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ABSTRACT 

Central to the control of virtually all cellular activity is the regulation of 

gene expression. In eukaryotes, this regulation is greatly influenced by chromatin 

structure, which is itself regulated by numerous chromatin-remodeling 

complexes. These are typically large protein complexes with interchangeable 

subunits that allow for highly specialized functions in different cell types. 

Moreover, additional specificity can be gained through complexes formed from 

different subunit isoforms. Histone modifications also regulate chromatin by 

recruiting remodeling complexes to particular genomic regions. 

In this thesis we characterize MBD3C, an isoform of the Nucleosome 

Remodeling and Deacetylase (NuRD) complex subunit MBD3. MBD3 is essential 

for pluripotency and development, but MBD3C appears to be expressed only in 

embryonic stem cells (ESCs), and whether it forms a distinct NuRD complex, 

how its expression is regulated, and its precise function(s) remain unknown. We 

show that MBD3C forms a complete NuRD complex that functions redundantly 

with the other MBD3 isoforms in ESC gene regulation. Furthermore, MBD3C 

binds the SET/MLL complex subunit WDR5 through a conserved motif within its 

unique N-terminal region, and this interaction is necessary for the regulation of 

>2,000 ESC genes. Together, these findings indicate that ESCs can utilize 

isoforms of the same protein to achieve similar functions through diverse 

mechanisms. 

The second part of this thesis focuses on the role of the histone 

modification H3.3K56ac in pluripotency and differentiation. Although H3K56ac is 

well-studied in yeast, in mammalian cells it is far less abundant and its functions 
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are largely unknown. Our data indicate that the H3.3K56R mutant is largely 

normal for ESC maintenance and loss of pluripotency markers during 

differentiation, but H3.3K56ac is necessary for proper lineage commitment. 

Ongoing studies will characterize the H3.3K56Q phospho-mimetic mutant during 

differentiation, and examine H3.3K56ac function at lineage-specific genes. 
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CHAPTER I: INTRODUCTION 
 

The work in this dissertation focuses on two features of chromatin and the 

mechanisms by which they contribute to embryonic stem cell (ESC) biology. 

Much of ESC maintenance and function is centered on the ability to regulate 

gene expression, which in turn is directly linked to chromatin and the protein 

complexes that modify chromatin structure. Two defining properties of ESCs are 

self-renewal, the ability to infinitely and stably give rise to more ESCs, and 

pluripotency, the capacity to differentiate and form any of the cell types in the 

adult organism. Activation or repression of pluripotency-related genes instructs 

ESCs to continue to self renew or begin the differentiation process. The DNA 

encoding all genes is packaged with histone proteins into chromatin, and 

expression of a particular gene depends largely on accessibility of the gene’s 

DNA to RNA polymerase and the transcriptional machinery. Chapter II of this 

thesis examines an ESC-specific isoform of the MBD3 subunit of the 

Nucleosome Remodeling and Deacetylase (NuRD) complex, MBD3C. MBD3C is 

the smallest of three MBD3 isoforms present in ESCs, and was previously largely 

uncharacterized. My work establishes MBD3C as a member of a complete NuRD 

complex, which can functionally compensate for the larger Mbd3 isoforms. The 

second part of this thesis focuses on a histone modification, acetylated histone 

H3 lysine 56 (H3K56ac). This project originated from the observation that 

H3K56ac localizes to many of the same genomic regions (specifically gene 

promoters) as two of the ESC “master regulators” OCT4 and SOX2. Although the 

regulation, deposition, and functions of H3K56ac have been widely studied in 
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yeast, far less is known about H3K56ac in mammals. How H3K56ac might 

interact with pluripotency factors and its role in chromatin regulation during 

differentiation is still unknown. The study of H3K56ac is further complicated in 

mammalian systems by the presence of histone H3 variants, which could be 

differentially acetylated during a particular cell state or developmental stage. 

Chapter III describes ongoing experiments to elucidate the roles of H3K56ac in 

ESC pluripotency and differentiation. 

 

Embryonic stem cells 

 Embryonic stem cells were first isolated from mouse blastocysts in 1981 

(Evans and Kaufman, 1981; Martin, 1981). The two defining features of ESCs 

are self-renewal and pluripotency. Self-renewal is the ability to divide indefinitely 

while retaining the same undifferentiated state, while pluripotency is defined as 

the capacity to generate any somatic cell type in the organism. The blastocyst 

containing ESCs forms after a series of divisions of the zygote at around 

embryonic day 3 (E3). It is made up of the trophectoderm, which generates extra-

embryonic tissues, and the inner cell mass from which the pluripotent ESCs are 

derived. The ESCs are not totipotent, as they generally do not differentiate into 

the trophectoderm lineage, but are otherwise able to form all somatic cell types, 

including the cells of the germline.  

 The origins of ESC biology can be traced back to studies of embryonal 

carcinoma (EC) cells, a type of tumor cell also capable of self-renewal. Like 

ESCs, EC cells can give rise to multiple differentiated cell types in culture and 
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mice injected with single EC cells grew tumors containing multiple cell lineages 

(called teratocarcinomas). It was then shown that EC cells undergo differentiation 

in vitro via embryoid body (EB) formation similar to cells isolated from early 

mouse embryos (Martin and Evans, 1975). EBs are spherical aggregates of cells 

that can differentiate to form cells of each of the three germ layers (ectoderm, 

mesoderm, and endoderm), and EB assays in ESCs are thought to replicate 

developmental conditions in vivo and are widely used to date for differentiation 

studies. Furthermore, like EC cells the early mouse embryonic cells were 

pluripotent and could also give rise to teratocarcinomas when grafted elsewhere 

(reviewed in (Martello and Smith, 2014)). It was these cells, when expanded in 

culture without becoming cancerous that were labeled embryonic stem cells. 

Importantly, it was noted that ESCs had to be cultured on feeder cells to remain 

in the undifferentiated state. It was then shown that a cytokine secreted by the 

feeder cells, leukemia inhibitory factor (LIF) was the agent necessary to prevent 

ESC differentiation in culture (Smith et al., 1988; Williams et al., 1988). Through 

a series of phosphorylation events, LIF activates the transcription factor STAT3, 

which in turn upregulates pluripotency network transcription factors such as MYC 

and KLF4 (Cartwright et al., 2005; Hall et al., 2009; Matsuda et al., 1999; Niwa et 

al., 1998) 

Among ESC transcription factors, OCT3/4 (henceforth referred to as 

OCT4), SOX2, and NANOG are commonly known as “core” factors that maintain 

ESC pluripotency in conjunction with a large network of proteins that includes 

both transcription factors and chromatin modifying enzymes (Orkin and 
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Hochedlinger, 2011; Young, 2011). OCT4 is expressed in the early embryo, and 

expression is confined to the inner cell mass after blastocyst formation, with 

OCT4 null embryo cells differentiating largely along the trophectoderm lineage 

(Nichols et al., 1998; Niwa et al., 2000). When LIF is withdrawn from ESCs in 

culture, the expression of OCT4 quickly declines, and OCT4 is absent from 

differentiated cell types. Similar to Oct4 null ESCs, Sox2 null ESCs are not 

pluripotent and differentiate to trophectoderm-like cells (Masui et al., 2007). 

SOX2 acts as a cofactor alongside OCT4 at enhancers to regulate expression of 

various pluripotency genes (Nishimoto et al., 1999; Yuan et al., 1995) as well as 

the Oct4 and Sox2 expression themselves (Okumura-Nakanishi et al., 2005; 

Tomioka et al., 2002). A third factor essential for pluripotency, NANOG is also 

expressed only in undifferentiated cells. Overexpression of Nanog allows ESCs 

to self-renew and remain pluripotent in the absence of LIF (Chambers et al., 

2003; Mitsui et al., 2003), although Nanog appears to function independently of 

the STAT3 pathway (Chambers and Smith, 2004), and Nanog null ESCs are 

capable of continued self-renewal (Chambers et al., 2007). OCT4, SOX2, and 

NANOG cooperate in a positive feedback loop to maintain their own expression 

in pluripotent cells as well as the expression of known ESC regulators such as 

LIF signaling pathway or microRNA genes (Chen et al., 2008b; Marson et al., 

2008; Young, 2011). The core pluripotency network can be expanded to include 

chromatin regulatory complexes that can localize to the same gene regulatory 

elements as OCT4, SOX2 or NANOG and are thought to help promote the more 

“open” chromatin structure at these sites characteristic of ESCs (Orkin and 
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Hochedlinger, 2011). Mechanistically, it has recently been proposed that OCT4 

can act as a “pioneer” factor (Zaret and Carroll, 2011) through recruitment of the 

SWI/SNF complex to inaccessible regulatory sites. Nucleosome remodeling by 

SWI/SNF at said sites subsequently allows for binding and regulation by the 

remaining core transcription factors (King and Klose, 2017). Other chromatin 

regulatory complexes in both ATP-dependent remodeler and histone-modifying 

families have been shown to interact with OCT4, SOX2 or NANOG (Ang et al., 

2011; Liang et al., 2008), and the pluripotency network has further expanded to 

include long noncoding RNAs (lncRNAs) (Guttman et al., 2011).  

Differentiated or somatic cells can be reprogrammed to return to the 

pluripotent state by ectopic expression of the core pluripotency factors OCT4, 

SOX2, and KLF4 along with C-MYC (Takahashi and Yamanaka, 2006). These 

induced pluripotent stem cells (iPSCs) reactivate their endogenous pluripotency 

factors and their formation is further marked by methylation and deactivation of 

somatic genes, demethylation of other pluripotency genes, and the re-

establishment of activating histone marks and other hallmarks of ESC-like 

chromatin structure (reviewed in (Apostolou and Hochedlinger, 2013); and see 

below). Although the reprogramming process is lengthy and many cell types do 

not form iPSCs with high efficiency, recent studies have successfully identified 

barriers to reprogramming and optimized reprogramming conditions in various 

contexts (Bar-Nur et al., 2014; Rais et al., 2014; Vidal et al., 2014). As they are a 

renewable source of pluripotent cells, iPSCs have greatly facilitated the study of 
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regenerative biology and are a potentially useful tool for treatments of cancer and 

developmental diseases. 

 

Chromatin 

 Chromatin is the material within which the eukaryotic cell’s genetic 

information is packaged. It is composed primarily of DNA and histone proteins 

tightly packed into chromosomes in the nucleus of the cell. The nucleosome is 

the basic unit of chromatin, formed by 147 base pairs of DNA wrapped around an 

octamer of conserved histone proteins (two dimers of H2A and H2B and a 

tetramer of H3 and H4) (Kornberg, 1974; Luger et al., 1997). Although the 

primary function of chromatin is to organize and retain a cell’s entire DNA within 

the nucleus, the structure of chromatin is highly dynamic and closely regulated to 

accommodate cellular activities such as DNA replication, repair, transcription, 

and mitosis. Specifically, the densest regions of chromatin will be generally 

inaccessible to DNA replication, repair, or transcription factors while the 

chromatin at replication forks or sites containing active genes will be more 

loosely packed. Nucleosomes and the linker DNA connecting them can be seen 

in electron micrographs as “beads on a string”, and numerous genome-wide 

mapping studies have examined nucleosome occupancy and positioning within 

diverse eukaroyotes. Although the existence of higher order chromatin loops and 

interaction domains in vivo has been widely postulated, the details of higher 

order chromatin structure are only beginning to be known. The advent of 3C (and 

its variants 4C, 5C, HI-C), ChIA-PET, more recently Micro-C-based technologies 
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(Dekker et al., 2002; Dostie et al., 2006; Fullwood et al., 2009; Hsieh et al., 2015; 

Lieberman-Aiden et al., 2009; Zhao et al., 2006) have provided more insight into 

both short and long-range chromatin interactions. At the level of individual 

nucleosomes, variations in nucleosome architecture can manifest through post-

translational modifications of histones, enrichment or depletion of different 

histone variants, and nucleosome remodeling catalyzed by ATP-dependent 

protein complexes.  

 

ATP-dependent nucleosome remodelers 

 Rearrangements of nucleosomes along chromatin are often necessary to 

allow transcription and other protein factors access to key regulatory regions 

throughout the genome. This task is commonly performed by remodeling 

complexes, which can function by sliding nucleosomes along DNA, removing 

nucleosomes, or removing and replacing different histone variants within 

nucleosomes (Clapier and Cairns, 2009). Nucleosome remodelers are generally 

classified into four families (SWI/SNF, ISWI, INO80, and CHD); remodelers in all 

families possess a catalytic ATPase domain homologous to the DEAD/H family 

of helicases (Hargreaves and Crabtree, 2011). This ATPase was first identified in 

yeast in two separate genetic screens: one for genes that prevented mating type 

switching (swi mutants), and a screen for mutants inhibiting growth on sucrose 

(snf mutants) (Neigeborn and Carlson, 1984; Stern et al., 1984). The ATPase 

gene was identified in both screens and the ATPase thus became known as 

SWI2/SNF2. The families each harbor different classes of domains (e.g. 
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bromodomain on SWI/SNF, helicase/SANT domain on SWI/SNF and INO80, 

chromodomain on CHD, and SANT-SLIDE domain on ISWI), which aid in 

recognition of other chromatin proteins or binding modules generated by post-

translational modifications. 

 Chromatin remodelers play numerous roles in ESC pluripotency and 

development. In mammals chromatin remodelers are often large protein 

complexes with interchangeable subunits specific to particular cell lineages or 

developmental stages (reviewed in (Ho and Crabtree, 2010)). The ATPase 

BRG1, a member of the mammalian SWI/SNF complex BAF (BRG1-associated 

factor) is required for early embryonic development (Bultman et al., 2000) and is 

linked to the network of pluripotency transcription factors in ESCs (Young, 2011) 

where BRG1 depletion leads to loss of self-renewal and misregulation of 

pluripotency genes (Fazzio et al., 2008; Ho et al., 2009; Kidder et al., 2009). 

SWI/SNF complexes are also essential during the formation of different cell 

lineages in later developmental stages. For example, BRG1 is thought to bind 

enhancers to activate mesoderm and cardiomyocyte-specific genes in ESCs 

(Alexander et al., 2015) and mutants of BRG1 or its homolog Brahma in mice 

and zebrafish exhibit severe cardiac defects (reviewed in (Hota and Bruneau, 

2016)). Furthermore, tissue-specific BAF subunits are required for proliferation of 

neural progenitors (Lessard et al., 2007) and BRG1 is important in both neuronal 

and muscle cell differentiation (la Serna et al., 2001; Weider et al., 2012). ISWI 

complexes have similar roles as SWI/SNF in early embryonic development, with 

null mutants of the ISWI ATPase Snf2h exhibiting embryonic lethality (Stopka 
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and Skoultchi, 2003), and ISWI complexes are required for ectoderm, endoderm, 

and erythropoietic development and gene regulation (Landry et al., 2011; 2008; 

Yip et al., 2012). INO80 complexes also regulate ESC self-renewal, pluripotency, 

and differentiation. In yeast and mammals the INO80 subfamily members SWR1, 

p400, or SRCAP function primarily in deposition of the H2A.Z histone variant into 

nucleosomes (Htz1 in yeast), which is important for regulation of gene 

expression and differentiation (Creyghton et al., 2008; Krogan et al., 2003; 

Mizuguchi et al., 2004; Ruhl et al., 2006), while the INO80 subfamily removes 

H2A.Z from nucleosomes and replaces it with canonical H2A-H2B dimers 

(Papamichos-Chronakis et al., 2011). In ESCs INO80 and another SWR1-related 

complex, TIP60-p400 complex are both implicated in ESC-specific gene 

regulation and self-renewal. TIP60-p400 has both H2A.Z dimer exchange and 

histone acetyltransferase activity and represses developmental genes while 

INO80 activates pluripotency genes through RNA Polymerase II and Mediator 

recruitment (Fazzio et al., 2008; Wang et al., 2014). Finally, the functions of the 

CHD family in ESCs (specifically the CHD3 and CHD4 subfamily) are a major 

focus of this work and will be discussed in subsequent sections. CHD1 is 

required both during pre-implantation development to maintain euchromatin 

structure and pluripotency in ESCs (Gaspar-Maia et al., 2009) and later during 

blood cell development in the upregulation of hematopoietic-specific genes (Koh 

et al., 2015).The remaining members, CHD2 and CHD5-9 have diverse functions 

in multiple developmental stages (reviewed in Ho and Crabtree, 2010, and Hota 

and Bruneau, 2016). Together, it is apparent that ATP-dependent chromatin 
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remodelers have adapted to function in many different contexts by utilization of 

both unique domains that recognize particular chromatin landmarks and 

accessory subunits that are particular to certain cell or tissue types.  

 

Histone modifications 

 Alongside the information encoded in the sequence of DNA, histone 

modifications provide additional means for the regulation of chromatin. The first 

histone modifications identified were acetylation and methylation (ALLFREY et 

al., 1964) and the list of modifications has expanded to include ubiquitin, SUMO, 

phosphate, crotonyl, and other groups which are post-translationally added to 

histone residues. Advances in ChIP-Seq and mass spectrometry have allowed 

for the continuous identification and genome-wide mapping of further 

modifications to date (reviewed in (Kouzarides, 2007; Lawrence et al., 2016)).  

Histones can be simultaneously modified at many different residues, with some 

modifications present in multiple groups on the same amino acid (lysine and 

arginine methylation are probably the most well known examples), lending a 

great deal of potential complexity to studies of biological function. The ever 

increasing number of modifications and possible combinations of modifications 

led some researchers to propose the existence of a “histone code” (Strahl and 

Allis, 2000) which hypothesizes that distinct combinations of modifications are 

recognized by specific regulatory proteins which accordingly trigger a specific 

outcome. The validity of the histone code hypothesis has been strongly 

questioned (reviewed in (Rando, 2012)). Although the most well-studied 
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modifications are situated on the N-terminal histone tails, modifications have also 

been identified within the globular histone domains (Lawrence et al., 2016; 

Tessarz and Kouzarides, 2014). The functions of one such modification, 

acetylation of histone H3 lysine 56 in ESCs will be discussed in detail in Chapter 

III of this thesis (see also below). Two commonly known roles for histone 

modifications are 1) the regulation of higher order chromatin structure, and 2) the 

creation or elimination of binding sites for chromatin remodeling enzymes. An 

example of 1) is H4K16ac, which was shown to inhibit higher order chromatin 

folding and compaction (Shogren-Knaak et al., 2006). Countless instances of 2) 

exist; notable ones include H3K4 methylation and H3K9 methylation. H3K4 

methylation is catalyzed and bound by the trithorax group (Trxg) proteins 

(Wysocka et al., 2005) and has also been shown to inhibit binding of the NuRD 

complex (Zegerman et al., 2002). H3K9 methylation is associated with gene 

repression and can trigger heterochromatin formation at centromeres and other 

repetitive regions of the genome when bound by HP1 (Bannister et al., 2001; 

Lachner et al., 2001). Several families of chromatin modifiers have been 

identified that both catalyze and remove histone methylation, acetylation and 

other modifications, and the characteristic domains of chromatin remodelers 

(described in the previous section) have similarly evolved to recognize specific 

modifications (e.g. SWI/SNF family bromodomains bind acetylated histones, and 

CHD family chromodomains and PHD domains recognize methylated histones), 

implicating histone modifications in recruiting regulatory complexes to their target 

genes and in processes such as transcription, replication, and DNA repair 
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(Kouzarides, 2007; Lawrence et al., 2016).  While a particular modification can 

be associated with both active and repressed genes in different contexts, 

acetylation is generally correlated with active genes, as are some methyl marks 

such as promoter-proximal H3K4me3 and H3K36me3 in gene bodies. 

Deacetylation and other methyl marks such as H3K9me3 and H3K27me3 are 

correlated with silenced genes. It is important to note however, that while a 

particular modification is often mapped to a large subset of active or repressed 

genes, there is often little evidence that that modification directly activates or 

silences said genes.  

  Lysine 56 of histone H3 can be acetylated or methylated and associated 

with both transcriptional activation and repression (Hyland et al., 2005; Jack et 

al., 2013; Xu et al., 2005). H3K56ac is catalyzed by the RTT109 histone 

acetyltransferase and ASF1 chaperone in yeast (Driscoll et al., 2007; Han et al., 

2007; Schneider et al., 2006; Tsubota et al., 2007) and by p300/CBP and GCN5 

in Drosophila and mammals (Das et al., 2009; Tjeertes et al., 2009). Located in 

the globular histone fold domain of H3 (see Chapter III, Figure 3.1), H3K56 is 

thought to form water-mediated contacts between the nucleosome and the DNA 

(Luger et al., 1997; Masumoto et al., 2005); acetylation of H3K56 is believed to 

enhance nucleosomal unwrapping and “breathing”, allowing for increased DNA 

accessibility and remodeling by SWI/SNF complexes (Neumann et al., 2009). 

H3K56ac is required to recruit SWI/SNF to activate histone genes in vivo (Xu et 

al., 2005) and also for chromatin assembly both during DNA replication by the 

CAF-1 chaperone and in response to DNA damage (Chen et al., 2008a; Li et al., 
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2008; Masumoto et al., 2005). More recently in yeast, it has been shown that a 

K56 hyperacetylation mimic, H3K56Q promotes H2A-H2A.Z dimer exchange by 

the SWR-C chromatin remodeler, resulting in decreased promoter-proximal 

H2A.Z (Watanabe et al., 2013). H3K56ac and H2A.Z both mark promoter-

proximal nucleosomes with high turnover rate (Kaplan et al., 2008; Raisner et al., 

2005; Rufiange et al., 2007) and are thus associated with transcriptional 

activation. How these histone marks regulate gene expression remains largely 

undescribed, although loss of H3K56ac was recently shown to cause decrease in 

RNA polymerase II occupancy at sites of both coding and noncoding 

transcription (Rege et al., 2015). 

 H3K56ac has been detected in only very small amounts in mammalian 

cells (1% of histone H3 vs. ~30% in yeast) and its functions in mammals are still 

mostly unknown. In ESCs H3K56ac is thought to be important for both 

pluripotency and differentiation through its interactions with OCT4, SOX2, and 

NANOG at pluripotency genes, and through its enrichment at developmental 

regulators such as the HOX genes during differentiation (Tan et al., 2013; Xie et 

al., 2009). Deletion of Sirt6, a NAD-dependent deacetylase that targets H3K56, 

leads to de-repression of OCT4, SOX2, and NANOG during differentiation, and 

mis-expression of markers from all three germ layers (Etchegaray et al., 2015). 

 

Histone variants and chaperones  

Because the packaging of cellular DNA is essential in all cells, histones 

are among the most highly conserved proteins in eukaryotes. In mice and 
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humans the canonical histone genes are arranged in large, multicopy clusters 

distributed onto three chromosomes (Marzluff et al., 2002). The gene clusters are 

transcribed in a cell cycle-dependent manner during S phase, and histone 

transcripts possess a unique structure without introns and terminating in a stem-

loop structure in place of the typical poly A tail (Dominski and Marzluff, 1999) that 

allow for large quantities of histones to be synthesized when DNA is replicated. 

