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Abstract 

 

HER2-targeted therapy is considered effective for KRAS codon 12/13 wild-type, HER2-

positive metastatic colorectal cancer (CRC). In general, HER2 status is determined by the use 

of immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). 

Comprehensive genomic sequencing (CGS) enables the detection of gene mutations and copy 

number alterations including KRAS mutation and HER2 amplification; however, little is 

known about the utility of CGS for detecting HER2-positive CRC. To assess its utility, we 

retrospectively investigated 201 patients with stage I–IV CRC. The HER2 status of the 

primary site was assessed using IHC and FISH, and HER2 amplification of the primary site 

was also assessed using CGS, and the findings of these approaches were compared in each 

patient. CGS successfully detected alterations in 415 genes including KRAS codon 12/13 

mutation and HER2 amplification. Fifty-nine (29%) patients had a KRAS codon 12/13 

mutation. Ten (5%) patients were diagnosed as HER2-positive because of HER2 IHC 3+, and 

the same 10 (5%) patients had HER2 amplification evaluated using CGS. The results of 

HER2 status and HER2 amplification were completely identical in all 201 patients (P < 

0.001). Nine of the 10 HER2-positive patients were KRAS 12/13 wild-type and were 

considered possible candidates for HER2-targeted therapy. CGS has the same utility as IHC 

and FISH for detecting HER2-positive patients who are candidates for HER2-targeted 

therapy, and facilitates precision medicine and tailor-made treatment. 

 

 

Word count of the abstract: 226 words 
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Highlights 

 

 HER2-targeted therapy is possibly effective for HER2-positive colorectal cancer. 

 Generally, HER2 status is determined by immunohistochemistry (IHC). 

 HER2 amplification can be also detected by comprehensive genomic sequencing (CGS). 

 This study showed that the results of IHC and CGS were completely identical. 

 CGS has the same utility as IHC for detecting HER2-positive colorectal cancer. 
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Introduction 

 

HER2, a member of the human epidermal growth factor receptor (HER) family, is a plasma 

membrane protein with intrinsic tyrosine kinase activity [1]. In contrast to other HER family 

members, HER2 is a receptor with no ligand; HER2 protein activation depends directly on its 

dimerization with another HER2 monomer or with a monomer of another HER family 

member, such as HER3 [2, 3]. After dimerization, the most important signaling pathways, 

such as the mitogen-activated protein kinase (MAPK) and PI3K pathways, are activated by 

HER2, resulting in cell duplication and regulation of apoptosis [4]. HER2 signal transduction 

can be dysregulated via different mechanisms. HER2 overexpression, generally resulting 

from HER2 gene amplification [5, 6], is one of the main causes of the constitutive activation 

of HER2 signal transduction in many cancers [7]. 

 

HER2 overexpression and/or amplification are associated with carcinogenesis, poor 

prognosis, and may also predict the response to chemotherapy [7]. Under the rationale for 

using anti-HER2 targeted approaches to block its oncogenic effects, anti-HER2 monoclonal 

antibodies have been designed for HER2-positive tumors. Trastuzumab is a monoclonal 

antibody that recognizes the extracellular portion of the HER2 receptor, and once bound, it 

completely inhibits HER2 activity [8]. Today, trastuzumab treatment is the standard care for 

HER2-positive breast [9] and gastric cancers [10]. In addition to breast and gastric cancers, 

preclinical models and clinical trials are underway to assess the efficacy of HER2-targeted 

therapy for patients with colorectal cancer (CRC) [11]. Several studies reported the incidence 

of HER2-positive cases and its clinical significance in CRC [12-19], and the use of 

trastuzumab for HER2-positive cases is recognized as a promising treatment strategy for 
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KRAS wild-type metastatic CRC [19-21]. Recently, the HERACLES trial demonstrated the 

efficacy of dual-targeted therapy with trastuzumab and lapatinib for KRAS codon 12/13 wild-

type and HER2-positive CRC [22]. Hence, both KRAS mutation and HER2 status should be 

evaluated to select candidates for HER2-targeted therapy in CRC. 

 

In current histopathology, the HER2 status of breast and gastric cancer is determined by 

immunohistochemistry (IHC) and fluorescent in situ hybridization (FISH) [23, 24]; likewise, 

the HER2 status of CRC is usually evaluated by IHC and FISH [22]. Conversely, by utilizing 

next-generation sequencing technology, projects such as The Cancer Genome Atlas (TCGA) 

have profiled genomic changes in several cancers including CRC [25]. Comprehensive 

genomic sequencing (CGS) can detect gene mutations and copy number alterations in a 

single assay, including KRAS mutation and HER2 amplification. However, it is not clear 

whether CGS has the same diagnostic value as IHC and FISH for detecting HER2-positive 

CRC. Therefore, the aim of this study was to clarify the utility of CGS for detecting HER2-

positive CRC.  

