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Cancer Development and the
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Up-regulation of Cyr61
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*Department of Molecular, Cell and Cancer Biology, University
of Massachusetts Medical School, Worcester, MA, 01605;
†Division of Pathology, Department of Pathology and
Microbiology, Tokyo, 173-8610, Japan; ‡Department of
Digestive Surgery, Nihon University School of Medicine, Tokyo,
173-8610, Japan; §Department of Pathology, Memorial Sloan-
Kettering Cancer Center, New York, NY, 10021; ¶Program in
Molecular Medicine, University of Massachusetts Medical
School, Worcester, MA, 01605; #Cancer Center, University of
Massachusetts Medical School, Worcester, MA, 01605

Abstract
Pancreatic ductal adenocarcinoma (PDAC), a poor prognostic cancer, commonly develops following activating mutations
in the KRAS oncogene. Activation of WNT signaling is also commonly observed in PDAC. To ascertain the impact of
postnatal activation of WNT-stimulated signaling pathways in PDAC development, we combined the Elastase-tva-based
RCAS-TVApancreatic cancermodelwith the established LSL-KrasG12D,Ptf1a-cremodel. Delivery of RCAS viruses encoding
β-cateninS37A and WNT1 stimulated the progression of premalignant pancreatic intraepithelial neoplasias (PanIN) and
PDAC development. Moreover, mice injected with RCAS-β-cateninS37A or RCAS-Wnt1 had reduced survival relative to
RCAS-GFP-injected controls (P b .05). Ectopic expression of active β-catenin, or its DNA-binding partner TCF4, enhanced
transformation associated phenotypes in PDAC cells. In contrast, these phenotypes were significantly impaired by the
introduction of ICAT, an inhibitor of the β-catenin/TCF4 interaction. By gene expression profiling, we identified Cyr61 as a
target molecule of the WNT/β-catenin signaling pathway in pancreatic cancer cells. Nuclear β-catenin and CYR61
expression were predominantly detected inmoderately to poorly differentiatedmurine and human PDAC. Indeed, nuclear
β-catenin- andCYR61-positive PDACpatients demonstrated poor prognosis (P b .01). Knockdownof CYR61 in aβ-catenin-
activatedpancreatic cancer cell line reducedsoft agar,migrationand invasionactivity. Together, thesedata suggest that the
WNT/β-catenin signaling pathway enhances pancreatic cancer development andmalignancy in part via up-regulation of CYR61.

Neoplasia (2016) 18, 785–794

Introduction
Pancreatic cancer remains a leading cause of cancer-related deaths in
the United States [1]. Approximately 53,000 people will be diagnosed
with pancreatic cancer in 2016 and roughly 42,000 will die from this
disease. The 5-year overall survival is only 7.7% according to data
from the SEER database [2]. Only 9% of pancreatic cancer patients
are diagnosed with localized disease and the 5-year relative survival for
this patient group is 29% [2]. However, 52% of PDAC patients
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already have distant metastases at diagnosis, and the 5-year relative
survival rate for this group is a paltry 2.6%. These data highlight the
early dissemination of pancreatic cancers and the resistance of this
tumor type to currently employed therapeutic approaches.

Pancreatic ductal adenocarcinoma (PDAC), the predominant
pancreatic cancer type, commonly develops through the progression of
precursor lesions known as pancreatic intraepithelial neoplasia (PanIN)
[3]. Recently, acinar-to-ductal metaplasia (ADM), particularly in the
context of pancreatic injury, has been recognized as an important
phenomenon in the initiation of PanIN [4,5]. Genetically, mutation of
the KRAS oncogene is detected in N95% of PDAC cases and activation
of KRAS signaling is sufficient for development of PanIN and PDAC
[6–8]. Meanwhile, inactivation of the tumor suppressor genes INK4A,
TP53 and DPC4 plays a pivotal role in PanIN progression and PDAC
development [9]. Deletion of these tumor suppressor genes in genetically
engineered mouse models confirmed the importance of these factors in
constraining PanIN progression and the onset of invasive PDAC [10]. In
addition to the above-mentioned genetic changes, activation of key
developmentally regulated signaling pathways, including the Hedgehog,
Notch and WNT pathways, is commonly observed in PDAC [11–13].