Although canonical histones make up the majority of the nucleosomes in the 

genome, a number of variants exist for every histone (H4 variants are only known 

to exist in a few lower eukaryotes) each with a unique gene sequence(s) and 

specific genomic localization(s). The histone variants are encoded by one or two 

genes separately from the histone clusters, and are expressed and deposited on 

chromatin throughout the cell cycle. While histone variants can be removed or 

exchanged from nucleosomes by ATP-dependent remodelers, histone 

chaperones function to assemble newly synthesized histones into nucleosomes. 

Chaperones can be specific to different histone variants; most notably the 

Chromatin Assembly Factor 1 (CAF-1) chaperone complex incorporates the core 

histone H3 variants H3.1 and H3.2 into chromatin following DNA replication, 

while the H3.3 variant is deposited by the HIRA, DAXX/ATRX, and p400 

complexes independently of replication (Drané et al., 2010; Goldberg et al., 2010; 

Lewis et al., 2010; Pradhan et al., 2016; Tagami et al., 2004). H3.3 differs from 

H3.1 and H3.2 by four or five amino acids (see Chapter III, Figure 3.1A) and the 

recognition of H3.3 by separate chaperones is specified by the changed amino 

acids in the histone fold domain (Ahmad and Henikoff, 2002). In addition to H3.3, 
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other H3 variants exist in mammals including the centromere- and testis-specific 

variants CENP-A and H3t (reviewed in (Szenker et al., 2011)).  

 H3.3 has traditionally been associated with actively transcribed genes and 

enhancers and is enriched for “active” histone modifications (Goldberg et al., 

2010; Hake et al., 2006; McKittrick et al., 2004; Wirbelauer et al., 2005). H3.3 

also co-localizes with H2A.Z on nucleosomes at many promoters and enhancers, 

such nucleosomes are believed to be less stable than nucleosomes containing 

canonical histones and thus more conducive to creating open chromatin structure 

and activating transcription (Chen et al., 2013a; Jin and Felsenfeld, 2007; Jin et 

al., 2009). Surprisingly, H3.3 is also associated with gene repression. It is 

enriched at heterochromatic regions and in ESCs is involved in silencing of 

endogenous retroviral elements (Elsässer et al., 2015; Goldberg et al., 2010). 

Furthermore, PRC2-mediated H3K27me3 is reduced in H3.3-depleted ESCs at 

developmental genes, resulting in increased expression of trophectoderm and 

other lineage markers (Banaszynski et al., 2013). 

 

Unique chromatin structure of embryonic stem cells 

 ESCs must precisely regulate the expression of different genes in order to 

retain both the capacity for self-renewal and the ability to differentiate. Depending 

on differentiation signals received, pluripotent ESCs are able to upregulate 

specific subsets of genes corresponding to any lineage. Thus, the structure and 

features of ESC chromatin largely differ from that of most somatic cell types. 

Most notably, ESCs exhibit a dynamic, “open” chromatin structure, which can be 
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visualized under the microscope by reduced staining for the heterochromatin 

markers HP1 and H3K9me3 as compared with differentiated cells (Meshorer and 

Misteli, 2006). In contrast to euchromatin, heterochromatin consists of highly 

condensed nucleosomes and its formation often results in gene silencing. As 

such, global transcription levels are elevated in ESCs (Efroni et al., 2008) and 

ESC knockdown of the chromatin remodeler Chd1 has been shown to trigger 

heterochromatin formation and reduced pluripotency (Gaspar-Maia et al., 2009). 

ESC chromatin is also enriched for “active” histone modifications such as 

H3K4me3 and H3K9ac. Another hallmark of pluripotent chromatin is a subset of 

gene promoters marked with both an active (H3K4me3) and a repressive 

(H3K27me3) histone modification by the Trxg and PRC2 complexes respectively. 

These “bivalent” genes are lowly expressed in undifferentiated cells or thought to 

be “poised” for activation in response to developmental signaling (Azuara et al., 

2006; Bernstein et al., 2006). During differentiation one of the marks is typically 

lost from the promoter while the other becomes enriched depending on whether 

the gene is expressed or silenced. Consistent with their poised state, bivalent 

genes tend to have low levels of DNA methylation, another repressive epigenetic 

mark, with he CpG islands of germline and Polycomb genes becoming 

increasingly methylated as ESCs differentiate and commit to specific lineages 

(Mohn et al., 2008).  

 

DNA methylation 
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 DNA methylation primarily occurs at the 5’ position of cytosine bases that 

immediately precede a guanine (CpG dinucleotides). Methylated cytosine (5mc) 

is conserved in many organisms ranging from fungal to plant and mammalian 

species and has broad functions in transcriptional control, genomic imprinting, 

and silencing of transposons (Goll and Bestor, 2005). Methylation in mammals is 

catalyzed by the DNA methyltransferases DNMT3A, DNMT3B, and DNMT1; an 

additional DNMT family member DNMT3L modulates methylation levels in ESCs 

and germ cells (Bourc'his et al., 2001; Neri et al., 2013). DNMT3A and 3B are “de 

novo” methyltransferases that establish methylation patterns during development 

and are required for embryonic viability in mouse (Okano et al., 1999), while 

DNMT1 largely methylates hemimethylated CpGs during DNA replication to 

maintain established methylation patterns. Although most mammalian CpGs are 

methylated, regions containing dense CpG clusters ranging from a few hundred 

to ~1000 base pairs are found at transcription start sites (TSSs) and are 

generally hypomethylated (Deaton and Bird, 2011). These CpG islands (CGIs) 

mark most “housekeeping” genes and tend to be enriched for H3K4me3 and 

other histone modifications associated with active transcription (Thomson et al., 

2010). In ESCs, pluripotency genes silenced upon differentiation become 

methylated while concurrently losing active and acquiring repressive histone 

modifications, thus enabling repressive heterochromatin formation at the gene 

promoters (reviewed in (Smith and Meissner, 2013)). Loss of DNA 

methyltransferases and methylation does not affect ESC self-renewal (Tsumura 

et al., 2006), although Dnmt3a and Dnmt3b double null cells are unable to 
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differentiate to most germ layers (Jackson et al., 2004). ESCs with decreased 

methylation resulting from Dnmt1 null mutations appear to upregulate 

trophectodermal markers (Ng et al., 2008) suggesting that DNA methylation 

functions to prevent otherwise pluripotent ESCs in the inner cell mass from 

forming extraembryonic tissues. Through its association with heterochromatin 

and repressive histone modifications, DNA methylation is linked to gene 

silencing. The primary mechanisms by which methylation could repress 

transcription are 1) 5mc at promoter regions could physically block transcription 

factors or RNA polymerase II from binding; 2) methylation could alter 

nucleosome occupancy or positioning at promoters and/or gene bodies to create 

repressive chromatin structure; or 3) methylation can recruit methyl-binding 

domain (MBD) proteins which themselves recruit repressive protein complexes. 

The MBD proteins with the exception of MBD3 bind methylated DNA (Klose and 

Bird, 2006) and are linked to transcriptional co-repressors (Jones et al., 1998; 

Kondo et al., 2005; Nan et al., 1998; Ng et al., 1999; Sarraf and Stancheva, 

2004; Zhang et al., 1999). Most of these co-repressors are histone deacetylases, 

although MBD1 associates with the H3K9 methylase SETDB1 to repress 

transcription during DNA replication (Sarraf and Stancheva, 2004). Functions of 

the MBD2 and MBD3 proteins will be described in more detail in the following 

sections.  

 DNA methylation can be lost either through failure of DNMT1 to restore 

methylation during replication or through active demethylation by TET family 

enzymes, which oxidize 5mc to 5-hydroxymethylcytosine (5hmc), 5-
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formylcytosine (5fc), and 5-carboxycytosine (5cac) (He et al., 2011; Ito et al., 

2010; 2011; Tahiliani et al., 2009). The oxidized intermediates are then converted 

back to unmodified cytosines by the base excision repair pathway (Bhutani et al., 

2011; Cortellino et al., 2011)). Although it is possible that 5hmc is merely an 

intermediate in DNA demethylation, it is very likely that 5hmc and the TET 

proteins have important cellular functions. The TET1 protein was identified as a 

fusion partner of the methyltransferase MLL in acute myeloid leukemia (Lorsbach 

et al., 2003; Ono et al., 2002) and TET2 is frequently mutated in leukemia 

patients (Cimmino et al., 2011; Wu and Zhang, 2011). In ESCs, TET1 and TET2 

KD ESCs have self-renewal defects and similarly to Dnmt1 mutants can 

differentiate into trophectoderm (Ito et al., 2010; Koh et al., 2011)), although Tet1 

null mice are still viable (Dawlaty et al., 2011). Although current evidence 

indicates that TET1 and TET2 are regulated by OCT4 and the core pluripotency 

factors (Koh et al., 2011; Wu et al., 2013), and our lab has identified 5hmc as a 

possible recruitment module for MBD3 and the NuRD co-repressor complex 

(Yildirim et al., 2011) see below) future studies are necessary to more precisely 

determine the roles of TET proteins and 5hmc in ESCs and development.  

 
The Nucleosome Remodeling and Deacetylase Complex 
 
 The NuRD complex (originally known as the Mi-2 complex) was isolated 

and characterized by four separate groups in 1998 (Tong et al., 1998; Wade et 

al., 1998; Xue et al., 1998; Zhang et al., 1998). The first three groups sought to 

understand how chromatin-remodeling complexes might regulate transcription 

and to that end were biochemically characterizing HeLa cell histone deacetylase 
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or SWI2/SNF2 remodeler complexes. The remaining group isolated the related 

deacetylase activity from Xenopus egg extracts following an observation that 

deacetylation was important for normal Xenopus development. Each of the 

studies described a complex containing parallel ATP-dependent nucleosome 

remodeling activity and histone modification (deacetylase) activity, a property 

unique to NuRD. The complex is highly conserved in metazoans and contains at 

least one subunit from each of five major protein families (Figure 1.1). Several 

groups have reported additional proteins that co-purify with NuRD in different 

tissue and cell types (reviewed in (McDonel et al., 2009)). Because deacetylation 

is traditionally associated with transcriptional repression, NuRD is primarily 

known as a repressive complex, and the ATP-dependent remodeling activity is 

thought to block RNA polymerase II and transcription factors at promoters by 

increasing nucleosome occupancy (Denslow and Wade, 2007; Hainer and 

Fazzio, 2015; Yildirim et al., 2011). In addition to transcriptional control, NuRD 

activity is also associated with higher order chromatin assembly, maintenance of 

genome stability, hematopoietic stem cell differentiation, various human cancers, 

and aging (Lai and Wade, 2011; Pegoraro et al., 2009; Yoshida et al., 2008).  

 

Overview of NuRD subunits 

 In support of the idea that multiple different NuRD complexes and sub-

complexes are adapted for highly specific functions, the NuRD complex is highly 

modular, with many subunits interchangeable, mutually exclusive, or present only 

in certain cell types. The enzymatic subunits of the canonical NuRD complex are 
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an ATP-dependent remodeler (CHD3 or CHD4, also known as MI2-α and MI2-β), 

and two histone deacetylases (HDAC1 and HDAC2). Other subunits are the 

metastasis-associated proteins MTA1, MTA2, or MTA3, WD40 repeat proteins 

RBBP4 and RBBP7 (also known as RBAP48 and RBAP46), the zinc finger 

proteins p66α and p66β (also known as GATAD2A and GATAD2b), and the 

methyl binding domain proteins MBD2 or MBD3. The exact stoichiometries of 

each subunit are still unknown, but a recent study using applied mass 

spectrometry analysis suggests that there is a single ATP remodeling subunit 

(either CHD3 or CHD4) and a single deacetylase (HDAC1 or HDAC2) (Smits et 

al., 2013). The study also proposes three subunits of MTA1, 2, or 3; six subunits 

of RBBP4 and/or RBBP7; one MBD3; two subunits of p66α or p66β (Figure 1.1), 

and two of an additional DOC1 subunit. Using structural studies, Schwabe and 

colleagues propose an alternative stoichiometry where an MTA homodimer binds 

two HDAC and four RBBP4/7 subunits (Millard et al., 2016; 2013).  

Several subunits have been identified as members of related chromatin 

modifying complexes and sub-complexes such as CoREST, NODE, and MeCP1 

(Liang et al., 2008; Ng et al., 1999; You et al., 2001), and NuRD’s deacetylase 

activity can function independently of the chromatin remodeling subunit in vitro 

(Low et al., 2016), suggesting that NuRD’s enzymatic activites can act either 

separately, together within the complex, and/or in conjunction with other 

chromatin remodelers. Numerous peripheral subunits are present in functionally 

specialized NuRD complexes. One such example is LSD1, an H3K4 and H3K9 

demethylase which is co-enriched with NuRD at enhancers in ESCs (Whyte et 
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al., 2012) and binds the MTA subunits of NuRD in breast cancer cells (Wang et 

al., 2009b). LSD1 and NuRD-mediated enhancer activity is essential for proper 

ESC differentiation, while Wang et al. propose that LSD1 inhibits breast cancer 

metastasis. A second NuRD-interacting protein is FOG1, which interacts with 

NuRD in erythroid progenitors and is important for hematopoietic differentiation 

(Gao et al., 2010; Hong et al., 2005). A third such example is BCL6, a 

transcriptional repressor that functions with the NuRD MTA3 subunit to control B 

lymphocyte cell fate (Fujita et al., 2004). The canonical NuRD subunits are 

described below, with emphasis placed on their function in ESCs.  

 The CHD3 and CHD4 proteins are ATP-dependent nucleosome 

remodeling subunits. Also known as MI2-α and MI2-β, they were first identified in 

dermatomyositis patients as autoantigens (Seelig et al., 1995). Like all CHD 

family members, CHD3 and 4 contain the SWI/SNF ATPase/helicase domain, 

and two tandem-terminal chromodomains, which can bind methylated H3 or DNA 

and are required for nucleosome remodeling (Clapier and Cairns, 2009). In 

addition to their chromodomains and ATPase domain, CHD3 and 4 also each 

contain two plant homeodomain (PHD) fingers, which also bind methylated H3 

tails (Musselman et al., 2012). In ESCs, CHD4 KD leads to loss of self-renewal 

capability, decreased proliferation, and increased embryoid body (EB) 

differentiation as measured by downregulation of the pluripotency markers OCT4 

and TBX3 and upregulation of germ layer marker genes (Zhao et al., 2017). 

Recently, a third CHD family member, CHD5 has also been co-purified with the 

canonical NuRD subunits (Kolla et al., 2015; Nitarska et al., 2016; Quan et al., 
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2014). CHD5 is required along with CHD3 and CHD4 at distinct stages of 

neuronal differentiation and brain development, and the CHD subunits form 

mutually exclusive NuRD complexes that specifically regulate genes during the 

different developmental stages (Egan et al., 2013; Nitarska et al., 2016). CHD5 is 

not highly expressed in most tissue types outside of the brain and the testis, 

where it is also necessary for spermatogenesis (Li et al., 2014; Zhuang et al., 

2014). 

 The HDAC1 and HDAC2 subunits are Class I lysine deacetylases and 

homologs of the yeast RPD3 deacetylase. In ESCs, HDAC1 binds promoters of 

pluripotency genes and cells treated with the HDAC inhibitor trichostatin A (TSA) 

exhibited a flattened morphology consistent with differentiation (Kidder and 

Palmer, 2012). Interestingly, the expression of a subset of pluripotency genes 

decreased after TSA treatment, suggesting that HDAC1 could be linked to gene 

activation as well as repression. Other studies have provided additional evidence 

for a role for HDACs in transcriptional activation (Zupkovitz et al., 2006).  

 The role of the MTA1, MTA2, and MTA3 subunits within the NuRD 

complex and in ESCs is largely unknown. MTA1 and 2 have been widely 

characterized in cancer metastases, particularly in breast cancer where high 

MTA1 expression levels have been linked to tumorigenesis (reviewed in Lai and 

Wade, 2011).  Each MTA family member contains four conserved domains: 

bromo-adjacent homology (BAH), SANT, EGL-27 and MTA1 homology (ELM), 

and GATA zinc finger. The specific function(s) of each domain are also unknown, 

but are hypothesized to be involved in recognition and binding to other NuRD 
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subunits and mediating interactions between the complex and other proteins. In 

support of this hypothesis, a study by Kumar and colleagues reported that 

methylated MTA1 is involved in NuRD assembly and is also required for CHD4 

nucleosome remodeling in vitro (Nair et al., 2013). 

 The RBBP4 and RBBP7 subunits (also named RBAP48 and 46 for their 

respective molecular weights) are members of the WD40 repeat protein family. 

WD40 proteins exhibit a characteristic seven-bladed β-sheet propeller structure 

with each blade approximately 40 amino acids in length and flanked by N- and C-

terminal helical tails. RBBP4 and RBBP7 were first identified and named for their 

interaction with the retinoblastoma tumor suppressor protein and later shown to 

bind histones. One or both of RBBP4 or RBBP7 have been co-purified with 

several additional complexes such as the Polycomb Repressive Complex 2 

(PRC2), and Chromatin Assembly Factor 1 (CAF1), and Nucleosome 

Remodeling Factor (NURF) complexes, and the RBBP proteins are thought to be 

important both as structural subunits and in recruiting chromatin modifiers to their 

genomic targets through their histone binding properties.  

The MBD3 and MBD2 subunits are mutually exclusive within the NuRD 

complex (Le Guezennec et al., 2006). As the biology of MBD3/NuRD is central to 

the work presented in Chapter II of this thesis, the origins of MBD3 and its known 

functions in ESCs will be discussed in more detail in the following section. 

Identified alongside MBD3 and MBD4, MBD2 contains a domain (the MBD), 

which binds methylated CpG dinucleotides on DNA (Hendrich and Bird, 1998) 

and a C-terminal transcription repression domain. As such, MBD2 is thought to 
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function in recruiting NuRD to its target genes as a “reader” of methylated DNA. 

MBD3 is the only MBD protein that does not bind methylated DNA, and contains 

a glutamate repeat domain of unknown function at its C-terminus. Despite always 

associating with separate NuRD complexes, MBD2 and MBD3 localize 

interdependently to many of the same genomic regions (Günther et al., 2013; 

Hainer et al., 2016). However, Mbd2 and Mbd3 exhibit very different phenotypes 

in vivo- Mbd3 null mice are embryonic lethal at 8.5 d.p.c., while Mbd2-null mice 

survive to adulthood, though Mbd2 null females exhibited abnormalities in 

maternal behavior resulting in smaller offspring (Hendrich et al., 2001). Both 

MBD2 and MBD3 bind the p66α and p66β subunits (Brackertz et al., 2002). Also 

known as GATAD2a and GATAD2b, these proteins each contain a conserved 

GATA zinc finger domain that can bind histone tails, although binding appears to 

be inhibited if histone tails are acetylated (Brackertz et al., 2006). p66α and p66β 

also interact with the HDAC1 and RBBP7 subunits in a sumolyation-dependent 

manner, indicating that p66α and p66β play both structural and recruitment roles 

within NuRD (Gong et al., 2006). 

It is clear from the above overview that there is still much to be discovered 

about the biology of the NuRD complex. While there is a general consensus on 

the identities of the canonical subunits, the list of peripheral proteins interacting 

with NuRD continues to expand, one of which is a main focus of this thesis. 

Further studies will be necessary to determine how each subunit functions both 

within and outside the context of a NuRD complex or subcomplex, and whether 

these functions are universal or specific to particular cell or tissue types. It is well 
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established that NuRD impacts both chromatin structure and transcription in 

many cell types, and much present work aims to elucidate how NuRD is recruited 

to different target genes, the precise mechanism(s) by which the complex effects 

gene repression, and how crosstalk between NuRD and other chromatin 

regulatory complexes affects these processes. The following chapter will focus 

on a single subunit, MBD3 and its role in NuRD activity in ESCs.  

 

Functions of MBD3/NuRD in embryonic stem cells and development 

The first discovered methyl-DNA binding proteins were MECP1 and 

MECP2 (Lewis et al., 1992; Meehan et al., 1989). The biology of MECP2 became 

of particular interest when mutations in the MeCP2 gene were found to cause 

Rett Syndrome, an X-linked neurodevelopmental disease that is lethal in males 

(Amir et al., 1999). Hendrich, Bird, and colleagues subsequently identified Mbd3 

and its counterparts Mbd1, 2, and 4 while searching an EST (expressed 

sequence tag) database for additional methyl binding domain proteins (Cross et 

al., 1997; Hendrich and Bird, 1998). Two MBD3 isoforms, MBD3A and MBD3B 

were originally identified with a third, MBD3C, described later in mouse (Hendrich 

and Bird, 1998; Kaji et al., 2006). The MBD is truncated in MBD3B at amino 

acids 5-36 and is completely absent in MBD3C (see Chapter II).  

Unlike MECP2 and the other Mbd family members, MBD3 does not bind 

methylated DNA (Hendrich and Bird, 1998; Zhang et al., 1999), despite its 

sequence being ~70% similar to that of MBD2. Analysis of the MBD3A MBD 

reveals that two amino acids present in mice and humans, His-30 and Phe-34, 



	
	

	

27	

are replaced by Lys and Tyr respectively in most non-mammalian species 

(Hendrich and Tweedie, 2003). Although MBD3’s MBD does not bind 

methylcytosine (5mc), data have shown that mutating His-30 and Phe-34 back to 

Lys and Tyr restores the ability of MBD3 to bind 5mc (Saito and Ishikawa, 2002). 

Mbd3 appears to bind more selectively to hydroxymethylated DNA and 

unmethylated DNA than methylated DNA in vitro (Mellén et al., 2012; Yildirim et 

al., 2011) and MBD3 and 5’hydroxymethylcytosine (5hmc) map to overlapping 

regions of the genome in ESCs (Wu et al., 2011; Yildirim et al., 2011). Cytosine 

bases methylated at the 5’ position (5mc) are converted to 5hmc by the 

hydroxylase TET1 (Tahiliani et al., 2009) and Tet1 KD ESCs exhibit phenotypes 

similar to Mbd3 KD ESCs (Ito et al., 2010; Koh et al., 2011). Although our lab’s in 

vitro binding data has been contested by data from other groups (Hashimoto et 

al., 2012; Spruijt et al., 2013), we observed that genome-wide MBD3 localization 

is lost in Tet1 KD cells and Tet1 catalytic-inactive mutant cells (Hainer et al., 

2016; Yildirim et al., 2011), indicating that TET1 and 5hmc are important for 

MBD3/NuRD to bind its target genes in ESCs.  

