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Summary  

Johanna Routa1, Hanna Brännström1, Perttu Anttila1, Marko Mäkinen2, Janne Jänis2 and Antti 
Asikainen1 

1Natural Resources Institute Finland 
2University of Eastern Finland, Department of Chemistry 

 
Forest-based biomass is one of the main sources of energy and feedstock for industrial production of 
bio-materials, bio-chemicals, bio-fuels, and other novel bio-refinery products in Finland. Apart from 
its main chemical constituents (cellulose, hemicellulose and lignin), wood also contains a wide variety 
of low molecular mass compounds known as extractives. These compounds can be separated from 
insoluble wood constituents by simple solvent extraction using polar or non-polar solvents. The aim 
of enhancing efficiency in the utilization of feedstock through product diversification and improved 
recovery has led to an increased interest in studying individual chemical components of wood. In 
particular, extractive compounds provide potential functionalities for several types of industrial 
chemicals and well-being and health products for consumers.  

The extractives content within a tree and between trees in the same stand is not uniform and 
may also vary according to the age of the trees, the season, the site and provenance. Differences in 
the amounts of extractives from one geographic location to the next can be found, but the differ-
ences between plots and parts of a single tree are clearer. 

The effects of different factors (e.g. location, the part of the tree, age, the site type, time of har-
vesting, or storage time) on the quantity of extractives have been well studied, but no review sum-
marizing the effects of the aforementioned parameters on individual extractive compounds exists. A 
comprehensive review (or a set of more detailed summaries)concerning the extractive compositions 
of the overall tree biomass (incl. not only the stem, but also the bark, foliage, and stump-root sys-
tem) of most common Finnish industrial wood species has not been available until now. Often scien-
tific articles are concentrated on studying certain parts of trees, while some examine the geographic 
origins or site, or they might focus on even more specific issues such as certain groups of compounds 
in certain parts of the tree. In addition, the study material in some studies is very limited. In this re-
port the results of the studies on extractives of Norway spruce, Scots pine, and silver and white birch 
have been summarized to facilitate the identification of the best suitable biomass assortments for 
sourcing future biorefineries and their production lines. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords: extractives, secondary metabolites, Norway spruce, Scots pine, silver birch, white birch, 
value added chemicals, forest industry, circular economy, biorefining/biorefinery 
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Tiivistelmä 

Metsäbiomassa on yksi biomateriaalien, biokemikaalien ja muiden uusien biotuotteiden sekä bio-
energian pääraaka-aineista. Pääosa metsäbiomassasta koostuu erilaisesta puuaineksesta. Puussa on 
sen pääkomponenttien (selluloosa, hemiselluloosa ja ligniini) lisäksi erilaisia pienimolekyylisiä uuteai-
neita, jotka voidaan nimensä mukaisesti erottaa puusta uuttamalla. Nykyisin metsäbiomassan hyö-
dyntämisastetta pyritään kasvattamaan ja käyttöä monipuolistamaan, minkä vuoksi yksittäisiin uu-
teaineyhdisteisiin kohdistuva kiinnostus lisääntyy. Näitä uuteaineyhdisteitä voidaan hyödyntää erityi-
sesti lähtöaineina hyvinvointi- ja terveystuotteiden ja erilaisten teollisuuskemikaalien valmistuksessa. 

Uuteaineiden koostumus ja määrä puun sisällä ja puuyksilöiden välillä vaihtelee runsaasti, ja li-
säksi puun ikä, korjuuajankohta, geneettinen alkuperä ja kasvupaikka vaikuttavat uuteaineiden mää-
rään. Uuteaineiden määrä vaihtelee maantieteellisen sijainnin mukaan, mutta erot ovat paljon sel-
vemmät puun eri osien välillä ja yksittäisten metsikköjen välillä. 
Eri tekijöiden vaikutusta uuteaineiden määrään on tutkittu paljon, mutta yhteenvetoa näiden tekijöi-
den vaikutuksesta ei ole tehty. Kattavia tai yksityiskohtaisia yhteenvetoja koskien uuteaineiden mää-
riä puun eri osissa (ei vain runkopuussa, vaan myös kuoressa, lehvästössä, kantopuussa ja juurissa) ei 
ole tehty yleisimmillä suomalaisilla puulajeilla. Tieteelliset artikkelit ovat usein keskittyneet tiettyyn 
puun osaan, tai yhteen tiettyyn yhdisteryhmään tietyssä osassa puuta. Lisäksi tutkitut aineistot ovat 
olleet usein pieniä. Tämä raportti on yhteenveto kuusen, männyn ja koivun uuteaineiden tutkimustu-
loksista. Sen tulosten toivotaan edesauttavan biojalostukseen ja sen prosesseihin parhaiten soveltu-
vien biomassaositteiden tunnistamisessa. 

 
Asiasanat: uuteaineet, kuusi, mänty, rauduskoivu, hieskoivu, arvokemikaalit, metsäteollisuus, kierto-
talous, biojalostus/biojalostamo
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1. Introduction 
The aim of forest management worldwide has changed over the years. In Finland and the other Nor-
dic countries, the shift has been towards management practices aiming at producing both quality 
timber in addition to other forest products and services (Routa et al. 2013). The product palette is 
currently broadening to include novel biorefinery products, liquid biofuels, wild forest products and a 
multitude of forest related ecosystem services. This is obviously reflected in forest management 
schemes as well. One of the management options available is to implement pre-commercial and 
commercial forest thinnings to promote the volume growth and formation of high quality wood in 
the remaining trees before final harvesting of the trees. This practice combined with other manage-
ment options, such as increased initial stand density and forest fertilization, increases the generation 
of forest biomass collectively including energy wood (logging residues, small diameter stem wood 
and stumps) (Alam et al. 2010). Trees from thinning operations have been used primarily as a raw 
material in the pulp, paper and paperboard industries. In addition, small-diameter logs for mechani-
cal wood processing can be recovered as well as biomass for the production of wood energy for 
households, heating plants and combined heat and power plants. 

Forest-based biomass is the largest single source of energy and a very potential feedstock for in-
dustrial production of different bio-materials, bio-chemicals, bio-fuels, and other novel bio-refinery 
products in Finland. Interest in studying the individual chemical components of wood with the aim of 
enhancing efficiency in feedstock utilization through product diversification and improved recovery 
has been increasing. Apart from its main chemical constituents (cellulose, hemicellulose, and lignin), 
wood also contains a wide variety of low molecular mass compounds known as extractives. These 
compounds can be separated from the insoluble wood constituents by simple solvent extraction 
using polar or non-polar solvents. In particular, wood extractives provide potential functionalities for 
several types of platform and specialty chemicals, such as pharmaceutical or nutritional products, 
cosmetics, beverages, wood adhesives, paints, wood protection agents, plant-protective products 
and detergents (Roitto et al. 2016). Valuable compounds can be obtained directly from different 
parts of standing trees (Mantau & Saal 2010), or as by-products of forest industries (Saal 2010). Spe-
cialty chemicals have a potentially high value in various raw materials and products for techno-
chemical industries and a multitude of consumer products. The demand for nature-derived ingredi-
ents to replace synthetic chemicals is increasing and markets for natural health products are growing 
(Royer et al. 2012). 

In addition to cellulose and lignin, the most important chemical factors affecting the quality of 
wood are extractives, since their presence affects the processing and use of wood. In use, either in 
the soil, above ground or immersed in water, wood is exposed to attack from a number of bacteria, 
fungi, insects and marine organisms (Zabel & Morrell 1992). The major contribution of extractives in 
the use of solid wood is in their natural resistance against fungi and insects they impart.The extrac-
tives also add to the density, geometric stability and some mechanical properties of wood (e.g. Hillis 
1971, Zobel & van Buijtenen 1989, Hakkila and Verkasalo 2009). 

The chemical composition of wood cannot be defined precisely for a given tree species or even 
for a single tree (Alen 2011). The wood chemical composition of an individual tree can be influenced 
by many factors and variations exist between tree part (bark, stem, or branch), the type of 
stemwood (sapwood or heartwood) and the growth conditions, among other factors (Alen 2000, 
2011). In addition, the age of a tree has effects on the extractives of the tree; generally, old trees 
contain more extractives in their heartwood than young trees (Hillis 1962, Uprichard and Lloyd 
1980). While differences in the chemical composition of major cell wall components of the three 
(cellulose, hemicelluloses and lignin) vary only sparingly between different tree species, there is a 
great diversity in the extractives throughout species (Umezawa 2000). The extractives content within 
an individual tree or and between trees in same stand is not uniform (Solhaug 1990, Bergström et al. 
1999, Ekeberg et al. 2006) and it may considerably vary according to age, season, provenance and 
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site (Solhaug 1990, Toscano et al. 1991, Lindberg et al. 1992). Differences in the amounts of extrac-
tives in different geographic locations can also be found (Wilför et al. 2003a, Kaakinen 2007, 
Piispanen 2008, Hakkila & Verkasalo 2009, Roitto et al 2016), but the differences between plots and 
parts of single trees are clearer. This has effects on the supply of raw materials, sampling and sorting 
if the aim is to procure raw materials containing specific extractives or to avoid certain extractives in 
the raw materials. 

In pulping, the presence of extractives is detrimental (Martınez-Inigo et al. 1999, Pereira et al. 
2003). Usually, the extractives affect the bleachability of pulps negatively, causing lower brightness 
and higher brightness reversion of kraft pulp or lead to increased consumption of bleaching chemi-
cals (Jewell et al. 1991).On the other hand, tall oil and turpentine are commercially important side-
products of softwood kraft pulping (Alén 2000). Tall oil has wide variety of uses in industry (see chap-
ter 7). For example, fats are valuable resources for producing fuels such as biodiesel while resins are 
suitable for producing glues and inks (Demirbas 2011). Wood knots which contain more extractives 
than clear wood, are particularly detrimental to pulping processes and pulp quality; and they should 
preferably be separated before pulping (Willför et al. 2004). 

The forest industries use substantial amounts of wood resources annually in Finland. In total 67 
million m3 of wood were utilized in 2016 (Official Statistics of Finland 2017a). As a result of this utili-
zation, there are significant amounts of side streams such as bark, branches and tree stumps. The 
consumption of bark in energy use in Finland was about 7.3 million m3 in 2016. Additionally, 2.5 mil-
lion m3 of logging residues and 0.8 million m3 of tree stumps were used in energy production in 2016 
(Official Statistics of Finland 2017b). 

The aims of this report are 1) to identify the most interesting wood extractives for biorefining, 2) 
to assess the factors influencing the variation of their concentrations and 3) to summarize the data 
on concentrations. A number of selected experts were interviewed to identify the extractives with 
the highest utilization potential. A literature review was then carried out to determine the average 
concentrations of extractives and their variation due to a variety of factors. The main emphasis was 
on the industrially most important Finnish tree species, namely Scots pine (Pinus sylvestris), Norway 
spruce (Picea abies), silver birch (Betula pendula) and white birch (Betula pubescens).  
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2. Expert interviews 
A total of eight experts (listed in the Acknowledgements) representing both research and industry 
were interviewed to determine the most interesting extractives and other compounds now and in 
the future from the perspective of research and development activities and industrial utilization. The 
experts were asked whether it was possible for them to name some individual extractives that occur 
in forest biomass and which of the extractives would be interesting for industrial-scale utilization. 
They were also asked for specific information on how different factors (e.g. geographic location, part 
of tree, age, site type, time of harvesting, or storage time) affect the yield of extractives. 

 The experts emphasized some extractive groups, but also some interesting single compounds. 
Stilbenes, tannins, lignans and terpenes were mentioned in every interview. Additionally, pinosylvin, 
pinosylvin monomethyl ether (stilbens), hydroxymatairesinol (lignans), betulin (triterpenoid), α-/β-
pinene (monoterpenes), resin acids (diterpenoids) and fatty acids were all listed. In addition, galac-
toglucomannan (hemicellulose) and xylans (hemicellulose) were mentioned as interesting com-
pounds, althought they are not extractives. 

The concern of chemical instability and decomposition of extractives during the storage of 
wood-based raw materials was also raised. Amounts of hydrophilic and lipophilic extractives de-
crease significantly during storage, as do lipophilic extractives. Therefore, it is important to plan sup-
ply chains taking storage losses into consideration. 

The scale of operations was also mentioned as a risk factor. If extractives are utilized on a large 
scale in the secondary flow of a pulp mill, it does not mean much if the concentration is a little bit 
higher of some individual compounds of extractives from wood from some particular areas. Howev-
er, on a small-scale use, when a company has specialized in selected valuable products, for example 
pharmaceutical or nutritional products, the choice of raw material sources is very important. Accord-
ing to one of the experts, it may be possible to separate selected extractives more accurately with 
special methods (e.g. hot water extraction was mentioned) retaining the original composition of the 
compounds. Furthermore, the experts emphasized the very large inter-tree variation in concentra-
tion and variation in spatial distribution of extractives. 
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3. Extractives 
Extractives are numerous low molecular mass non-structural compounds present in wood that can 
be extracted using polar and non-polar solvents (Hillis 1971, Alen 2000, Taylor 2002). They include 
compounds such as alkaloids, waxes, fats, proteins, phenolics, gums, pectins, resins, terpenes, and 
essential oils (Nascimento et al. 2013). 

Most of the extractives are secondary metabolites, which are compounds that play other roles in 
a tree than those involved in growth and cell development, namely protection of the tree against 
pathogens or other biotic attacks (Barnett and Jeronimidis 2003). Morphological sites and main func-
tions of different wood extractives are shown in Table 1. The secondary metabolites are preferential-
ly deposited in the inner part of the stem, in the heartwood. In the outer part of the stem, the sap-
wood includes recently divided cell layers, where molecules used in the metabolic synthesis of the 
cell wall are found as extractives. Some species have specialized defense structures to protect them-
selves from attack, either physical or biotic. For example, resin canals in softwoods are particularly 
developed in pines that produce resin, which is a mixture of terpenoid compounds which are also 
important extractives in the wood of these trees (Table 1). A high content of extractives and their 
nature may be involved in the defense strategy of trees against biotic and abiotic injuries. Extractives 
represent a small proportion of wood, typically less than 10% of the dry mass, with the exception of 
tropical woods, where the proportion can be higher. 