 

Materials and methods 

 

Patients 

 

A total of 201 patients diagnosed with stage I - IV CRC according to AJCC 7
th

 edition [26] 

who performed primary tumor resection between 2009 and 2015 at Niigata University 

Medical and Dental Hospital or Niigata Cancer Center Hospital were enrolled. Patients with 

familial adenomatous polyposis or inflammatory bowel disease were excluded. None of the 

patients had received neoadjuvant radiation or HER2-targeted therapy. This retrospective 
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study was performed in accordance with the Helsinki Declaration, and the Ethics Committee 

of the School of Medicine, Niigata University approved the study protocol. 

 

Pathological evaluation of HER2 status 

 

Resected specimens were fixed immediately in 10% buffered formalin for 24 h, and the entire 

tumor was cut into step-wise sections and embedded in paraffin. Each section was examined 

with hematoxylin and eosin (HE) staining, and the archives were reviewed for each case to 

select one cross-section with the most invasion. The corresponding paraffin blocks were re-

cut, making 4-m thick slices, and 3 serial sections were assigned for HE staining, anti-HER2 

staining, and a negative control. HER2 status was determined according to the HERACLES 

diagnostic criteria: HER2-positive status was defined as tumors with a 3+ HER2 score in 

more than 50% of cells by IHC or with a 2+ HER2 score and a HER2:CEP17 ratio higher 

than 2.0 in more than 50% of cells by FISH [22]. 

 

IHC for evaluating HER2 status 

 

Specimen slides were deparaffinized, followed by dehydration with ethanol. The sections 

were washed 3 times with phosphate-buffered saline for 5 min. The sections were digested 

with 0.03 U/g protease, diluted with 0.05 M Tris-HCl pH 7.6, at room temperature for 5 min 

(protease: type EX No. P3111; SIGMA Aldrich Corp., St. Louis, MO). After blocking 

nonspecific reactivity with 3% H2O2 for 5 min, an anti-HER2 monoclonal antibody (SV2-
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61 Nichirei Biosciences, Inc., Tokyo, Japan) was applied at 5 mg/mL (diluted with 0.5% 

bovine serum albumin/phosphate-buffered saline) at room temperature for 30 min. Then, the 

sections were incubated with Histofine Simple Stain MAX PO (M) (Nichirei Biosciences, 

Inc.) at room temperature for 30 min, followed by incubation for 10 min with a DAB kit 

(Nichirei Biosciences, Inc.), and the sections were counterstained with hematoxylin. Positive 

tissue controls were included in each run; these tissues were breast tumors with known HER2 

protein overexpression and HER2 gene amplification [27]. 

 

FISH for evaluating HER2 status 

 

Specimen slides were deparaffinized, followed by dehydration with ethanol. Each slide was 

treated with a Vysis Paraffin Pretreatment Kit (Abbott Molecular, Des Plaines, IL). After 

pretreatment, the resulting specimen DNA was denatured and the slides were dehydrated in 

serial ethanol solutions and subsequently allowed to hybridize with the PathVysion (Abbott 

Molecular) probe mixture. Following hybridization, excess and unbound probe was removed 

by a series of washes, and the chromosomes and nuclei were counterstained with the DNA-

specific stain 4′,6 diamidino-2-phenylindole, which fluoresces blue under UV illumination. 

Hybridization of the HER2/neu and CEP 17 DNA probes was viewed using a fluorescence 

microscope equipped with appropriate excitation and emission filters, allowing visualization 

of the orange and green fluorescent signals and the blue counterstained chromosomes and 

nuclei [28]. 

 

CGS of primary sites 
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Archival tissue in the form of formalin-fixed, paraffin-embedded tumor or unstained tissue 

sections obtained during primary tumor resection were used for CGS, and HER2 

amplification, HER2 mutation, and KRAS exon 2 (codon 12 and 13) mutation were evaluated. 

An independent pathologist evaluated tumor content on HE-stained slides for each study 

sample to ensure >50% tumor content was present. Where applicable, unstained slides were 

macro-dissected to enrich for tumor content and DNA was extracted using a BioStic FFPE 

Tissue DNA Isolation Kit (Mo Bio Laboratories, Inc., CA). All sample preparation, CGS, and 

analytics were performed in a CLIA/CAP-accredited laboratory (KEW, Cambridge, MA). 