In an RNAi screen to identify chromatin regulators important for murine 

ESC self-renewal, our lab identified MBD3 as important for maintenance of the 

ESC state (Fazzio et al., 2008). It was further observed that nucleosome 

occupancy is decreased and RNA Polymerase II recruitment is increased at 

MBD3 target genes in Mbd3 KD ESCs (Yildirim et al., 2011), indicating that 

MBD3 is a transcriptional repressor. Additionally, Mbd3 null mice are nonviable 

(Hendrich et al., 2001) and ESCs derived from Mbd3 null mouse embryos are 
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capable of self-renewal in culture in the absence of leukemia inhibitory factor 

(LIF) and are compromised in pluripotency, with differentiation skewed toward 

the trophectoderm lineage (Kaji et al., 2006; 2007; Zhu et al., 2009) MBD3 was 

subsequently shown to be important for differentiation and development through 

silencing of a subset of pluripotency genes (Zfp42, Tbx3, Klf4, and Klf5) and the 

expression of these genes persists after removal of LIF in Mbd3 KD ESCs 

(Reynolds et al., 2012). From this study, it was hypothesized that MBD3/NuRD 

could function to oppose the LIF/STAT3 pathway, which activates the same 

subset of pluripotency genes. In support of this hypothesis, our lab found that 

MBD3 interacts with and localizes to several hundred of the same genes as the 

esBAF catalytic subunit BRG1. BRG1 is required for STAT3 to localize to many 

of its target genes (Ho et al., 2011) and MBD3 and BRG1 were observed to 

oppositely regulate expression of their shared target genes (Yildirim et al., 2011).  

Furthermore, MBD3 is essential for NuRD complex assembly (Kaji et al., 2006) 

and NuRD target genes exhibit increased H3K27 acetylation and decreased 

H3K27 trimethlyation in Mbd3 null ESCs (Reynolds et al., 2011), suggesting that 

MBD3 regulates pluripotency genes through NuRD-mediated deacetylation and 

recruitment of the H3K27 methyltransferase Polycomb Repressive Complex 2 

(PRC2). Taken together, the abovementioned studies point towards a model 

where MBD3/NuRD works to maintain equilibrium in ESC target gene expression 

alongside other chromatin modifiers which in turn allows ESCs to flexibly 

coordinate the self-renewal or differentiation processes (Hu and Wade, 2012). 

Although there are some discrepancies in ChIP binding profiles as to exactly 
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where MBD3/NuRD maps in the ESC genome it appears that like PRC2, 

MBD3/NuRD is a largely repressive complex and functions in opposition to gene 

activating complexes like esBAF and STAT3.  

The role of MBD3/NuRD in iPSC reprogramming is controversial. Two 

groups provided initial evidence that Mbd3 deletion greatly enhances 

reprogramming efficiency (Luo et al., 2013; Rais et al., 2014) with Rais et al. 

reporting successful reprogramming of nearly 100% of induced cells to 

pluripotency. This result was subsequently challenged by work from Hendrich, 

Silva, and colleagues who reported that Mbd3 is required for both initial and later 

stage reprogramming of neural stem cells and as well as reprogramming of 

epiblast stem cells to naïve pluripotency (Santos et al., 2014). To date the 

discrepancies between these data remain largely unresolved (Bertone et al., 

2015; Zviran et al., 2015), although differing reprogramming reagents/contexts 

and/or experimental conditions are likely contributors to the contradictory results. 

 

Functions of WDR5 in embryonic stem cells 

WDR5 (WD repeat protein 5) is conserved from yeast to humans and is a 

member of several transcriptional co-activator complexes (Cai et al., 2010; Dou 

et al., 2006; 2005; Ruthenburg et al., 2006). It is most commonly known as a 

subunit of SET/MLL (SuVar3-9, Enhancer of zeste and Trithorax/Mixed Lineage 

Leukemia), a histone methyltransferase complex homologous to the yeast 

COMPASS complex. The SET/MLL proteins are also homologs of the Drosophila 

trithorax group (Trxg) proteins, which were first identified as positive regulators of 
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the Drosophila Hox gene cluster, and thought to function to counteract the 

Polycomb Group (Pcg) negative regulator proteins (reviewed in (Schuettengruber 

et al., 2011)). COMPASS was subsequently purified from yeast as the first H3K4 

methylase (Miller et al., 2001; Roguev et al., 2001). H3K4 methylation is 

catalyzed by the SET1 subunit (encoded by the MLL gene in humans and mice) 

and the complex can catalyze all forms of H3K4 methylation (H3K4me1, 2, and 

3). WDR5 and the other complex core subunits ASH2L and RBBP5 are essential 

for this catalytic activity in yeast and mammals. WDR5 binds di- and tri-

methylated H3K4 and has been shown to activate transcription in reporter gene 

assays and to be required for HOX gene expression maintenance (Wysocka et 

al., 2005). However, although the H3K4me3 mark is widely associated with 

transcriptional activation as it localizes to the promoters of many active genes 

(Bernstein et al., 2002; Santos-Rosa et al., 2002), it does not appear to itself 

directly activate these genes.  

In ESCs, WDR5 is required for proper self-renewal, and its expression 

decreases along with H3K4me3 levels during differentiation (Ang et al., 2011). 

Consistent with these observations, Ang et al. further showed that Wdr5 KD 

MEFs did not reprogram to iPSCs as efficiently as wildtype, and that WDR5 both 

physically interacts with and binds to overlapping genomic regions as OCT4, 

likely co-regulating genes important for ESC maintenance. WDR5’s activity within 

the SET/MLL complex is of particular importance in maintaining H3K4me3 at the 

aforementioned “bivalent” genes in ESCs. Another mechanism by which WDR5 

maintains ESC chromatin state is through histone acetylation. WDR5 was also 
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purified as a member of MOF (Male absent On First), a protein complex with both 

H4K16 acetyltransferase and H3K4 methyltransferase activity (Dou et al., 2005). 

Like H3K4me3, H4K16ac is associated with transcriptional activation, and Mof 

null ESCs exhibit similar self-renewal and pluripotency defects as Wdr5 KD 

ESCs (Li et al., 2012). Additionally, there are two types of MOF-containing 

complexes in Drosophila and mammals, the male-specific lethal (MSL) and non-

specific lethal (NSL) and WDR5 is also a member of both (Zhao et al., 2013). 

MSL and NSL bind different genomic regions and have separate functions in 

ESCs (Chelmicki et al., 2014; Ravens et al., 2014), and the exact function(s) of 

WDR5 in each of these MOF complexes is still unknown.  

An additional mechanism for WDR5 function in ESCs is through 

interaction with lncRNAs. LncRNAs are >200bp RNAs that are typically 

processed (contain a 5’cap and polyA tail) and are not usually translated 

(Guttman et al., 2013; Wang and Chang, 2011). Following up on studies 

characterizing interactions between WDR5 and lncRNAs (Gomez et al., 2013; 

Wang et al., 2011), Howard Chang and colleagues identified ~1000 RNAs 

binding to WDR5 in ESCs using a variant of RNA immunoprecipitation, 

RNA:protein immunoprecipitation in tandem (RIPiT-Seq, (Yang et al., 2014)). 

Through additional analysis of lncRNA binding site mutants, Yang et al. showed 

that lncRNA binding to WDR5 was required for stable H3K4 trimethylation and 

proper expression of pluripotency genes in ESCs. Additionally, WDR5 protein 

levels were reduced in the lncRNA binding site mutants, suggesting a model 

where lncRNA binding would stabilize WDR5 levels, thus allowing SET/MLL 
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complex assembly and activity at target genes. Taken together, these studies 

establish that WDR5 can regulate ESC chromatin and gene expression through 

multiple complexes and mechanisms, and that Wdr5 is likely essential for proper 

ESC function.
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	 	 Figure 1.1: The NuRD complex 
   

(A) Schematic of the NuRD complex showing predicted subunit stoichiometries  
(Smits et al., 2013). (B) Schematic of canonical NuRD subunit families and their  
known domains. See text for details.
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CHAPTER II: AN ES CELL-SPECIFIC NURD COMPLEX FUNCTIONS 

THROUGH INTERACTION WITH WDR5 

 

PREFACE 

 
Chapter II is derived from an article of the same name published in Stem Cell 
Reports under a Creative Commons License: 
 
Ee, L.S., McCannell, K.N., Tang, Y., Fernandes, N., Hardy, W.R., Green, M.R., 
Chu, F., and Fazzio, T.G. (2017). Stem Cell Reports 8, 1488-1496. 
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Mass spectrometry experiments were performed in collaboration with Feixia Chu, 

Yang Tang, and Nancy Fernandes (Figure 2.2D; Tables 2.1 and 2.2). 
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(Figure 2.4C-E). 

 

All other experiments were performed and analyzed by Ly-sha Ee and designed 

by Ly-sha Ee and Tom Fazzio. Ly-sha Ee and Tom Fazzio wrote the manuscript 

with input from the other authors. 
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ABSTRACT 

The Nucleosome Remodeling and Deacetylase (NuRD) complex is a 

chromatin regulatory complex that functions as a transcriptional co-repressor in 

metazoans. The NuRD subunit MBD3 is essential for targeting and assembly of a 

functional NuRD complex as well as embryonic stem cell (ESC) pluripotency. 

Three MBD3 isoforms (MBD3A, MBD3B, and MBD3C) are expressed in mouse. 

Here, we find that the MBD3C isoform contains a unique 50–amino acid N-

terminal region that is necessary for MBD3C to specifically interact with the 

histone H3 binding protein WDR5. Domain analyses of WDR5 reveal that the H3 

binding pocket is required for interaction with MBD3C. We find that while Mbd3c 

KO ESCs differentiate normally, MBD3C is redundant with the MBD3A and 

MBD3B isoforms in regulation of gene expression, with the unique MBD3C N-

terminus required for this redundancy. Together, our data characterize a unique 

NuRD complex variant that functions specifically in ESCs. 

 

INTRODUCTION 

Embryonic stem cells (ESCs) are characterized by two unique properties: 

1) self-renewal, the ability to indefinitely produce more stem cells and 2) 

pluripotency, the ability to differentiate into any cell type. To maintain their cellular 

identity ESCs utilize a network of core transcription factors, which bind and 

regulate pluripotency genes and differentiation genes in response to 

developmental signaling (Boyer et al., 2005; Kim et al., 2008). To achieve this 

flexibility in gene expression ESCs maintain an “open” chromatin structure that 
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contains more euchromatin than heterochromatin (Meshorer and Misteli, 2006) 

as well as unique patterns of histone modifications. Various protein complexes 

can remodel this chromatin structure (and thus regulate gene expression 

patterns) by modifying nucleosome positioning as well as through 

posttranslational modification of histones (Fazzio and Panning, 2010). 

The Nucleosome Remodeling and Deacetylase (NuRD) complex is unique 

amongst chromatin regulators because it couples ATP-dependent nucleosome 

remodeling activity with histone modification (deacetylase) activity (Tong et al., 

1998; Wade et al., 1998; Xue et al., 1998; Zhang et al., 1998). NuRD alters 

chromatin structure near its target genes by repositioning local nucleosomes to 

block the binding of transcriptional machinery at gene promoters, thus functioning 

primarily as a co-repressor (Denslow and Wade, 2007). The NuRD subunit 

MBD3 can also act as a transcriptional repressor, as we have observed that 

nucleosome occupancy is decreased and RNA Polymerase II recruitment is 

increased at MBD3 target genes in Mbd3 knockdown (KD) ESCs (Yildirim et al., 

2011). However, three MBD3 isoforms (MBD3A, B and C) are expressed in 

mouse ESCs and only MBD3A has a full-length MBD (Kaji et al., 2006). Thus, 

the possibility exists for formation of multiple NuRD complexes of varying subunit 

combinations and functional specificities. For example, each MBD3 isoform could 

form unique complexes (with NuRD and/or other chromatin regulators) and 

recruit said complexes to its genomic targets through different mechanisms. We 

sought to investigate this possibility in the present study.  

 



	
	

	

37	

Here, we have characterized a unique variant of the NuRD chromatin 

remodeling complex that harbors MBD3C, an ESC-specific isoform of MBD3, as 

well as the histone H3 binding protein WDR5. MBD3C is expressed almost 

exclusively in ESCs via an alternative CpG island (CGI)–containing promoter 

located in the second intron of the Mbd3 gene. We further show that MBD3C 

contains a unique 50–amino acid N-terminus that is necessary for WDR5 

interaction. MBD3C interacts with the WDR5 H3 binding pocket through an 

arginine-containing motif also utilized by MLL1 for WDR5 binding. RNA-seq 

analysis revealed that the three MBD3 isoforms are largely redundant for gene 

regulation, since knockout (KO) of all three isoforms had a more severe effect on 

gene expression than individual KO of Mbd3c or simultaneous KO of Mbd3a and 

b. Importantly, the WDR5-interaction domain of Mbd3c is critical for its gene 

regulatory function, suggesting that WDR5 plays critical roles in MBD3C/NuRD 

complex.  

 

RESULTS AND DISCUSSION 

MBD3C/NuRD co-purifies with WDR5 

To identify proteins co-purifying with MBD3 in ESCs, we used a cell line in 

which one copy of endogenous MBD3 is fused to a C-terminal 6xHis-3xFLAG tag 

(Mbd3-H3F; (Yildirim et al., 2011), allowing for affinity purification of MBD3A, B, 

and C simultaneously (Figures 2.1A and 2.1B). LC-MS/MS of purified MBD3 

complexes identified all canonical NuRD subunits, several of which were 

subsequently confirmed by western blot (Figure 2.1C and Table 2.1).  
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Consistent with recent mass spectrometry analyses of NuRD components 

(Bode et al., 2016), we detected an interaction between MBD3 and the SET/MLL 

complex component WDR5 (Figures 2.1C and 2.1D;  Table 2.1). The MLL 

complex is a histone methyltransferase that catalyzes methylation of H3K4, a 

mark found at transcriptionally active genes (Bernstein et al., 2002; Santos-Rosa 

et al., 2002). WDR5 binds the histone H3 tail in vitro and is essential for H3K4 

trimethylation and MLL complex formation (Couture et al., 2006; Dou et al., 2006; 

Ruthenburg et al., 2006; Schuetz et al., 2006; Wysocka et al., 2005). We did not 

observe any other MLL subunits co-purifying with MBD3 (Figure 2.1C and Table 

2.1), suggesting WDR5 interacts with MBD3/NuRD independently of MLL 

complex. To validate these data, we performed co-immunoprecipitation (co-IP) 

assays. Interestingly, WDR5 IP pulled down MBD3C, but not the more abundant 

isoforms, MBD3A and B (Figure 2.1E). These data suggest that WDR5 interacts 

specifically with this smallest and least characterized isoform of MBD3.  

To further investigate the composition of the MBD3C/NuRD complex, we 

generated an ESC line expressing Mbd3c-H3F from a viral vector, such that only 

the MBD3C isoform is epitope-tagged. To this end, we first performed 5’ rapid 

amplification of cDNA ends (5’RACE) to obtain the Mbd3c coding sequence. We 

found that MBD3C is translated from a start codon within intron 2 of the Mbd3 

gene, consistent with a recent report (Santos et al., 2014). Thus, MBD3C lacks 

the entire MBD and contains a unique 50–amino acid N-terminus (Figure 2.2A). 

MBD3C-H3F complexes were affinity purified (Figure 2.2B) and analyzed by LC-

MS/MS. As expected, WDR5 co-purifies with MBD3C-H3F, but not MBD3A-H3F 



	
	

	

39	

(Figures 2.2C and 2.2D; Table 2.2). Importantly, we found that WDR5 interaction 

was disrupted by deletion of the unique MBD3C N-terminus (MBD3CΔN; Figures 

2.2C and 2.2D), demonstrating that this domain is necessary for WDR5 binding. 

Co-IP experiments confirmed these results (Figure 2.2E). Furthermore, we 

observed that MBD3C-H3F, MBD3A-H3F, and MBD3CΔN-H3F all co-purify with 

the canonical NuRD subunits (Figure 2.2C; 2.2D; Table 2.2). Together with data 

showing that WDR5 also co-purifies with NuRD subunits (Figure 2.1D; (Bode et 

al., 2016) and that MBD3C co-fractionates exclusively with NuRD subunit MTA1 

(Figure 2.2F) these data demonstrate that MBD3C assembles into a canonical 

NuRD complex that also includes WDR5. Although the MBD3 MBD was 

previously shown to directly interact with NuRD subunits HDAC1 and MTA2 in 

vitro (Saito and Ishikawa, 2002), our findings suggest that HDAC1 and MTA2 can 

also associate with the NuRD complex by MBD-independent mechanisms in 

vivo. Additionally, while the unique MBD3C N-terminus is required for interaction 

with WDR5, it is dispensable for interaction with the other known NuRD subunits 

(Figure 2.2D and Table 2.2). 
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Figure 2.1: The NuRD subunit MBD3 co-purifies with WDR5  
(A) Silver stain of MBD3-H3F complex. (B) Left: Schematic of the three MBD3 
isoforms in ESCs. MBD3A contains a methyl-binding domain (MBD) that is 
truncated in MBD3B and absent in MBD3C. The purple box signifies the unique 
Mbd3 N-terminal 50 amino acids. Right: Western blot of Mbd3 in ESCs and 
MEFs. Actin serves as a loading control.  (C) Western blot of purified complex 
from (A) showing interaction of MBD3 with NuRD subunits (left) and with WDR5 
or MLL subunit ASH2L (right). (D) Western blots of NuRD subunits from purified 
H3F-WDR5 complexes in WT, Mbd3c KO or Mbd3abc KO ESCs. (E) Western 
blots for MBD3-H3F or WDR5 upon IP of each. Asterisks (*), IgG.   
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Table 2.1: Proteins identified in LC-MS/MS of endogenous Mbd3-H3F ESCs 
 
Protein Name Description # of peptides 

Chd4 Chromodomain-helicase-DNA-binding protein 4 252 

Mta2 Metastasis-associated protein MTA2 324 

Mta3 Metastasis-associated protein MTA3 250 

Mta1 Metastasis-associated protein MTA1 206 

Gatad2a/p66-alpha Transcriptional repressor p66 alpha 351 

Gatad2b/p66-beta Transcriptional repressor p66-beta 341 

Mthfd1l Monofunctional C1-tetrahydrofolate synthase, 
mitochondrial 

82 

Lima1 LIM domain and actin-binding protein 1 102 

Actb Actin, cytoplasmic 1 93 

Actg1 Actin, cytoplasmic 2 93 

Acta2 Actin, aortic smooth muscle 61 

Actg2 Actin, gamma-enteric smooth muscle 61 

Actc1 Actin, alpha cardiac muscle 1 61 

Acta1 Actin, alpha skeletal muscle 61 

Hspa8 Heat shock cognate 71 kDa protein 56 

Hspa5 78 kDa glucose-regulated protein 18 

Hspa9 Stress-70 protein, mitochondrial 12 

Mbd3 Methyl-CpG-binding domain protein 3 162 

Mbd2 Methyl-CpG-binding domain protein 2 28 

Tubb2b Tubulin beta-2B chain 67 

Tubb5 Tubulin beta-5 chain 77 

Tubb4b Tubulin beta-4B chain 73 

Tubb4a Tubulin beta-4A chain 54 

Tubb3 Tubulin beta-3 chain 47 

Tubb6 Tubulin beta-6 chain 33 

Stk38 Serine/threonine-protein kinase 38 116 

Stk38l Serine/threonine-protein kinase 38-like 16 

Trim28 Transcription intermediary factor 1-beta 37 

Myo1c Unconventional myosin-Ic 34 

Myo1f Unconventional myosin-If 7 

Hsp90ab1 Heat shock protein HSP 90-beta 32 

Hsp90aa1 Heat shock protein HSP 90-alpha 31 

Hsp90b1 Endoplasmin 4 

Hdac1 Histone deacetylase 1 132 

Hdac2 Histone deacetylase 2 99 

Tuba1b Tubulin alpha-1B chain 62 

Tuba1c Tubulin alpha-1C chain 61 

Tuba1a Tubulin alpha-1A chain 59 
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Tuba4a Tubulin alpha-4A chain 49 

Tuba3a Tubulin alpha-3 chain 45 

Tuba8a Tubulin alpha-8 chain 31 

Rbbp4/RbAp48 Retinoblastoma binding protein 4 120 

Rbbp7/RbAp46 Retinoblastoma binding protein 7 91 

Prpf3 U4/U6 small nuclear ribonucleoprotein Prp3 31 

Sall4 Sal-like protein 4 54 

Sall1 Sal-like protein 1 26 

Sall3 Sal-like protein 3 12 

Actn4 Alpha-actinin-4 23 

Actn1 Alpha-actinin-1 13 

Actn2 Alpha-actinin-2 4 

Myh10 Myosin-10 21 

Myh9 Myosin-9 6 

L1td1 LINE-1 type transposase domain-containing protein 1 13 

Tmod3 Tropomodulin-3 23 

Mccc1 Methylcrotonoyl-CoA carboxylase subunit alpha, 
mitochondrial 

17 

Ppm1b Protein phosphatase 1B 19 

Msh2 DNA mismatch repair protein Msh2 15 

Gapdh Glyceraldehyde-3-phosphate dehydrogenase 16 

Atp5a1 ATP synthase subunit alpha, mitochondrial 10 

Myo1e Unconventional myosin-Ie 20 

Myo1f Unconventional myosin-If 7 

Setx Probable helicase senataxin 20 

Ruvbl1 RuvB-like 1 9 

Wdr5 WD repeat-containing protein 5 15 

Tcp1 T-complex protein 1 subunit alpha 9 

Hdac6 Histone deacetylase 6 11 

Cct8 T-complex protein 1 subunit theta 9 

Rest RE1-silencing transcription factor 12 

Kpna3 Importin subunit alpha-3 11 

Kpna4 Importin subunit alpha-4 7 

Mccc2 Methylcrotonoyl-CoA carboxylase beta chain, 
mitochondrial 

9 

Cct5 T-complex protein 1 subunit epsilon 7 

Cct6a T-complex protein 1 subunit zeta 8 

Kpna2 Importin subunit alpha-2 6 

Hnrnph1 Heterogeneous nuclear ribonucleoprotein H 6 

Prpf4 U4/U6 small nuclear ribonucleoprotein Prp4 9 

Ruvbl2 RuvB-like 2 5 

Thrap3 Thyroid hormone receptor-associated protein 3 12 

Myo1b Unconventional myosin-Ib 6 
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Ogt UDP-N-acetylglucosamine--peptide N-
acetylglucosaminyltransferase 110 kDa subunit 