There are considerable differences between extractives in softwoods and hardwoods, and also 
between tree species. Resin acids occur only in softwoods and the proportions between individual 
resin acids differ between tree species. The fatty acid composition also differs between softwoods 
and hardwoods and also between tree species (Holmbom 1999). 

Table 1. Morphological sites and main functions of wood extractives (Holmbom 1999). 

Location in wood Major compound classes Main function in the tree 
Resin canals (oleoresin) Resin acids, 

monoterpenoids, 
other terpenoids 

Protection 

Parenchyma cells Fats, fatty acids, 
steryl esters, 
sterols 

Physiological food reserve, 
cell membrane components 

Heartwood Phenolic  
substances 

Protection 

Cambium and growth zone Glycosides, 
Sugars, starch, 
proteins 

Biosynthesis, 
food reserve 

Ascending water Sap Inorganics Photosynthesis, 
biosynthesis 
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Extractives of wood can be classified into the different groups as shown in Table 2, i.e. aliphatic 
and alicyclic compounds, phenolic compounds and other compounds. The composition of extractives 
varies widely from species to species, and the total amount of extractives in a given species depends 
on the growth conditions. For example, the typical content of extractives in Scots pine, Norway 
spruce and silver birch stem wood are, respectively, in the range of 2.5% to 4.5%, 1.0% to 2.0%, and 
1.0% to 3.5%, of the wood on a dry basis (Alen 2011). 

Table 2. Classification of organic extractives in wood (Alen 2011). 

Aliphatic and alicyclic com-
pounds  
 

Phenolic compounds 
 

Other compounds  
 

Terpenes and terpenoids (in-
cluding resin acids and ster-
oids) 
Esters of fatty acids (fats and 
waxes) 
Fatty acids  
Alkanes 

Simple phenols  
Stilbenes  
Lignans 
Isoflavones  
Flavonoids 
Condensed tannins 
Hydrolyzable tannins 

Sugars 
Cyclitols 
Tropolones 
Amino acids  
Alkaloids  
Coumarins 
Quinones  

 
However, many initial extractives suitable for potential applications are either rather volatile or 

chemically unstable. As it was mentioned in the expert interviews, the amount of many extractives 
starts to decrease immediately after tree felling and this degradation continues during storage (Ek-
man 2000, Lappi et al. 2014a). This also means that the chemical composition of the extractives-
based fraction changes as a function of time (Lappi et al. 2014a, b, c, Alén 2000). 

All chemical and biochemical reactions are largely influenced by the conditions prevailing during 
wood storage and they are markedly faster when the wood is stored in the form of chips instead of 
logs. The volatile extractives in the wood tissue of different tree species are unique and may be used 
for species identification (Wajs et al. 2007). 
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4. Variation of chemical composition 

4.1. Different parts of the tree 

4.1.1. Stem: Heartwood and sapwood 
The formation of heartwood is strongly dependent on the age of the tree. Heartwood differs from 
sapwood in anatomical and physiological features. Heartwood is darker in color and denser and stiff-
er than sapwood in some species (Taylor et al. 2002, Spicer 2005), while heartwood contains more 
extractives than sapwood (Rydholm 1967, Yanchuk et al. 1988, Campbell et al. 1990). 

 Norway spruce sapwood contains more lipophilic extractives than heartwood (Ekman 1979, Ber-
taud and Holmbom 2004). This is mainly due to the larger quantity of triglycerides. The qualitative 
composition of volatile organic compounds (VOCs) is similar in spruce sapwood and heartwood in the 
study of Wajs et al. (2006). 

Higher amounts of terpenes have been found in the heartwood than in the sapwood of southern 
pines while fatty acids and resin acids have been found more in the heartwood of radiata pine (Up-
richard and Lloyd 1980, Ingram et al 2000). The total resin acid concentration in Scots pine heart-
wood is much higher than in the sapwood, but the composition of resin acids is similar (Martinex-
Inigo 1999, Turtola 2002). In a study by Arshadi et al. (2013), Scots pine heartwood contained up to 
five times more extractives than sapwood. Furthermore, resin acids were mainly associated with 
heartwood, but fatty acids were found more in sapwood. Additionally, the quantity of stilbenes (e.g. 
pinosylvins and pinosylvin monomethyl ester) in Scots pine heartwood is higher than in the sapwood 
(Wilför 2003b, Ekeberg et al 2006, Siwale 2015). 

The total extractive content of birch stemwood is low but it seems to rise from the base toward 
the top (Roitto et al. 2016). Piispanen & Saranpää (2004) found that the concentration of fatty acids 
and steryl esters were highest in samples close to the pith. 

The heartwood samples of goat willow (Salix caprea) stemwood contained 5–20 times more hy-
drophilic extractives (most abundant catechin) than the sapwood samples (Pohjamo et al. 2003). 

The heartwood and sapwood samples of common aspen (Populus tremula) and quaking aspen 
(Populus tremuloides) contained similar amounts of extractives (Pietarinen et al. 2006a).  

4.1.2. Knots 
Internal knots (i.e. branch bases inside tree stems) of several tree species have a remarkably high 
amount of phenolic substances, being therefore a valuable source of bioactive compounds. Softwood 
knots contain extremely large amounts of phenolic extractives (Willför et al. 2002, Holmbom et al. 
2003, Willför et al. 2003a, b, c). Norway spruce knots contain as much as 6–24% of lignans, with 7-
hydroxymatairesinol (HMR) as the predominant (70–85%) compound (Holmbom et al. 2003, Willför 
et al. 2002, 2003a, Kebbi-Bendeker et al. 2015). Some other spruce species also contain HMR as the 
main lignan, but some spruce species also have other dominating lignans. The content of lignans in 
knot heartwood can be 30–500 times higher than in the stem heartwood. (Willför et al. 2003a). The 
variation in the amount of lignan is large from knot to knot, both in an individual tree and from tree 
to tree (Willför 2003 a). Lignans occur also in the knots of pines, although in lower amounts than in 
the knots of spruces or firs (Holmbom et al. 2003). 

The concentration of extractives in the knotwood of Scots pines has been found to be higher 
than that in the stem heartwood (Erdtman and Rennerfelt 1944, Boutelje 1966, Willför et al. 2003a, 
Hovelstad et al. 2006), even up to four- to five-fold in a study by Karppanen et al. (2007). Scots pine 
knots have been found to contain 0.4–3% of lignans and 1–2.95% of stilbenes (Ekman et al. 2002, 
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Willför 2003b, Hovelstad et al. 2006). Furthermore, Scots pine knots also contain large amounts of 
lipophilic extractives (4.5–32%) mainly resin acids (Willför 2003b). 

Lignans have also been identified in the knots of some hardwoods, although flavonoids are more 
abundant in hardwoods. The concentrations of hydrophilic extractives in willow have been found to 
be 2–10 times higher in the knots than in the stemwood (Pohjamo et al. 2003). Aspen (Populus trem-
ula) knots have been found to be a rich source of bioactive flavonoids, and the quantity of hydro-
philic extractives is larger in the knots than in the stemwood (Pietarinen et al. 2006a). 

The lignan content gradually decreases in the radial direction from the knot pith towards the 
outer wood, finally reaching the same level as in the surrounding stemwood (Willför et al. 2003a). In 
the branches, the lignan content also decreases in the radial direction from the branch pith out-
wards, and approaches the same level as it is in the stemwood 20 cm outside the stem (Willför et al. 
2005). 

The fact that the knots contain considerable amounts of lignans, unlike the surrounding wood 
tissue can be of technical and industrial importance. The knots can be recovered in a pulp mill before 
pulping and the lignans can then be extracted and utilized as active ingredients in health-promoting 
foods or pharmaceuticals, or as natural antioxidants in various applications (Willför et al. 2005). 

The HMR concentration is also the highest in the knots close to the starting point of the living 
crown and in knots that are in connection to living branches (Piispanen at al 2008, Willför 2003a). 
Snow loading on the branches can also affect the lignan concentrations of the knots, causing me-
chanical loading in branch wood (Piispanen at al 2008). Branches and thus knots seem to possess a 
chemical response to mechanical loads such as wind and snow, especially in the case of softwoods, 
which do not lose their leaves during winter. 

The extractive content in the knots of broad-leaved species (hardwoods) is lower than in conif-
erous species (softwoods) (Pohjamo et al. 2003, Pietarinen et al. 2006 a, b). The knotwood of hard-
woods contains mainly flavonoids, tannins and/or sugars (Kebbi-Bendeker et al. 2015). 

4.1.3. Bark 
Bark represents typically 10–15% of total weight of tree stems (Fengel and Wegener 1984, Sipi 2006, 
Krogell et al. 2012). Large amounts of bark waste are produced in the pulp and paper industry and in 
sawmilling operations. Bark is currently used mainly for producing heat and power. The extraction of 
valuable components before combustion is an interesting option for better utilization of tree bark. 
Bark contains 2–6 times more extractives than stemwood does. The total content of both lipophilic 
and hydrophilic extractives usually corresponds to 20–40% of the dry weight of bark (Sjöström 1993). 
For this reason, bark can be considered a potential raw material for the production of a range of val-
ue-added products, e.g. platform and specialty chemicals, cosmetics, dietary supplements, biopoly-
mers, bioplastics, foams/emulsions, coatings, pharmaceuticals (drugs or drug precursors). 

Bark is both morphologically and chemically very heterogeneous, and also differs considerably 
between wood species; not only between hardwoods and softwoods, but also between individual 
hardwood and softwood species (Fengel and Wegener 1984, Sakai 2001). Bark is built up of two ma-
jor parts: the inner bark and outer bark. The proportion of inner and outer bark varies between spe-
cies and according to the age of the tree, and it depends also on the height of the tree. The overall 
composition of inner and outer tree bark differs considerably. 

The quantity of lipophilic extractives has been found to be about two times larger in the outer 
bark of Norway spruce compared to the inner bark (Ånäs et al. 1983, Krogell et al 2012). The overall 
compositions of inner and outer bark of Norway spruce differ significantly: the inner bark contains 
large amounts of hydrophilic extractives whereas the outer bark contains more lipophilic extractives 
(Krogell et al 2012). Resin acids, fatty acids, steryl esters, diterpenoids and triglyseriders are the dom-
inant compounds in Norway spruce bark (Ånäs et al. 1983, Krogell 2012). Stilbene glucosides, iso-
rhapontin, astringin and piceid may account for up to 7.2% of Norway spruce bark dry weight (Man-
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nila and Talvitie 1992, Krogell et al. 2012, Jyske 2014). According to Latva-Mäenpää (2017) the aver-
age concentrations of major stilbenoid glucosides (isorhapontin and astringin) are mainly localized in 
the inner bark of stumps and roots, and the concentrations are 30–200 times higher in the inner bark 
compared to the outer bark. Unique component in bark that is not present in wood is the suberin 
(Krogell et al 2012). Another example regarding the common softwood species, P. sylvestris and P. 
abies, are the condensed tannins that are present in bark but not in wood (see table 6). 

Resin acids and fatty acids are dominant compounds in Scots pine bark (Valentín et al. 2010). 
Bark extract have also been found to contain smaller amounts of other lipophilic compounds as well 
as some phenolic compounds such as stilbene glycosides, lignans and flavonoids (Pan and Lundgren 
1996). The lipophilic compounds include fatty acids, fatty alcohols, oxidised resin acids, and sterols 
(Valentín et al. 2010, Belt 2013). Pine bark has also been found to be rich in condensed tannins (Ka-
ronen et al. 2004a, Matthews et al. 1997). 

The highest concentrations of extractives in birch wood are found in bark (Roitto et al. 2016). 
The concentrations of individual compounds are quite low in birch bark (less than 1%) except for 
betulinol (up to 12.7%) (Roitto et al. 2016). Birch bark chemistry differs considerably from that of 
spruce and pine. For example, the outer bark of silver birch trees contains about 40% extractives, 
45% suberin, 9% lignin, 4% hemicelluloses and 2% cellulose (Pinto et al. 2009). The extractives mainly 
comprise different triterpenoids, especially betulin and different betulin derivatives, accounting for 
as much as 30% of the dry weight (Ekman 1983). The birch outer bark contains only about 2 mg/g of 
phenolics, mainly comprising esterified hydroxycinnamic acids, whereas the inner bark has very high 
phenolics contents (Kähkönen 1999). Suberin itself is an interesting cross-linked co-polymer with 
polyaliphatic and polyaromatic domains, mainly made of the esterified long- and mid-chain hy-
droxy/epoxy fatty acids and fatty diacids as well as a few phenolic constituents (Pinto 2009). While 
bark triterpenes possess considerably pharmaceutical potential, suberinic fatty acids are interesting 
building blocks for novel biopolymers and coating materials (Alakurtti 2006, 2013, Dzubak 2006, 
Gandini 2006). 

4.1.4. Stumps and roots 
Stumps are an underutilized source of renewable forest biomass which are rich in chemical composi-
tion in comparison to stemwood. The roots and stumps of Norway spruce and Scots pine trees are a 
vast source of biomass potentially containing many bioactive polyphenolic extractives (Latva-
Mäenpää 2017), but this biomass is currently used for low-value energy production only. With al-
ready existing harvesting techniques, roots and stumps of conifer trees could be used as a source of 
commercially valuable biochemicals (Latva-Mäenpää 2017). 

The main extractives found in the root bark of Norway spruce are astringin and isorhapontin, as 
well as smaller amounts of piceid (Latva‐Mäenpää et al. 2013, Mulat et al. 2014). The bark of fine 
roots of Norway spruce has been found to contain between 15% and 29% of extractives (Matthews 
et al. 1997, Richter et al. 2007). Latva‐ Mäenpää et al. (2013) found that root bark has a much higher 
extractive content than the wood of roots; the root zone nearest the stem had the highest amounts 
of extractives in the bark and the zone closest to the root tip had the highest amounts of extractives 
in the wood. While isorhapontin was the major stilbenoid found in the bark in all three of the root 
zones, astringin was the major compound found in the stump bark. Within the wood they mainly 
found saccharides, such as fructose, glucose and sucrose, as well as fatty acids and resin acids, such 
as pimaric acid, abietic acid and dehydroabietic acid (Latva‐Mäenpaa et al. 2013). Latva-Mäenpää et 
al. (2014) found relatively high concentrations of lignans in the root neck of Norway spruce (approx-
imately 10% of total dry weight). 

