in Patients vs. Controls for the Low vs. High Peer Desirability 

Contrast while Appraising Expected Peer Evaluation (df = 26) 

Region x y z t BA Volume (vmul) 

Left anterior cingulate -15 30 -8 -3.53 32 358 

Left amygdala -23 3 -20 3.62 NA 174 

Right amygdala 27 -3 -21 3.53 NA 164 

Left Cerebellum -5 -70 -29 3.66 NA 153 

Left middle/inferior frontal gyrus  -41 43 5 -3.38 46 153 

Negative t-values indicate greater activation in controls vs. patients; positive t-values indicate 

greater activation in patients vs. controls. Activations survived a small-volume correction at p < 

.01, with a voxel threshold of 92. LPI coordinates are reported.
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Table 4. Group Differences in Voxels with Significant Associations with the Right and Left 

Amygdala Seed Voxels for the Low vs. High Peer Desirability Contrast 

Correlation 

direction x y z t Region BA k 

Connectivity with right amygdala 

P (+) > C (-) -32 44 -24 3.79 L middle frontal gyrus 47 12 

C > P 11 -14 -16 -3.32 R parahippocampal gyrus 34/28 18 

C > P 5 -38 -25 -4.39 R cerebellum  NA 37 

C > P -23 -77 33 -3.62 L precuneus 19 46 

Connectivity with left amygdala 

C > P -14 -65 18 -3.03 L precuneus 31 9 

C > P -41 -11 -4 -2.97 L insula 13 12 

C > P -29 -62 3 -3.65 L middle occipital gyrus 19 13 

C > P 17 62 24 -3.71 R superior frontal gyrus 10 20 

P > C 47 2 -25 3.48 R middle temporal gyrus 21 20 

C > P -29 38 -4 -3.26 L parahippocampal gyrus 36/37 22 

Abbreviations: P=patients; C=controls; BA=Brodmann Area; k=number of surviving voxels; 

NA, Not applicable. (+)=positive correlation, (-)=negative correlation. Each line in the table 

represents one voxel within the specific neural region. All activations are corrected for multiple 

comparisons at p<0.01 and spatial extent of 216 vmul. LPI coordinates are reported. 
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