DNA (50–150 ng) fragment libraries were prepared and enriched for the 415 gene panel with 

CancerPlex (KEW, Cambridge, MA) [29]. CancerPlex is a clinically validated 415 gene 

panel enriched for coding regions and selected introns of genes with a known association to 

cancer. Sequencing was performed on the Illumina MiSeq and NextSeq platforms with an 

average 500× sequencing depth. Genomic data were then processed through a proprietary 

bioinformatics platform and knowledgebase to identify multiple classes of genomic 

abnormalities including single nucleotide substitutions (SNPs), small insertions/deletions 

(indels), copy number variation, and translocations. A threshold of 10% allelic fraction was 

used for SNPs and indels and thresholds of >2.5-fold (gain) and 0.5-fold (loss) were used. 

 

HER2 status and other clinicopathological characteristics 

 

To analyze the relationship between HER2 status and other clinicopathological 

characteristics, 11 clinicopathological variables were examined in all 201 patients: age (<65 

vs. ≥65 years), sex (male vs. female), tumor location (right vs. left), tumor size (<50 vs. ≥50 

mm), T category (T1, 2 vs. T3, 4), histopathological grading (G1, 2 vs. G3), lymphatic 

invasion (absence vs. presence), venous invasion (absence vs. presence), N category (N0 vs. 
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N1, 2), M category (M1a vs. M1b), KRAS exon 2 (codons 12 and 13) mutation (wild-type vs. 

mutant), NRAS exon 2 (codons 12 and 13) mutation (wild-type vs. mutant), and BRAF V600E 

mutation (wild-type vs. mutant). Histopathological markers associated with deficiency of 

mismatch repair gene, such as medullary type, mucinous type, Crohn-like lymphoid reaction, 

and tumor infiltrating lymphocytes were analyzed by reported method [30]. A total of 110 of 

201 patients were randomly selected and evaluated for MutL homologue 1 (MLH1)/MutS 

homologue 2 (MSH2) status using immunohistochemical stainings. The primary antibodies 

were MLH1 (1:50; BD Biosciences PharMingen, San Diego, CA) and MSH2 (1:50; Leica 

Microbiosystems, Tokyo, Japan). 

 

Comparison of HER2 status between primary and paired metastatic sites 

 

In the present study, 45 of the 201 patients underwent metastasectomy. The following 

metastatic sites were evaluated for HER2 status by the same methods as for the primary site 

[22]: liver (30 patients), lung (4 patients), ovary (3 patients), peritoneum (2 patients), brain (2 

patients), omentum (2 patients), para-aortic lymph node (1 patient), and bone (1 patient). 

 

Statistical analysis 

 

Statistical analyses were performed with IBM SPSS Statistics 22 (IBM Japan, Inc., Tokyo, 

Japan). Fisher’s exact test was used to evaluate the associations between HER2 status and 

HER2 amplification evaluated using CGS, and HER2 status and HER2 mutation evaluated 

using CGS. HER2 status and each clinicopathological variable, and HER2 status between the 

primary site and metastatic site was also evaluated by Fisher’s exact test. P-values less than 

0.05 were considered statistically significant. 
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Results 

 

IHC and FISH for HER2 status at the primary site 

 

Ten patients were HER2 IHC 3+ in more than 50% of the cancer area (Fig. 1A, B), and 2 

patients were HER2 IHC 3+ in less than 50% (Fig. 1C, D). Fifteen patients were HER2 IHC 

2+; however, there was no patient with IHC 2+ and a HER2:CEP17 ratio higher than 2.0 in 

more than 50% of cells by FISH. Hence, 10 of the 201 (5%) patients with HER2 IHC 3+ in 

more than 50% of the cancer area were diagnosed as HER2-positive by the HERACLES 

diagnostic criteria. 

 

Association between HER2 status and HER2 amplification evaluated using CGS 

 

CGS successfully detected alterations in 415 genes including KRAS codon 12/13 mutation 

and HER2 amplification. Forty-nine of the 201 (29%) patients had a KRAS codon 12/13 

mutation. Ten of the 201 (5%) patients had a HER2 amplification. The result of HER2 

amplification evaluated using CGS and that of HER2 status evaluated using IHC were 

completely identical in all 201 patients (P < 0.001) (Table 1) (Table 2). Nine of the 10 HER2-

positive patients were KRAS 12/13 wild-type, who were considered to be possible candidates 

for HER2-targeted therapy (Fig. 2).  