According to Hakkila (1989), the stump-root system of a 100-year-old pine showed larger con-
centrations of extractives than a 25-year-old pine. Accordingly, an order of magnitude regarding 
higher yields of extractions obtained with different solvents (methanol-benzene, acetone, ether, 
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water) was observed compared to younger trees. This in turn might indicate that there are differ-
ences in the relative compositions of extractive fractions of trees due to the different maturity. The 
concentration of acetone-extractives is highest in the stump and in the roots near the stump with 
high amounts of heartwood, and the concentration of extractives decreases towards the ends of the 
roots (Hakkila 1989). The composition of pine stump extractives is presented in Fig. 6 in Chapter 
4.6.3. 

Proportion of extractives in different parts of common Finnish wood species according to differ-
ent studies are presented in table 3. 

Table 3. Proportion of extractives in different parts of common Finnish wood species according to different 
studies, as dry mass percentages. 

 Picea abies Pinus sylvestris Betula pendula Betula pubescens 
Stemwood  
Sapwood  
Heartwood  

1.0-4.51-11 

1.7-2.712-13 

1.1-1.812-13 

1-6.82,5,6,8,11,14 

3.112,14 
5.1-5,3512,14 

0.8-55,6,8,11,20 0.8-6.75,6,8,20 

Branchwood 

Knots 

6.8-13,75-8 

 

8.4-14.15,6,8 
24.6 18 

1.7-7.65,6,8,20 1.9-9.75,6,8,20 

Stump  1.9-3.66,16,17 6.5-18.76,17,19 3.66 5.86 

Rootwood  2.4-6.56,16,17 4.2-6.46,17,19 5.8-12.15,6 7.96 

All bark  
Inner bark  
Outer bark  

23.5-28.35-8 

17.3-38.75,6,8 

19.1-29.25,6,8 

16-25.95,6,8 
15.4-41.95,6,8 

16.4-20.85,6,8 

8-30.75,6,8,20 

14.3-18.95,6,8 

32.1-56.95,6,8 

10.9-335,6,8,20 

9.6-22.55,6,8 

31.4-57.8 5,6,8 

Foliage  37.8-43.35,6 38.6-40.65,6 28.8-33.42,4 32.4-32.56,8 

1Anttonen at al 2002, 2Holmbom and Ekman 1978, 3Kaakinen at al. 2007, 4Kaakinen at al. 2009, 5Nurmi 1993, 
6Nurmi 1997, 7Rhen 2004, 8Voipio 1992, 9Kimland 10Fengel 11Alen 2000, 12Shain 1971, 13Hakkila and Verkasalo 
2009, 14Kilpeläinen et al. 2003, 15Martinez-Inigo et al. 1999, 16Latva-Mäenpää et al. 2014, 17Hakkila 1975, 18Belt 
2013, 19Latva-Mäenpää 2017, 20Roitto 2016,  
 

4.2.  Effect of tree age 
Tree age has an effect on the extractives content of wood biomass, as shown in Tables 4 and 5. The 
stemwood of a 100-year-old pine shows larger concentrations of extractives than a 25-year-old pine 
(Table 4). Additionally, the order of magnitude of the yields of extractions with different solvents was 
different than in a younger tree.  

Table 4. The proportion of extractives in the stemwood of a 25- and 100-year-old Pinus Sylvestris when using 
different solvents in the extraction (Hakkila 1989). 

 Average proportion of extractives (% w/w) 
Solvent 

Methanol-
benzene 

Acetone Ether Hot water Cold water 

25-year old tree 1.9 1.5 0.9 2.3 1.0 
100-year old tree 3.5 2.9 2.1 3.4 2.1 
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Older trees contain more extractives in the heartwood than young trees (Hillis 1962, Uprichard 
and Lloyd 1980, Kasmani et al. 2011, Seyed Mohammadi et al. 2011). The formation of heartwood is 
strongly dependent of the age of tree, and heartwood contains more extractives than sapwood (Yan-
chuk et al. 1988, Rydholm 1967, Campbell et al. 1990). The stump center of a 100-year old pine is 
particularly rich in extractives (Table 5). 

Table 5. The proportion of extractives in the stump-root system of a 25- and 100-year-old Pinus sylvestris when 
using different solvents in the extraction (Hakkila 1989). 

 Proportion of extractives (%) 
Solvent 
Methanol-
benzene 

Acetone Ether Hot water Cold water 

25-year old tree      
Root collar  1.7  2.4 1.6 
Stump center 2.0 1.4 1.5 2.1 1.1 
Taproot  1.3 1.0 1.4 0.8 
Large laterals 1.9 1.6 1.4 2.0 1.0 
Average 2.0 1.6 1.3 2.0 1.1 

100-year old tree      
Root collar 6.6 5.9 4.9 3.6 1.5 
Stump center 9.7 9.1 8.2 5.2 2.5 
Taproot 6.9 6.6 4.7 2.7 0.9 
Large laterals 2.8 2.0 1.6 2.2 1.2 
Average 6.5 5.9 4.8 3.4 1.5 

 
The proportion of extractives in the inner and outer bark varies between species and according 

to the age of the tree, and depends also on the height and position in a tree (Pasztory et al 2016). For 
example, older trees have higher average amounts of stilbene glucosides than younger trees in the 
bark of Norway spruce trees (Jyske et al 2014). The flavonoid composition of Scots pine trees seems 
also strongly dependent on the age of the tree (Oleszek et al. 2002). This applies also to the resin acid 
and total phenolics content of the needles. It has also been found that mature needles have higher 
concentrations of extractives compared to young needles for the afore-mentioned compounds (Nerg 
et al. 1994). 

4.3. The effect of latitude 
Willför (2003a) found lignan concentrations in spruce knotwood to be higher in northern Finland 
than in southern Finland. This is natural because the growth conditions are generally more unfavora-
ble for Norway spruce close to the Arctic tree line than in more southern sites. It seems that these 
unfavorable environmental conditions could cause higher lignan production in spruce trees, which 
might be useful for the trees during occasional periods of environmental stresses, such as when the 
trees could be under microbial attack (Piispanen et al. 2008). Spruce trees in northern Finland have 
been observed to contain more than twice as many lignans in their knots than in southern Finland 
(Holmbom 2011). Kaakinen et al. (2007) confirmed this by finding that the stemwood of Norway 
spruce had 54% higher concentrations of extractives in a northern site than in a southern site. 

Hakkila and Verkasalo (2009) reported higher amounts of acetone extractives in pine and spruce 
stem heartwood and sapwood in northern Finland than in southern Finland. Hakkila (1968) also 
found a higher total quantity of extractives in pine and spruce stemwood in northern Finland. 
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Siwale (2015) indicated strongly that the formation of vanillic acid in both young and mature 
Scots pine stem woods is affected by different climatic conditions due to the geographic location, 
and concluded that poor conditions favor the formation of vanillic acid. The mean concentration of 
vanillic acid in samples from first-thinning harvests increased from southern Finland (0.0069 µg/mg) 
to northern Lapland (0.01 µg/mg) and a significant difference was found between these two extreme 
locations. The concentrations of pinosylvin and pinosylvin monomethyl ester were also significantly 
affected by geographic location, and samples from middle Finland clearly had the lowest concentra-
tions with the means being significantly lower than those in the samples from other locations. 

Roitto et al. (2016) found considerable north-south differences in the concentrations of individu-
al extractive compounds of birch in different climatic regions. They observed that gallocatechins and 
neolignans were generally more abundant in the north while (+) catechin and some lignans were 
more abundant in the central or southern regions (Figure 1). According to Oleszek et al. (2002) the 
relationship between the flavonoid level in pine needles and the latitude of the population origin is 
very evident. This can be explained by the protecting function of flavonoids against UV radiation. 
Thus, at higher latitudes the lower light intensity does not force the plants to produce metabolically 
costly protective flavonoids. Additionally, the taxifolin content of needles has been detected to vary 
according to the elevation (Nerg et al. 1994). It has also been found that the resin acid concentration 
of sun-exposed needles is significantly higher than in shaded needles. According to a study by Nerg et 
al. (1994) the concentrations of total monoterpenes and total phenolics in seedlings of Pinus syl-
vestris were the lowest in the most northern sampling locations. 

Siwale (2015) showed for Scots pine that in southern Finland site soil fertility has a significant ef-
fect on the concentrations of pinosylvin, its glycoside and one of the neolignans, but the exact effect 
was not the same for all compounds. Site soil fertility affected the concentration of some phenolic 
compounds in Scots pine stemwood, but the exact effect was inconsistent. 

Latva-Mäenpää et al. (2013) compared stilbene glucosides in Norway spruce roots and stumps 
grown on either peatland or mineral soil sites, observing that the isorhapontin concentration was 
especially higher in extracts obtained from the mineral soil than in those from peatland. 
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Figure 1. Examples of variation in the concentration of individual phenolic compounds: (+) catechin and an 
unidentified neolignan 6 in outer part of stemwood in Betula pendula and B. pubescens by geographic region in 
Finland. The values are the mean values obtained from multiple trees (Roitto et al. 2016). 
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However, the amounts of extractives display high between-tree variation, although the studies 
have often been made with very limited data, consisting of only few sample trees. For this reason, 
more studies are required to confirm conclusions about the effects of geographic location. Although 
there are not many studies of tree species in Finland, the effect of latitude has been studied more 
thoroughly on berries. Recent studies have shown that bilberry populations growing at northern lati-
tudes contain significantly higher amounts of flavonoids, in particular anthocyanins, in comparison to 
the southern populations (Lätti et al. 2008, Uleberg et al 2009, Åkerström et al. 2010). Moreover, 
higher amounts of anthocyanins were found in bilberry fruits grown in controlled conditions in a 
phytotrone in 24 h natural daylight, mimicking the light conditions of Arctic summers (Uleberg et al. 
2012). 

4.4. Effect of fertilization 
Fertilization treatment (for both macro and micro nutrients) has not been found to have any statisti-
cally significant effect on the total concentration of terpenes in Norway spruce stem wood (Anttonen 
et al. 2002). However, concentrations of acetone soluble extractives (mainly fatty acids, resin acids, 
non-structural carbohydrates and phenolics) were significantly higher in fertilized plots than control 
plots in their study. Production of secondary metabolites predominates in nutrient limiting situa-
tions, and has been shown in several studies where low nitrogen availability has resulted in the ac-
cumulation of phenolics in needles (Muzika 1993, Holopainen et al. 1995, Kainulainen et al. 1996). In 
Norway spruce knotwood, nitrogen fertilization was not found to cause any significant change in 
lignan concentration (Piispanen et al. 2008) (Figure 2). 

The effects of nitrogen fertilization on wood chemistry in Norway spruce were mild and they dif-
fered between locations in a study by Kaakinen et al. (2007). However, the amounts of extractives in 
stemwood were higher in fertilized plots than in control plots. In contrast, Kostiainen et al. (2004) 
found no changes in Norway spruce wood in the concentrations of extractives caused by fertilization 
(macro and micro nutrients). 

In a study by Viiri et al. (2001), nitrogen fertilization resulted in lower concentrations of terpenes 
and stilbene aglycones in Norway spruce, but phosphorus fertilization led to a minor reduction in the 
concentration of total terpenes. The combination of nitrogen, phosphorus and potassium fertilization 
increased the total amount of terpenes. 

In a study by Turtola et al. (2002) on Scots pines, nitrogen fertilization did not have any signifi-
cant effect on the concentrations of resin acids in the heartwood, but in the sapwood the concentra-
tions of individual resin acids, such as abietic and dehydroabietic acids decreased significantly in one 
of the locations. Nitrogen fertilization did not cause any significant changes in xylem monoterpene or 
heartwood resin acid concentrations of Scots pine (Thorin and Nommik 1974, Turtola et al. 2002). 

 Heijari et al. (2005) studied the resistance of Scots pine wood to brown-rot fungi after forest fer-
tilization (nitrogen, calcium, phosphorus) and found that fertilization generally increased the concen-
tration of extractives in the wood. They noted, however, that while in some cases fertilization in-
creased the wood resistance to brown-rot fungi, in other cases it decreased.  
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Figure 2. Concentrations of knotwood lignans according to the size of knot in two experimental sites with two 
treatments of fertilization (control and N-fertilized) (Piispanen et al. 2008). 

4.5. Seasonal variation 
The products of photosynthesis of trees are stored as reserves in living cells, and the sugar content is 
typically high in the winter and low in the summer, whereas the starch content is high in the spring 
and in the autumn and low throughout the rest of the year (Höll 1985). 

Large seasonal variation in the amounts of soluble sugar and starch were detected in the sec-
ondary xylem of young silver birch trees (Piispanen & Saranpää 2001, Höll 1981). In a study by 
Piispanen & Saranpää (2001) the amount of sucrose decreased gradually during the spring until July, 
while it stayed near the minimum level in September and increased dramatically in November.  

 In coniferous trees (e.g. Scots pines in Fischer and Höll 1992) the changes in soluble sugars are 
less pronounced than in silver birch. Hoch et al. (2003) found no significant seasonal variation in 
storage lipids in the sapwood of several coniferous and deciduous trees. Additionally, in a study by 
Piispanen & Saranpää (2004) the seasonal variation of storage lipids was low in silver birch trees. 

Free fatty acid concentrations in silver birch trees have been found to be the highest during mid-
summer and September, and they increase during the spring (Piispanen & Saranpää 2004). The tri-
acylglycerol concentration of silver birch have been found to be slightly but not significantly higher 
during the dormant period in November and in March than during summer and spring. 

The concentration and fatty acid composition of triacylglycerols have been found to remain sta-
ble in Scots pine sapwood throughout the year (Saranpää & Nyberg 1987, Fischer & Höll 1992). No 
seasonal trend in the distribution pattern or concentration of pinosylvin in Scots pine trees was 
found in a study by Berström et al 1999. In contrast, Höll & Priebe (1985) reported marked seasonal 
variation in triacylglycerols in the wood of elm trees (Tilia cordata). 