WNT ligands activate signaling through the “canonical” WNT/
β-catenin pathway as well as “non-canonical” planar cell polarity (PCP)
and WNT/Ca2+ pathways [14,15]. These precise modulations are
essential for normal embryogenesis, organogenesis and homeostasis. In
addition, activation of the WNT/β-catenin signaling axis, as a result of
activating mutations in CTNNB1 or inactivating mutations in the
negative regulators AXIN and APC, is commonly observed in tumors of
the colon, stomach and liver [16–24]. Mutations in APC and CTNNB1
are found in uncommon pancreatic cancer types including acinar cell
carcinomas, pancreatoblastoma and solid pseudopapillary neoplasm
(SPN) [24–27]. However, despite common nuclear and cytoplasmic
localization of β-catenin, indicative of pathway activation, in PDAC,
mutation of pathway components is uncommon [28–31]. These
findings suggest that other mechanisms, including ligand-mediated
pathway activation, result in the stimulation of this signaling axis.
Indeed, elevated expression of the protein ATDC has been shown to
stabilize β-catenin resulting in pathway activation in PDAC [32,33].
Inactivation of the negative regulator RNF43 has been proposed as
another mechanism [34]. Further, published findings suggest thatWNT
ligand mediated activation of the non-canonical WNT signaling
pathways may play a role in PDAC pathogenesis. In agreement,
WNT5A, which potently activates the non-canonical signaling
pathways, has been demonstrated to enhance transformation in
pancreatic cancer cells [35,36]. Yet, whether WNT ligands promote
PDAC development in vivo remains unknown.

We therefore determined the ability of postnatal and sporadic
expression of WNT1 and an activated β-cateninS37A mutant protein to
promote PDAC development and progression. We have previously
reported that postnatal WNT1 expression promotes the development of
mucinous cystic neoplasms through the paracrine activation of signaling
in stromal cells [37]. Here, we demonstrate that WNT1 and β-catenin
promote the progression of PanIN lesions and the development of
PDAC. In addition, we show that activation of the canonical β-catenin
signaling axis enhances the transformation of pancreatic cancer cells and
is required for their transformation-associated phenotypes. Through
gene expression profiling, we identify Cyr61 as a β-catenin stimulated
gene in pancreatic cancer cells, demonstrate that CYR61 inhibition
impairs pancreatic cancer cell transformation, and show that β-catenin
and CYR61 expression correlate with higher tumor grade and reduced

survival in PDAC patients. Together, these findings confirm an
important role for WNT signaling during pancreatic tumorigenesis
and identify a mechanism that contributes to this phenotype.

Materials and Methods

Cell Lines
The murine pancreatic cancer cell lines 170#3 and 218#1 were

derived from orthotopic tumors induced following the implantation of
pancreatic ductal epithelial cells expressing KRASG12D and additionally
null for the Trp53 and Ink4a/Arf tumor suppressor loci [38]. 170#3
cells were transfected with pcDNA6-β-cateninS37A, −TCF4, −ICAT or
empty vector control by Superfect Transfection Reagent (QIAGEN,
Carlsbad, CA). Knockdown of Cyr61 was performed using specific
targeting shRNAs (m; sc-39,332-SH, Santa Cruz). Control shRNA
plasmid-A (sc-108,060) was used as a negative control.

Cell Proliferation Assay
Cells (103) were seeded onto collagen-coated 96-well plate and

incubated at 37°C under 5% CO2 [39]. Cell metabolic activity was
measured with CellTiter 96 Aqueous One Solution Cell proliferation
assay (Promega) according to the manufacturer's instructions.
Experiments were performed in triplicate and repeated at least twice.

Soft Agar Assay
Cells (105) were seeded onto soft agar and were incubated for

3.5 weeks at 37°C under 5% CO2 [40]. The number of colonies in 15
microscopic fields (100×) was counted, while diameter of the colonies
was measured with SPOT software. Experiments were performed in
triplicate and repeated at least twice.

Migration and Invasion Assay
Migration and invasion assays were performed as previously

described [41]. Cells (2.5 × 104) in 0.5 ml of serum-free DMEM
were plated into either control or Matrigel-coated invasion chamber
inserts (Becton Dickinson). Inserts were then placed in wells with
0.75 ml of DMEM containing 10% FBS as a chemoattractant.
Experiments were performed in triplicate and repeated at least twice.

Spheroid Formation in Three Dimensional (3D) Cultures
Cells (4 × 103) were seeded onto a 3D culture plate coated with

ultra-hydrophilic polymer (PrimeSurface® 96 U plate, Sumitomo
Bakelite Co. Ltd., Tokyo, Japan), and incubated for 3 days at 37°C
under 5% CO2. Spheroid size was measured using ImageJ.
Experiments were performed in triplicate and repeated at least twice.