6 

Kpnb1 Importin subunit beta-1 6 

Pabpc1 Polyadenylate-binding protein 1 6 

Gart Trifunctional purine biosynthetic protein adenosine-3 5 

Cct3 T-complex protein 1 subunit gamma 7 

Hspd1 60 kDa heat shock protein, mitochondrial 5 

Capzb F-actin-capping protein subunit beta 5 

Cct2 T-complex protein 1 subunit beta 4 

Mcm3 DNA replication licensing factor MCM3 4 

Hnrnpu Heterogeneous nuclear ribonucleoprotein U 4 

Ppp2r1a Serine/threonine-protein phosphatase 2A 65 kDa 
regulatory subunit A alpha isoform 

5 

Adsl Adenylosuccinate lyase 3 

D1Pas1 Putative ATP-dependent RNA helicase Pl10 3 

Ivns1abp Influenza virus NS1A-binding protein homolog 3 

Myo1d Unconventional myosin-Id 5 

Capza2 F-actin-capping protein subunit alpha-2 4 

Capza1 F-actin-capping protein subunit alpha-1 4 

Mapk1 Mitogen-activated protein kinase 1 5 

Eef2 Elongation factor 2 5 

Col1a1 Collagen alpha-1(I) chain 3 

Canx Calnexin 3 

Ddx5 Probable ATP-dependent RNA helicase DDX5 3 

Bclaf1 Bcl-2-associated transcription factor 1 7 

Vim Vimentin 3 

Ppp2r2a Serine/threonine-protein phosphatase 2A 55 kDa 
regulatory subunit B alpha isoform 

3 

Ipo5 Importin-5 3 

Mcm5 DNA replication licensing factor MCM5 2 

Eef1a1 Elongation factor 1-alpha 1 6 

Rplp0 60S acidic ribosomal protein P0 2 

Psmd1 26S proteasome non-ATPase regulatory subunit 1 8 

Prmt5 Protein arginine N-methyltransferase 5 3 

Rps3a 40S ribosomal protein S3a 3 

Tra2b Transformer-2 protein homolog beta 1 

Eif3b Eukaryotic translation initiation factor 3 subunit B 7 

Cse1l Exportin-2 2 

Caprin1 Caprin-1 2 

Gfap Glial fibrillary acidic protein 11 

Top2a DNA topoisomerase 2-alpha 1 

Nup107 Nuclear pore complex protein 107 2 

Eif3c Eukaryotic translation initiation factor 3 subunit C 2 



	
	

	

44	

Kpna2 Importin subunit alpha-1 1 

Dhx15 Putative pre-mRNA-splicing factor ATP-dependent 
RNA helicase DHX15 

1 

Otud4 OTU domain-containing protein 4 1 

Nedd4 E3 ubiquitin-protein ligase NEDD4 1 

Akap8 A-kinase anchor protein 8 2 

Smarcc1 SWI/SNF complex subunit SMARCC1 1 

Glud1 Glutamate dehydrogenase 1, mitochondrial 2 

Psmd11 26S proteasome non-ATPase regulatory subunit 11 1 

Hnrnpc Heterogeneous nuclear ribonucleoproteins C1/C2 2 

Ddx39A ATP-dependent RNA helicase DDX39A 1 

Prpsap2 Phosphoribosyl pyrophosphate synthase-associated 
protein 2 

1 

Rps2 40S ribosomal protein S2 1 

Tufm Elongation factor Tu, mitochondrial 1 

Psmc3 26S protease regulatory subunit 6A 3 

G3bp1 Ras GTPase-activating protein-binding protein 1 3 

Mcm7 DNA replication licensing factor MCM7 2 

Psmd2 26S proteasome non-ATPase regulatory subunit 2 3 

Tdh L-threonine 3-dehydrogenase, mitochondrial 1 

Hnrnpl Heterogeneous nuclear ribonucleoprotein L 1 

Rbm10 RNA-binding protein 10 2 

Jak1 Tyrosine-protein kinase JAK1 1 

Hist1h4 Histone H4 1 

Npm1 Nucleophosmin 1 

Matr3 Matrin-3 1 

Hnrnpm Heterogeneous nuclear ribonucleoprotein M 1 

H2afz Histone H2A.Z 1 

Dnajb11 DnaJ homolog subfamily B member 11 1 

Rpsa 40S ribosomal protein SA 1 

Tubg1 Tubulin gamma-1 chain 1 

Asap2 Arf-GAP with SH3 domain, ANK repeat and PH 
domain-containing protein 2 

15 

Hnrnpk Heterogeneous nuclear ribonucleoprotein K 1 

Psmd13 26S proteasome non-ATPase regulatory subunit 13 1 

H3f3c Histone H3.3C 1 
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Figure 2.2: MBD3c contains a unique 50-amino acid N-terminus that is 
required for interaction with WDR5  
 
(A) Schematic of the N-terminal Mbd3c DNA and MBD3C protein sequences 

determined by 5’RACE. Exons are indicated by numbered blue boxes, introns by 

connecting black lines. The sequence of Mbd3 intron 2 is shown, with the Mbd3c 

N-terminus in red. The amino acid sequence of the MBD3C N-terminus derived 

from intron 2 is shown (represented by the gray box in the Mbd3c gene). (B) 

Silver stain of MBD3 complex expressing individually H3F-tagged MBD3 

isoforms. (C) Western blot of purified complexes from (B) showing interaction 

with WDR5 and NuRD subunits. (D) Table of peptide counts from mass spec 

analysis of individually FLAG-tagged MBD3 isoforms. (E) WDR5 IP or FLAG IP 

from individually tagged MBD3C-H3F and MBD3CΔN-H3F ESCs. (F) Glycerol 

gradient analysis of Mbd3-H3F nuclear extracts.  
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Table 2.2: Proteins identified in LC-MS/MS of Mbd3a-H3F, Mbd3c-H3F, and 
Mbd3cΔN-H3F ESCs 
 
Protein Name Description # of peptides 

Mbd3a-H3F 
# of peptides 
Mbd3c-H3F 

# of peptides 
Mbd3cΔN-H3F 

Chd4 Chromodomain-helicase-DNA-
binding protein 4 

322 291 365 

Setx Probable helicase senataxin 135 100 106 

Dnaja1 DnaJ homolog subfamily A 
member 1 

9 15 28 

Mta2 Metastasis-associated protein 
MTA2 

396 503 493 

Mta1 Metastasis-associated protein 
MTA1 

382 203 425 

Mta3 Metastasis-associated protein 
MTA3 

381 375 445 

Mthfd1l Monofunctional C1-
tetrahydrofolate synthase, 
mitochondrial 

130 286 218 

Gatad2a/p66-
alpha 

Transcriptional repressor p66 
alpha 

428 527 674 

Gatad2b/p66-
beta 

Transcriptional repressor p66-
beta 

343 414 543 

Hspa8 Heat shock cognate 71 kDa 
protein 

114 169 181 

Hspa9 Stress-70 protein, 
mitochondrial 

34 32 68 

Hspa5 78 kDa glucose-regulated 
protein 

51 61 64 

Stk38 Serine/threonine-protein 
kinase 38 

313 371 306 

Stk38l Serine/threonine-protein 
kinase 38-like 

67 115 92 

Prpf3 U4/U6 small nuclear 
ribonucleoprotein Prp3 

192 30 108 

Hdac1 Histone deacetylase 1 268 271 308 

Hdac2 Histone deacetylase 2 193 183 213 

Actb Actin, cytoplasmic 1 193 263 220 

Brg1 Transcription activator BRG1 57 22 64 

Mbd3 Methyl-CpG-binding domain 
protein 3 

213 208 320 

Hsp90ab1 Heat shock protein HSP 90-
beta 

81 53 76 

Hsp90aa1 Heat shock protein HSP 90-
alpha 

67 44 64 

Vim Vimentin 28 83 26 

Pabpc1 Polyadenylate-binding protein 
1 

31 46 31 

Wdr5 WD repeat-containing protein 
5 

2 157 3 

Ruvbl2 RuvB-like 2 22 51 46 

Mccc2 Methylcrotonoyl-CoA 
carboxylase beta chain, 
mitochondrial 

24 41 28 

Rps3a 40S ribosomal protein S3a 47 49 47 

Tuba1b Tubulin alpha-1B chain 64 162 126 

Tcp1 T-complex protein 1 subunit 
alpha 

15 25 19 

Mccc1 Methylcrotonoyl-CoA 
carboxylase subunit alpha, 
mitochondrial 

20 53 56 
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Tmod3 Tropomodulin-3 34 64 75 

Hnrnpc Heterogeneous nuclear 
ribonucleoproteins C1/C2 

20 48 44 

Mybbp1a Myb-binding protein 1A 11 42 28 

Ncl Nucleolin 3 39 17 

Ruvbl1 RuvB-like 1 16 43 33 

Sall4 Sal-like protein 4 9 56 14 

Sall1 Sal-like protein 1 8 18 13 

Prpf4 U4/U6 small nuclear 
ribonucleoprotein Prp4 

60 15 56 

Rpl7 60S ribosomal protein L7 31 49 32 

Rbbp4/RbAp48 Retinoblastoma binding 
protein 4 

200 250 280 

Rbbp7/RbAp46 Retinoblastoma binding 
protein 7 

163 157 180 

Cct7 T-complex protein 1 subunit 
eta 

20 25 22 

Rbm10 RNA-binding protein 10  27 19 

Tubb5 Tubulin beta-5 chain 61 97 104 

Flii Protein flightless-1 homolog 1 47 3 

Rpl7a 60S ribosomal protein L7a 23 53 31 

Pkm Pyruvate kinase isozymes 
M1/M2 

18 31 21 

Actl6a Actin-like protein 6A 30 11 40 

Myo1c Myosin-Ic 22 50 19 

Rps4x 40S ribosomal protein S4, X 
isoform 

20 48 53 

Rpl6 60S ribosomal protein L6 33 83 37 

Prpf31 U4/U6 small nuclear 
ribonucleoprotein Prp31 

25 16 50 

Rpl4 60S ribosomal protein L4 17 65 29 

Jak1 Tyrosine-protein kinase JAK1 20 32 39 

Rps3a 40S ribosomal protein S3 23 31 40 

Eif4a3 Eukaryotic initiation factor 4A-
III 

14 22 30 

Eif4a1 Eukaryotic initiation factor 4A-I 3 5 14 

Cct8 T-complex protein 1 subunit 
theta 

13 17 20 

Hdac6 Histone deacetylase 6 26 47 34 

Atp5a1 ATP synthase subunit alpha, 
mitochondrial 

20 22 16 

Csnk2a2 Casein kinase II subunit alpha 7 20 25 

Lrrfip2 Leucine-rich repeat flightless-
interacting protein 2 

3 48 9 

Cct2 T-complex protein 1 subunit 
beta 

22 18 23 

Gapdh Glyceraldehyde-3-phosphate 
dehydrogenase 

42 64 89 

Psmc5 26S protease regulatory 
subunit 8 

5 13 23 

Psmc1 26S protease regulatory 
subunit 4 

 9 2 

Trim28 Transcription intermediary 
factor 1-beta 

3 39 25 

Cct6a T-complex protein 1 subunit 21 31 23 
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zeta 

Thrap3 Thyroid hormone receptor-
associated protein 3 

48 30 52 

Bclaf1 Bcl-2-associated transcription 
factor 1 

21 8 33 

Coro1c Coronin-1C  48  

Rpl3 60S ribosomal protein L3 25 74 45 

Atp5b ATP synthase subunit beta, 
mitochondrial 

16 14 11 

Hnrnpf Heterogeneous nuclear 
ribonucleoprotein F 

11 52 38 

Hnrnph1 Heterogeneous nuclear 
ribonucleoprotein H 

14 31 28 

Hnrnph2 Heterogeneous nuclear 
ribonucleoprotein H2 

12 20 18 

Actn4 Alpha-actinin-4 1 40 16 

Ddx3x ATP-dependent RNA helicase 
DDX3X 

5 21 22 

Ddx5 Probable ATP-dependent 
RNA helicase DDX5 

 10 8 

Ddx17 Probable ATP-dependent 
RNA helicase DDX17 

 4 7 

Phb2 Prohibitin-2 22 5 30 

Spin1 Spindlin-1 26 30 29 

Ddb1 DNA damage-binding protein 
1 

 19 6 

Tra2b Transformer-2 protein 
homolog beta 

34 17 38 

Tra2a Transformer-2 protein 
homolog alpha 

18 9 17 

Tufm Elongation factor Tu, 
mitochondrial 

2 10 24 

Psmc4 26S protease regulatory 
subunit 6B 

 7 16 

Rps2 40S ribosomal protein S2 20 48 58 

Ppm1b Protein phosphatase 1B 20 39 51 

Ppm1a Protein phosphatase 1A 5 8 8 

Rplp0 60S acidic ribosomal protein 
P0 

16 48 28 

Psmd3 26S proteasome non-ATPase 
regulatory subunit 3 

4 17 9 

Capza1 F-actin-capping protein 
subunit alpha-1 

17 19 15 

Capza2 F-actin-capping protein 
subunit alpha-2 

15 15 12 

Dars Aspartyl-tRNA synthetase, 
cytoplasmic 

8 14 7 

Cct3 T-complex protein 1 subunit 
gamma 

14 21 19 

Ybx1 Nuclease-sensitive element-
binding protein 1 

6 16 15 

Ybx3 DNA-binding protein A 2 13 7 

Hspd1 60 kDa heat shock protein, 
mitochondrial 

6 15 14 

Lmnb1 Lamin-B1  18 3 

Psmd11 26S proteasome non-ATPase 
regulatory subunit 11 

3 16 22 

Wdr1 WD repeat-containing protein 
1 

 20  

Ssb Lupus La protein homolog 8 17 16 
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Myh10 Myosin-10 5 17 15 

Myh9 Myosin-9 9 6 8 

Cct5 T-complex protein 1 subunit 
epsilon 

4 14 16 

Eftud2 116 kDa U5 small nuclear 
ribonucleoprotein component 

 15 9 

Kpna3 Importin subunit alpha-3 22 34 32 

Eef1a1 Elongation factor 1-alpha 1 30 46 62 

Cct4 T-complex protein 1 subunit 
delta 

17 20 15 

Prpf19 Pre-mRNA-processing factor 
19 

10 17 12 

Serbp1 Plasminogen activator inhibitor 
1 RNA-binding protein 

4 13 8 

Eif3e Eukaryotic translation initiation 
factor 3 subunit E 

2 9 10 

Sf3b3 Splicing factor 3B subunit 3  17 2 

Hnrnpu Heterogeneous nuclear 
ribonucleoprotein U 

8 38 18 

Dnaja2 DnaJ homolog subfamily A 
member 2 

5 9 20 

Lima1 LIM domain and actin-binding 
protein 1 

 32 3 

Dnajb11 DnaJ homolog subfamily B 
member 11 

5 7 11 

Dhx15 Putative pre-mRNA-splicing 
factor ATP-dependent RNA 
helicase DHX15 

5 16 10 

Ivns1abp Influenza virus NS1A-binding 
protein homolog 

10 21 14 

G3bp2 Ras GTPase-activating 
protein-binding protein 2 

7 19 13 

G3bp1 Ras GTPase-activating 
protein-binding protein 1 

4 8 8 

Hnrnpk Heterogeneous nuclear 
ribonucleoprotein K 

2 23 8 

Hnrnpl Heterogeneous nuclear 
ribonucleoprotein L 

3 11 10 

Sptan1 Spectrin alpha chain, brain  16 2 

Igf2bp1 Insulin-like growth factor 2 
mRNA-binding protein 1 

1 20 3 

Rpl8 60S ribosomal protein L8 24 55 27 

Hist1h1c Histone H1.2 22 8 20 

Aifm1 Apoptosis-inducing factor 1, 
mitochondrial 

2 11 7 

Nudc Nuclear migration protein 
nudC 

6 14 18 

Prmt5 Protein arginine N-
methyltransferase 5 

8 13 14 

Eif3f Eukaryotic translation initiation 
factor 3 subunit F 

 8 10 

Cdc5l Cell division cycle 5-related 
protein 

 11 3 

Cdk1 Cyclin-dependent kinase 1 5 16 8 

Ilf2 Interleukin enhancer-binding 
factor 2 

7 12 14 

Elavl1 ELAV-like protein 1 12 13 21 

Hnrnpm Heterogeneous nuclear 
ribonucleoprotein M 

1 18 3 

Rps6 40S ribosomal protein S6 5 30 17 
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Psmd1 26S proteasome non-ATPase 
regulatory subunit 1 

2 14 9 

Capzb F-actin-capping protein 
subunit beta 

12 12 15 

Psmd2 26S proteasome non-ATPase 
regulatory subunit 2 

17 8 12 

Polr1c DNA-directed RNA 
polymerases I and III subunit 
RPAC1 

2 7 8 

Slc25a5 ADP/ATP translocase 2 7 31 28 

Twf1 Twinfilin-1  12 4 

Atp5c1 ATP synthase subunit gamma, 
mitochondrial 

8 10 12 

Puf60 Poly(U)-binding-splicing factor 
PUF60 

 11 3 

Kpna2 Importin subunit alpha-2 11 17 16 

Dnaja3 DnaJ homolog subfamily A 
member 3, mitochondrial 

2 6 11 

Rpsa 40S ribosomal protein SA 3 6 9 

Sptbn1 Spectrin beta chain, brain 1  8  

Kpnb1 Importin subunit beta-1 4 9 11 

Dnajb6 DnaJ homolog subfamily B 
member 6 

4 6 10 

Eif3i Eukaryotic translation initiation 
factor 3 subunit I 

5 13 11 

Ssrp1 FACT complex subunit 
SSRP1 

9 4 9 

Sf3b1 Splicing factor 3B subunit 1 1 14 2 

Otud4 OTU domain-containing 
protein 4 

8 4  

Srsf7 Serine/arginine-rich splicing 
factor 7 

18 11 30 

Ppp2r1a Serine/threonine-protein 
phosphatase 2A 65 kDa 
regulatory subunit A alpha 
isoform 

 9  

Mov10 Putative helicase MOV-10  9 1 

Pgam5 Serine/threonine-protein 
phosphatase PGAM5, 
mitochondrial 

4 13 11 

Rnps1 RNA-binding protein with 
serine-rich domain 1 

6  11 

Eif3c Eukaryotic translation initiation 
factor 3 subunit C 

 8 9 

Ilf3 Interleukin enhancer-binding 
factor 3 

 9 8 

Myo1b Myosin-Ib 4 8  

Tdh L-threonine 3-dehydrogenase, 
mitochondrial 

8 2 22 

Nono Non-POU domain-containing 
octamer-binding protein 

3 13 6 

Sfpq Splicing factor, proline- and 
glutamine-rich 

 15 12 

Npm1 Nucleophosmin 2 13 10 

Sun2 SUN domain-containing 
protein 2 

9 3 6 

Rpl11 60S ribosomal protein L11 14 15 27 

Mga MAX gene-associated protein  6  

U2af2 Splicing factor U2AF 65 kDa 
subunit 

 13 6 
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Eif3b Eukaryotic translation initiation 
factor 3 subunit B 

 12 7 

C1qbp Complement component 1 Q 
subcomponent-binding 
protein, mitochondrial 

2  12 

Prdx1 Peroxiredoxin-1 17 29 42 

Gsn Gelsolin 11 8 4 

Rps8 40S ribosomal protein S8 13 49 23 

Psmc3 26S protease regulatory 
subunit 6A 

2 6 11 

Rpl23 60S ribosomal protein L23 4 26 23 

Ap2m1 AP-2 complex subunit mu   8 

Ctbp2 C-terminal-binding protein 2  7 11 

Rpl13 60S ribosomal protein L13 3 44 14 

Fbl rRNA 2'-O-methyltransferase 
fibrillarin 

8 9 14 

Srsf1 Serine/arginine-rich splicing 
factor 1 

9 8 11 

Wdr77 Methylosome protein 50 3 4 11 

Rps9 40S ribosomal protein S9 13 30 24 

Rpl14 60S ribosomal protein L14 1 25 5 

Stmn2 Stathmin-2 4 14 16 

Rps23 40S ribosomal protein S23 7 26 20 

Rps26 40S ribosomal protein S26  19 7 

Rpl21 60S ribosomal protein L21  22 9 

Rpl18 60S ribosomal protein L18  13 7 

Ubb Polyubiquitin-B 5 16 12 

Rpl27a 60S ribosomal protein L27a 6 12 5 

Rps11 40S ribosomal protein S11 12 19 21 

Alb Serum albumin 11 13 12 

Hist1h3a Histone H3.1 6 11 10 

Rpl34 60S ribosomal protein L34  8  

B3galt5 Beta-1,3-galactosyltransferase 
5 

 10  
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The WDR5 histone H3 binding pocket is required for interaction with 
MBD3C 
 

To gain insight into the functions of the MBD3C-WDR5 interaction, we 

dissected the domains within MBD3C and WDR5 important for their interaction. 

WDR5 contains two binding surfaces on opposite sides of the protein, one that 

binds the histone H3 N-terminal tail or the SET/MLL complex subunit MLL1, and 

another that binds both the SET/MLL subunit RBBP5 (Figure 2.3A; (Avdic et al., 

2011; Odho et al., 2010; Patel et al., 2008; Song and Kingston, 2008) and long 

noncoding RNAs (Yang et al., 2014). To test whether MBD3C interacts with 

either WDR5 binding surface, we performed co-IPs in 293T cells co-transfected 

with vectors expressing MBD3C-H3F and FLAG-tagged point mutants from both 

binding surfaces of WDR5: D107A on the H3K4/MLL1 binding surface and 

F266A, K250A, and R181A on the RBBP5/RNA binding surface (Yang et al., 

2014). We found that the F266A, K250A, and R181A mutants of WDR5 co-IP 

with antibodies recognizing endogenous MBD3 (Figure 2.3B). In contrast, the 

D107A mutant was absent from MBD3 immunoprecipitates, suggesting that 

MBD3C binds near or within the WDR5 H3K4/MLL1 binding pocket. 

To extend these findings, we generated a series of truncation mutants of 

the 50–amino acid MBD3C N-terminus to pinpoint the residues necessary for 

binding (Figure 2.3C). Deletion of the first 40 amino acids of H3F-tagged MBD3C 

did not disrupt the interaction with V5-tagged WDR5 (Figure 2.3D). However, 

upon deletion of amino acids 41-50 of MBD3C, interaction with WDR5 was 

completely lost (Figure 2.3E), as we observed for MBD3C mutants lacking amino 

acids 1-50 (Figures 2.2C, E and Figure 2.3D). Furthermore, an N-terminal fusion 
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of amino acids 41-50 to the MBD3A isoform was sufficient to allow MBD3A to 

bind WDR5 (Figure 2.3F). These data demonstrate that amino acids 41-50 of 

MBD3C mediate WDR5 binding (see also Figure 2.1D). 