 According to Höll (1985) Norway spruce stem wood contains higher concentrations of soluble 
sugars in the cold period than in the spring and summer months. According to Solhaug (1990) stil-
bene glucoside concentrations in Norway spruce bark tend to increase during the summer and early 
autumn. The free sugars in spruce bark are at their maximum level after the growing season and at 
their lowest in May/June (Weissman, 1984). 

In their study on young seedlings of Scots pine trees, Nerg et al. (1994) detected remarkable sea-
sonal variation of terpene, resin acid and total phenolic concentrations. The overall phenolic concen-
tration was higher in the spring than in the autumn, whereas concentrations of some individual resin 
acids (levopimaric and dehydroabietic acids) were higher in the autumn. The total monoterpene con-
centration was higher in the spring. 
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4.6. Effect of storage 
Many initial extractives suitable for potential raw material applications are either rather volatile or 
chemically unstable. The extractives content starts to decrease immediately after tree felling and this 
degradation continues during storage (Alén 2000, Assarsson et al. 1963, Jirjis & Theander 1990, Ek-
man 2000, Lappi et al.2014a). This also means that the chemical composition of the extractives-
based fraction changes gradually. 

The major chemical changes in the resin during wood storage can be divided into three types: (1) 
rapid hydrolysis of triglycerides accompanied by slower hydrolysis of waxes, especially steryl esters, 
(2) oxidation/degradation/polymerization of resin acids, unsaturated fatty acids and to some extent 
other unsaturated compounds, and (3) evaporation of volatile terpenoids, mainly monoterpenes 
(Ekman 2000). The rate of all these reactions increases with increasing temperature. 

It has to be pointed out that not only storage, but also other phases of the wood handling pro-
cess affect the extractives content of the biomass material, as well as the composition of the extrac-
tives fraction. Several factors determine the nature and rate of change in the properties of wood 
resin (Ekman 2000, Rupar & Sanati 2005). These factors include the particular types of harvesting, 
transportation, storage and the inventory-control systems of the wood used at the mill. They also 
depend on the tree species, type of material, age of the material, time in storage, physical form of 
the wood, and the weather and other environmental conditions in all phases of the wood-handling 
process.  

The parallel effects of different factors related to the storage of wood-based biomass on the 
chemical compounds and their concentration is summarized as follows: 

Weather and other environmental conditions: High temperatures generally facilitate chemical 
reactions (Ekman 2000). Transition metal ions and light generally accelerate auto-oxidation reactions 
(Alén 2000). For example, according to Zahri et al. (2007), UV light induces the degradation of phe-
nolic compounds present in oak extract. It is known that stilbenes are sensitive to daylight. The pho-
to-induced chemical reactions of compounds belonging to this compound group have been studied, 
e.g., by Zhang and Gellerstedt (1994). The key step in these reactions seems to be an electron-proton 
transfer reaction leading to the formation of a stilbene phenoxyl radical. Increasing ventilation and 
thereby increasing the access of air and oxygen in the chip pile further speeds up evaporation and 
oxidation reactions (Ekman 2000). Some extractives are water soluble (hydrophilic), which means 
that both rainfall and water-debarking at the mill will leach some compounds of extractives from the 
biomass. Different tree species contain varying concentrations and types of water-soluble com-
pounds in their wood and their leaching rates vary as well (Hedmark and Scholz 2008). The com-
pounds of extractives that are generally found in woodyard runoff include phenolic compounds, resin 
acids and short chain fatty acids. According to Rupar and Sanati (2005), there seems to be correlation 
between the amount of precipitation and the emission levels of terpenes into the air. They also con-
cluded that this phenomenon is more obvious for bark or wood chips than for forest residues, be-
cause bark and wood chips are more sensitive to precipitation owing to the smaller particle size of 
the material, and for bark, owing to the porosity of the material. 

Tree species: different tree species have different extractives contents (see chapters 4.6.1-4.6.3) 
and the composition of this fraction which affects the chemical decomposition reactions during stor-
age 

Harvesting: the time of the year, environmental conditions and whether it is the first-thinning or 
final felling (for the effect of tree age on the composition of wood extractives, see chapter 4.2) have 
an effect on chemical reactions occurring after the tree is felled.  

Transportation: If an open carriage is used during train or truck transport it leaves the material 
vulnerable to weather conditions, or generally to environmental conditions during the transport. 
When transportation in water is used, the situation is totally different as water protects wood from 
damage caused by fungi or insects (Kinnari 2002). Additionally, the chemical reactions in water are 
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different (see the text related to the storage below). Average delivery times from the logging site to 
the sawmill or pulp mill in Finland are approximately 2–3 weeks for sawn wood, 4 weeks for spruce 
pulpwood and 8–13 weeks for pine and birch pulp wood (Lukkari et al. 2004). Road transportation 
takes only hours or days, whereas transportation in ships or barges takes approximately one week. 

Storage: Outside or inside storage and seasoning in water are all utilized when supplying wood 
to the mills. Environmental storage conditions (e.g., temperature and precipitation) and the duration 
of storage after harvesting the wood are important factors determining the amount and composition 
of wood resins after the storage period. It is well known that the hydrolysis of glycerides leading to 
free fatty acids and glycerol proceeds faster when the conditions for wood storage are wet instead of 
dry (Alén 2000). On the other hand, water and a high moisture content of wood protect it from dam-
age caused by fungi or insects (Kinnari 2002). This is particularly important during the storage of 
wood logs in water in the summer (Alén 2000). During seasoning there is an increase in the amount 
of fatty acids and a reduction in neutral resin components (i.e., hydrocarbons, waxes, glycerides and 
higher alcohols) which is ascribed mostly to the saponifiable substances (Assarsson & Åkerlund 
1967). Unsaponifiables have shown only a small decrease. The only chemical reaction taking place 
when wood is seasoned under water is the hydrolysis of glycerides to fatty acids. No changes indica-
tive of metabolism or autoxidation have been observed (Assarsson & Åkerlund 1966). 

Type of biomass material: As it was mentioned before, the porosity of material among other 
factors might have effects on the chemical reactions of extractives, because evaporation of volatile 
terpenes is faster for more porous material (Rupar & Sanati 2005). Not only the tree species, but also 
different parts of the wood have different extractives contents and the compositions of extractive 
fractions (see chapters 4.6.1–4.6.3). This affects the chemical decomposition reactions of extractives 
during storage and wood handling as described above. 

Physical form of the wood: Chemical reactions are markedly faster when the wood is stored in 
the form of chips instead of logs (Alén 2000). Promberger et al. (2004) concluded that the faster de-
terioration of compounds in wood chips is due to the larger surface area that makes substances 
more easily accessible. As an example, it has been reported that the degree of hydrolysis of triglycer-
ides after eight weeks of outdoor chip storage was about the same as round-wood storage for one 
year (Ekman 2000). Living cells, which are contained in the bark, foliage, and wood, remain viable for 
some time when the tree is cut (Fuller 1985). These cells remain viable for long periods of time when 
the wood is stored in log form. When wood is chipped and placed in a pile, the living parenchyma 
cells respire in an attempt to heal the tree. Oxygen is consumed and heat is released. This heat gen-
eration provides good growth conditions for bacteria which feed on the extractives in the wood. Af-
ter a period of 7–14 days, it is not unusual that the temperature in a chip pile has reached about 50 
°C (Nurmi 1999). The rate of heating is influenced by the rate of the pile construction and the fresh-
ness of the wood. Additionally, the tree species and season of the year affect the temperature build-
up. Pulpwood chip storage piles contain a myriad of microorganisms that develop in the wood one 
after another (Ekman 2000). The predominant microorganisms in chip piles are thermal-tolerant 
fungi and bacteria. Instead, chip piles rarely experience attacks by brown-rot fungi which are com-
mon in piles of round-wood. Microorganisms in round-wood stored under continuous sprays of wa-
ter are very different from those in dry piles. Every change in wood storage and handling technology 
(e.g. flotated and irrigated wood vs. dry wood, or storing stem wood vs. storing chips) will result in 
new substrate and environmental conditions for the development of wood-attacking microorgan-
isms. 

4.6.1. Birch 
Stemwood 
In birch round-wood storage, the dominating reaction is hydrolysis of triglycerides, resulting in the 
formation of free fatty acids (Ekman 2000), while steryl esters and unsaponifiables are generally sta-
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ble. Assarsson et al (1963) observed that the amount of free, unmodified fatty acids increased 
strongly at the beginning and reached a maximum level after 3–4 months in experiments with birch 
logs. After that period, the rate of reactions modifying free fatty acids (mostly oxidation) was greater 
than the ester hydrolysis, and, hence, the amount of unmodified free fatty acids in the resin de-
creased. Assarsson et al (1963) found also that the rate of hydrolysis slowed down after 5–6 months 
storage of birch logs, after which period the amount of esterified fatty acids constituted less than 
10% of the resin; in the beginning this fraction amounted about 70% of the resin. During chip storage 
the triglyceride hydrolysis is fast during the first couple of weeks (Ekman 2000). With longer storage 
times, the total amount of resin decreases as the fatty acids and steryl esters are degraded.  

 
Bark 
The total amount of birch bark extractives decreases notably and the chemical composition of this 
fraction changes during 24 weeks of storage (Figures 3 and 4) (Lappi et al. 2014a, b). Not only the 
amount of tri- and diglycerides but also the amount of betulin and other bioactive triterpenoids de-
crease significantly during the storage of birch bark. 

 
 

 

Figure 3. Gravimetric amounts of extractives (Lappi et al. 2014c). Key: BB0 = birch bark sample taken before 
storage, BB1 = after 1 week, BB2 = after 2 weeks, BB4 = after 4 weeks, and BB24 = after 24 weeks. Similarly, SB0 
= softwood bark sample taken before storage, SB1 = after 1 week, SB2 = after 2 weeks, SB4 = after 4 weeks, and 
SB24 = after 24 weeks. Fresh birch, pine, and spruce bark samples were used as references to determine the 
amount of losses of extractives before and during the pulp mill wet debarking.  
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Figure 4. Results of extractive group analysis for birch bark. Key: BB0 = birch bark sample taken before stor-
age, BB1 = after 1 week, BB2 = after 2 weeks, BB4 = after 4 weeks, and BB24 = after 24 weeks (Lappi et al. 
2014c). 

4.6.2. Spruce 
Stemwood 
According Assarsson et al. (1963), the total resin content in chipped spruce wood was almost con-
stant for two weeks. Thereafter the resin content decreased. After four weeks the rate of hydrolysis 
reaction slowed down. In spruce wood chip seasoning, the amounts of triglycerides decreased by 
90% and the amounts of waxes decreased by 70% in 3 months (Assarsson & Åkerlund 1967). The 
remaining esters might have been sterol esters to a large extent, as these are more difficult to hydro-
lyze than glycerol esters. 

The amounts of free fatty acids increased strongly at the beginning and reached a maximum lev-
el after one week in a spruce chip pile (Assarsson et al 1963). After that period, the rate of free fatty 
acid oxidation became greater than that of ester hydrolysis, hence, the amount of free fatty acids 
started to decrease. 

Assarsson et al (1963) also found that in a spruce chip pile, resin acids were not affected until af-
ter two to four weeks seasoning. In a later study the amounts of resin acids had decreased by 60% 
after 3 months seasoning (Assarsson& Åkerlund 1967). The unsaponifiable compounds seemed to 
have remained fairly constant during the first eight weeks in the chip pile, whereafter a decrease was 
discernible. In the log storage of spruce wood, the unsaponifiable fraction was found to be almost 
unaffected (Assarsson et al 1963). 

Ekman (2000) studied the changes in the resin content of heartwood and sapwood of spruce 
during log storage. He detected that no triglyceride hydrolysis or other changes occurred in the 
heartwood, in contrast to sapwood. The resin content rapidly decreased in the sapwood but re-
mained constant in the heartwood. 



Natural resources and bioeconomy studies 73/2017 

 24 

Spruce wood samples taken from round-wood piles in a pulp mill woodyard on land in south-
western Finland were analyzed (Ekman 2000). The resin content in logs that had been sprayed with 
water to avoid drying showed a very similar pattern of change as logs stored in water. As in the case 
of birch the most dominant chemical reaction was triglyceride hydrolysis, while total resin content 
decreased only slightly. In contrast, dry round-wood from piles without spraying with water showed 
a considerable decrease in the total amount of the wood resin. There was a decrease especially in 
the concentration of unsaturated fatty acids.  

 
Bark 
The amounts of extractives in the bark material which consisted of mixed softwoods (Norway spruce 
and Scots pine) decreased significantly during storage on land, roughly halving during the first four 
weeks (Lappi et al. 2014a, b, c). The total amounts of extractives decreased notably and the chemical 
composition of this fraction changed as well (Figs. 3 and 5) (Lappi et al. 2014a, b). Not only the 
amount of tri- and diglycerides decreased but so did the amounts of lignans. 

 

Figure 5. Results of extractives group analysis for softwood bark. Key: SB0= sample taken before storage, SB1= 
after 1 week, SB2= after 2 weeks, SB4= after 4 weeks, SB24=after 24 weeks (Lappi et al. 2014c). 

 
Lappi et al. (2014c) did not analyze stilbenes in the aforementioned study. However, it is known 

that the spruce bark stilbenes are sensitive to degradation (Holmbom 2011). Industrial bark at mill 
sites usually contains only 1–2% of stilbenes, sometimes even less. During debarking at the mills 
much of the stilbenes which are still left after storage are dissolved in the debarking process waters 
(Holmbom 2011). 
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4.6.3. Pine 
Stemwood 
A drawback of seasoning Scots pine wood chips is that microbial degradation and oxidation reactions 
of fatty and resin acids directly decrease the yield of tall oil and turpentine which are by-products of 
kraft pulping (Ekman 2000). Fatty acids are oxidized much faster than resin acids during chip storage 
and at a faster rate than the amount of resin acids. Tall oil from fresh pine yields approximately equal 
amounts of fatty and resin acids. After four months storage, only 25% of the fatty acids remain, while 
56% of the resin acids are retained. A few weeks of storing pine wood chips can lower the turpentine 
yield by about 50%. The losses are due to evaporation of volatile terpenes that are carried away in 
the convection of moist air currents that normally occur in the pile. Obviously, during round-wood 
storage, the turpentine components of the wood resin, especially the most volatile monoterpenes 
also evaporate, but at a much slower rate. According to one earlier study on radiata pine, if logs or 
chips remain wet during storage, triglyceride hydrolysis and other changes of the resin components 
occur primarily in the sapwood due to biological reactions (Ekman 2000). 