TdT-Mediated dUTP–Biotin Labeling (TUNEL)
Apoptotic cells were detected in formalin-fixed and paraffin-embedded

sections by TUNEL staining as previously described [42].

Gene Expression Profiling Microarray Analysis
RNA was isolated from cell lines using Trizol reagent (Life

Technologies, 10,296,010). The RNA samples were labeled using the
3′ IVT Express Kit (Affymetrix, 901,228) and gene expression
profiling conducted using GeneChip Mouse Genome 430 2.0 arrays
(Affymetrix, 900,495).

The RMA method in the Affymetrix package from Bioconductor
[43] was used in R to summarize the probe level data and normalize the
dataset to remove across-array-variation. Log transformed data were
used in subsequent analyses. Moderated T statistics in the Limma
package from Bioconductor [44] was used to determine whether a
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gene's expression level differs between treatments. Genes with an
adjusted P b .01 using the B-H method [45] and at least 1.5-fold
difference in expression were considered significantly changed.
The raw data files in addition to normalized expression data have

been deposited in the NCBI GEO Archive under accession number
GSE83196. Data can be accessed via the GEO website http://www.
ncbi.nlm.nih.gov/geo/.

Real-Time Reverse-Transcription PCR (RT-PCR)
cDNAs were synthesized from total RNA using SuperScript™ III

First-Strand Synthesis System for RT-PCR (Invitrogen). Real-time
RT-PCR analysis was performed using QuantiTect™ SYBR Green PCR
Kit (QIAGEN Inc., Valencia, CA) for ABI PRISM 7700 Sequence
Detection Systems (PE Applied Biosystems Inc., Foster City, CA).
The primers used for Cyr61 were (5′-CCCTGAACTTGTGGATGT
CATTG-3′ and 5′-GTCATGATGATCCAGTCCTGCAAA-3′); for
Axin2, (5′-TCAGTCGATCCTCTCCACTTTGC-3′ and
5′-GCAGTTTTTGAGGAGATCTGGGAC-3′); and for ß-actin,
(5′-TGACAGGATGCAGAAGGAGA-3′ and 5′-CTGGAAGGT
GGACAGTGAGG-3′).

DNA Extraction and Polymerase Chain Reaction (PCR)
DNA extraction from formalin-fixed and paraffin-embedded

tissues as well as procedure of PCR were described previously [37].

Genetically Engineered Mice
The Elastase-tva, LSL-KrasG12D, and Ptf1a-cre mouse strains have

been previously described [7,46,47]. All animals were kept in specific
pathogen-free housing under guidelines approved by the University of
Massachusetts Medical School Institutional Animal Care and Use
Committee. DF1 chicken fibroblasts (2 × 107 cells) transfected with
RCAS-β-cateninS37A, RCAS-Wnt1 or RCAS-GFP vectors were
delivered via intraperitoneal injection into 3-day-old pups. Mouse
tissue samples were fixed and processed as previously described [46].
The University of Massachusetts Medical School Institutional Animal
Care and Use Committee approved all procedures.

Patient Materials
80 human pancreatic cancer samples, obtained from pancreatectomy

at Department of Digestive Surgery, Nihon University Itabashi
Hospital, Tokyo, Japan, were used under guidelines approved by the
Nihon University Itabashi Hospital, Clinical Research Judging
Committee (approval No. PK-150310-1). Formalin-fixed and
paraffin-embedded sections were stained with hematoxylin and eosin
(H&E) and were diagnosed by licensed pathologists according to the
classification of pancreatic carcinoma in Japan Pancreas Society under
WHO histological classification of tumors of the exocrine pancreas
[48]. Clinical data for the patients were collected from medical records
by surgeons.

Immunohistochemistry (IHC)
Immunostaining for formalin-fixed and paraffin-embedded sections

was performed as previously described [37,46]. Primary antibodies,
except Cyr61 (1:250; H-78, sc-13,100, Santa Cruz, CA) and Ki67
antibodies (rabbit monoclonal, SP-6; Nichirei, Tokyo, Japan), were
used as described previously [37,46]. The frequency of the positive
PDAC cells in human specimens was scored as follows: 0, under
detectable level; 1+, less than 25%; 2+, 25–50%; and 3+, more than
50% positivity of PDAC area. In Cyr61 staining, positive PDAC was

identified as staining stronger than normal pancreatic ducts in the same
specimen. However, faint intensity of Cyr61 was classified to 1+
regardless of the positive percentage.