MLL1, KANSL1, and histone H3 all bind the same domain on WDR5 via a 

two amino acid alanine-arginine (AR) motif present on each protein (Couture et 

al., 2006; Han et al., 2006; Patel et al., 2008; Ruthenburg et al., 2006; Schuetz et 

al., 2006; Song and Kingston, 2008); (Dias et al., 2014); Figures 2.3A and 2.3G). 

MBD3C contains an AR dipeptide within its N-terminal WDR5 binding domain 

(A42-R43; Figure 2.3G), which we hypothesized to be necessary for WDR5 

binding. Confirming our hypothesis, an R43A mutant of MBD3C failed to pull 

down WDR5 (Figure 2.3E). Together, these data indicate that MBD3C, histone 

H3, and MLL1 use a common motif to bind the same surface of WDR5. We 

observed slightly reduced MBD3C protein levels in cells expressing mutants of 

MBD3C or WDR5 that disrupt MBD3C–WDR5 binding (Figures 2.3D and 2.3E), 

raising the possibility that interaction with WDR5 plays a role in stabilizing 

MBD3C.  
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Figure 2.3: The WDR5 histone H3 binding pocket is required to bind MBD3C 
 
(A) PyMol depiction of WDR5 crystal structure (PDB:2GNQ) showing the 

H3K4/MLL1 (left) and RBBP5 (right) binding pockets. Residues individually 

mutated to alanine (Yang et al., 2014) are shown in magenta. Residues 

necessary for MLL1 R3761 or histone H3R2 binding are shown in orange. (B) 

Co-IPs with MBD3 antibody from 293T cells co-transfected with expression 

vectors carrying MBD3C-H3F and indicated FLAG-tagged WDR5 mutants. (C) 

Schematic of Mbd3c N-terminal mutant constructs used in (D) and (E). (D-F) Co-

IPs with MBD3 antibody in 293T cells performed as in (B), using V5-tagged 

WDR5 constructs and H3F-tagged MBD3 constructs. For “c41-50−MBD3A”, 

MBD3C amino acids 41-50 were fused to the N-terminus of the MBD3A isoform. 

(G) Alignment of the MBD3C N-terminus with WDR5-binding regions of mouse 

MLL1, KANSL1, and histone H3. 
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Mbd3c expression is largely restricted to pluripotent stem cells 

The Mbd3c isoform appears to be highly expressed only in ESCs, as it is 

absent or weakly expressed in mouse embryonic fibroblasts (MEFs) and all adult 

tissues tested (Figures 2.1B and 2.4A). To determine when Mbd3c expression is 

lost during differentiation we subjected ESCs to a 10-day embryoid body (EB) 

differentiation time course. We observed that MBD3C protein was lost between 

days 4 and 6 of the time course with kinetics similar to loss of OCT4 protein 

during differentiation (Figure 2.4A). 

Next, we tested whether Mbd3c expression was restored upon 

reprogramming of differentiated cells to induced pluripotent stem cells. Primary 

MEFs were infected with doxycycline (dox)-inducible lentiviruses expressing 

reprogramming factors OCT4, SOX2, and KLF4 marked with an mCherry 

reporter (OSK-mCherry), L-MYC, and a lentiviral EOS-EGFP reporter specifically 

activated in pluripotent cells (Hotta et al., 2009). Infected cells were cultured with 

dox for 20 days. After an additional 10 days in the absence of dox, cells were 

imaged and stained for alkaline phosphatase to verify silencing of OSK-mCherry 

and presence of ESC-like colonies (Figures 2.4C and 2.4D). Lysates for western 

blots were prepared from expanded iPSC colonies picked at 30 days. We 

observed that reprogrammed iPSC colonies express Mbd3c  (Figure 2.4E). 

These data demonstrate Mbd3c expression is restored when somatic cells are 

reprogrammed to iPSCs. 

 Finally, to investigate how Mbd3c expression might be silenced during 

differentiation, we performed bisulfite pyrosequencing analysis on the Mbd3c 
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promoter during an EB differentiation time course. The Mbd3 gene contains a 

~350bp CGI which spans exon 2 and part of intron 2, and overlaps with the 

sequence encoding the MBD3C N-terminal domain (Figure 2.5A). We measured 

methylation of 11 individual CpGs within the Mbd3c promoter and observed a 

large increase in methylation at all sites over the differentiation time course 

(Figure 2.5B). Methylation increased most dramatically around day 4, which 

corresponds to the timing of MBD3C loss during differentiation (Figure 2.4A). 

Therefore, silencing of Mbd3c expression during differentiation is likely due to 

increased methylation of the Mbd3c promoter CGI. 
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Figure 2.4: Mbd3c expression is largely restricted to pluripotent cells 
 
(A) Western blot of MBD3 from lysates of the indicated mouse tissues. Actin blot 

and Coomassie stain are shown as loading controls. (B) Western blots from 

ESCs differentiated over 10 days. Actin serves as a loading control. (C) 

Representative images of EOS-EGFP positive/OSK-mCherry negative iPSCs at 

reprogramming Day 30, 10 days after dox removal (left) and an iPSC line derived 

from a single colony (right). Scale bars = 400µm. (D) Representative AP staining 

of iPSCs at reprogramming Day 31. (E) Western blots from primary MEFs 

reprogrammed to iPSCs.	 	
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Figure 2.5: Methylation of the Mbd3c promoter during differentiation 
(A) Schematic of the Mbd3 gene showing the sequence and location of the 
Mbd3c promoter CpG island (red bar). Light blue boxes indicate exons. CpGs 
tested for methylation are highlighted in red. (B) Pyrosequencing of bisulfite-
converted DNA from cells collected at the indicated differentiation timepoints. 
Error bars represent the standard deviation of three biological replicates.  
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Mbd3c is dispensable for ESC differentiation 

Mbd3 null ESCs exhibit pluripotency defects and are capable of self-

renewal in the absence of LIF (Kaji et al., 2006). We therefore wanted to test 

whether the MBD3C isoform was specifically required for early stages of 

differentiation. We generated homozygous Mbd3c, Mbd3ab, and Mbd3abc KO 

ESCs (Figure 2.6A) using CRISPR/Cas9 cleavage and error-prone DNA repair 

(Cong et al., 2013). We found that Mbd3c KO ESCs proliferate similarly to 

wildtype (WT) cells. In contrast, Mbd3ab KO and especially Mbd3abc KO ESCs 

grow more slowly than WT (Figures 2.6B and 2.6C), consistent with previous 

observations of Mbd3 null ESCs (Kaji et al., 2006). 

Next, we tested the differentiation capacity of each Mbd3 mutant. 

Consistent with previous studies (Kaji et al., 2006), we found that ESCs lacking 

all MBD3 isoforms (Mbd3abc KO) maintained expression of both OCT4 and 

NANOG over 9 days in media without LIF (Figure 2.6D). Unlike Mbd3abc KOs, 

Mbd3c KOs did not show a noticeable differentiation defect (Figure 2.6E). ESCs 

expressing only Mbd3c (Mbd3ab KO) were largely defective in differentiation 

(although OCT4 and NANOG levels appeared slightly reduced relative to 

Mbd3abc KO lines). Since Mbd3c expression is lost early during differentiation 

(Figures 2.4B and 2.6D), Mbd3ab mutants are functionally equivalent to 

Mbd3abc mutants at mid-to-late differentiation time points, potentially accounting 

for this phenotype. We next asked whether constitutive overexpression of Mbd3c 

in the absence of MBD3A and MBD3B could allow for normal differentiation. To 

test this possibility, we replaced the entire Mbd3 gene with an H3F-tagged 
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Mbd3c transgene overexpressed from the CAG promoter, which is not silenced 

during differentiation. Differentiation proceeds normally in these cells (Figure 

2.7A, top panel), revealing MBD3C can compensate for MBD3A and MBD3B 

when it is overexpressed. Unexpectedly, ESCs overexpressing Mbd3cΔN were 

also able to differentiate (Figure 2.7A, bottom panel), in marked contrast with 

cells expressing Mbd3cΔN at endogenous levels (Figure 2.7B). We conclude that 

Mbd3c is not required for differentiation but can substitute for Mbd3a and Mbd3b 

when overexpressed.  
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Figure 2.6: MBD3C is dispensable for ESC differentiation 
 
(A) Western blot of MBD3 expression in Mbd3 isoform KO ESCs generated 

through CRISPR/Cas9. (B-C) Growth curves for Mbd3c KO (B) and Mbd3ab and 

Mbd3abc KO (C) ESC lines, relative to wildtype (WT) ESCs. Error bars represent 

+/- standard deviation of three replicate experiments performed on each clonal 

replicate. (D-E) Western blots of differentiating Mbd3ab and Mbd3abc KO cells 

(D) and two clonal Mbd3c KO lines (E). 

	 	



	
	

	

65	

	
 

 

	 	



	
	

	

66	

	
 

 

Figure 2.7: MBD3C and MBD3CΔN overexpression is suffcient for ESC 
differentiation 
(A) Western blots of indicated proteins during differentiation of WT, Mbd3abc KO 
ESCs overexpressing Mbd3c-H3F, or Mbd3abc KO ESCs overexpressing 
Mbd3cΔN-H3F. (B) Western blots of indicated proteins during differentiation of 
WT or Mbd3cΔN–ab KO ESCs. 
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MBD3 isoforms function redundantly in gene regulation 

Although it is dispensable for differentiation, MBD3C binds chromatin 

(Figure 2.8) and could still be important for regulation of a subset of MBD3 target 

genes independently of the other MBD3 isoforms. To test this possibility, we 

analyzed the transcriptomes of Mbd3 isoform-specific mutant ESCs by RNA-seq. 

Gene expression in Mbd3c KO ESCs was largely normal (Figure 2.9A, left 

panel), with expression of only 38 genes changed more than two-fold compared 

to WT. Similarly, we observed relatively few genes (258) misregulated in Mbd3ab 

KO ESCs that express only Mbd3c (Figure 2.9A, right panel) compared with a 

much larger number (4,879) misregulated in ESCs where all Mbd3 isoforms are 

deleted (Figure 2.9B, left panel and Figure 2.9C). These data suggest that 

Mbd3c can largely compensate for the loss of Mbd3a and Mbd3b at shared 

target genes. 

To test whether the unique 50–amino acid MBD3C N-terminus (and thus 

the interaction with WDR5) is important for this compensatory effect, we also 

performed RNA-seq on ESCs lacking MBD3A and B and the N-terminus of 

MBD3C (Mbd3cΔN−ab KO). In contrast to the relatively few genes misregulated 

in Mbd3ab KO and Mbd3c KO cells, we observed 2,431 genes misregulated in 

Mbd3cΔN−ab KO cells, with nearly twice as many genes upregulated as 

downregulated (1,577 vs. 854 respectively; Figure 2.9B, right panel). The vast 

majority (~93%) of misregulated genes overlapped with genes misregulated in 

Mbd3abc KO cells (Figure 2.9D), indicating that the MBD3C N-terminus is largely 

required for MBD3C to compensate for loss of MBD3A and B. However, as 
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Mbd3abc KO has a stronger phenotype than Mbd3cΔN−ab KO, MBD3C/NuRD 

may also regulate some genes independently of its N-terminal domain. Closer 

examination of the 2,627 genes misregulated only in Mbd3abc KO ESCs (Figure 

2.9D) revealed similar, but weaker misregulation in Mbd3cΔN−ab KO cells in 

most cases that fell below our two-fold cutoff. These data suggest that the 

Mbd3cΔN mutation is not a complete null and are consistent with our finding that 

MBD3CΔN can compensate for loss of MBD3A and MBD3B during ESC 

differentiation, but only when overexpressed (Figure 2.7A and B). 

WDR5 is a component of multiple complexes with key regulatory functions 

in ESCs (Ang et al., 2011; Chelmicki et al., 2014; Li et al., 2012; Ravens et al., 

2014). Wdr5 KD results in loss of ESC self-renewal (Ang et al., 2011), precluding 

the use of Wdr5 KO ESCs to compare the functions of MBD3C and WDR5 in 

gene regulation. However, to test whether the genes misregulated in Mbd3c 

mutant cells are targets of WDR5 and/or WDR5-associated complexes, we 

examined published ESC ChIP-seq data for WDR5 and the MSL/NSL subunit 

MOF (Ang et al., 2011; Li et al., 2012). We observed considerably higher WDR5 

binding at the promoter-proximal regions of genes that were misregulated in 

Mbd3abc KO and Mbd3cΔN−ab KO cells compared to genes that were 

unaffected by Mbd3 mutations (Figure 2.9E), consistent with a regulatory role for 

WDR5 at MBD3 target genes. However, it is likely that WDR5 regulates some of 

these genes through mechanisms independent of MBD3C/NuRD, as we also 

observed higher MOF binding at genes misregulated in Mbd3abc KO and 

Mbd3cΔN−ab KO cells (Figure 2.9F). Similarly, we found that WDR5 binding is 
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enriched at promoter-distal DNase I hypersensitive sites (DHSs) that are co-

bound by MBD3 (Figure 2.9G), suggesting that WDR5 and MBD3 co-regulate 

target gene expression at both promoter-distal enhancers and promoters.  

We have identified a variant ESC-specific NuRD complex that includes the 

histone H3 binding protein WDR5. While WDR5 contributes to H3K4 

trimethlyation by the SET/MLL complex (Ang et al., 2011; Yang et al., 2014) our 

data suggest that a WDR5-binding MBD3C/NuRD complex functions separately 

from SET/MLL. Consistent with these findings, we showed that MBD3C interacts 

with WDR5 at the same binding surface as MLL1 and histone H3, using a 

conserved arginine-containing motif (Couture et al., 2006; Patel et al., 2008). As 

MBD3/NuRD has previously been shown to repress pluripotency genes during 

differentiation (Reynolds et al., 2012), it is possible that MBD3C/NuRD functions 

to oppose SET/MLL activity. 

Our data reveal an additional layer of complexity to the composition and 

function of chromatin remodelers in ESCs and uncover a previously unidentified 

function for the WDR5 protein. The WDR5 binding domain appears to be 

essential for MBD3C/NuRD function in ESCs, while other MBD3/NuRD 

complexes are recruited to the same target genes via the MBD or other binding 

domains. However, since the differentiation defect of Mbd3ab KO cells can be 

overcome by constitutive overexpression of Mbd3cΔN, WDR5 may simply 

enhance the chromatin binding or remodeling activities of MBD3C/NuRD. 

Multiple independent mechanisms likely target different NuRD complexes to 

overlapping targets on chromatin, where the complexes function redundantly. 
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Figure 2.8: MBD3 isoforms associate with chromatin in ESCs 
Western blot of MBD3 from salt fractionation of chromatin from WT ESC nuclei. 
Protein released at indicated concentrations of NaCl is shown. RNA Pol II is 
included as a control. 
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Figure 2.9: MBD3C is redundant with MBD3A and MBD3B in regulation of 
gene expression 
 
(A-B) MA plots showing log2fold change in gene expression in Mbd3c KO ((A), 

left), Mbd3ab KO ((A), right), Mbd3abc KO ((B), left), and Mbd3cΔN−ab KO ((B), 

right) ESCs relative to WT. Genes shown are significantly misregulated ≥ 2-fold 

(adjusted p < 0.05) compared with WT. (C-D). Venn diagrams showing overlap 

between misregulated genes in ESCs of indicated genotypes. (E-F) WDR5 

binding (Ang et al., 2011) (E) and MOF binding (Li et al., 2012) (F) averaged over 

transcription start sites (TSSs) of misregulated or unchanged genes in Mbd3abc 

KO (red) and Mbd3cΔN−ab KO ESCs (purple). (G) Average WDR5 binding over 

MBD3-bound (Yildirim et al., 2011), TSS-distal DNase I hypersensitive sites 

(GSM1014514).  

	 	



	
	

	

72	

	
 
	
  



	
	

	

73	

MATERIALS AND METHODS 

Cell Culture and Generation of ESC lines 

Murine ESCs are derived from E14 and cultured on gelatin-coated plates as 

previously described (Chen et al., 2013b). Mbd3a-H3F, Mbd3c-H3F, and 

Mbd3cΔN-H3F ESCs were generated by infection of E14 with pLJM1 lentiviral 

vectors carrying the respective constructs.  

 The H3F-WDR5 targeting construct was made by inserting PCR-produced 

homology arms (959 and 561 bp) and an H3F tag into pBluescript II SK+ 

(Stratagene). Oligos were inserted into pX330-puroR to target to the N-terminus 

of WDR5. The plasmids were transfected with FuGENE HD (Promega) into E14, 

Mbd3c KO, and Mbd3abc KO cells. Clones were selected with puromycin and 

screened by PCR, sequencing, and western blot. 

 

Expression of MBD3C and WDR5 domain mapping mutants 

MBD3C-H3F, V5-WDR5 constructs and the indicated WDR5 mutants (Yang et 

al., 2014) were cloned into pCAGGS-IRES-HygroR using the 5’ XhoI site and the 

3’ EcoRI site. pCAGGS-V5-WDR5 was created from a synthesized full-length 

mouse Wdr5. MBD3A-H3F and truncations of MBD3C-H3F with XhoI and MfeI 

restriction sites were derived by PCR on Mbd3-H3F sequences and cloned into 

the vector. The MBD3C Δ41-50 and R43A mutant constructs were made by PCR 

on pCAGGS-MBD3C-H3F with primers incorporating the mutations and flanking 

primers and then digesting the new sequences and ligating them into the vector. 

pCAGGS–cN41-50–MBD3A-H3F was made by synthesizing the N-terminus and 
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inserting it into the MBD3A plasmid using the XhoI site and a gene-internal 

BamHI site. Plasmids were transiently transfected into 293T cells using FuGENE 

HD (Promega), and the cells were harvested for IP after 2 days. 

 

Generation of MBD3 isoform KO ESCs 

Mbd3ab, Mbd3c, Mbd3abc, and Mbd3cΔN-ab KO ESC lines were generated 

using the CRISPR/Cas9 system (Cong et al., 2013) to introduce mutations into 

Mbd3 exon 2 (Mbd3ab KO and Mbd3cΔN−ab KO), intron 2 (Mbd3c KO), or exon 

5 (Mbd3abc KO). Guide RNAs targeting Mbd3ab, Mbd3c, or Mbd3abc (see Table 

2.3 for sequences) were cloned into the pX330-puroR vector and transfected into 

E14 ESCs as described (Hainer et al., 2015). Individual clones were screened by 

TOPO cloning (Invitrogen) and sequencing to verify the presence of homozygous 

frameshift mutations. ESC lines were further screened by western blot to verify 

loss of the appropriate MBD3 isoform(s). To create the Mbd3cΔN−ab KO line, we 

first transfected the pX330 plasmid targeting Mbd3c into E14 ESCs along with a 

donor plasmid containing the Mbd3c coding sequence with a 50-amino acid N-

terminal deletion. The donor plasmid was generated by annealing oligos to make 

the Mbd3cΔN cDNA construct and cloning along with ~2kb homology arms 

flanking the Mbd3c start site into pBluescript SK II+ (Stratagene). Verified 

Mbd3cΔN ESC lines were then retargeted using the Mbd3ab KO guide RNA 

plasmid and screened as described above. 

Mbd3abc KO/Mbd3c o/e ESC lines were made by replacing the 

endogenous Mbd3 locus with a construct containing PCR-produced homology 
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arms (2070 and 1649 bp), the full CAGGS promoter, and a modified Mbd3c-H3F-

polyA sequence without CpGs in the gene or tag. The Mbd3abc KO – cΔN o/e 

construct was made using PCR and restriction digestion to delete the 150 bp 

corresponding to the unique N-terminus of MBD3C. Oligos were inserted into two 

CRISPR plasmids (pX330-puroR) and transfected into E14 cells as described 

above. Clones were selected with puromycin and screened by PCR, sequencing, 

and western blot. 

 

5’RACE 

5’RACE was performed on 4µg total RNA using the 5’RACE System Version 2.0 

kit (Invitrogen). See Table 2.3 for primer sequences. 

 

MBD3 Purification, WDR5 Purification, and LC-MS/MS 

MBD3/NuRD complex was purified from MBD3-H3F, MBD3A-H3F, MBD3C-H3F, 

and MBD3CΔN-H3F ESCs as described (Yildirim et al., 2011). Purified samples 

were separated by SDS-PAGE, stained with SimplyBlue SafeStain (Invitrogen), 

and LC-MS/MS was performed as described in (Chen et al., 2013b). For WDR5 

complex purification, nuclear fractions were isolated from H3F-WDR5 ESCs 

using the NE-PER kit (Thermo), diluted 1:3 in MVL buffer (50mM Tris, pH 7.5; 

250mM NaCl; 0.1% Triton X-100), and purified similarly, omitting the His 

purification step.   

 

Western Blotting and Immunoprecipitation 
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Western blots were performed with the following antibodies: anti-MBD3 (Bethyl 

A302-528A and Abgent AM2203B), anti-FLAG (M2, Sigma F1804), anti-WDR5 

(Bethyl A302-429A and A302-430A), anti-OCT4 (Santa Cruz sc-8628), anti-

NANOG (Bethyl A300-398A), anti-MTA1 (Bethyl A300-911A), anti-MTA2 (Santa 

Cruz sc-28731), anti-CHD4 (Bethyl A301-082A) anti–β-ACTIN (Sigma A1978), 

anti–RNA POLYMERASE II (Santa Cruz sc-899), anti-RBBP4 (Bethyl A301-

206A), anti-RBBP7 (Bethyl A300-958A), anti-LSD1 (Bethyl A300-215A), anti-

p66α (Bethyl A302-358A), anti-p66β (Bethyl A301-281A), anti-HDAC1 (Bethyl 

A300-713A), anti-HDAC2 (Bethyl A300-705A), anti-ASH2L (Bethyl A300-112A), 

anti-V5 (Invitrogen 46-0705). Mouse tissue lysates were prepared by 

homogenizing indicated tissues in lysis buffer (50mM Tris-HCl pH 7.5; 150mM 

NaCl; 0.5% Triton X-100; 5% glycerol; 1mM PMSF). For IP, nuclear lysates were 

prepared using the NE-PER kit (Thermo). FLAG IP was performed as described 

in (Chen et al., 2013b). MBD3 IPs in ESCs and 293T cells were performed 

similarly, except washes were performed in MVL buffer + 1mM EDTA. 

 

Glycerol Gradient Analysis 

Nuclear extracts were prepared from Mbd3-H3F ESCs using the NE-PER kit 

(Thermo). Nuclear extract (1470µg) was diluted in MVL buffer and spun in a 10-

40% glycerol gradient at 37krpm for 17 hours in a Beckmann L-90K 

ultracentrifuge. 29 fractions were collected and odd fractions western blotted with 

the indicated antibodies. 
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Embryoid Body Differentiation 

ESCs were differentiated to embryoid bodies (EBs) in suspension culture. 2.5 x 

106 cells were plated in ESC medium without LIF in bacteriological plates. Cells 

were replated to non-gelatinized cell culture plates after 3 days and harvested for 

western blots at the indicated timepoints. 