 
Stumps 
In stump wood of Scots pine trees, the changes in the chemical composition of the extractives frac-
tion are more remarkable than the changes in the gravimetric extractives amount (Lappi et al.2014b). 
In a study by Lappi et. al (2o14b), stump material consisted of pine (Pinus sylvestris) stumps. The 
stumps were lifted and crushed and a storage pile (150 m3) built at UPM Pietarsaari Mill. The sam-
pling frequency was initiated after 1, 2, 4, and 24 weeks of storage. Four different samples were tak-
en at each sampling time, representing all areas of the pile. The average result based on the analysis 
of these samples is presented in Fig. 6. The total amount of stump-derived extractives decreased 
slightly during 24 weeks of storage, from 4.1% of dry solids to 3.6% of dry solids in the case of fresh 
stumps (Lappi et al.2014b). It has to be taken into account that although multiple samples were tak-
en at each sampling time, some variation in the sample composition still may exist. However, it was 
concluded so that general trends on the behavior of extractives compounds of stumps could be not-
ed based on these results. 
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Figure 6. Results of an extractives group analysis for fresh stump and root biomass of Scots pine. trees. Key: 
FS0 = fresh stump sample taken before storage, FS1 = after 1 week, FS2 = after 2 weeks, FS4 = after 4 weeks, 
and FS24 = after 24 weeks (Lappi et al. 2014b). 
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5. Distribution and content of extractives in tree 
biomass 

In this chapter the results from the studies on extractives of Norway spruce, Scots pine and silver and 
white birch trees have been summarized. It is rather challenging to compile data about the contents 
of individual extractives compounds in different parts of the tree. This is partly because the yields of 
extractives strongly depend on the extraction method and solvent (Co et al. 2012). The solvent used 
for extraction and the extraction method itself affect the gravimetric amount of the extractives frac-
tion as well as its composition to some extent. Furthermore, the analysis techniques have some limi-
tations, meaning that, for example, not all chemical compounds are detected by gas chromatography 
(GC). This might concern very low- or high-molecular weight compounds due to the restrictions 
caused by GC-column dimensions and/or GC-oven temperature program, or due to the retention of 
some compounds or part of them in a GC-column stationary phase. Thus, the true amounts of gravi-
metric extractives differ from the amount determined by gas chromatography (GC). In addition, dif-
ferent analysis methods (e.g., GC, HPLC and NMR) may result in differences in the analysis results. 
Thus, the amounts of extractives given in the following text cannot strictly be compared with each 
other, unless they are from the same references. However, they do provide general trends in the 
extractives contents of the different tree parts and information on the composition of those extracts. 

In Table 6, the variation in the amounts of different groups of extractives has been collated and 
reported regardless of the solvent used or the analytical method applied. The solubility of extractives 
varies greatly from one solvent to another. Extractives are typically removed from wood by solvent 
extraction, and the choice of solvent is a critical factor that determines the chemical composition and 
yield of the extract. Although significant differences can exist between specific extractives, hydro-
philic extractives (phenolics) generally have better solubility in more polar solvents, while lipophilic 
extractives (terpenoids and aliphatic compounds) have better solubility in less polar solvents. Ace-
tone is an exception in this rule, as it is known to dissolve both hydrophilic and lipophilic extractives 
with great efficiency (Harkin & Rowe 1971, Holmbom 1999). As for inorganic solvents, aqueous alkali 
is highly effective at dissolving otherwise insoluble components, mainly some phenolic acids and the 
insoluble fraction of condensed tannins, while water is a moderately effective solvent for most phe-
nolics (Harkin & Rowe 1971, Fengel & Wegener 1989, Conde et al. 2013).  
 

Table 6. Range of variation of different groups of extractives (% w/w) in Norway spruce, Scots pine and Finnish 
birch species in stem heartwood, stem sapwood, knots, bark and tree stumps. Values have been reported re-
gardless of solvent or method used. This information can be found in the literature. 
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Study 

Triglyserides 0.07 0.45 0.25  0.37- 
0.96   

Ånäs 1983, Anttonen et al. 
2002, Bertaud and 

Holmbom 2004, Krogell et 
al.2012, Lappi et al. 2014, 

Diglycerides     0.06-
0.59   Krogell et al. 2012 
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Monoglyserides     0.15   Lappi et al. 2014 

Fatty acids 0.11-
0.17 

0.06-
0.74 0.01 0.25 0.05-

0.91   

Ånäs 1983, Anttonen et al. 
2002, Willför et al. 2003, 

Bertaud & Holmbom 
2004, Krogell et al.2012, 

Lappi et al. 2014 

Steryl esters 0.11 0.14 0.16  0.10-
0.63   

Anttonen et al. 2002, Ber-
taud & Holmbom 2004, 

Lappi et al. 2014,Krogell et 
al. 2012, Anäs 1983 

Sterols 0.02-
0.09 

0.01-
0.11 0.01 0.10 

0.02-
0.29 

 
  

Ånäs 1983, Anttonen et al. 
2002, Willför et al.2003, 

Bertaud & Holmbom 
2004, Krogell et al.2012, 

Lappi et al.2014 

Resin acids 0.18-
0.19 

0.17-
0.22 0.28 0.04-

0.24 

0.02- 
0.291) 

0.03-
0.292) 

2 0.47 

Ånäs 1983, Anttonen et al. 
2002, Willför et al. 2003, 

Bertaud & Holmbom 
2004, Hovelstad et al. 

2006, Krogell et al. 2012, 
Latva-Mäenpää 2013 et 

al., Lappi et al. 2014 

Stilbenes     0.07-
0.27   Hammerbacher et al. 

2011, Krogell et al. 2012 
Stilbene gluco-

sides     2.4- 
5.5   Krogell et al. 2012, Jyske 

et al. 2014 

Lignans 0.05-
1.2 

0.04-
0.05 0.06 7.9–

12.3 0.31   

Holmbom et al. 2003, 
Willför et al. 2003, 2004, 

2005, Piispanen et al. 
2008, Lappi et al. 2014 

Oliolignans 0.02 0.05  2.5–
2.87    Willför et al. 2003,2004 

Flavanoids     0.14   Krogell et al. 2012 

Tannins     10.7   Kemppainen et al. 2014 

Condensed 
tannins     

1.7-
1.91) 
7.9-
8.02) 

  Holmbom et al. 2007 

Terpenes   0.03     Anttonen et al.2002 

Sesquiterpenes 0.00 0.02      Wajs et al. 2006 

Diterpenoids 0.05 0.53   

0.005
-0.71) 

0.005
-

0.322) 

  Willför et al. 2005, Krogell 
et al. 2012 

Aliphatic alco-
hols     0.04   Krogell et al.2012 
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Scots pine 

Extractive 
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Study 

Triglyserides 0.03-
0.1 

0.73–
1.22 0.62 0.27 

0.17 1) 

3.34 2) 

1.88 
0.32 

Ånäs 1983, Martinez-Inigo 
et al. 1999, Willför et 

al.2003, Lappi et al. 2014 
Diglycerides     0.44 0.14 Lappi et al. 2014 

Mono and di-
glycerides     0.231) 

0.552)  Ånäs 1983 

Monoglyserides     0.12 0.03 Lappi et al. 2014 

Free Fatty acids 0.22–
1.8 

0.03-
0.4 

0.11–
0.94 0.42 

0.06 1) 

0.17 2) 

0.55 
0.90 

Ånäs 1983, Martinez-Inigo 
et al. 1999, Fries et al. 2000, 
Piispanen & Saranpää 2002, 
Willför et al. 2003, Ekeberg 
et al. 2006, Karppanen et al. 

2008, Tiitta et al. 2009, 
Arshadi et al. 2013, Lappi et 

al.2014 

Steryl esters 0.05-
0.14 

0.07-
0.17 0.15 0.25 0.09-

0.43 0.14 Ånäs 1983 

Sterols 0.01    
0.45 1) 

0.3 2) 

0.29 
0.03 Fries et al. 2000, Lappi et al. 

2014, Ånäs 1983 

Recin acids 0.21–
6.34 

0.26–
0.89 

0.85–
1.8 

7.97–
20.2 

0.72 1) 

0.24 2) 

0.49 
1.35 

Ånäs 1983, Martinez-Inigo 
et al.1999, Fries et al. 2000, 
Turtola et al.2002, Harju et 
al. 2002, Willför et al. 2003, 
Ekeberg et al. 2006, Hovel-
stad et al.2006, Karppanen 
et al. 2007, 2008, Leinonen 

et al. 2008, Tiitta et al. 
2009, Arshadi et al. 2013, 

Lappi et al. 2014 

Stilbenes 0.14–
1.67   4.59–

5.21   

Fries et al. 2000, Hovelstad 
et al. 2006, Karppanen et al. 
2007,2008, Partanen et al. 

2011 

Lignans 0.01 0.01 0.01 1.33 1.09 0.05 Lappi et al.2014, Willför et 
al.2013 

Oligolignans 0.08 0.03 0.06 0.39   Willför et al. 2003 
Condensed tan-

nins     3.21-
8.51  Steinshamn 2014  

Diterpenoids 0.05 0.53   0.0005-
0.2  Willför et al. 2005, Krogell 

et al. 2012 
Aliphatic alcohols     0.04  Krogell et al. 2012 

Soluble sugars 0.02-
0.03      Karppanen et al. 2008, Tiitta 

et al. 2009 
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Silver birch 

 

St
em

w
oo

d 

Br
an

ch
es

 

Ba
rk

 

Ro
ot

s 

Study 

Triacylglycerols 0.2-
0.68 0.4 0.8-1  Piispanen & Saranpää 2004, Lappi et al. 

2014, Roitto et al 2016 
Diglycerides   0.57  Lappi et al. 2014 

Monoglyserides   0.51  Lappi et al. 2014 

Fatty acids 0.03-
0.25 0.38 0.48–

0.57  Piispanen & Saranpää 2004, Lappi et al. 
2014, Roitto et al 2016 

Steryl esters 0.18–
0.50 

0.41–
0.42 

0.78–
1.16  Piispanen & Saranpää 2004, Lappi et al. 

2014, Roitto et al 2016 
Free sterols   3  Lappi et al. 2014 

Sterols  0.10–
0.11 

0.5-
0.7  Roitto et al. 2016 

Lignans 0.06 0.18 0.29–
1.86  Lappi et al. 2014, Roitto et al. 2016 

Flavonoids 0.55–
1.43   1.14 Sutela et al. 2009, 2014 

Phenolic glycosides 1.68–
2.84    Sutela 2009, 2014 

Procyanidin 0.005    Roitto et al. 2016 
Betulin and other 

triterpenoids   0.98  Lappi et al. 2014 

Condensed tannins 10.8   13.05 Sutela et al.2009 

Total Cinnamic acids 0.17    Sutela et al. 2014 
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6. Valuable bioactive extractives in common Finnish 
wood species and their properties  

Bioactive molecules are readily available through eco-friendly extraction processes using mild organic 
or aqueous solvents (Royer et al. 2012). Controlled and optimized isolation of extractives, e.g., from 
wood or forest residues prior to their use as combustible material represents an essential path lead-
ing to added intrinsic value. Extracts may be used in various applications, e.g., pharmaceuticals, agri-
food additives, cosmeceuticals, and nutraceuticals. Worldwide demand for bioactive molecules of 
natural origin has increased sharply in recent years. The natural health products (NHP) market has 
shown remarkable growth in developed countries. In Figure 7 routes to obtaining valuable bioactive 
extractives are summarized. More about the replacement of fossil fuel based chemicals and chemi-
cals from edible oils with, e.g., tall oil based compounds are discussed in Chapter 7. 

 
 
 
 

 

Figure 7. Routes to obtaining valuable bioactive extractives. Currently utilized routes are illustrated with green 
arrows (modified from Holmbom 2010). Red arrows are used for the routes that currently are not commercially 
utilized. However, some research related to these routes is ongoing. 

 
Residues like bark represent attractive sources of bioactive molecules (Royer et al. 2012). Bark is 

a low-value by-product which is a readily available renewable resource, amounting generally to 7–
13% of the total volume of the tree (Xavier et al. 2012). Bark generally contains a high concentration 
of extractives, a number of which possess unique biological and therapeutic properties (Royer et al. 
2012). Bark contains, for example, polyphenols which have beneficial properties such as antioxidant, 
anticancer, bactericidal, fungicidal, antispasmodic, sedative, analgesic and anti-inflammatory quali-
ties. 

Both bioactivities of pure extractives (Pietarinen et al. 2006a), knotwood extracts (Välimaa et al. 
2007, Pietarinen et al. 2006a, b, Metsämuuronen & Siren 2014) and bark extracts (Pietarinen et al. 
2006a) have been studied. Various bark extracts have been used in traditional medicine, such as Chi-
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nese and Indian medicine, for the treatment of many diseases (Holmbom 2011). Resins scraped from 
the bark of old Norway spruce trees have been used as a resin salve in Northern Sweden and Finland 
for centuries. Recently this old invention was rediscovered in Finland and a commercial resin salve 
possessing antifungal and antibacterial properties was developed and introduced to the market. This 
is effective against pressure ulcers, burns and wound infections. 

In the following a number of extractives from wood biomass which have been found interesting 
due to their bioactivity potential are presented. However, not all such extractives have been listed 
and new ones can be found. 

6.1. Phenolic extractives 
Plant phenolics have been suggested to provide multiple advantageous health and well-being effects, 
including maintenance of health and protection from diseases such as cancer and coronary heart 
disease (Karonen et al. 2004b). It is also possible to use them as natural food additives, since they 
influence the quality and stability of foods by acting as flavourants, colourants and antioxidants.  