PanIN Analysis Using SPOT Software
Four microscopic imaging pictures (100×) including i) one most

progressive PanIN lesion, ii) one minimal progression lesion, and iii)
two average progression lesions were analyzed the area population (%)
with SPOT microscopy software (SPOT Imaging Solutions, Inc.,
Sterling Heights, MI).

Statistical Analyses
Statcel software version 2 (OMS Ltd., Saitama, Japan) was used for the

statistical calculations. Survival curves of mice and patients were analyzed
byKaplan–Meiermethod and log-rank hazard ratio.Mann–Whitney's U
test was used to determine the significant difference in soft agar, migration
and invasion assay. Correlation between immunohistochemical score of
nuclear β-catenin and cytoplasmic Cyr61 was analyzed by Spearman's
correlation coefficient by rank test. Clinicophathological phenotypes of
nuclear β-catenin and Cyr61 were analyzed by Chi-square (χ2) for
independence test or Mann–Whitney U test.

Results
To ascertain the effect of postnatal activation of WNT signaling on
pancreatic tumorigenesis in vivo, we generated compound elastase-
tva;LSL-KrasG12D;Ptf1a-cre mice and injected DF1 fibroblasts produc-
ing RCAS-β-cateninS37A, RCAS-Wnt1 or RCAS-GFP (as a control) as
previously described [37]. We first assessed the effect of ectopicWNT1
and β-cateninS37A expression on PanIN development and progression
in 6- and 9-month old mice using SPOT analysis (Supplementary
Figure 1, A and B). At both time points, we observed that ectopic
WNT1 and β-cateninS37A expression led to an increase in PanIN
lesions relative to GFP-expressing controls and that the lesions present
in theWNT1- and β-cateninS37A-expressing pancreata were of a higher
grade than in the GFP-expressing controls (Supplementary Figure 1, C
and D). These results suggest that activation of the WNT/β-catenin
pathway promotes KRASG12D-induced acinar-to-ductal metaplasia
(ADM) and PanIN development and progression.

We next determined whether delivery of RCAS viruses encoding
WNT1 and β-cateninS37A promoted progression to invasive carcinoma
and reduced survival relative to RCAS-GFP controls. Kaplan–Meier
survival curves indicated that mice infected with RCAS-Wnt1 and
RCAS-β-cateninS37A had reduced pancreatic cancer-specific survival
relative to GFP controls (Figure 1A). Upon necropsy, large tumors were
observed in the pancreas of RCAS-Wnt1 and RCAS-β-cateninS37A

injected animals (Figure 1, B–D; Supplementary Table 1). As we
reported previously, female mice injected with DF1 cells producing
RCAS-Wnt1 commonly developed cystic lesions resembling mucinous
cystic neoplasms (MCN) [37]. However, other solid pancreatic tumors
were also observed in mice of both genders. Microscopically, these
pancreatic tumor masses were invasive ductal adenocarcinomas
displaying varying degrees of differentiation (Figure 1F). The carcinoma
cells were immunohistochemically positive for Ki67 indicating a high
rate of proliferation (Figure 1G). They were also positive for cytokeratin
and PDX1 indicative of their derivation from pancreas epithelial cells
(Figure 1H, I), and phosphorylated ERK1/2 illustrating the presence of
active KRAS signaling (Figure 1J). Meanwhile, sarcomatoid tumors
composed of spindle cells with occasional nuclear atypia were
occasionally observedwith poorly differentiated PDAC (Supplementary
Figure 2A). The sarcomatoid tumor cells were highly Ki67 positive
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(Supplementary Figure 2B) and were partially reactive to antibodies
directed against PDX1, wide cytokeratin and vimentin (Supplementary
Figure 2,C–E). Direct invasion into the duodenum, bile duct, spleen or
retroperitoneum was seen in limited cases (Supplementary Table 1).
Tumor metastases were observed in para-pancreatic lymph nodes and
liver (Figure 1E; Supplementary Figure 2, F and G), but not the lungs.