 

Chromatin Extraction Assay 

Chromatin was extracted from WT ESCs by salt fractionation as described 

(Henikoff et al., 2009). Briefly, 4 x 107 cells were pelleted, washed in PBS, and 

resuspended in TM2 buffer (10mM Tris-HCl pH 7.5, 2mM MgCl2, 1.5% NP-40, 1x 

HALT protease inhibitor cocktail) on ice for 5min. Cells were pelleted and the 

nuclei incubated in TM2 + 70mM NaCl for 2h at 4°C. Nuclei were pelleted and 

incubated as before in TM2 + 140mM NaCl, and further pelleted and incubated in 

TM2 + 600mM NaCl overnight at 4°C. Supernatants from each incubation were 

saved as 0, 70,140 and 600mM NaCl fractions, clarified by centrifugation at full 

speed, and western blotted with the indicated antibodies. 

 

Reprogramming to pluripotent stem cells 

Lentiviral plasmids for dox-inducible Oct4, Sox2, and Klf4 expression (pLenti-Tet-

OSK-mCherry) and for L-Myc expression (pLenti-Tet-L-Myc) were generated by 

digestion of CMV-OSK and CMV-L-Myc cDNA from FUW-OSKM and pMXs-Ms-

L-Myc (Addgene 20328 and 26023 respectively) and cloning into pcDNA3.1 with 

HIV1-based 5’ and 3’ LTRs from pGIPZ. To package lentivirus, 293T cells were 
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transfected with 5µg pLenti-Tet-OSK-mCherry, pLenti-Tet-L-Myc, FUW-rTtA 

(Addgene 20342), or EOS-EGFP (Addgene 21313) lentiviral reporter plasmids 

along with packaging plasmids (5µg psPAX2 and 2.5µg pCMV-VSV-G 

(Addgene)). Primary MEFs were infected with day 2 viral supernatant using 

8µg/mL hexadimethrine bromide (Sigma), and re-infected after 24 hours. MEFs 

were replated in ESC media after 48 hours and induced with 2µg/ml dox 4 days 

after the first infection. Dox was removed at day 20 and cells were cultured for an 

additional 10 days. On Day 30 cells were imaged to assess loss of OSK 

transgenes and EOS-EGFP reporter activation, and on day 31 were stained for 

alkaline phosphatase according to kit instructions (Millipore). Single colonies 

were picked on Day 30, expanded, and western blotted with the indicated 

antibodies. Media were changed every other day. 

 

Bisulfite pyrosequencing 

WT ESCs were subjected to embryoid body differentiation and harvested at the 

indicated timepoints. Briefly, genomic DNA was phenol-chloroform extracted from 

cells incubated in ES cell lysis buffer (10 mM Tris, pH 7.5; 10 mM EDTA; 10 mM 

NaCl; 0.5% sarkosyl) with 1 µg/µL proteinase K at 55°C overnight. The DNA was 

bisulfite converted using the EpiTect Bisulfite Kit (QIAGEN). Primers were 

designed for the Mbd3c CpG island using PyroMark Q24 software (QIAGEN, see 

Table 2.3 for sequences), with one PCR primer in a pair biotinylated, and PCR 

was performed on the converted DNA with KAPA HiFi HotStart Uracil+ ReadyMix 

(Kapa Biosystems). PCR products were bound to streptavidin sepharose beads 
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(GE Healthcare) and sequenced using a PyroMark Q24 (QIAGEN). Data were 

analyzed using PyroMark Q24 software. 

 

RNA-seq 

Total RNA was isolated from two biological replicate WT, Mbd3ab KO, Mbd3c 

KO, Mbd3abc KO, and Mbd3cΔN−ab KO ESC lines using TRIzol (Life 

Technologies), and purified with the Zymo RNA Clean and Concentrator kit. 2µg 

RNA was used for library preparation. RNA was rRNA-depleted (NEB and 

Clontech) and strand-specific libraries were prepared using the TruSeq Stranded 

mRNA LT kit (Illumina) by Applied Biological Materials, Inc. 

 

RNA-seq data analysis 

Reads were mapped to the mouse mm10 genome with TopHat2 (Kim et al., 

2013), using parameters --library-type fr-firststrand --segment-length 38. Mapped 

reads were processed in HOMER (Heinz et al., 2010) using the 

“analyzeRepeats” command to calculate raw counts and normalized reads per 

kilobase per million mapped reads (rpkm) for each gene. Differential gene 

expression was calculated with DESeq2 (Love et al., 2014) using the 

“getDiffExpression” command in HOMER. Genes with an adjusted p value < 0.05 

and log2 (fold change) were considered significantly changed. 

To map WDR5 and Mof binding at TSSs of significantly changed genes, 

WDR5 (Ang et al., 2011) and Mof (Li et al., 2012) ChIP-seq data were 

downloaded from GEO (GSE22934 and GSE37268) and aligned to the mouse 
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mm10 genome using Bowtie (Langmead et al., 2009). Mapped reads were 

processed in HOMER using the “annotatePeaks” command. For Mof ChIP-seq, 2 

replicate libraries were averaged in the aggregation plot. 

To map WDR5 at MBD3-bound DNase I hypersensitive sites (DHSs), 

peaks were called from MBD3 ChIP-seq data (Yildirim et al., 2011); GSE31690) 

using the HOMER “findPeaks” command, and MBD3-bound DHSs were 

identified using the “mergePeaks” command with peaks called from mouse 

ENCODE DHSs (GSM1014154) without TSSs. The WDR5 ChIP-seq library was 

aligned to the MBD3-bound DHS peak data using the “annotatePeaks” 

command.  

 

ACCESSION NUMBERS 

RNA-seq data was deposited at GEO with accession # GSE80708. 
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Table 2.3: Oligonucleotides used in Chapter II 
 
Name Sequence Purpose 

Mbd3c-10trunc-
XhoI-f 

CTCGAGACCATGATCTCCGTGCCTGATCGC clone Mbd3cΔ1-10-FLAG 
into pCAGGS 

Mbd3c-20trunc-
XhoI-f 

CTCGAGACCATGATTCAGGCTCTGGCTAAGCAC clone Mbd3cΔ1-20-FLAG 
into pCAGGS 

Mbd3c-30trunc-
XhoI-f 

CTCGAGACCATGCCCTCCAACCCTCCATGGAC clone Mbd3cΔ1-30-FLAG 
into pCAGGS 

Mbd3c-40trunc-
XhoI-f 

CTCGAGACCATGGCGGCCCGCTGCAGA clone Mbd3cΔ1-40-FLAG 
into pCAGGS 

XhoI-Mbd3ab-f CTCGAGACCATGGAGCGGAAGAGGTGG clone Mbd3a-FLAG into 
pCAGGS 

3xFLAG-MfeI-r CAATTGCTACTTGTCATCGTCATCCTTG clone Mbd3a/c-FLAG 
sequences into pCAGGS 

pCAGGS-
insertseq-f 

GCAACGTGCTGGTTATTGTGC mutagenesis PCR on 
pCAGGS-Mbd3c-FLAG 

Mbd3 seq9 R CCACACACCAGGGTTCTTCT mutagenesis PCR on 
pCAGGS-Mbd3c-FLAG 

Mbd3c-R43A-r GAAGACTCTGCAGGCGGCCGCTCCGACC R43A mutagenesis on 
pCAGGS-Mbd3c-FLAG 

Mbd3c-
41del50-r 

CAGGCTTGCCTCCGACCGGGGTCC Δ41-50 mutagenesis on 
pCAGGS-Mbd3c-FLAG 

XhoI-V5-
BamHI+ 

AGCTTCTCGAGACCATGGGTAAGCCTATCCCTAACCCTCTCCTCGG
TCTCGATTCTACGGGATCCGCCAC 

clone V5 tag into 
pCAGGS-Wdr5 (replaces 
GST tag) 

XhoI-V5-
BamHI- 

GTGGCGGATCCCGTAGAATCGAGACCGAGGAGAGGGTTAGGGATA
GGCTTACCCATGGTCTCGAGAAGCT 

clone V5 tag into 
pCAGGS-Wdr5 (replaces 
GST tag) 

Mbd3a_pLJM1
AfeI 

AGCGCTACCATGGAGCGGAAGAGGTG clone Mbd3a-H3F into 
pLJM1 

Mbd3c_pLJM1
AfeI 

AGCGCTACCATGGCGCGCATTTGGTTTG clone Mbd3c-H3F into 
pLJM1 

Mbd3ctrunc_pL
JM1AfeI 

AGCGCTACCATGGGCAAGCCTGACCTGAA clone Mbd3cΔN-H3F into 
pLJM1 

Mbd3FLAG_pL
JM1BstBI 

TTCGAACTACTTGTCATCGTCATCCTTG clone Mbd3-H3F into 
pLJM1 

Mbd3a_NotIEco
RI 

AAGCGGCCGCACCATGGAGCGGAAGAGGTGGGAGTGC Amplify Mbd3a from 
cDNA 

Mbd3a/b/c R CGGAATTCCACTCGCTCTGGCTCCGGCTTTCCTCCTC Amplify Mbd3 (all 
isoforms) from cDNA 

Mbd3c v2 F AAGCGGCCGCACCATGGCGCGCATTTGGTTTGGTGGG Amplify Mbd3c from cDNA 

Mbd3c v2 dN AAGCGGCCGCACCATGGGCAAGCCTGACCTGAACACC Amplify Mbd3cΔN from 
cDNA 

GSP1-3 TCCTGACCAGTTCTTCT 5'RACE sequencing 
primer 

GSP1-2 GTGTAGAGCACTCGCAATG 5'RACE sequencing 
primer 

Mbd3c Xho1 CTCGAGACCATGGCGCGCATTTGGTTTG clone Mbd3c-H3F into 
pCAGGS 

Mbd3ctrunc 
Xho1 

CTCGAGACCATGGGCAAGCCTGACCTGAA clone Mbd3cΔN-H3F into 
pCAGGS 

Mbd3FLAG 
EcoR1 

GAATTCCTACTTGTCATCGTCATCCTTG clone Mbd3c- and 
Mbd3cΔN-H3F into 
pCAGGS 

FLAG Xho1 CTCGAGACCATGGACTACAAAGACGATGA clone FLAG-Wdr5 domain 
muts into pCAGGS 

hWdr5 EcoR1 GAATTCTTATTAGCAGTCACTCTTCCACA clone FLAG-Wdr5 domain 
muts into pCAGGS 

pX330-
Mbd3abc-1 

CACCGGTGTGTAGAGCACTCGCAA Mbd3abc KO guide RNA 
oligo 

pX330-
Mbd3abc-2 

AAACTTGCGAGTGCTCTACACACC Mbd3abc KO guide RNA 
oligo 

pX330-Mbd3ab-
1 

CACCGCTTTCCGGTGCGGAAGTCGA Mbd3ab KO guide RNA 
oligo 
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pX330-Mbd3ab-
2 

AAACTCGACTTCCGCACCGGAAAGC Mbd3ab KO guide RNA 
oligo 

pX330-Mbd3c-1 CACCGTCCATGGACCCCGGTCGGAG Mbd3c KO guide RNA 
oligo 

pX330-Mbd3c-2 AAACCTCCGACCGGGGTCCATGGAC Mbd3c KO guide RNA 
oligo 

Mbd3abcCRISP
R seq F 

GACTTACAGGGAGTTGTGAGCC PCR Mbd3abc KO from 
gDNA to verify sequence 

Mbd3abcCRISP
R seq R 

TGCTTTCTCACTGCTATTTCCCCA  PCR Mbd3abc KO from 
gDNA to verify sequence 

Mbd3abCRISP
R seq F 

CCTTAGGCTTCCCAGATGAACT PCR Mbd3ab KO from 
gDNA to verify sequence 

Mbd3abCRISP
R seq R 

GGTGCTTAGCCAGAGCCTGAA PCR Mbd3ab KO from 
gDNA to verify sequence 

Mbd3cCRISPR 
seq F 

GAAGAAGTTCCGCAGCAAGC PCR Mbd3c KO from 
gDNA to verify sequence 

Mbd3cCRISPR 
seq R 

AGGCAATGGTTTCTTCCACCC  PCR Mbd3c KO from 
gDNA to verify sequence 

Mbd3ctrunc 
Sal1 

TCGACATGGGCAAGCCTGACCTGAACACCGCGCTGCCTGTACGGC
AGACTGCATCCATCTTCAAGCAA 

Annealing oligo to clone 
Mbd3cΔN into pBluScript 
for CRISPR 

Mbd3ctrunc 
Age1 

CCGGTTGCTTGAAGATGGATGCAGTCTGCCGTACAGGCAGCGCGG
TGTTCAGGTCAGGCTTGCCCATG 

Annealing oligo to clone 
Mbd3cΔN into pBluScript 
for CRISPR 

Mbdc BS+ AGGGAGGTGTTTAGTTAGAGT PCR bisulfite-converted 
gDNA from Mbd3c CpG 
island 

Mbd3c BS- [Btn]AAAAAAAATTCCCCAACAAACCACAACT PCR bisulfite-converted 
gDNA from Mbd3c CpG 
island. Adds biotin tag 

Mbd3c-1_BS+ ATTTTTATTTTGATTTGGTTGGAAGAATTA PCR bisulfite-converted 
gDNA from Mbd3c CpG 
island 

Mbd3c-1_BS- [Btn]CTTCCCACCTACCTTCCTAATAACCTA PCR bisulfite-converted 
gDNA from Mbd3c CpG 
island. Adds biotin tag 

Mbd3c_BSseq GATTTTTTATTTATTAAATTAAATG Pyrosequencing primer #1 

Mbd3c-
1b_BSseq 

GTGTTAGTTGTGGTTTG Pyrosequencing primer #2 

EcoRI-5'-Wdr5-f TTGAATTCCTTGGGACAGTTGATTTGTTGGAGG clone H3F-Wdr5 5' 
homology arm 

BamHI-5'-Wdr5-
r-PAMmut 

AAGGATCCCATGGCTCTGAAGACCACAGGGC clone H3F-Wdr5 5' 
homology arm 

XbaI-3'-Wdr5-f AATCTAGAGCCACAGAGGAGAAGAAGCCA clone H3F-Wdr5 3' 
homology arm 

SacI-3'-Wdr5-r TAGAGCTCATCAAGCACTAGCTGGTTCCAAAC clone H3F-Wdr5 3' 
homology arm 

BamHI-6xHis-f TAGGATCCCATCACCACCATCATCACGC clone 6xHis,3xFLAG tag 
for H3F-Wdr5 

XbaI-3xFLAG-r TTTCTAGACTTGTCATCGTCATCCTTGTAGTC clone 6xHis,3xFLAG tag 
for H3F-Wdr5 

pX330-Wdr5-
Nterm+ 

CACCGTTCACGGTGTCCTGCCCTGT CRISPR oligo targeting 
the N terminus of Wdr5 

pX330-Wdr5-
Nterm- 

AAACACAGGGCAGGACACCGTGAAC CRISPR oligo targeting 
the N terminus of Wdr5 

XhoI-5'Mbd3-
homol-f 

CTCGAGTCCTGCATACGTCTCTTCCCAG clone Mbd3abc 
KO/Mbd3c o/e 5' 
homology arm 

SalI-5'Mbd3-
homol-r 

GTCGACACGTGGTAGACTTTCTGCC clone Mbd3abc 
KO/Mbd3c c o/e 5' 
homology arm 

EcoRI-3'Mbd3-
homol-f 

GAATTCTGCTGCAGGCCAGGGTGG clone Mbd3abc 
KO/Mbd3c o/e 3' 
homology arm 

BamHI-3'Mbd3-
homol-r 

GGATCCTACCTCTGGTGCCACCATCCT clone Mbd3abc 
KO/Mbd3c o/e 3' 
homology arm 
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pCAGGS-5'seq GAGCCTCTGCTAACCATGTTCA mutagenesis PCR on 
Mbd3abc KO/Mbd3c o/e 
construct 

Mbd3c-noCpG-
afterBsrGI-r 

AGAGCACTGGCAATGGCAGA mutagenesis PCR on 
Mbd3abc KO/Mbd3c o/e 
construct 

Mbd3c-noCpG-
50trunc-r 

CAGGTCAGGCTTGCCCATGGTGGCAAGCT Δ1-50 mutagenesis on 
Mbd3abc KO/Mbd3c o/e 
construct 

pX330-5'Mbd3+ CACCGAGAAAGCAGAACCTTACACG CRISPR oligo targeting 5' 
of the Mbd3 locus 

pX330-5'Mbd3− AAACCGTGTAAGGTTCTGCTTTCTC CRISPR oligo targeting 5' 
of the Mbd3 locus 

pX330-3'Mbd3+ CACCGAGCCAGAGCGAGTGTAGCAC CRISPR oligo targeting 5' 
of the Mbd3 locus 

pX330-3'Mbd3− AAACGTGCTACACTCGCTCTGGCTC CRISPR oligo targeting 5' 
of the Mbd3 locus 

Mbd3-exon6-f GGAAGCAGGAGGAGCTGGT PCR check primer for 
Mbd3abc KO/Mbd3c o/e 

Mbd3c-noCpG-
outcheck-r 

TGGCCTAGCAACATTCTGGC PCR check primer for 
Mbd3abc KO/Mbd3c o/e 

Mbd3c-noCpG-
outcheck-f 

GATTTCCAGACAGTGTGCACTAAGTG PCR check primer for 
Mbd3abc KO/Mbd3c o/e 

CMVenhancer-r GGCGGGCCATTTACCGTAAG PCR check primer for 
Mbd3abc KO/Mbd3c o/e 
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CHAPTER III: CHARACTERIZATION OF H3.3K56AC IN PLURIPOTENCY 

AND DIFFERENTIATION 

 

Contributions 

Tom Fazzio designed and cloned H3.3K56R guide RNAs and homology arm 

templates and constructed H3.3K56R mutant ESC lines. Unpublished data from 

Feixia Chu is referenced in the Introduction. Ly-sha Ee performed all other 

experiments. Figure 3.1B was made by Kurtis McCannell and used with 

permission. 

 

ABSTRACT 

 Post-translational modifications of histones play numerous roles in the 

modulation of chromatin structure and gene expression. Acetylation of lysine 56 

of histone H3 (H3K56ac) is a modification in the histone core that is well-

characterized and abundant in yeast but less common in mammalian cells, 

where its functions are largely unknown. In ESCs, H3K56ac interacts with OCT4, 

SOX2, and NANOG at gene promoters to maintain pluripotency but the precise 

roles of H3K56ac in ESC pluripotency and during differentiation are still 

undescribed. It is also unclear whether K56ac has separate functions when it 

occurs on different histone H3 variants. In this chapter we show that ESC lines 

depleted for H3.3K56ac by K56R substitution in both H3.3 genes are largely 

unchanged in morphology and self-renewal. However, although loss of 

H3.3K56ac does not appear to be critical to exit the pluripotent state, H3.3K56ac 

is important for differentiation in certain contexts, particularly the formation of 

neurons. Our work complements previous data indicating that H3K56 
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hyperacetylation leads to upregulation of the ectodermal lineage during 

differentiation. 

 

INTRODUCTION 

 Histone modifications regulate chromatin structure by binding and 

recruiting other chromatin regulators that, at genomic regions such as enhancers 

and promoters can in turn activate or repress transcription. In embryonic stem 

cells (ESCs), many histone modifications are linked to the transcription factor 

network that includes the pluripotency factors OCT4, SOX2, and NANOG and 

which is essential to maintain ESCs in an undifferentiated state. Pluripotent 

chromatin is characterized by a dynamic, more open structure as compared with 

somatic cell chromatin (Meshorer and Misteli, 2006). In addition to “bivalent” 

domains – regions co-marked by modifications associated with activation and 

repression (H3K4me3 and H3K27me3 respectively) – ESCs contain elevated 

levels of activation-associated histone marks accompanied by higher global 

transcription (Efroni et al., 2008).  

 While most well-studied modifications are located on the N-terminal 

histone tails, modifications of amino acids within the globular histone fold domain 

have also been identified and characterized. Lysine 56 is located in the α-N helix 

of histone H3 (Figure 3.1A and B) just N-terminal to the histone fold at the entry 

and exit points of DNA (Masumoto et al., 2005; Ozdemir et al., 2005; Xu et al., 

2005). Acetylation of lysine 56 (by the RTT109 and p300 and GCN5 histone 

acetyltransferases in yeast and mammals respectively) disrupts a water-
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mediated contact between the histone and the DNA (Das et al., 2009; Driscoll et 

al., 2007; Han et al., 2007; Luger et al., 1997; Neumann et al., 2009; Schneider 

et al., 2006; Tjeertes et al., 2009) and possibly destabilizes nucleosomes, 

although a recent study reported no change in folding of H3K56Q nucleosomal 

arrays (Watanabe et al., 2010). 

 In yeast H3K56ac is important for histone gene expression through 

recruitment of SWI/SNF, and has numerous roles in CAF1-mediated nucleosome 

assembly, response to DNA damage, DNA repair, and H2A.Z dimer exchange  

(Chen et al., 2008a; Li et al., 2008; Masumoto et al., 2005; Vempati et al., 2010; 

Watanabe et al., 2013; Xu et al., 2005). H3K56ac is far less abundant in 

mammalian cells (about 1% of total H3 in HeLa cells) (Xie et al., 2009) and its 

functions in mammalian cells are largely unknown. In both human and mouse 

ESCs H3K56ac is linked to the pluripotency network, co-localizing with OCT4, 

SOX2, and NANOG at target gene promoters (Tan et al., 2013; Xie et al., 2009). 

Depletion of H3K56ac by knockdown of the histone chaperone Asf1a led to 

decreased expression of pluripotency factors and increased expression of 

markers of all three germ layers (Tan et al., 2013), and Oct4 KD ESCs exhibit a 

marked decrease in H3K56ac levels by mass spec analysis (T. Fazzio and F. 

Chu, unpublished observation) suggesting that H3K56ac is important for ESC 

self-renewal and pluripotency and/or for preventing spontaneous differentiation. 

Additional work from the Grunstein lab in human ESCs showed that H3K56ac 

becomes enriched at developmental gene promoters during RA-induced 

differentiation, although transcription of a subset of enriched genes was 
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unchanged (Xie et al., 2009). A recent study showed that H3K56ac levels in 

ESCs could be regulated by a long noncoding RNA, lncPRESS1, through 

sequestration of the NAD-dependent deacetylase SIRT6 (Jain et al., 2016).  