A large variety of low-molecular phenolic compounds are found in trees, especially in the heart-
wood, bark and knots whereas only traces occur in sapwood (Holmbom 2011). Compounds belonging 
to phenolics represent a wide variety of chemical structures, featuring a benzene ring as a core struc-
ture to which one or more hydroxyl group(s) is/are attached, either free or substituted with various 
specific chemical functions (e.g. alkyl groups in ethers and esters, or mono/disaccharides in phenol 
glycosides) (Royer et al. 2012). These compounds can be grouped into several families, such as cou-
marins, lignans, stilbenes, flavonoids, phenolic acids, tannins (grouped into condensed and hydrolys-
able tannins), xanthones, quinones etc. They range from monomers to polymers and include various 
types of complexes. Such a wide variety of structures explains the impressive range of physico-
chemical and biological activities recorded, and which come from their significant chemical reactivity. 
The antioxidant activity of phenolics is mainly due to their redox properties, which allow them to act 
as reducing agents, hydrogen donators and singlet oxygen quenchers (Kähkönen et al. 1999). Addi-
tionally, they provide metal chelation potential. Another key factor with regards to their biopotential 
is their ability to interact with cellular proteins; in fact, polyphenols can function as activators or in-
hibitors of numerous cellular enzymes (Royer et al. 2012). 

Polyphenols have the ability to scavenge free radicals (strong antioxidant activity), block enzy-
matic processes and stop fungal growth (Royer et al. 2012). They also contribute to antiseptic and 
antibacterial properties and have a positive incidence on product preservation, be it cosmetics, foods 
or pharmaceuticals. Their free-radical scavenging properties coupled with the antioxidant and anti-
inflammatory properties are linked to the prevention of certain diseases that implicate oxidative 
stress and cellular ageing, cardiovascular and degenerative conditions: osteoporosis, cancer, arthritis 
and type II diabetes. 
The amount of extractable phenolic compounds in the heartwood of Norway spruce knots can be 
close to 30% (w/w), but on average it is around 15% (w/w) (Willför et al. 2003a, b). The amounts of 
phenolic compounds in knot heartwood are usually 50–100 times that found in the stemwood. The 
amounts of extractable phenolic compounds in the heartwood of Scots pine knots can be as high as 
10% (w/w) (Willför et al. 2003a, c). In a study where the antioxidant activities of phenolic extracts 
from edible and nonedible Finnish plant materials were examined by their inhibition of methyl lino-
leate oxidation, Scots pine bark was ranked among the most potent plant sources for natural phenol-
ic antioxidants (Kähkönen et al. 1999). 

Several phenolic compounds such as phenolic acid glycosides, stilbene glycosides, lignans and 
flavonoids have been previously isolated from the inner bark of Scots pine trees, and the bark of 
Norway spruce trees (Krogell et al 2012). Scots pine bark has been found rich in procyanidins as well 
(Karonen et al. 2004b).  
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6.1.1. Stilbenes 
Coniferous trees contain relatively large amounts of stilbene compounds (Mannila & Talvitie 1992). 
In Norway spruce trees they are concentrated in the bark of the tree. The total amount of isorhapon-
tigenin, piceatannol, resvatrol and their glucosides is 1–6% of the dry weight. Stilbenoids in Norway 
spruce bark are mainly in glucosidic form (Latva-Mäenpää 2017). Stilbenoids of Scots pine trees are 
mainly localized in the heartwood region of the tree (Latva-Mäenpää 2017). 

Stilbenes, or stilbenoids, have been shown to be potential anti-inflammatory, anti-cancer, anti-
oxidant, anti-ageing and chemoprotective agents (Mulat et al. 2014). In Table 7 some interesting 
stilbenes which are found in common Nordic softwoods are presented with the information about 
their properties for activities/functionalities. 

Table 7. Interesting bioactive stilbenes in common Nordic softwood species (Picea abies, Pinus sylvestris) 

Compound Properties Tree species 
and part 

References 

Piceatannol antimicrobial, anticancer, cardioprotec-
tive, allelopathic, antioxidant, artemicide, 
fungicide, pesticide,  

P. abies: bark 
 
P. sylvestris 

Reinhold et al. 1980, 
Mannila & Talvitie 
1992, 
Wolter et al. 2002, 
Latva-Mäenpää et al. 
2014, 2017 
Lim & Koffas 2010, 
Duke 2017 
Siwale 2015 

Resvatrol antimicrobial, anti-cancer, antiviral, car-
diovascular and neuroprotective, extends 
the life-span of cells i.e., anti-aging  

P. abies: bark 
 
P. sylvestris 

Välimaa et al. 2007, 
Holmbom 2011, 
Mannila & Talvitie 
1992  
 

Pinosylvin fungicide, antimicrobial, antioxidant, 
anticancer, anti-inflammatory, antifeed-
ant, pesticide 

 
P. sylvestris: 
heartwood, 
knots 

Willför et al. 2003b 
Välimaa et al. 2007, 
Fang et al. 2013 
Latva-Mäenpää 2017 
Duke 2017 
Siwale 2015 

Pinosylvin 
monomethyl 
ether 

antimicrobial, anticancer, anti-
inflammatory, antifungal 

P. sylvestris: 
heartwood, 
knots 

Willför et al. 2003b, 
Välimaa et al. 2007 
Latva-Mäenpää 2017 
Siwale 2015 

Pinosylvin 
dimethyl 
ether  

antifungal P. sylvestris: 
heartwood, 
knots 

Willför et al. 2003b, 
Latva-Mäenpää 2017 
 

Dihydropi-
nosylvin 

antibacterial, fungicide, pesticide P. sylvestris Duke 2017 

Astringin antibacterial, anticancer, antifungal, pes-
ticide 

P. abies: nee-
dles, bark 

Latva-Mäenpää et al. 
2014, 2017 
Slimestad & Hostett-
mann 1996, Duke 
2017 
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Isorhapontin antibacterial, anti-leukemia, cardio pro-
tection, antifungal 

P. abies: nee-
dles, bark 

Mannila & Talvitie 
1992, 
Latva-Mäenpää et al. 
2014,2017 
Slimestad & 
Hostettmann 1996 

Isorhaponti-
genin 

antibacterial, antifungal P. abies: bark Mannila & Talvitie 
1992, 
Latva-Mäenpää et al. 
2014, 2017 

Piceid antibacterial, antilipoperoxidant, antioxi-
dant, fungicide, hepatoprotective, pesti-
cide 

P. abies: nee-
dles, bark 

Latva-Mäenpää et al. 
2014, 
Slimestad & Hostett-
mann 1996 
Duke 2017 

 

6.1.2. Flavonoids 
A considerable amount of research has been directed toward the activity of flavonoids as antioxi-
dants and radical scavengers, as well as their anti-mutagenic and anti-carcinogenic properties (Rauha 
2001). Flavonoids have been suggested to play a preventive role in the development of cancer and 
heart diseases (Kähkönen et al. 1999). Flavonoids are divided into several subgroups, and it is im-
portant to keep in mind that the biological and chemical properties of flavonoids belonging to differ-
ent subgroups can be quite different (Eklund 2004). Flavonoids are mainly present in plants as glyco-
sides, whereas aglycones occur less frequently. Flavonoids can be found in the foliage of hardwoods 
and softwoods, and in the bark, at least in the rootbark of Norway spruce trees (Rauha 2001, Pan and 
Lundgren 1995). In Table 8 some interesting flavonoids and their properties for various activi-
ties/functionalities are presented.  

Table 8. Interesting bioactive flavonoids in common Nordic wood species (Picea abies, Pinus sylvestris, Betula 
pendula and Betula pubescens) 

Compound Properties Tree species 
and part 

References 

apigenin Reduced risk of coronary heart disease, 
vasoprotective activity 
antiADD, antiaflatoxin, antiaggregant, 
antiaging, antiallergic, antiangiogenic, 
antiarrhythmic, antibacterial, anticancer 
antidermatitic, antiestrogenic, antiher-
petic, antihistaminic, anti-HIV, anti-
inflammatory, antimelanomic, antimuta-
genic, antioxidant, antiperistaltic, anti-
proliferant, antispasmodic, antistress, 
antithyroid, antiviral, anxiolytic, apoptot-
ic, , choleretic, CNS-depressant, cytotoxic, 
differentiator, diuretic, DNA-Protective, 
estrogenic, hypotensive, inotropic, mus-
culotropic, mutagenic, myorelaxant, pes-
ticide, progestational, radioprotective, 
sedative, sunscreen, uterotrophic 

B. pubescens 
and B. pendu-
la: leaves 
 

Rauha 2001,  
Valkama et al. 2003, 
Keinänen & Julkunen-
Tiitto 1998,  
Lim & Koffas 2010, 
Duke 2017  
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acacetin protective potential against prostate can-
cer 
allergenic, antiaflatoxin, antiallergic, anti-
histaminic, antimalarial, antimutagenic, 
hepatoprotective, mutagenic, plasmodi-
cide, protisticide 

B. pubescens 
and B. pendu-
la: leaves 

Rauha 2001, Valkama 
et al. 2003, Keinänen 
& Julkunen-Tiitto 
1998, Singh et al. 
2005, Duke 2017 

glycosides of 
kaempferol 

anticancer, antioxidant, anti-
inflammatory, antiaflatoxin, antiaggre-
gant, antiallergic, antibacterial, antifertili-
ty, antigingivitic, antiherpetic, antihista-
minic, anti-implantation, antilymphocytic, 
antimutagenic, antiperiodontic, an-
tiplaque, antiradicular, antiseptic, anti-
serotonin, antispasmodic, antistaphylo-
coccic, antiulcer, antiviral, apoptotic, 
carcinogenic, choleretic, cytotoxic, diuret-
ic, estrogenic, fungicide, hepatoprotec-
tive, HIV-RT-Inhibitor, hypotensive, ino-
tropic, mutagenic, natriuretic, neuropro-
tective, pesticide, protisticide, teratolog-
ic, uterotrophic, vasodilator 

B. pubescens 
and B. pendu-
la: leaves 
P. abies: nee-
dles 
P. sylvestris: 
needles 

Rauha 2001, Lim & 
Koffas 2010, Svahn 
2015, Räisänen et al. 
2008, Duke 2017 

quercetin 
and glyco-
sides of 
quercetin 

Reduced risk of coronary heart disease. 
Neuroprotective effects. Potent for treat-
ing or preventing cancer due to its anti-
mutagenic, anti-proliferative, antioxida-
tive activities and its role in cellular re-
ceptor interactions and modification of 
signal transduction. Anti-inflammatory. 

B. pubescens: 
leaves*) 
P. abies: nee-
dles 
P. sylvestris: 
needles 

Rauha 2001, Oleszek 
et al. 2002, Ossipov et 
al. 1995, 1996, Keinä-
nen & Julkunen-Tiitto 
1998, Strack et al. 
1989, Lim & Koffas 
2010, Svahn 2015 

glycosides of 
myricetin 

Reduced risk of coronary heart disease, 
anti-oxidant, pro-oxidant, anti-
carcinogenic, mutagenic, antiviral, antidi-
abetic, lowers cholesterol level, prevents 
formation of blood-cloths 

B. pubescens: 
leaves 
P. abies 

Rauha 2001, Ossipov 
et al. 1995, 1996, Kei-
nänen & Julkunen-
Tiitto 1998, Svahn 
2015 

isorhamnetin 
and glyco-
sides of iso-
rhamnetin 

antibacterial, antihistaminic, anti-
inflammatory, antioxidant, antispasmod-
ic, cancer-preventive, hepatoprotective, 
pesticide, vasodilator 

P. abies: nee-
dles, rootbark 
P. sylvestris: 
needles*) 

Rauha 2001, Strack et 
al. 1989, Pan & Lund-
gren 1995, Kähkönen 
et al. 1999, Duke 2017 

naringenin 
and glyco-
sides of 
naringenin  

anti-oxidant, anti-inflammatory, lowers 
cholesterol level 
anti-acetylcholinesterase, antiaflatoxin, 
antiaggregant, antialzheimeran, anti-
amnesic, antibacterial, anticancer, antiesch-
erichic, antiestrogenic, antifibrotic, anti-
hepatotoxic, antiherpetic, anti-HIV, anti-
inflammatory, antimutagenic, antiperistaltic, 
antiperoxidative, antiradicular, antisindhis, 
antispasmodic, antistaphylococcic, anti-
tumor, , antiulcer, antiviral, aphidifuge, can-
didicide, choleretic, embryotoxic, estrogen-
ic, fungicide, fungistat, hepatoprotective, 
neuroprotective, pesticide, serotonin-
inhibitor, teratogenic, uterotrophic 

B. pubescens: 
leaves 
P. abies*) 

Rauha 2001, Ossipov 
et al. 1995, 1996, 
Svahn 2015, Duke 
2017 
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pinocembrin anesthetic, antibacterial, antileukemic, 
antiseptic, artemicide, candidicide, cyto-
toxic, fungicide, pesticide 

P. sylvestris: 
knotwood, 
heartwood 

Rauha 2001, Willför et 
al. 2003b, Duke 2017 

(+)-catechin  antiaggregant, anticoagulant, anticom-
plementary, anti-HIV, anti-inflammatory, 
antimutagenic, antioxidant, antiperoxi-
dant, antiprostaglandin, antiradicular, 
antiulcer, cancer-preventive, cardiotonic, 
cytotoxic, dermatitigenic, hemostat, 
hepatoprotective, immunostimulant, 
neuroprotective, phagocytotic, vasocon-
strictor 

B. pubescens, 
B. pendula: 
leaves, bark, 
stemwood 
P. abies: nee-
dles, rootbark 
P. sylvestris: 
bark, nee-
dles**) 

Rauha 2001, Ossipov 
et al. 1995, 1996, Kei-
nänen & Julkunen-
Tiitto 1998, Strack et 
al. 1989, Pan & Lund-
gren 1995, Karonen et 
al. 2004a, Kähkönen et 
al. 1999, Roitto et al. 
2016, Duke 2017 

*) Only as glycosides, **) Also as glycoside 
 

6.1.3. Tannins 
Tannins are polyphenolic compounds based either on flavan-3-ol monomers (condensed tannins, 
also called proanthocyanidins), or on gallic or hexahydroxydiphenic acid esters linked to a sugar moi-
ety (hydrolysable tannins) (Kemppainen 2014). Tannins are the main components of softwood (P. 
abies and P. sylvestris) extracts (see table 6). The tannins in wood bark are mainly condensed tannins 
(Tamminen et al. 2017). 