To confirm that the pancreatic tumors were derived from RCAS
infected cells, we purified genomic DNA from tumor tissue sections and
confirmed the presence of RCAS DNA by PCR with specific primers
(Figure 1K) [37]. Since infection of pancreas epithelial cells following
systemic delivery of RCAS viruses is very inefficient, the presence of
RCAS DNA in these lesions is indicative of their derivation from RCAS
infected cells. We next sought to confirm the expression of the
RCAS-encoded oncoproteins. Immunostaining of tumor sections of
tumors identified in RCAS-Wnt1 and RCAS-β-cateninS37A infected

mice demonstrated the universal presence ofWNT1protein in the tumor
epithelium of RCAS-Wnt1-induced, but not RCAS-β-cateninS37A-
induced tumors (Supplementary Figure 3 and Supplementary Table 2).
Nuclear and cytoplasmic localized β-catenin was detected in tumors
induced by both viruses as expected (Supplementary Figure 3 and
Supplementary Table 2). While the β-catenin IHC does not allow
distinction between exogenous β-catenin and endogenous protein,
together with the WNT1 immunostaining and the genomic PCR data,
these findings indicate that the identified tumors are derived from
RCAS-infected cells.

To begin to elucidate the mechanisms underlying WNT1 and
β-cateninS37A-induced pancreatic tumor progression, we developed cell
culture models. We ectopically expressed stabilized β-cateninS37A or its
DNA binding partner TCF4 in the murine pancreatic cancer cell line
170#3 [38]. We found that β-cateninS37A and TCF4 expression

Figure 1. Overexpression of β-catenin or WNT1 accelerates pancreatic carcinogenesis. (A) Kaplan–Meier survival curves indicate that
RCAS-Wnt1 and RCAS-β-cateninS37A injection into Elastase-tva, LSL-KrasG12D, Ptf1a-Cre mice reduced survival compared to RCAS-GFP
injection. * P b .05 for RCAS-Wnt1 versus RCAS-GFP and RCAS-β-cateninS37A versus RCAS-GFP. (B and C) Examples of large pancreatic
tumor masses observed in 6-month old mice injected with (B) RCAS-β-cateninS37A or (C) RCAS-Wnt1. (D) Pancreas from an age-matched
mouse injectedwith RCAS-GFP. (E) Example of livermetastases observed in amouse injectedwith RCAS-β-cateninS37A. (F) H&E staining of a
moderately differentiated PDAC observed in a mouse injected with RCAS-β-cateninS37A. Immunostaining of induced PDAC for (G) Ki67,
(H) wide cytokeratin, (I) PDX1 and (J) p-ERK1/2. (K) PCR amplification of RCAS and TVA from pancreatic tumors induced in Elastase-tva,
LSL-KrasG12D, Ptf1a-Cremice following RCAS-β-cateninS37A (lanes 2–7) or RCAS-Wnt1 (lanes 8–12). No template sample is shown in lane 13.
100-bp marker is shown in lanes 1 and 14.
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promoted pancreatic cancer cell proliferation as assessed using an MTS
assay (Figure 2A). Moreover, β-cateninS37A and TCF4 expression
enhanced several phenotypes associated with cellular transformation,
including anchorage independent growth (Figure 2B), cell migration
(Figure 2C) and cell invasion (Figure 2, D and E). In contrast,
expression of ICAT, an inhibitor of the β-catenin/TCF4 interaction
impaired all of these cellular phenotypes (Figure 2, A–E). Similar results
were obtained in a second murine pancreatic cancer cell line
demonstrating that this was not a cell line specific phenomenon
(Supplementary Figure 4). Together, these data demonstrate that
WNT/β-catenin signaling is a potent regulator of the transformed
phenotype in pancreatic cancer cells.
β-catenin acts as a transcriptional regulator. Therefore, to identify

potential target genes regulated by theWNT/β-catenin signaling pathway

in PDAC, we performed gene expression microarray analysis on 170#3
cells expressing β-cateninS37A or ICAT using Affymetrix® Mouse
Genome 430 2.0 arrays. We identified 756 genes with an adjusted
p-value of 0.05 and greater than 2-fold change in expression between the
groups (Supplementary Tables 3 and 4). We identified cysteine-rich
angiogenic inducer 61 (Cyr61; as also known as CCN1) as significantly
up-regulated by ectopic β-cateninS37A expression. Up-regulation of
Cyr61 mRNA and protein levels was induced by overexpression of
β-cateninS37A as determined by real-time RT-PCR (Figure 3A) and
western blotting (Figure 3B). In contrast, Cyr61 levels were reduced
following transfection of ICAT into 170#3 cells (Figure 3, A and B).