 Here, we have constructed ESC lines with homozygous K56R mutations 

in each H3.3 gene to deplete K56ac at histone H3.3, which marks active gene 

promoters and enhancers as well as heterochromatic and repeat regions in 

ESCs (Elsässer et al., 2015; Goldberg et al., 2010). We found that ESC self-

renewal is largely unchanged in H3.3K56R mutants. Loss of OCT4 and NANOG 

during differentiation, as well as timely upregulation of many lineage markers 

were similarly unaffected. However, H3.3K56R mutants appear to be defective in 

formation of neurons during retinoic acid- (RA)-induced differentiation, although 

we did not observe decreased or delayed expression of two common 

neuroectoderm markers. Together, our data suggest that H3.3K56ac is important 

to maintain or enhance ESC pluripotency and is also required during later stages 

of differentiation. Our work further indicates that differently-modified histone 

variants could play varied roles in pluripotency and differentiation. 
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Figure 3.1: The mammalian core and replication-independent histone H3 
variants, and position of H3K56 on the nucleosome 
(A) Sequence alignment of the mammalian core (H3.1 and H3.2) and replication-
independent (H3.3) H3 variants. Amino acids that are not conserved in H3.3 are 
shown in red, and differing between H3.1 and H3.2/3 in orange. Lysine 56 is 
indicated in green. (B) Pymol crystal structure of the nucleosome (Luger et al., 
1997; PDB:1AOI) showing the position of both H3K56 residues (magenta). H2A, 
H2B, H3, and H4 are shown in yellow, brown, green, and blue respectively. Used 
with permission from Kurtis McCannell. 
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RESULTS AND DISCUSSION 

 To assess the effects of H3K56ac loss on ESC self-renewal and 

pluripotency we created an ESC line where lysine 56 of both H3.3 alleles was 

homozygously mutated to arginine (henceforth referred to as the H3.3K56R 

mutant) using the CRISPR/Cas9 system (Cong et al., 2013). As both H3.1 and 

H3.2 are expressed from tandem, multicopy clusters at multiple loci (Marzluff et 

al., 2002) we were unable to create H3.1 or H3.2 mutant lines, as we could not 

target every H3.1 or H3.2 gene copy (T. Fazzio, personal communication). In 

contrast, H3.3 is expressed from two discrete genes (H3f3a and H3f3b) with 

different coding sequences, allowing for sequential targeting with two homology 

constructs (see Methods for details). Although H3.3 comprises a minority of total 

H3 in ESCs and the fraction of H3.3 acetylated at K56 is unknown, H3.3 has 

highly distinct genomic localization and functions in ESCs and development 

(Banaszynski et al., 2013; Elsässer et al., 2015; Goldberg et al., 2010; Jang et 

al., 2015). We therefore hypothesized that loss of H3.3K56ac could result in 

similar or overlapping phenotypes as those observed in H3.3-depleted ESCs.  

 

H3.3K56ac is not required for ESC self-renewal 

To determine whether H3K56ac levels were reduced in H3.3K56R 

mutants we prepared histones by acid extraction and western blotted for 

H3K56ac. We observed a very slight decrease in H3K56ac levels in H3.3K56R 

mutants (Figure 3.2A). This result was not unexpected given that K56ac has 

been detected in less than 1% of total H3 (Das et al., 2009; Xie et al., 2009; Yuan 
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et al., 2009). It is however important to note that several antibodies against 

H3K56ac including the Active Motif antibody used in this study were shown to be 

non-specific (Drogaris et al., 2012; Pal et al., 2016). It is therefore likely that the 

blot in Figure 3.2A is skewed by cross-reactivity with H3K9ac and other 

acetylated H3 residues. H3.3K56R ESCs exhibit colony morphology similar to 

wildtype (Figure 3.2B), and unchanged proliferation rates (Figure 3.2C). 

Moreover, H3.3K56R cells do not appear to be defective in self-renewal as 

determined by similar levels of alkaline phosphatase (AP) staining to WT when 

maintained in leukemia inhibitory factor (LIF) (Figure 3.2D). We next tested 

whether H3.3K56R ESCs were defective for differentiation in an embryoid body 

(EB) timecourse. We observed normal rates of OCT4 and NANOG pluripotency 

factor loss during the timecourse (Figure 3.2E, top panel) and similar morphology 

in WT and H3.3K56R cells differentiated for 12 days (Figure 3.2E, bottom panel), 

consistent with a flattening out and loss of AP staining in H3.3K56R ESCs 

cultured for 3-5 days in the absence of LIF (Figure 3.2D). Together, these data 

indicate that H3.3K56ac is not required for ESC self-renewal or for mediating loss 

of pluripotency factors during differentiation. Interestingly, a previous study 

showed that OCT4, SOX2, and NANOG expression is upregulated in Sirt6 KO 

ESCs and stabilized during Sirt6 KO EB differentiation (Etchegaray et al., 2015). 

SIRT6 is an NAD-dependent Class III histone deacetylase that deacetylates 

H3K9 and H3K56, among other H3 lysine residues (Michishita et al., 2008; 2009; 

Yang et al., 2009). Thus, H3K56 hyperacetylation appears to block differentiation 

by preventing loss of pluripotency factors. Additionally, Etchegaray et al. showed 
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that expression of endoderm and mesoderm lineage markers was downregulated 

while expression of ectoderm markers was upregulated with respect to wildtype 

in Sirt6 KO EBs. To further investigate the role of H3K56ac in differentiation we 

are currently constructing an H3.3K56Q mutant ESC line. As the K56Q mutation 

mimics constitutive H3K56 acetylation (Masumoto et al., 2005) we hypothesize 

that this mutant will behave similarly to the Sirt6 KO in differentiation assays. The 

H3.3K56Q cell line will also allow us to distinguish H3K56ac-specific phenotypes 

from those resulting from H3K9 hyperacetylation that are observed in the Sirt6 

KO. 
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Figure 3.2: H3.3K56R ESCs exhibit normal morphology, growth, and EB 

differentiation 

(A) Western blot of acid-extracted histones from the indicated ESC lines. H3 

serves as a loading control. (B) Representative images of WT and H3.3K56R 

mutant ESCs. (C) Growth curve for H3.3K56R ESC lines, relative to WT ESCs. 

(D) Histogram of AP staining of WT and H3.3K56R ESCs at the indicated 

timepoints in the presence or absence of LIF. The number of scored colonies for 

each sample is indicated above the corresponding bar. Representative images 

for scored classes are shown. (E) Western blots of differentiating WT and 

H3.3K56R ESCs (top) and representative images of WT and H3.3K56R ESCs at 

differentiation day 12 (bottom). 
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Differentiating H3.3K56R cells are defective for some mesoderm and 

endoderm lineage markers 

 To further investigate pluripotency of the H3.3K56R ESCs, we measured 

expression levels of markers from the three germ layers using RT-qPCR. 

Consistent with the western blots in Figure 3.2E, Oct4 and Nanog RNA levels 

decreased in WT and H3.3K56R ESCs during EB differentiation (Figure 3.3A). 

We first examined expression of markers for mesoderm, the central embryonic 

germ layer that gives rise to most blood cells, heart and muscle tissue. Cardiac 

specification can be divided into several stages of mesoderm differentiation, each 

of which is marked by the presence of specific genes (Rajala et al., 2011; 

Wamstad et al., 2012). As we had observed beating cardiomyocytes in late-stage 

differentiating H3.3K56R cultures, we predicted that cardiac genes would be 

largely unchanged. Expression and kinetics of early cardiac mesoderm genes 

were largely unchanged in the H3.3K56R mutant, save for a very slight decrease 

in Flk1 (Figure 3.3B). Expression of two cardiac progenitor markers, Nkx2-5 and 

Gata4 was also slightly reduced, although there was no delay in upregulation 

(Figure 3.3C). Interestingly, the expression of the mature cardiomyocyte markers 

Myl7 and Tnnt2 was highly downregulated in H3.3K56R (Figure 3.3D), raising the 

possibility that the H3.3K56R mutants are less efficient in generating beating 

cardiomyocytes than WT. Since EBs produce cells from multiple differentiated 

lineages, we next performed directed differentiation (Kattman et al., 2011; 

Wamstad et al., 2012) to better enrich for cardiomyocytes and possibly quantify 

the differences in efficiency. Surprisingly, despite downregulation of Brachyury 
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the expression of the cardiac progenitor Tbx5 and the cardiomyocyte markers 

Myl7 and Tnnt2 were all upregulated in the H3.3K56 mutant (Figure 3.3E), 

suggesting no defect in cardiac differentiation. Although further experimental 

replicates will be necessary to confirm this result, these data suggest that while 

loss of H3.3K56ac leads to mis-regulation of some mesodermal markers, 

acetylation is not required to form functional cardiac progenitors and 

cardiomyocytes, particularly if formation of cardiac mesoderm is enriched using a 

directed differentiation protocol.   
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Figure 3.3: Expression of mesoderm and cardiac lineage genes in 
H3.3K56R mutant ESCs 
 

(A-D) RT-qPCR of known pluripotency (A), cardiac mesoderm (B), cardiac 

progenitor (C), and cardiomyocyte (D) marker genes in WT and H3.3K56R 

mutant ESCs differentiating from EBs. Data are normalized to WT Diff. Day 0. 

Error bars represent +/- standard deviation of three technical replicates. 

Representative data from at least two biological replicate experiments are shown. 

(E) RT-qPCR of cardiac mesoderm (blue), cardiac progenitor (purple), and 

cardiomyocyte  (red) lineage genes from the indicated timepoints during directed 

cardiomyocyte differentiation. One replicate is shown. Normalization and error 

bars are as above. 
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Markers for endodermal differentiation (Figure 3.4A) and hematopoietic 

mesoderm (Figure 3.4B) were similarly affected: subsets of genes were slightly 

downregulated but not delayed in H3.3K56R mutants. Thus, it is possible that 

H3.3K56ac is only necessary to enhance the expression of certain differentiation 

markers. To further test this possibility it will be necessary to perform RNA-Seq to 

compare global gene expression during directed differentiation of WT, 

H3.3K56R, and H3.3K56Q cells. We hypothesize that H3.3K56Q mutants will be 

defective in cardiomyocyte and hematopoietic differentiation, with stabilized 

pluripotency markers similar to a Sirt6 KO (Etchegaray et al., 2015). However, it 

is also highly possible that hyperacetylation of H3.1 and H3.2 in addition to H3.3 

is necessary to observe said defects. 
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Figure 3.4: Expression of endoderm and hematopoietic lineage genes in 
H3.3K56R mutant ESCs 
(A-B) RT-qPCR of known endoderm (A), and hematopoietic (B) marker genes in 
WT and H3.3K56R mutant ESCs differentiating from EBs. Data are normalized to 
WT Diff. Day 0. Error bars represent +/- standard deviation of three technical 
replicates. Representative data from at least two biological replicate experiments 
are shown. 
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H3.3K56R mutants are defective in neuronal differentiation 

 We next tested whether H3.3K56R mutants were defective for ectodermal 

differentiation. To induce neuronal differentiation we added retinoic acid (RA) to 

EB cultures at Day 3. Addition of RA enhanced levels of ectoderm markers 

Nestin and Sox11 in both WT and H3.3K56R mutants (Figure 3.5A). As few 

neurons could be visually detected in EB cultures we attempted to enrich for 

neurons through an alternative RA induction where EBs were cultured from 

hanging drops and individually incubated with RA for 14 days (Jiang et al., 2011). 

Cultures were stained for the postmitotic neuronal marker TUJ1 (Figure 3.5B, 

top). We observed decreased numbers of TUJ1-positive cells in H3.3K56R 

cultures (Figure 3.5B, bottom), with positive cells frequently exhibiting abnormal 

axons. These data complement data from Etchegaray et al., which suggest that 

H3K56 hyperacetylation in Sirt6 KO cells pushes differentiation towards the 

ectoderm lineage (Etchegaray et al., 2015). If H3K56ac is important for ectoderm 

formation we would hypothesize that H3.3K56Q mutants would behave similarly 

to the Sirt6 KO, although it is also possible that stabilization of the pluripotency 

factors could lead to differentiation defects, particularly if the upregulated 

ectodermal differentiation observed in the Sirt6 KO is due to constitutive H3K9ac 

or acetylation of other SIRT6 targets. A third possibility, as stated previously for 

other germ layers, is that the H3K56Q phenotype can be detected only if the 

H3.1 and H3.2 variants are mutated along with H3.3. For future studies it will also 

be necessary to optimize the neuronal differentiation protocol, as fewer than 20% 

of WT cells were TUJ1-positive. It is likely that improved induction can be 
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achieved by addition of RA earlier in the timecourse (Rohwedel et al., 1999) or by 

titrating RA concentration.  

 While it will be much more informative to repeat the experiments here with 

an H3.3K56Q mutant, our data are consistent with previous work indicating that 

H3K56ac interacts with OCT4, SOX2, and NANOG to maintain ESC 

pluripotency. We also show that H3.3K56ac is important during neural 

differentiation although further ChIP-Seq or RNA-Seq studies will be necessary 

at later stages of differentiation to ascertain whether H3.3K56ac binds and 

regulates neural progenitor genes, or is indirectly required. Although ChIP-Seq 

experiments are currently limited by the lack of availability of non-crossreacting 

H3K56ac antibodies (Pal et al., 2016), it is possible that H3.3K56ac could 

regulate gene expression through H3.3 or H2A.Z. As H3K56Q yeast mutants 

have decreased H2A.Z at promoters (Watanabe et al., 2013), and H2A.Z mutant 

ESCs harbor differentiation-defective phenotypes (Creyghton et al., 2008; Hu et 

al., 2013) it is likely that H2A.Z function is compromised in H3.3K56Q mutants. 

Thus, future studies will aim to elucidate the mechanisms by which K56ac, 

pluripotency factors, and histone variants interact to regulate ESC function. 
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Figure 3.5: H3.3K56R mutant ESCs are defective in neuronal differentiation 
 
(A) RT-qPCR of ectoderm markers (left and center), and OCT4 (right) in EB 

differentiation timecourses of WT and H3.3K56R mutant ESCs. Retinoic acid 

(RA) was added at Diff. Day 3 to induce neuronal differentiation in +RA samples. 

Data are normalized to WT Diff. Day 0 and error bars represent +/- standard 

deviation of three technical replicates. Representative data from at least two 

biological replicates are shown. (B) TUJ1 (green) and DAPI (blue) staining of 

H3.3K56R and WT ESCs neuronally differentiated using the hanging drop 

method and RA (Top panel). Quantification of TUJ1-positive cells (bottom panel). 

250 cells were counted for each of two biological replicates of WT and 

H3.3K56R. Error bars represent +/- standard deviation from two biological 

replicates. 

	 	



	
	

	

103	

	
	
  



	
	

	

104	

MATERIALS AND METHODS 

Generation of H3.3K56R mutant ESC lines 

 H3.3K56R mutant ESCs were made using CRISPR/Cas9 genome editing 

 (Cong et al., 2013) as described previously (Hainer et al., 2015). Guide RNAs 

targeting K56 in H3f3a and H3f3b were cloned into pX330-puroR. K56R repair 

templates for H3f3a and H3f3b were synthesized as gblocks (Integrated DNA 

Technologies) containing ~1kb of homology and mutated PAM sites were cloned 

into pCR2.1. The cloned guide RNA and repair template vectors were transfected 

into E14 ESCs as described above. Clones were screened by TOPO cloning and 

sequencing. H3f3a and H3f3b were targeted sequentially. See Table 3.1 for 

guide RNA sequences.  

 

Cell Culture and Embryoid Body Differentiation 

E14 ESCs were maintained and EB differentiation was performed as 

described (Chapter II; (Ee et al., 2017)). 

 

RT-qPCR 

Total RNA from ESCs was prepared as described (Chapter II; (Ee et al., 

2017)). 1µg of total RNA was reverse-transcribed to cDNA using random 

hexamers (Promega). 1µl of cDNA was amplified for each RT-qPCR technical 

replicate using FAST SYBR mix (KAPA Biosystems) as described (Hainer et al., 

2015). Three technical replicates were performed per sample. GAPDH was used 

as a loading control. See Table 3.1 for primer sequences. 
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Histone Extraction and Western Blotting 

 Histones were prepared using the Gozani lab protocol: 

http://web.stanford.edu/group/gozani/cgi-bin/gozanilab/wp- 

content/uploads/2014/01/Histone-extraction-protocol.pdf. Briefly, cells were 

washed twice in cold PBS, resuspended in TEB buffer (1X PBS; 0.5% Triton X-

100; HALT protease inhibitors), lysed on ice for 10 minutes, pelleted at 2,000rpm, 

washed once in TEB, and resuspended in 0.2N HCl. Pellets were incubated 

overnight at 4°C, and supernatants collected by centrifugation.  

Whole cell lysates were prepared from EB timecourses using We16th 

buffer (25mM Tris pH 7.5; 125mM NaCl; 2.5mM EDTA; 0.05% SDS; 0.5% NP-

40; 10% w/v glycerol). The following antibodies were used for western blotting: 

anti-OCT4 (Santa Cruz sc-8628), anti-NANOG (Bethyl A300-398A), anti-β-ACTIN 

(Sigma A1978), anti-H3 (Abcam ab1791), anti-H3K56ac (Active Motif 39281). 

 

Retinoic acid and Hanging drop Neuronal Differentiation 

 For neuronal differentiation of ESCs in suspension culture, EBs were 

formed by plating in ESC media without LIF as described in Chapter II and 0.1µM 

all-trans RA (Sigma R2625) was added at Diff. Day 3. Cells were maintained in 

RA for 9 days and harvested for total RNA collection at the indicated timepoints. 

Hanging drop neuronal differentiation was performed as described (Jiang 

et al., 2011). Briefly, EBs were formed in ESC media without LIF by hanging drop 

for 2 days and transferred to 96 well Ultralow attachment plates (Corning) for 3 



	
	

	

106	

days. EBs were replated in ungelatinized 48 well plates for 11 days in ESC 

media without LIF and 0.1µM all-trans RA. 50,000 cells were replated onto 

chamber slides (Lab-Tek) overnight for TUJ1 staining. 

 

Immunofluorescence 

Cultures from neuronal differentiation in chamber slides (see above) were 

fixed with 4% paraformaldehyde and immunofluorescence performed as 

described (Chen et al., 2015) using 1:400 anti-TUJ1 (SigmaT8660) and 1:1000 

Alexa Fluor 488 rabbit anti-mouse (Life Technologies) and DAPI. Cells were 

imaged on a Nikon Eclipse E400 microscope. For quantification, 250 stained 

cells were counted each for WT and H3.3K56R. 

 

Directed Cardiomyocyte Differentiation 

 Cardiomyocyte differentiation was performed as described (Kattman et al., 

2011; Wamstad et al., 2012) with modifications. WT E14 and H3.3K56R ESCs 

were cultured for two days in serum-free media (3 parts IMDM (Cellgro 15-016-

CV); 1 part Ham’s F12 (Cellgro 10-080-CV); 0.05% BSA; 2mM L-glutamine; 

50µg/ml ascorbic acid; N2B27 supplement without vitamin A (GIBCO); 4.5 x 10-

4M monothioglycerol) to induce EB formation. EBs were dissociated with TrypLE 

(Invitrogen) and reaggregated in 5ng/ml human VEGF (PeproTech 100-20); 

8ng/ml human Activin A (PeproTech 120-14E), and 0.5ng/ml human BMP4 

(PeproTech 120-05ET) for 40 hours. EBs were dissociated again and replated in 

gelatinized 48-well plates in StemPro-34 (GIBCO 10639011); 2mM L-glutamine; 
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5ng/ml VEGF, 10ng/ml human FGF-basic (PeproTech 100-18C) and 25ng/ml 

human FGF10 (PeproTech 100-26). Beating cardiomyocytes in were first 

observed in WT cells at differentiation day 8. Cells were harvested for RT-qPCR 

at differentiation days 0, 4, and 10. 

 

Table 3.1: Oligonucleotides used in Chapter III 

Name Sequence Purpose 

H3.3a_gRNA-f [Phos]CACCGACTTTTTAGGCCTGGTACT
G 

H3.3a (H3f3a) guideRNA for knocking in K56 
mutations 

H3.3a_gRNA-r [Phos]AAACCAGTACCAGGCCTAAAAAGT
C 

H3.3a (H3f3a) guideRNA for knocking in K56 
mutations 

H3.3b_gRNA-f [Phos]CACCGTGACTGCAGGCCAGGGAC
CG 

H3.3b (H3f3b) guideRNA for knocking in K56 
mutations 

H3.3b_gRNA-r [Phos]AAACCGGTCCCTGGCCTGCAGTC
AC 

H3.3b (H3f3b) guideRNA for knocking in K56 
mutations 

H3.3aK56chk+ AGCTTTAGGCATTGCTTTCAAC PCR for checking K56 mutation knock-in in H3f3a 

H3.3aK56chk- ACTAGGCAGCCTCTACCAACAG PCR for checking K56 mutation knock-in in H3f3a 

H3.3bK56chk+ TCCCTTCTGCGTATTAGCAACT PCR for checking K56 mutation knock-in in H3f3b 

H3.3bK56chk- CCTTGAACGTCGCTTGTCTC PCR for checking K56 mutation knock-in in H3f3b 

Oct4-2 F AGAGGGAACCTCCTCTGAGC RT-qPCR primer 

Oct4-2 R TTCTAGCTCCTTCTGCAGGG RT-qPCR primer 

Nanog_RTqPCRf ATTCTTGCTTACAAGGGTCTGC RT-qPCR primer 

Nanog_RTqPCRr TTGAGAGCTTTTGTTTGGGACT RT-qPCR primer 

Brachyury-F CCAAGGACAGAGAGACGGCT RT-qPCR primer 

Brachyury-R AGTAGGCATGTTCCAAGGGC RT-qPCR primer 

Mesp1 F TTGTCCCCTCCACTCTTCAG RT-qPCR primer 

Mesp1 R AGAAACAGCATCCCAGGAAA RT-qPCR primer 

Flk1-F GCTTGCTCCTTCCTCATCTC RT-qPCR primer 

Flk1-R CCATCAGGAAGCCACAAAGC RT-qPCR primer 

Nkx2-5 F GGCTTTGTCCAGCTCCACT RT-qPCR primer 

Nkx2-5 R CATTTTACCCGGGAGCCTAC RT-qPCR primer 

Tbx5 F GGCAGTGATGACCTGGAGTT RT-qPCR primer 

Tbx5 R TGGTTGGAGGTGACTTTGTG RT-qPCR primer 

Gata4 F TGATAGAGGCCACAGGCATT RT-qPCR primer 

Gata4 R CTGGAAGACACCCCAATCTC RT-qPCR primer 

Myl7 F CTCTTCCTTGTTCACCACCC RT-qPCR primer 

Myl7 R CTCACACTCTTCGGGGAGAA RT-qPCR primer 

Tnnt2 F GTGTGCAGTCCCTGTTCAGA RT-qPCR primer 

Tnnt2 R ACCCTCAGGCTCAGGTTCA RT-qPCR primer 

FoxA2-F CCCTACGCCAACATGAACTCG RT-qPCR primer 
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FoxA2-R GTTCTGCCGGTAGAAAGGGA RT-qPCR primer 

Sox17 f CTCGGGGATGTAAAGGTGAA RT-qPCR primer 

Sox17 r GCTTCTCTGCCAAGGTCAAC RT-qPCR primer 

Gata1 F AGGGCAGAATCCACAAACTG RT-qPCR primer 

Gata1 R CCACTAAGGTGGCTGAATCC RT-qPCR primer 

PU.1 F TGCAGCTCTGTGAAGTGGTT RT-qPCR primer 

PU.1 R AGCGATGGAGAAAGCCATAG RT-qPCR primer 

Klf1 F GAGCGAACCTCCAGTCACAG RT-qPCR primer 

Klf1 R TACTCCAAGAGCTCGCACCT RT-qPCR primer 

Gypa F CCAATGTGTGGTGAGACAGG RT-qPCR primer 

Gypa R CCAAGAAGAGCATTCACCATC RT-qPCR primer 

Nfe2 F CAGGTCTCCACAAGCACAAA RT-qPCR primer 

Nfe2 R CCAGCCTCTCAGGGACACTA RT-qPCR primer 

Hba-x F GTAGGTCTTCGTCTGGGGGT RT-qPCR primer 

Hba-x R TCATCATGTCCATGTGGGAG RT-qPCR primer 

Nestin F TGGCACACCTCAAGATGTCCCTTA RT-qPCR primer 

Nestin R AAGGAAATGCAGCTTCAGCTTGGG RT-qPCR primer 

Sox11-F ACGACCTCATGTTCGACCTGAGCT RT-qPCR primer 

Sox11-R CACCAGCGACAGGGACAGGTTC RT-qPCR primer 

 



	
	

	

109	

CHAPTER IV: CONCLUSIONS AND DISCUSSION 

  

Nearly two decades ago, the canonical NuRD complex was isolated and 

characterized in four separate studies as a transcriptional repressor with a 

unique dual chromatin remodeling/histone deacetylase activity (Wade et al., 

1998; Tong et al., 1998; Zhang et al., 1998; Xue et al., 1998). Since this initial 

characterization, subsequent studies have largely focused on addressing three 

primary questions: 1) what is the stoichiometry of each NuRD subunit, and which 

subunits directly interact with which other subunits within the complex; 2) how is 

NuRD recruited to its genome-wide targets; and 3) how does the complex 

function at its target sites to regulate chromatin structure and gene expression? 