Tannins also have bioactive properties, including antioxidative and radical-scavenging power, 
thus, they are also of great interest in nutrition and health (Holmbom 2011). The use of tannins is 
presently expanding into nutritional and pharmaceutical areas. Tannins are known to display antimi-
crobial activity and they can also complex with the proteins in bacterial cell membranes. Tannins are 
used in pharmaceuticals which aim at curing bacterial intestinal infections. Additionally, tannins have 
been indicated to have antitumor and anticancer properties as well as antiviral effects. There has 
been interest in the antimutagenic and antitumorigenic properties of tannic acid especially (Rauha 
2001). In Table 9 interesting tannins and their properties for activities/functionalities are presented.  

 

Table 9. Interesting bioactive tannins in common Nordic softwood species (Picea abies, Pinus sylvestris)  

Compound Properties Tree species 
and part 

References 

epigallocatechin-
3-gallate 

antiangiogenic, antitumor P. sylvestris Duke 2017 

tannic acid allergenic, antianacarditic, antibacterial, 
anticariogenic, anticolitic, antidecubitic, 
antidermatotic, antidiarrheic, antidote, 
antidysenteric, antiencephalitic, antien-
teritic, antifeedant, antigargantitic, an-
tigingivitic, antihemorrhoidal, antiherpet-
ic, anti-HIV, antimutagenic, antinitrosa-
minic, antiobesity, antiophidic, antioxi-
dant, antipharyngitic, antipolio, antirhini-
tic, antiseptic, antistomatitic, antitonsili-
tic, antiulcer, antiviral, astringent, cyto-
toxic, detoxicant, emetic, flavor, hemo-
stat, hepatotoxic, immunostimulant, pes-
ticide 

P. abies: nee-
dles 

Duke 2017, 
Adamczyk et al. 
2011 
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gallic acid analgesic, antiadenovirus, antiallergenic, 
antianaphylactic, antiangiogenic, anti-
asthmatic, antibacterial, antibronchitic, 
anticancer, c, antiescherichic, antifibrino-
lytic, antiflu, antihepatotoxic, antiherpet-
ic, antiHIV, anti-inflammatory, antileish-
manic, antiMRSA, antimutagenic, an-
tinitrosaminic, antioxidant, antiperiodon-
titic, antiperoxidant, antipolio, antiprote-
olytic, antiradicular, antiseptic, antistaph-
ylococcic, antitumor, , antiviral, apoptot-
ic, astringent, bacteristat, bronchodilator, 
candidicide, carcinogenic, choleretic, 
cytotoxic, gram(+)icide, gram(-)icide, 
hemostat, hepatoprotective, immuno-
modulatory, immunostimulant, immuno-
suppressant, insulin-sparing, myorelax-
ant, nephrotoxic, pesticide, styptic 

P. sylvestris Duke 2017 

6.1.4. Lignans 
Lignans have attracted much interest due to their broad range of biological activity (Eklund et al. 
2004). The knots, i.e., the branch bases of softwood tree species are the richest sources of lignans. 
Lignan 7-hydroxymatairesinol (HMR), has been stated to have a positive influence on the develop-
ment of breast, prostate and colon cancer which rely specifically on estrogens in order to progress 
(Holmbom 2011). Lignans also help to maintain good cardiovascular health and to moderate other 
estrogen dependent health problems (menopause, osteoporosis). Lignans and oligolignans are strong 
antioxidants and radical scavengers, however according to tests performed by Välimaa et al. (2007), 
these mechanisms are not directly associated with antimicrobial effects. In Table 10 interesting bio-
active lignans and their properties for activities/functionalities are presented. 

 

Table 10. Interesting bioactive lignans in common Nordic softwood species (Picea abies, Pinus sylvestris)  

Compound Properties Tree species 
and part 

References 

matairesinol antileukemic, fungicide, insecticide-
synergist 

P. abies: 
Knotwood, 
heartwood 
P. sylvestris: 
Knotwood, 
bark 

Willför et al. 2003a, b, 
Duke 2017, Karonen et 
al. 2004a, Fengel & 
Wegener 1989 

hydroxyma-
tairesinol 

chemopreventive effects, antioxidant,  P. abies: 
Knotwood 
P. sylvestris: 
Knotwood 

Willför et al. 2003a, b, 
Eklund et al. 2004 

matairesinol 
dimethyl 
ether 

 P. abies: 
Knotwood 
 

Willför et al. 2003a 
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pinoresinol antioxidant P. abies: 
Knotwood, 
heartwood 
P. sylvestris: 
bark 

Willför et al. 2003a, 
Duke 2017, Karonen et 
al. 2004a, Fengel & 
Wegener 1989 

dimethyl 
pinoresinol 

 P. abies: 
Knotwood 
 

Willför et al. 2003a 

nortrache-
logenin 

antileumic, antifungal mechanism against 
pathogenic fungi 

P. sylvestris: 
Knotwood 
P. abies: 
Knotwood 

Torrance et al 1979, 
Willför et al. 2003a, b, 
Ekman et al 2002, Lee 
et al 2016 

secoisolar-
iciresinol 

antioxidant, cancer-preventive P. abies: 
Knotwood , 
heartwood, 
P. sylvestris: 
Knotwood 

Willför et al. 2003a, b, 
Duke 2017, Fengel & 
Wegener 1989 

α-
Conidendrin 

 P. abies: 
Knotwood, 
heartwood 

Willför et al. 2003a, 
Fengel & Wegener 
1989 

liovil  P. abies: 
Knotwood, 
heartwood 
P. sylvestris: 
Knotwood 

Willför et al. 2003a, 
Fengel & Wegener 
1989 

lariciresinol antibacterial P. abies: 
Knotwood, 
heartwood 
 

Willför et al. 2003a, 
Bajpai et al. 2017, 
Fengel & Wegener 
1989 

isolaricires-
inol 

anti-inflammatory P. abies: 
Knotwood, 
heartwood 
P. sylvestris 

Willför et al. 2003a, 
Cho et al.2001, Fengel 
& Wegener 1989 

lignan A  P. abies: 
Knotwood 

Willför et al. 2003a 

hinokiresinol insecticide-synergist, pesticide P. abies: 
Knotwood 
 

Willför et al. 2003a, 
Duke 2017 

6.2. Terpenes and terpenoids 
The vast majority of terpenes exhibit some type of bioactivity thus possessing therapeutic applica-
tions. Numerous studies have attributed the following properties to terpenes: antimicrobial, fungi-
cidal, antiviral, anti-inflammatory, cytotoxic, anticancer, etc. Often implicated in a tree’s resistance to 
disease and microbial attack, their concentration increases following intrusions by predators or para-
sitic organisms (Royer et al. 2012). High concentrations of terpenoids exhibit toxic effects and play a 
protective role against pathogens and herbivorous animals. Monoterpenes and sesquiterpenes form 
the main constituents of essential oils and oleoresins volatile fractions. In Table 11 some examples of 
interesting terpenoids and their properties for activities/functionalities are presented. 
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Table 11. Interesting bioactive terpenoids in common Nordic species (Picea abies, Pinus sylvestris, Betula pen-
dula and Betula pubescens) 

Compound Properties  Tree species 
and part 

References 

dehydroabietic 
acid 

anti-inflammatory, allergenic, antifeed-
ant, pesticide, protisticide, 
schistosomicide  

P. sylvestris: 
stemwood, 
bark, knot-
wood 
P. abies: 
stemwood, 
bark 

Goto et al. 2010 
Holmbom & Ekman 
1978, Arshadi et al. 
2013, Willför et al. 
2003b, 
Valentín et al. 2010, 
Duke 2017, Anttonen 
et al. 2002, Salem et 
al. 2016 

sitosterol decreases the absorption of 
cholesterol in the digestive system and 
decreases the amount of cholesterol pro-
duced by the liver, analgesic, 
anthelminthic, antimutagenic, antitumor 
(breast, cervix, lung), and hypoglycaemic 
Androgenic, angiogenic, anorexic, anti-
adenomic, antiandrogenic, antibacterial, 
anticancer (breast, cervix, lung), an-
tiedemic, antiestrogenic, antifeedant, 
antifertility, antigonadotrophic, antihy-
perlipoproteinaemic, anti-inflammatory, 
antileukemic, antilymphomic, antiophidic, 
antioxidant, antiprogestational, antipros-
taglandin, antiprostatadenomic, antipros-
tatitic, antipyretic, antiviral, apoptotic, 
artemicide, cancer-preventive, candidi-
cide, estrogenic, febrifuge, gonado-
trophic, hepatoprotective, hypocholes-
terolemic, hypoglycemic, hypolipidemic, 
pesticide, spermicide, ubiquiot, ulcer-
ogenic 

P. sylvestris: 
stemwood, 
bark 
P. abies: 
stemwood, 
bark 
B. pendula: 
stemwood, 
bark 
B. pubescens 

Villasenõr et al. 2002,  
Mbambo et al. 2012, 
Norin & Winell 1972, 
Holmbom & Ekman 
1978, 
Piispanen & Saran-
pää 2004,  
Valentín et al. 2010, 
Duke 2017, 
Ferreira et al 2017 

betulinol anti-bacterial, anti-mycotic, anti-itching, 
anti-inflammatory, antiviral, hepatopro-
tective effects against ethanol induced 
cytotoxity, anticarcinomic, antifeedant, 
antiflu, antiHIV, anti-inflammatory, anti-
tumor, antiviral, aphidifuge, cytotoxic, 
hypolipemic 

B. pendula: 
bark 
B. pubescens: 
bark 

Holmbom 2011, Kra-
sutsky 2006,  
Roitto et al. 2016 
Duke 2017 

betulinic acid anticancer, anti-HIV, antimalarial, anti-
inflammatory, antibacterial, anti-oxidant, 
anti-viral, hepatoprotective effects 
against ethanol induced cytotoxity, an-
thelmintic, anticarcinomic, antiedemic, 
antileukemic, antimalarial, antimelanom-
ic, antinociceptive, antiplasmodial, anti-
tumor, apoptotic 

B. pendula: 
bark 
B. pubescens: 
bark 

Royer et al. 2012, 
Holmbom 2011, Kra-
sutsky 2006, Duke 
2017 
Ferreira et al. 2017 
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lupeol anti-inflammatory, antiangiogenic, anti-
EBV, antiedemic, antiflu, antihyperglyce-
mic, antilithic, antimalarial, antioxalate, 
antioxidant, antiperoxidant, antiprosta-
glandin, antirheumatic, antitumor, anti-
urethrotic, antiviral, cytotoxic, hypoten-
sive, pesticide 

B pendula: 
bark 
B. pubescens: 
bark 

Royer et al. 2012, 
Duke 2017, 
Ferreira et al. 2017 

betulin 3-
caffeate 

anti-proliferative, UV-protective, 
anti-melanoma 

B. pendula: 
bark 
 

Krasutsky 2006 

oleanolic acid anti-inflammatory, antibacterial, anti-
cancer, anti-viral 
Abortifacient, antiallergic, antiarrhythmic, 
antiatherosclerotic, anticarcinomic, anti-
cariogenic, anticomplement, antiedemic, 
antifertility, antigingivitic, antihepatotox-
ic, antiHIV, antihyperlipidemic, antiis-
chemic, antileukemic, antileukotriene, 
antimalarial, antinephritic, antioxidant, 
antiperiodontic, antiperoxidant, an-
tiPGE2, antiplaque, antiplasmodial, anti-
sarcomic, antiseptic 
Antitumor (breast, colon, kidney, lung, 
pancreas), antiulcer, beta-blocker, can-
cer-preventive, cardioprotective, cardio-
tonic, diuretic, hepatoprotective, hypoli-
pemic, hypotensive, immunomodulatory, 
leucocytogenic, phagocytotic, piscicide, 
sedative, uterotonic, vasopressor 

B. pendula: 
bark 
B. pubescens: 
bark 

Krasutsky 2006, Duke 
2017, 
Ferreira et al 2017 

α-Pinene allelochemic, allergenic, antiacne, anti-
bacterial, antifeedant, antiflu, anti-
inflammatory, antipneumonic, antiseptic, 
antispasmodic, antistaphylococcic, antivi-
ral, cancer-preventive, coleoptophile, 
expectorant, flavor, herbicide, insecticide, 
insectifuge, insectiphile, irritant, perfum-
ery, pesticide, sedative, spasmogenic, 
tranquilizer, transdermal 

P. sylvestris: 
stemwood, 
root, needles, 
resin, exu-
date, sap 
P. abies 

Duke 2017, Räisänen 
et al. 2008, Williams 
2011, Sadof & Grant 
1997, Thorin & 
Nommik 1974 

D-Limonene antiacetylcholinesterase, anticancer & 
antitumor (breast, gastric), antimelanom-
ic, apoptotic, cancer-preventive, chemo-
preventive, flavor, hypocholesterolemic, 
insecticide, insectifuge, litholytic, ne-
phrotoxic, pesticide 

 P. sylvestris: 
stemwood 

Duke 2017, Sadof & 
Grant 1997, Thorin & 
Nommik 1974 

β-carotene allergenic, antiacne, antiaging, antiar-
thritic, antiasthmatic, anticancer, anticar-
cinomic, anticervicaldysplasic, anticoro-
nary, antihyperkeratotic, antiichythyotic, 
antileukoplakic, antilipoperoxidant, anti-
lupus, antimaculitic, antimastitic, antimu-
tagenic, antioxidant, antiozenic, antipapil-

P. sylvestris: 
needles 

Duke 2017, Matysiak 
2001 



Natural resources and bioeconomy studies 73/2017 

 41 

lomic, antiphotophobic, antipityriasic, 
anti-PMS, antiporphyric, antiproliferant, 
antipsoriatic, antiradicular, antirheumat-
ic, antistress, antitumor (breast, CNS, 
colon, lung, prostate, stomach), antiulcer, 
antixerophthalmic, cancer-preventive, 
chemopreventive, colorant, gastroprotec-
tive, immunostimulant, interferon-
synergist, mucogenic, phagocytotic, 
prooxidant, thymoprotective, ubiquiot 

 
Already in the 1950s it was documented that plant sterols can lower serum cholesterol 

(Holmbom 2011). Today, there are broad selections of plant sterol products available on the con-
sumer markets, for example, cream cheese, pasta, yoghurts, sour-milk and meat products. The total 
production of sitosterol, for use primarily in functional foods, is now about 10,000 tons per year and 
is growing by about 10% per year. 