CYR61 has been previously linked to tumor progression in PDAC, as
well as several other tumor types including breast, gastric and colorectal
cancers [49–53].Moreover, prior work suggested thatCYR61 expression

Figure 2. Activation of the WNT/β-catenin pathway enhances transformation phenotypes in pancreatic cancer cells. (A) Measurement of
cell number, by MTS assay, in 170#3 cells expressing β-cateninS37A, TCF4, ICAT or empty vector control. (B) Quantification of soft agar
colony formation in 170#3 cells expressing β-cateninS37A, TCF4, ICAT or empty vector control. (C) Migration and (D) invasion activity in
170#3 cells expressing β-cateninS37A, TCF4, ICAT or empty vector control. (E) Invasion index (ratio of invading cells to migrating cells) in
170#3 cells expressing β-cateninS37A, TCF4, ICAT or empty vector control. The invasion index for the vector control cells is set to 1. The
invasion index for the other cells is shown relative to that for the controls. * P b .05, ** P b .01, *** P b .001 by Mann–Whitney's U test.
Data shown are from representative experiments.
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is regulated by WNT/β-catenin signaling in hepatocellular carcinoma
cells [54]. These findings suggested that CYR61might play an important
role of activated WNT signaling in pancreatic tumorigenesis.

To determine if CYR61 plays an important role in β-catenin-enhanced
transformation, we knocked down CYR61 levels in 170#3 cells
transfected with β-cateninS37A (Figure 3C). We observed that while
CYR61 knockdown did not impact cell proliferation as assessed by

MTS assay (Figure 3D), it strongly abrogated β-catenin-stimulated
transformation phenotypes including anchorage independent
growth, cell migration and cell invasion (Figure 3, E–H). CYR61
knockdown also impaired spheroid formation by pancreatic cancer
cells (Supplementary Figure 5, A–F). Moreover, the transformation
phenotypes were rescued by the introduction of human CYR61
cDNA that is resistant to the shRNA (Figure 3, E–H). Together,

Figure 3. Cyr61 is a target of the WNT/β-catenin signaling pathway in pancreatic cancer cells. (A) Relative expression level of Cyr61 and
the validated WNT-regulated gene Axin2 in 170#3 cells expressing β-cateninS37A, ICAT or vector control as determined by qRT-PCR.
(B) Determination of CYR61 protein levels by immunoblot in 170#3 cells expressing β-cateninS37A, ICAT or vector control. β-actin is
shown as a loading control. Numbers beneath the blot indicate relative ratio of CYR61/β-actin with the ratio in the vector control set to 1.
(C) Immunoblot confirming shRNA-mediated Cyr61 knockdown in 170#3 cells expressing β-cateninS37A. β-Actin is shown as a loading
control. Numbers beneath the blot indicate relative ratio of CYR61/β-actin with the ratio in the non-silencing control set to 1.
(D) Measurement of cell number, by MTS assay, in 170#3 cells expressing β-cateninS37A and additionally expressing a Cyr61-targeting
shRNA or a non-silencing control. Cyr61 knockdown cells expressing a human CYR61 cDNA that is resistant to the targeting shRNA are
also shown. (E) Soft agar colony formation by 170#3 cells expressing β-cateninS37A and additionally expressing a Cyr61-targeting shRNA
or a non-silencing control. Expression of a human CYR61 cDNA that is resistant to the targeting shRNA rescues the soft agar phenotype.
(F) Cell migration by 170#3 cells expressing β-cateninS37A and additionally expressing a Cyr61-targeting shRNA or a non-silencing control.
Expression of a human CYR61 cDNA that is resistant to the targeting shRNA rescues the migration phenotype. (G) Invasion activity by
170#3 cells expressing β-cateninS37A and additionally expressing a Cyr61-targeting shRNA or a non-silencing control. Expression of a
human CYR61 cDNA that is resistant to the targeting shRNA rescues the invasion phenotype. (H) Invasion index (ratio of invading cells to
migrating cells) calculated for 170#3 cells expressing β-cateninS37A and additionally expressing a Cyr61-targeting shRNA or a
non-silencing control. The index of the cells infected with the non-silencing control shRNA is set to 1. Expression of a human CYR61 cDNA
that is resistant to the targeting shRNA rescues the invasion phenotype. * P b .05, ** P b .01 by Mann–Whitney's U test. Data shown are
from representative experiments.
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these data suggest that CYR61, a target of the WNT/β-catenin
signaling pathway, plays a pivotal role in the enhancement of
malignant potential in PDAC cells.
Next, we determined the expression patterns of β-catenin and