Additionally, further studies describe NuRD’s function with peripheral interacting 

proteins in myriad tissue, organism, developmental, and disease contexts. The 

work in this thesis provides novel insight into questions 1) and 2), and opens 

additional routes of inquiry for all three questions through the characterization of 

a largely unstudied isoform of the NuRD subunit MBD3, MBD3C. Our work 

suggests that it is necessary to consider the existence of multiple subunit 

isoforms to precisely determine the composition of NuRD and other complexes. 

Although the expression of MBD3C appears to be limited to ESCs, multiple 

isoforms or splice variants of MBD family and numerous other chromatin 

regulators are known to exist (and continue to be identified with the advent of 

advanced RNA-Seq methods). Furthermore, we have demonstrated that a single 

subunit isoform can uniquely interact with WDR5, a chromatin regulator that 
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binds histone H3, suggesting an alternative recruitment mechanism for MBD3 

beside 5hmc recognition, and for NuRD in alongside to histone binding by 

RBBP4/7 and recognition of methylated histones by the CHD3/4 

chromodomains. Further studies will be necessary to elucidate the precise role(s) 

of WDR5 within NuRD (see below). 

 

An ESC-specific MBD3 isoform and NuRD complex 

We have identified a novel NuRD complex formed through an interaction 

between the smallest MBD3 isoform MBD3C and the histone H3 binding protein 

WDR5. This form of NuRD appears to be specific to ESCs, as MBD3C 

expression is lost as ESCs differentiate, and WDR5 expression is similarly 

reduced during EB formation assays (Ang et al., 2011). WDR5 and MBD3 have 

each been shown to be required for pluripotency (Kaji et al., 2006; 2007; Yang et 

al., 2014), possibly through association with OCT4 and regulation of OCT4 target 

genes (Ang et al., 2011; Liang et al., 2008). WDR5 is also required for ESC self-

renewal (Ang et al., 2011). While WDR5 is hypothesized to be important for 

maintaining expression of pluripotent genes through H3K4 trimethlyation by the 

SET/MLL complex (Ang et al., 2011; Yang et al., 2014) our data suggest that a 

WDR5/MBD3C/NuRD complex functions separately from other WDR5 

complexes, as we did not observe other SET/MLL, MOF, or NSL subunits 

interacting with MBD3. Interestingly however, we found that MBD3C interacts 

with the WDR5 at the same binding surface as MLL1 and histone H3, using the 

same conserved arginine-containing motif (Couture et al., 2006; Patel et al., 
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2008). It is therefore also of interest to determine whether MBD3C can bind 

WDR5 only when the latter is not bound to H3/MLL1. Due to the simplicity of the 

WDR5 interaction motif, it is not unexpected that WDR5 is a member of 

numerous protein complexes. Outside of the SET/MLL protein family no amino 

acid is completely conserved within the motif apart from the alanine-arginine 

dipeptide (Figure 2.3; Patel et al., 2008). A cursory examination of the motif 

alignment in Figure 2.3 suggests a requirement for the two amino acids 5’ to the 

arginine to be relatively small (or absent, as in H3), but it is still unclear which if 

any motif amino acids are required for MBD3C to bind WDR5 aside from Arg43. 

 

A role for WDR5 within the NuRD complex? 

Although Mbd3c is expressed at lower levels than the other larger Mbd3 

isoforms and does not appear to be required on its own for ESC differentiation, 

we show that MBD3C can function redundantly with MBD3A and MBD3B to 

regulate gene expression (Figure 4.1A) with less than 40 and only ~250 genes 

misregulated in Mbd3c and Mbd3ab KO respectively, compared with nearly 

5,000 genes changed in Mbd3abc KO. Consistent with the idea that MBD3C can 

functionally compensate for the other MBD3 isoforms, a previous study found 

that while Mbd3 null ESCs exhibit loss of DNA methylation (and subsequent de-

repression of trophectoderm lineage-specific genes), the methylation phenotype 

was rescued in ESCs expressing Mbd3c alone (Latos et al., 2012). The MBD3C 

N-terminus (and therefore also the interaction with WDR5) appears to be 

important for MBD3C’s function (Figure 4.1B), as the genes changed in Mbd3abc 
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KO overlap with almost all of the genes changed in Mbd3cΔN−ab KO cells. 

Furthermore, of the 2,627 genes classified as misregulated only in Mbd3abc KO 

cells (Figure 2.9D), 837 (roughly 32%) had log2fold change values > 0.8 in the 

Mbd3cΔN−ab KO and thus were reported as unchanged due to falling just below 

the log2fold change cutoff of 1. Since Mbd3c is identical to Mbd3a and b outside 

of its N-terminus, it is not entirely unexpected that MBD3C can still regulate many 

genes when its N-terminus is deleted. While our data show that WDR5 appears 

to bind promoters of most genes changed in Mbd3abc and Mbd3cΔN−ab KO 

cells, it is likely that WDR5 regulates a large subset of these genes through 

mechanisms independent of Mbd3c/NuRD, as it has been shown that WDR5 

also functions as a member of the MOF acetyltransferase complex independently 

of MLL H3K4 methlyase activity (Dias et al., 2014; Li et al., 2012). Further studies 

will be necessary to determine the genomic regions specifically targeted by 

MBD3C and WDR5, as well as pinpoint unique functions of the individual MBD3 

and WDR5 complexes. For all such studies it would be important to be able to 

distinguish the effects of Wdr5 KD on MBD3/NuRD from the phenotypes caused 

by the loss of WDR5 function in SET/MLL or MOF complexes. It is moreover 

important to note that there are alternative models to the sequestration model 

proposed in Figure 4.1. Rather than acting as a molecular sponge that prevents 

WDR5 from associating with activating complexes, MBD3C/NuRD could be 

recruiting WDR5 to fine-tune the expression of NuRD target genes (by 

counteracting HDAC- or CHD-mediated repression) or using WDR5 as an 

additional histone-binding module. As WDR5 is known to interact with a large 
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subset of lncRNAs in ESCs using a binding surface opposite to that of MBD3C 

and H3K4 (Yang et al., 2014) it would be interesting to test whether any of these 

lncRNAs also bind and/or recruit MBD3C/NuRD.  

Much has been made of MBD3’s function as a transcriptional co-

repressor; however, in agreement with transcriptome analyses from previous 

studies (Günther et al., 2013; Hainer et al., 2016; Luo et al., 2015) our RNA-Seq 

analysis indicates that MBD3 can also function as an activator, with several 

thousand genes downregulated in Mbd3abc KO ESCs. Likewise, this work is the 

first known example of WDR5 functioning as part of a repressive complex.  
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Figure 4.1: MBD3C is a redundant regulator of gene expression in ESCs 
(A) MBD3C binds WDR5 via a conserved N-terminal motif (dark blue).  
MBD3C/NuRD is redundant in gene regulation with MBD3A/NuRD and 
MBD3B/NuRD. (B) Interaction with WDR5 is required for gene regulation by 
MBD3C. Pluripotency genes are derepressed if all MBD3/NuRD activity is lost. A 
possible scenario is that further upregulation of genes may occur through 
increased association of WDR5 with transcriptional activators. See text for more 
details. 
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Significance of the methyl-CpG binding domain 

 DNA methylation is an epigenetic modification common to vertebrates and 

conserved in numerous invertebrate, plant, and fungal species. Methylated 

genes are commonly silenced, and the question of how this repression occurs 

continues to be a focus of the methylation field today. While the most 

straightforward mechanism is that DNA methylation physically blocks or renders 

chromatin at gene promoters inaccessible to the transcriptional machinery, the 

presence of the MBD family proteins in organisms exhibiting DNA methylation 

implies that methylation could provide binding sites or signals for repressive 

chromatin remodelers, with the MBD proteins as “readers” of the methylation 

mark. Mammalian MBD3 contains substitutions of His30 and Phe34 for lysine 

and tyrosine in the MBD, resulting in the loss of the ability to bind 5mc. Although 

the relative affinity of MBD3 for 5hmc is still disputed in the field (Cramer et al., 

2014; Hashimoto et al., 2012; Mellén et al., 2012; Spruijt et al., 2013; Yildirim et 

al., 2011)) our lab’s finding that TET1 catalytic activity is required for MBD3 

localization in ESCs (Hainer et al., 2016; Yildirim et al., 2011) suggests that the 

MBD3 MBD has further evolved to recognize and recruit the NuRD complex to 

genomic regions undergoing demethylation.  

The question of the MBD’s biological significance was first raised soon 

after the initial characterization of the MBD proteins. DNA methylation is essential 

during embryonic development (Li et al., 1992; Okano et al., 1999), but of the 

MBD proteins only MBD3 appears to also be necessary. As the MBD3 MBD does 

not bind 5mc, it was postulated that the MBD could be unimportant for either 
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development or for transcriptional repression. Our observation that MBD3C 

(which completely lacks the MBD), can functionally compensate for MBD3A and 

B in the regulation of gene expression in ESCs seems to cast further doubt on 

whether the MBD is actually essential for NuRD complex function and/or 

methylation-induced gene repression. It is noteworthy that the MBD3B isoform 

lacks almost the entire MBD but can also rescue wildtype levels of gene 

expression, proliferation, and methylation when expressed in Mbd3 null ESCs 

(Kaji et al., 2006; Latos et al., 2012). We have further found that constitutive 

Mbd3cΔN overexpression in Mbd3abc KO ESCs allows for normal kinetics of 

OCT4 and NANOG loss during differentiation (Figure 2.7A). Taken together, 

these data point to a greater role for the MBD3 C-terminal region in ESC 

pluripotency and differentiation, and suggests a diminished importance for the 

MBD. Further studies would be necessary to elucidate significant functional 

domains within the C-terminal region. The three MBD3 isoforms are identical in 

sequence from exon 3 to the stop codon, which creates some functional 

redundancy and underscores the importance of the C-terminus. As MBD3/NuRD 

is required for ESC differentiation and embryonic viability it therefore seems likely 

that ESCs express all of the isoforms as a means to ensure proper development 

as much as possible, with WDR5 allowing for MBD3C to function in gene 

regulation as an additional backup mechanism in the absence of MBD3A and B.   

Interestingly, although Mbd3 and Mbd2 null mice have very different 

phenotypes (Hendrich et al., 2001) the genome-wide localization of MBD3 and 

MBD2 is highly interdependent and also dependent on DNMT1 and TET1 (and 
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thus also on 5mc and 5hmc) in ESCs (Hainer et al., 2016). Therefore, the 

importance of the MBD as a NuRD recruitment module cannot be entirely 

dismissed, as MBD3 may require recognition of methylated DNA by MBD2’s 

MBD to bind to a subset of targets. Furthermore, 5mc and 5hmc levels are 

decreased in both Mbd3 and Mbd2 KD cells, resulting in a regulatory loop of 

gene expression (Hainer et al., 2016) and consistent with previous studies 

showing that 5mc and 5hmc are dependent on MBD3 (Latos et al., 2012; Yildirim 

et al., 2011). Although our lab has shown that MBD3 and TET1 physically 

interact (Yildirim et al., 2011), the MBD3 isoforms that bind TET1 or 5hmc and 

the mechanism of 5mc and 5hmc regulation by MBD proteins are still unknown. It 

is therefore possible that the MBD is required for DNMT and/or TET1 function. 

 

Why MBD3C? 

 Although MBD family proteins are typically found in organisms where DNA 

methylation is also present, MBD3C is not highly conserved. A protein BLAST 

search of the 50-amino acid N-terminal domain revealed significant similar 

sequences only among rodent species. Strikingly, amino acids 21-50 appear to 

be the most highly conserved, hinting at an important role for the WDR5-

interacting motif in rodent development (Figure 4.2). In contrast, homology to the 

first 20 amino acids in MBD3C was detected only in two species of rat, Rattus 

norvegicus and Neotoma lepida. Thus, the evolutionary question remains 

unanswered: what necessitated the MBD3C isoform in rodents, or why has the 

isoform been lost in other species? As MBD3 is required for embryonic 
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development and MBD3C is largely functionally redundant with MBD3A and B in 

ESCs, MBD3C could have arisen simply as a backup for the other isoforms in 

case expression from the MBD3A/B start site was somehow lost. Since MBD3C 

is subsequently lost during differentiation, it is likely that MBD3 function becomes 

absolutely critical in the blastocyst before and in the early stages of lineage 

commitment. Mouse development during implantation differs slightly from that of 

humans, particularly in the formation of extraembryonic tissues from the 

trophectoderm. In the mouse the trophectoderm requires FGF4 to proliferate into 

extraembryonic tissues; in humans this proliferation occurs later in development 

and does not rely on FGF signaling (reviewed in (Rossant, 2015)). Although the 

expression patterns of individual MBD3 isoforms during embryogenesis have not 

yet been described, it is possible that MBD3C is also critical at this stage for, or 

oppositely to counterbalance, FGF signaling as Mbd3 null ESCs have been 

shown to upregulate expression of trophectoderm markers (Kaji et al., 2006; Zhu 

et al., 2009). 

 A second difference between mouse and human ESCs is utilization of the 

threonine dehydrogenase (TDH) catabolism pathway. While threonine is required 

for growth and is catabolized by all mammalian cells as an essential amino acid, 

the Tdh gene has been shown to be inactive in humans (Edgar, 2002), while 

TDH enzyme is very highly expressed and active in undifferentiated mouse ESCs 

(Wang et al., 2009a), entailing the hypothesis that the TDH pathway facilitates 

the fast proliferation rate of mouse ESCs that is not observed in humans. 

Although we do not observe a proliferation defect in Mbd3c KO ESCs (Figure 
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2.6B), it is possible that MBD3C could also function redundantly with MBD3A and 

B, and evolved as a backup for the other isoforms in the regulation of the TDH 

pathway. ESCs expressing only MBD3C (Mbd3ab KO) do grow more slowly than 

WT, but the proliferation defect is not as severe (Figure 2.6C), and our mass 

spec analysis detected small numbers of TDH peptides in all MBD3 purifications 

(Tables 2.1 and 2.2). While it is unlikely that MBD3 directly regulates TDH as 

most TDH enzyme is situated in the mitochondria, it is possible that MBD3 is 

important for expression of the Tdh gene. Consistent with this idea, Tdh 

expression is significantly decreased in Mbd3abc, Mbd3ab, and Mbd3cΔN−ab 

KO cell lines (log2fold change of -1.84, -0.57, and -1.17 respectively from our 

RNA-Seq data). Although MBD3C is not present in many species with a 

functional Tdh gene, it would be of interest to determine whether ESCs from 

these species utilize the TDH pathway to enhance proliferation, and whether 

MBD3 is also involved. 
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Figure 4.2: Protein BLAST alignment of the MBD3C N-terminus with rodent 
MBD3 isoforms 
Protein BLAST alignment of the mouse 50-amino acid MBD3C N-terminus with 
MBD3 isoforms from other rodent species is shown. Differing amino acids are 
depicted in red; the alanine-arginine motif required for WDR5 interaction (Figure 
2.3; Patel et al., 2008) is shown in green. 
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Further insight into the functions of H3K56ac in pluripotency and 

differentiation 

 While our data in Chapter III are largely preliminary and experiments are 

ongoing, several conclusions can still be drawn. We have shown using 

acetylation-depleted H3.3K56R mutants that H3.3K56ac is dispensable for ESC 

self-renewal, but not for differentiation, as we observe that expression of some 

germ layer markers is decreased and H3.3K56R mutants are defective in 

neuronal development. The effects of H3.3K56ac on pluripotency appear to be 

somewhat context-dependent, as some cardiac lineage genes downregulated in 

EB differentiation are expressed normally during directed differentiation with 

defined growth factors and serum-free culture conditions. Our data showing that 

ESCs depleted for H3.3K56ac are defective in differentiating into the ectoderm 

lineage and in forming neurons are consistent with previous data in Sirt6 KO 

cells. H3K56 is hyperacetylated in the Sirt6 KO and these cells are skewed 

during differentiation towards the ectoderm lineage (Etchegaray et al., 2015). We 

anticipate that we will observe a similar phenotype upon repeating differentiation 

assays using the acetylation mimic (H3.3K56Q) ESC lines, in addition to failure 

to downregulate pluripotency factors and decreased expression of mesoderm 

and endoderm markers. However, as briefly discussed in Chapter III SIRT6 

targets other histone residues including H3K9 and H3K18 (Michishita et al., 

2008; Tasselli et al., 2016)), and it is possible that the phenotypes observed by 

Etchegaray et al. result from pan-H3 hyperacetylation. Taken together, the 

current evidence points toward a role for H3K56ac in maintaining ESC 
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pluripotency in conjunction with the “master” regulators such as OCT4, with 

deacetylation of H3K56 necessary to exit the pluripotent state. Consistent with a 

shift in H3K56ac localization to developmental genes during differentiation of 

human ESCs (Xie et al., 2009) our data suggest that H3.3K56ac likely enhances 

but is not absolutely required for expression of some mesodermal and 

endodermal lineage markers during development. Interestingly, we did not 

observe mis-expression of two common ectoderm markers, Nestin and Sox11 

during RA-induced EB differentiation despite a clear defect in the formation of 

TUJ1-positive neurons using a directed differentiation protocol (Jiang et al., 

2011) although it is likely Nestin and Sox11 are downregulated in the directed 

differentiation). Optimization of our neuronal differentiation timecourse protocols 

and ChIP- and RNA-Seq analysis will be necessary to determine if a similar shift 

in H3K56ac localization occurs in mouse ESCs and which neuronal genes are 

affected by depletion of H3.3K56ac. 

 It is of particular importance to determine which phenotypes result 

specifically from deacetylation or hyperacetylation of H3.3 versus the core 

histone variants. Although targeting every endogenous copy of H3.1/2 using 

CRISPR is technically difficult, and knockdown of the H3K56ac acetyltransferase 

p300 would impact multiple acetylated sites, hyperacetylation of H3.1/2 could be 

studied using overexpression vectors. It is also currently unknown whether H3.3 

or H3.3/H2A.Z-containing nucleosomes are enriched for K56ac. Assuming that 

suitable antibodies against H3K56ac can be synthesized, it would be interesting 

to perform ChIP-Seq of H3.3, H2A.Z and H3K56ac in parallel to test whether they 
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are enriched at the same genomic regions, and in H3.3K56R and H3.3K56Q 

mutants to determine whether localization patterns are interdependent and/or 

correlate with gene expression. Because the H3K56Q mutant allows the yeast 

SWR-C complex to promiscuously exchange H2A.Z and H2A dimers (Watanabe 

et al., 2013), it is possible that examining INO80 complex function in the K56R 

and K56Q mutants will provide more insight into H3K56ac- and H2A.Z-mediated 

gene regulation in ESCs and other mammalian cells. In their characterization of 

the Sirt6 KO, Etchegaray et al. describe another possible mechanism for 

H3K56ac function. They were able to rescue the Sirt6 KO differentiation 

phenotypes by knocking down the Tet1 or Tet2 genes, which are target genes of 

OCT4 and SOX2 (Koh et al., 2011; Wu et al., 2013) and function in oxidation of 

5mc to 5hmc (Ito et al., 2010; Tahiliani et al., 2009). In the Sirt6 KO, increased 

5hmc as well as the activation-associated histone mark H3K4me2 were observed 

at ectodermal genes (Etchegaray et al., 2015), leading to a model where H3K56 

deacetylation by SIRT6 during differentiation represses OCT4 and SOX2, which 

then prevents excessive TET-mediated demethylation and activation of 

ectodermal genes. The Tet1/2 KD rescue phenotype is observed both in cell 

lines and in teratomas from Sirt6 KO ESCs. While this model does not entirely 

explain why other lineage genes are downregulated in H3K56 hyperacetylation 

mutants, further examination of DNA methylation and TET enzyme function in 

H3.3 and H3.3K56 mutants would be informative, particularly as Tet1 KD, like 

H3.3 depletion allows ESCs to upregulate trophectodermal markers 

(Banaszynski et al., 2013; Koh et al., 2011). In conclusion, our work corroborates 
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previous studies showing that H3K56ac is important for maintaining pluripotency. 

Further studies are necessary to elucidate how H3K56ac affects lineage genes 

during differentiation, and how H3K56ac functions alongside the other H3 

variants, INO80 and H2A.Z, and regulators of DNA methylation at different 

developmental stages.
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