 

Association between HER2 status and HER2 mutation evaluated using CGS 

 

CGS also detected HER2 mutations (V308M, S310Y, R647K, R678Q, and A879delinsAE) in 
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6 of 201 (3%) patients. Among the 6 patients, only 1 patient had both HER2 mutation 

(S310Y) and HER2 amplification, and the patient showed HER2 positive (IHC 3+) (Table 2). 

No significant association was observed between HER2 status and HER2 mutation (P = 

0.267). 

 

HER2 status and other clinicopathological characteristics 

 

There was no significant association between HER2 status and other clinicopathological 

characteristics (Table 3). 

 

Comparison of HER2 status between the primary and paired metastatic sites 

 

At the metastatic sites, 3 of 45 (7%) patients were HER2-positive. Comparing between the 

primary and metastatic sites, 44 of the 45 (98%) patients showed a concordant HER2 status 

(Table 4). Focusing on the 4 patients with a positive HER2 status at the primary site, 3 of 

these patients were HER2-positive at the metastatic site (Fig. 3); however, the remaining 

patient was HER2-negative at the metastatic site: IHC score 3+ (100% area) at the primary 

site and IHC 0 at the metastatic site (para-aortic lymph node). 

 

Discussion 

 

In the present study, we showed two main results regarding the utility of CGS for detecting 

HER2-positive CRC patients. First, CGS successfully detected HER2 amplification in 10 of 

201 (5%) patients. Second, the result for HER2 amplification evaluated using CGS and that 

for HER2 status evaluated using IHC and FISH were completely identical in all 201 patients. 
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These results imply that CGS can reliably detect HER2-positive CRC patients, who are 

candidates for HER2-targeted therapy.  

 

HER2-targeted therapy is considered a promising strategy for KRAS wild-type metastatic 

CRC [19-21], and the evaluation of HER2 status and KRAS mutation is necessary to select 

candidates for HER2-targeted therapy. Recently, the HERACLES trial revealed the efficacy 

of dual targeted therapy with trastuzumab and lapatinib in treatment-refractory, KRAS codon 

12/13 wild-type, HER2-positive metastatic CRC [22]. In the trial, HER2 status was evaluated 

using IHC and FISH, and HER2-positivity was defined using the CRC-specific HERACLES 

diagnostic criteria [22]. In the present study, we also assessed HER2 status according to the 

HERACLES diagnostic criteria. Conversely, CGS can detect multiple gene alterations 

including KRAS codon 12/13 mutation and HER2 amplification in a single assay. However, to 

date, no study has investigated the concordance of HER2-positivity between HER2 status and 

HER2 amplification detected by CGS. In the current study, we tested the utility of CGS for 

detecting HER2-positive CRC using a 415-gene panel designed for solid tumors. 

 

The ultimate goal of cancer genome profiling is to enable precision medicine, i.e., the 

tailoring of treatments based on the unique genomic changes of each patient’s individual 

tumor. In CRC, gene mutations in the MAPK pathway, such as KRAS, NRAS, and BRAF, are 

important benchmarks to decide treatment strategies for patients with metastatic CRC. The 

National Comprehensive Cancer Network guidelines state that all patients with metastatic 

CRC should have tumor tissue genotyped for KRAS, NRAS, and BRAF mutations [31]. 

Patients with any known KRAS or NRAS mutation should not be treated with EGFR-targeted 

therapy such as cetuximab and panitumumab [32]. In the present study, we successfully 

detected alterations in 415 genes including KRAS, NRAS, and BRAF mutations and HER2 
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amplification and mutation, which implies that CGS cannot only detect candidates for EGFR-

targeted therapy but can also identify those for HER-2 targeted therapy in a single assay. 

 

TCGA project found that 4% of CRC patients have HER2 mutations [25]. However, to date, 

HER2 mutations in CRC has not been fully studied, and it is an open question as to whether 

HER2 mutations are clinically important in CRC. Kavuri et al. reported that HER2 mutations 

S310F, L755S, V777L, V842I, and L866M are activating mutations in CRC, and the HER2 

activating mutations may be drug targets for the treatment of CRC [33]. In the present study, 

we identified 6 of 201 (3%) patients with HER2 mutations (V308M, S310Y, R647K, R678Q, 

and A879delinsAE), that require further investigation to determine their oncogenicity. 

Among the 6 patients with HER2 mutations, only 1 patient had both HER2 mutation and 

HER2 amplification, who interestingly showed HER2 positive (IHC3+). We speculate that 

patients with both HER2 mutation and HER2 amplification may be candidates for HER2-

targeted therapy when the patients show HER2 positive using IHC/FISH. In addition to 

HER2 amplification, future studies might have to focus on the significance of HER2 

mutations in CRC, and clarify whether HER2 mutations are drug targets for CRC treatment. 