CYR61 in murine pancreatic tumors (Supplementary Table 4) as well
as human PDAC (Supplementary Table 5). In the LSL-KrasG12D,

Ptf1a-cre mouse model, β-catenin was mainly localized at the plasma
membrane in well differentiated PDAC, while aberrant cytoplasmic
localization and nuclear accumulation of β-catenin were detected in
moderately to poorly differentiated PDAC (Figure 4, A and B,
Supplementary Table 2). Likewise, increased CYR61 staining was
observed in moderately to poorly differentiated PDAC (Figure 4C,

Figure 4. Activation of β-catenin and CYR61 expression correlates with poor prognosis in PDAC. (A) H&E stained tissue section of a PDAC
induced by RCAS-Wnt1 in an Elastase-tva, LSL-KrasG12D, Ptf1a-Cre mouse. (B) Immunostaining for β-catenin expression in this specimen.
Arrowheads denote tumor cells with nuclear localized β-catenin. (C) Immunostaining for CYR61 in this tumor specimen. (D and G) H&E
stained tissue sections from representative human PDAC samples. (E and H) Immunostaining for β-catenin expression in these
specimens. Arrowheads denote tumor cells with nuclear localized β-catenin. (F and I) Immunostaining for CYR61 in these tumor
specimens. Survival outcome data for PDAC patients stratified by β-catenin (J) or CYR61 (K) IHC score. P b .01 by log-rank test for high
versus low expressing tumors for both β-catenin and CYR61.
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Supplementary Table 2). These expression patterns of β-catenin and
CYR61 were similarly present in human PDAC (Figure 4, D–I,
Supplementary Table 5). In statistical analysis using immunohisto-
chemical score, there was a positive correlation between nuclear
β-catenin and cytoplasmic CYR61 expression (Spearman's correlation
coefficient by rank test, P = .027). Kaplan–Meier curves of PDAC
patients stratified by IHC score for β-catenin and CYR61
demonstrated that high IHC score for β-catenin and CYR61
independently correlated with poor prognosis (log-rank test,
P b .01) (Figure 4, J and K). Therefore, these results indicate that
nuclear accumulation of β-catenin and up-regulation of its target gene
CYR61 are poor prognostic markers in PDAC patients.

Discussion
Activation of WNT signaling is a common feature of multiple types of
pancreatic cancer. Mutation of components of the canonical WNT/
β-catenin signaling axis is commonly observed in uncommon tumor
types such as acinar cell carcinoma, pancreatoblastoma and solid
pseudopapillary neoplasm [24–27]. Despite the absence of common
occurrence of mutations in pathway components, WNT signaling is
also frequently activated in pancreatic ductal adenocarcinoma (PDAC)
the most common pancreatic tumor type. More commonly, the
pathway is activated by stochastic mechanisms including elevated
expression of WNT ligands and mutation or altered expression of
regulators of the pathway including ATDC and RNF43
[32–34,55–58]. Yet, despite the common activation ofWNT signaling
in PDAC, few studies have evaluated whether activation of the pathway
enhances pancreatic tumorigenesis in vivo.

To ascertain the postnatal function of canonical and non-canonical
WNT signaling pathways in KRASG12D-induced PDAC development,
we activated β-catenin or WNT1 in acinar cells using the RCAS
retrovirus gene delivery system [38,46,59,60]. We previously showed
that postnatal expression ofWNT1 in sporadic pancreatic epithelial cells
promoted the development of tumors with the features of mucinous
cystic neoplasms (MCN) [37]. This phenotype is driven by paracrine
WNT ligand activity on stromal cells. Here, we report that postnatal
activation of WNT signaling – either by expression of WNT1 or the
downstream transcriptional regulator β-catenin – additionally accelerates
the progression of precursor PanIN lesions to invasive PDAC. The
ability of β-catenin to accelerate tumorigenesis, coupled with the absence
of activated WNT signaling in the stroma of PDAC lesions supports an
autocrine mode of action. This finding is in agreement with the recent
findings of Simeone and colleagues who demonstrated that expression of
ATDC, a positive regulator of cell autonomous WNT signaling, in the
pancreas epithelium cooperates with activated KRAS to drive pancreatic
tumorigenesis [33]. They are also consistent with the findings of Pasca di
Magliano and colleagues who observed that inhibition of WNT
signaling by DKK1 or the chemical inhibitor OMP-18R5 impairs
KRASG12D-driven PanIN formation [61].