A range of bioactivities have been assigned to pentacyclic triterpenes with lupane structures (in-
cluding betulin): i.e. bactericidal, antiviral, anti-inflammatory, cytotoxic and antitumoral (Royer et al. 
2012). Within the lupane series, betulinic acid stands out with its proven antiviral activity towards 
type I human immunodeficiency virus (HIV), apart from its selective cytotoxicity towards human mel-
anoma. 

Much fundamental research into the bioactivity of betulin and its derivatives is ongoing (Kra-
sutsky 2006). Research has shown, for example, that betulin and dihydrobetulin derivatives are usu-
ally more active than pure betulin as anti-cancer compounds, or anti-HIV compounds (Krasutsky 
2006). It has been shown as well that simple modifications to the parent structure of lupane 
triterpenoids produce agents that are effective against influenza-A and herpes simplex type-1 virus-
es. Betulin and birch bark extract are also patented as adaptogenic remedies, interferon inducers, 
antihypoxitic products, hepatitis-C preventatives and treatments, anti-influenza and tuberculosis 
prophylactics, and as additives in cosmetics, pet foods, lipase inhibitors, and foods containing triter-
penes (Krasutsky 2006). The presence of betulin 3-caffeates makes birch bark extracts good sun-
blocker ingredients for cosmetics because of its good UV-absorption.  

6.3. Fats, waxes and their components 
Fatty acids of type Δ5, i.e., pinolenic, taxoleic, and sciadonic acids, have lipid modulating and other 
effects in animals, thus, they have raised interest among researchers (Holmbom 2011). Pinolenic acid 
has also been shown to promote a feeling of satiety and to suppress appetite. 

Over the past two decades numerous health benefits have been attributed to conjugated linole-
ic acid (CLA) in experimental animal models including actions to reduce carcinogenesis, atherosclero-
sis, insulin resistance and body fat mass (Rastmanesh 2011). The cis-9, trans-11 CLA seems to have 
an anticarcinogenic effect, whereas the trans-10, cis-12 CLA seems to modulate body composition 
mainly through the reduction of body weight and fat percentage, besides promoting beneficial alter-
ations in lipid metabolism. Furthermore, results of both in vivo and in vitro studies have shown that 
CLA has anticarcinogenic effects in a range of human breast cells and tumors. 
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6.4. Suberin and its components 
Suberin is a complex aromatic–aliphatic cross-linked biopolyester (Pinto 2009), mainly found in wood 
bark. Suberin is of interest mainly because it constitutes an abundant source of rare ω-hydroxyfatty 
acids, α, ω-dicarboxylic acids and homologous mid-chain dihydroxy or epoxy derivatives that, apart 
from in birch, cork oak bark, are not abundant in nature. Only these species produce suberin-rich 
biomass residues in amounts that can justify their exploitation as renewable sources of chemicals. 
According to Holmbom (2011), the outer bark of silver birch trees may contain up to 45% suberin, 
therefore, birch bark residues could serve as an industrially valuable feedstock for extracting suberin 
derived compounds. 

The most interesting applications for suberin components involve their use in the synthesis of 
new biopolymers, as well as novel coating materials (Alakurtti 2006, 2013, Dzubak 2006, Gandini 
2006). The exceptional chemistry of suberinic hydroxyl/epoxy fatty acids provide interesting routes 
for further upgrading into versatile building blocks for a variety of materials. Other possible attractive 
applications presented for suberin monomers according to the literature include applications in the 
cosmetics industry, for example. Suberinic ω-hydroxyfatty acids could be used in skin-care, anti-
aging, hair-care, individual chemicals for drug design, dietary supplements, anti-cholesterol, and anti-
obesity products (Krasutsky 2011). Whereas suberinic ω-acids salts could be used in special washing 
materials, shampoos, and hair care. 
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7. Applications utilizing extractives from wood-based 
biomass  

Since ancient times, man utilized trees as a source of useful chemicals (Holmbom 2011). Birch bark 
tar was prepared in Europe already about 40,000 years ago by the Neandertals. Oleoresin has been 
used for thousands of years as such, or as tar, to preserve different wooden and other organic mate-
rials. Tall oil and turpentine came on the market about one hundred years ago. In 1899 the produc-
tion of crude tall oil (CTO) started in Sweden, and in 1913 the first CTO distillation plant started in 
Finland (Baumassy 2014). 

Global markets are featuring an increasingly high demand for nature‐derived ingredients replac-
ing synthetic chemicals. In Figure 8 some examples are shown of how extractives-based chemicals 
could substitute fossil feedstock based and edible vegetable oil based chemicals. Although this figure 
is for tall oil based chemicals, fatty acids, resin acids and sterols from other sources may similarly be 
utilized. Crude tall oil is bio-based raw material with a constrained annual global volume of around 2 
million tons and an EU wide availability of approximately 650,000 tons (Rajendran et al. 2016).  
 

 

 

Figure 8. The cascading use of crude tall oil (CTO), starting from refining and processing of CTO to making the 
highest value bio-based chemicals before utilizing the final residue for biofuels and energy use will not only 
address the issue of resource efficiency but also contribute to the European Union’s ambitious circular econo-
my goals (modified from refs. Arizona chemicals 2009, Polastro & Tuovinen 2010 and HARRPA 2015). 

 
Currently, there are only two larger distillation plants for sulphate turpentine in Europe, one of 

them in Finland (Arizona Chemicals, Oulu) (Holmbom 2011). Turpentine is used as a raw material for 
chemicals, perfumes, vitamins and polymers (Niemelä 2015). Turpentines are produced by steam-
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distillation of tapped or solvent-extracted oleoresin gum, or by recovery from kraft pulping 
(Holmbom 2011). In the Nordic countries no gum resin is collected (Niemelä 2015). 

Extractives may not only substitute fossil based feedstocks in specialty chemicals but instead 
they may partially replace fossil based fuels. Sunpine Inc. in Sweden employed its first tall oil based 
diesel plant in 2010, with a yearly production capacity of 100,000 m3 of tall oil diesel (Aro & Fatehi 
2017). UPM started the production of crude tall oil based renewable diesel in the UPM Lappeenranta 
Biorefinery in January 2015. The production capacity of the biorefinery is 120 million liters of renew-
able diesel annually (UPM 2016). However, according to a recent study (Rajendran et al. 2016), the 
economic added value generated by the entire pine chemicals industry (CTO refiners and the ex-
tended downstream operators along the value chain) is at least four times more than the added val-
ue generated from the production of renewable diesel. 

Sources of the other bioactive extractives, especially phenolics, and their applications were 
shown in Chapter 6, Figure 7.  

In 1998 it was discovered at Åbo Akademi that spruce knots constitute an extraordinarily rich 
source of lignans (Holmbom 2011). This was the start for extensive research into tree knots, and fi-
nally to clearance for a new dietary ingredient from the US FDA in 2004. In 2006, the HMRlignanTM 
product (dietary supplement) came onto the market in the form of capsules (Holmbom 2011). The 
knots can be separated from chips before pulping by a proven technology named “ChipSep”.  

Condensed tannins were already extracted from oak wood in Europe in ancient times and used 
for tanning hides into leather (Holmbom 2011). Today, the main source of condensed tannins is the 
bark of black wattle (Acacia mearnsii) and quebracho wood (Schinopsis balansae). Condensed 
tannins are still used in leather production, but are also used as a component in adhesives. However, 
the use of tannins is expanding into nutritional and pharmaceutical areas. Extraction of pine and 
spruce bark has been shown to give economical yields of condensed tannins (Lacoste 2015). 
Currently, there is an available commercial pine bark extract named FenoprolicTM which contains 
oligomeric proanthocyanidins (Eevia Health). It is marketed to support joint, heart and circulatory 
system health.  

Spruce bark stilbenes contain compounds such as resvatrol which have a multitude of beneficial 
health properties (see chapter 6) (Holmbom 2011). However, further research is required to develop 
applications for these compounds.  

Resin scraped from the bark of old Norway spruce trees has been used as a resin salve in 
northern Sweden and Finland for centuries. This invention was rediscovered in Finland and 
developed into a salve with the trade name “Abilar” in 2008 (Holmbom 2011, Bioeconomy 2015). 
When a tree is damaged it produces a sticky resin to plug the wound and protect the tree from infec-
tion (Repolar). Over a period of 3 or more years this resin seals the tree wound. At this time, the resin 
can be harvested by hand. 

There are many cosmetic products containing pure betulin or birch bark extracts on the market 
(Holmbom 2011). Innomost Oy isolates betulin from Finnish birch bark and sells it to be used as ac-
tive ingredient in cosmetics. The company also markets dry birch bark and suberin for the cosmetics 
industry (Innomost).  
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8. Conclusions 
The Finnish governmental bio-economy strategy aims to create new innovations and products based 
on natural resources in a sustainable way. The production volumes of the current main products such 
as pulp and wood products are often high and their unit price is relatively low. In the production 
chain remarkable quantities of side products are produced, such as bark and wood residues, which 
are utilized mainly in energy production today, where the added value has been decreasing due to 
globally low energy prices. Biomass and especially the side products mentioned above contain ex-
tractives which could be utilized in developing added value products for the pharmaceutical, food 
and cosmetics industries, for example. 

Small group of experts were interviewed in this study to identify potential sources and uses of 
extractives from wood-based biomass. The experts emphasized some extractive groups (stilbenes, 
tannins, lignans and terpenes), but also some interesting single chemical compounds (pinosylvin, 
pinosylvin monomethyl ether, hydroxymatairesinol, betulin, α-/β-pinene, resin- and fatty acids). The 
same extractive groups and individual compounds were also found in the literature review of this 
study. 

Trees can be a large and valuable source of extractives, and large amounts of extractives could 
be utilized from raw materials which are not currently seen as valuable components and are consid-
ered mainly waste materials which usable for second purposes, such as bark or knotwood. The forest 
industries produce a great deal of bark waste which contains 2–6 times more extractives than 
stemwood. Knots are undesirable in papermaking and manufacturing advanced wood products. It 
could be economically advantageous to remove the knot fractions before pulping or further pro-
cessing sawn timber and utilize their lignans. Knots contain 4–5 times more lignans than stemwood. 

Wood-based lignans can be used in functional foods and for pharmaceutical purposes. The most 
abundant lignan hydroxymatairesinol is already used as a health beneficial dietary supple-
ment, and the development of hydroxymatairesinol as a natural antioxidant is ongoing. Howev-
er, hydroxymatairesinol is also a valuable optically pure compound, which could be utilized in high 
value applications in the field of organic chemistry. 

Sitosterol is used primarily in functional foods, for example in some margarines that are de-
signed for use as part of a cholesterol-lowering diet. The overall production of sitosterol, is now 
about 10,000 tons per year and is growing at a rate of about 10% per year (Nilsson et al. 2011). 

Tannins have been indicated to have anti-tumor and anticancer properties and antiviral effects. 
Additionally, the use of tannins is presently expanding into nutritional and pharmaceutical areas. The 
global tannin demand was 1,076 million tons in 2015 and it is expected to grow at a rate of 5.8% 
from 2016 to 2025. The tannin market is expected to grow globally and is expected to reach 3.39 
billion USD by 2025 (Grand View Research). 

Fatty and resin acids are generally regarded as problematic compounds in paper and board mak-
ing (Farrell et al. 1997, Sun & Tomkinson 2001). However, fats are valuable resources for producing 
fuels such as biodiesel, while resins are suitable for producing glues and inks (Demirbas 2011).  

Talloil –based diesel production is already running and talloil is also an important compound in 
the paint industry.  

Knowledge of both the amount and type of extractive compounds in the available wood raw ma-
terial is vital when assessing options for its use. Furthermore, the factors affecting the aforemen-
tioned should be known. All tree species in Finland contain at least moderate amounts of extractives, 
but the contents of extractives are specific to each species. The volumes of extractive compounds are 
relatively small compared to the main products of pulp-mills and sawmills. Additionally, their markets 
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are very different from those of the main products. Therefore, new industrial partnerships and value 
networks need to be developed further to bring actors from the food and feed industries, among 
others, to the sites of wood processing industries.  

The results of the literature survey in this study showed that the extractives contents decrease 
notably during the storage of wood biomass, even during the first four weeks. The composition of 
this fraction also changes during storage and valuable bioactive compounds may be lost. Thus, the 
freshness of the feedstock and fast recovery logistics are major factors to consider when designing 
and implementing processes intended to recover extractives. 

This report showed that even within species there is a lot of variation in the quantity of extrac-
tives found. Site-to-site variability to quantify how much the extractive content varies within a spe-
cies has been investigated in a few studies only. This makes it difficult to quantify the amounts of 
extractives that could be recovered, and virtually impossible to visually identify trees or stands of 
trees that could potentially have higher yields of extractives. New research has been started in this 
area in recent years.  

Accelerated wood supply is a key issue for practitioners aiming to reduce capital costs and dry 
matter losses during the supply chain of wood-based biomass. It is also essential to utilize the extrac-
tives of wood biomass. In the future, studies on the feasibility, availability, supply and demand, costs 
and methods are needed. 

The results of this review can be used in assessing the availability of various extractives at a gen-
eral level. as well as for planning their procurement in connection with industrial round-wood. How-
ever, further research is needed on the effects of different forest and supply chain factors on the 
extractive concentrations found in wood-based biomass – in addition to their characteristics and 
functionalities for different industrial and consumer uses. In the future, availability maps for different 
chemical compounds could be generated by linking forest inventory data with the chemical analysis 
data to support the optimal location of production lines for new biorefinery products. 
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