However, our findings are in contrast to those of Hebrok and
colleagues who found that expression of an activated β-catenin in the
pancreas epithelium led to the formation of lesions resembling solid
pseudopapillary neoplasms [62]. Moreover, co-expression of active
β-catenin and activated KRAS in the pancreas inhibited the formation
of PanIN lesions; indeed these pancreata had reducedmass compared to
the pancreata in mice with activated KRAS expression alone [62]. This
reduced mass appeared to be due to a rapid loss of acinar cells and their
replacement with dilated ductal structures [62].Nonetheless, thesemice
eventually develop pancreatic tumors with distinct cribiform histology.

Together, these findings suggested that the combined activation of
β-catenin and KRAS during pancreas development profoundly impacts
the proper development of the organ. Indeed, prior work byHeiser et al.
and Murtaugh and colleagues demonstrated that early activation of
β-catenin, or deletion of β-catenin, impaired acinar cell differentiation
and survival [63–65]. Taken together, the previously published findings
and our data presented here indicate that the timing of β-catenin
activation is critical to the resulting pancreatic tumor phenotype.
Embryonic activation of β-catenin results in pancreatoblastoma and
SPN, whereas postnatal (and sporadic) activation of β-catenin results in
PanIN progression and PDAC formation.

Interestingly, our data indicate that WNT ligand-mediated activation
of the pathway and activation of β-catenin bymutation promotes PDAC
development and progression with similar kinetics. This observation
suggests that modest activation of the canonical pathway, such as that
achieved downstream of elevated ligand levels, may be sufficient to
cooperate with activated KRAS in PDAC development. Alternatively,
this observation may indicate that activation of the non-canonical
signaling pathways downstream of WNT1 contributes to tumor
development and progression. The roles of the non-canonical signaling
pathways in pancreatic tumorigenesis are unclear. While WNT5A,
which predominantly activates the non-canonical signaling pathways,
promotes apoptosis resistance and cell migration in pancreatic cancer
cells, other studies indicate that KRAS suppresses WNT/Ca2+ signaling
[35,36,66]. Studies in which the non-canonical signaling pathways are
inhibited downstream of WNT ligand engagement will be required to
clarify this issue.

The phenotypes induced following the ectopic expression of activated
β-catenin or its DNA binding partner TCF4 in pancreatic cancer cells
support our in vivo observations. This cell culture system also provided
an opportunity to elucidate some of the mechanisms underlying
β-catenin-induced transformation in pancreatic cancer cells. By gene
expression profiling, we identified a collection of differentially expressed
genes that respond to the presence of β-catenin and its negative regulator
ICAT. The dataset of differentially expressed genes includes several genes
that have been previously linked to tumorigenesis and cellular
transformation in pancreatic cancer or other tumor types, including
Gli2, Id2 and Vegfc [67–70]. Among the genes induced by β-catenin is
Cyr61. We show that the canonical WNT/β-catenin pathway enhances
malignant potential in PDAC, in part, via up-regulation Cyr61 as
knockdown of CYR61 reduced anchorage independent growth, cell
migration and cell invasion. Prior studies have indicated that WNT
signaling induced CYR61 expression in hepatocellular carcinoma
[54,71]. However, our study is the first to demonstrate regulation of
Cyr61 by WNT signaling in pancreatic cancer cells and to functionally
link it to β-catenin-induced transformation in pancreatic cancer cells.

CYR61 expression is frequently detected in human PDAC (~85%
cases) [53] and up-regulation of CYR61 expression is associated with
peritoneal metastases [52]. Likewise, in our study, CYR61 expression was
observed in 76/80 (95%) of human PDAC and was predominantly
detected in moderately to poorly differentiated PDAC. Nuclear
accumulation of β-catenin and overexpression of CYR61 paralleled
each other and were independent poor prognostic markers for PDAC
patients. Interestingly, CYR61 can modulate WNT/β-catenin signaling
by binding to the WNT co-receptor LRP6 [72]. Therefore, activation of
theWNT/β-catenin pathway induces CYR61 expression, and CYR61 in
turn activates WNT/β-catenin signaling resulting in a positive feedback
loop, thereby leading to a more aggressive phenotype. Interrupting this
circuit may represent an opportunity for therapeutic intervention.
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