 

In this study, we showed the utility of CGS for detecting HER2-positive patients, who are 

candidates for HER2-targeted therapy; however, HER2-positive patients do not always 

demonstrate a favorable response to this treatment approach. Discordant HER2 status 

between primary and metastatic sites is one possible reason underlying drug resistance to 

HER2-targeted therapy. In gastric cancer, previous reports revealed that discordant HER2 
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status between primary and metastatic sites was observed in 5–20% of patients [34]. However, 

in CRC, this issue has not been investigated fully to date. In this study, we demonstrated that 

1 of the 4 (25%) patients with HER2-positive status at the primary site was HER2-negative at 

the metastatic site, suggesting that HER2 status is not necessarily maintained during the 

metastatic process. In general, tissue samples from the metastatic site may not always be 

available. Future studies, such as targeted sequencing analysis of liquid biopsy samples might 

have the potential to resolve this issue and facilitate precision medicine [35]. 

 

Regarding pros and cons of IHC/FISH and CGS for evaluating HER2 status, we consider that 

IHC/FISH are convenient, widely accepted, and established way to evaluate for breast and 

gastric cancer. However, diagnostic reproducibility may be sometimes problematic; 

especially, because of tumor heterogeneity. Conversely, CGS is expensive compared to 

IHC/FISH, and tested in only specialized laboratories. However, CGS has ability to test 

numerous gene alterations, which are directly associated with treatment strategy, in a single 

assay. We believe that CGS has possibility to facilitate precision medicine. 

 

This study has two potential limitations. First, this was a retrospective study performed at two 

institutions and included a small number of patients. Second, we could not demonstrate an 

association between HER2 amplification detected by CGS and the efficacy of HER2-targeted 

therapy. Future studies should investigate patients with metastatic CRC to determine whether 

HER2-targeted therapy is effective for patients with HER2 amplification detected by CGS. 

 

Conclusion 
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There is a small, distinct category of HER2-positive CRC patients who are candidates for 

HER2-targeted therapy. CGS has the same sensitivity as IHC and FISH for detecting HER2-

positive patients and has the potential to facilitate precision medicine and tailor-made 

treatment. 
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Figure legends 

 

Figure 1. HER2-positive and HER2-negative cases in colorectal cancer 

This case was HER2 IHC 3+ in 100% of cancer cells (A, B, C), and was diagnosed as 

“HER2-positive.” This case was HER2 IHC 3+ in 10% of cancer cells (D, E, F), and was 

diagnosed as “HER2-negative.” 

Hematoxylin and eosin staining, ×1 objective lens (A, D); anti-HER2 staining, ×1 objective 

lens (B, E), ×20 objective lens (C, F). 

 

Figure 2. KRAS codon 12/13 mutation and HER2 amplification in 201 patients 

There were 9 patients with KRAS codon 12/13 wild-type and HER2 amplification, who were 

candidates for HER2-targeted therapy. 

 

Figure 3. A case of concordant HER2 status between primary and metastatic sites 

This concordant case was diagnosed as IHC 3+ in 100% of cancer cells at both the primary 

site (A, B) and bone metastasis (C, D). 

Hematoxylin and eosin staining, ×20 objective lens (A, C); anti-HER2 staining, ×20 objective 

lens (B, D). 
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Table 1. Comparison between HER2 status and HER2 amplification at the 

primary site 

 HER2 status (IHC and FISH) 

 Positive Negative 

HER2 amplification (CGS)   

Positive 10 0 

Negative 0 191 

Abbreviations: HER2, human epidermal growth factor receptor 2; CGS, 

comprehensive genomic sequencing; IHC, immunohistochemistry; FISH, 

fluorescence in situ hybridization. 

n = 201, P < 0.001. 
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Table 2. HER2 status and HER2 amplification/mutation evaluated using CGS 

Case No. Primary site  Metastatic site 

HER2 

status 

IHC (% of 

total area) 

FISH CGS  HER2 

status 

IHC (% of 

total area) 

FISH 

Amplification Mutation  

1 Positive 3+ (100%)  Amplified -     

2 Positive 3+ (100%)  Amplified -     

3 Positive 3+ (100%)  Amplified -  Negative 0  

4 Positive 3+ (100%)  Amplified -     

5 Positive 3+ (100%)  Amplified -     

6 Positive 3+ (100%) Positive Amplified S310Y     

7 Positive 3+ (60%)  Amplified -  Positive 3+ (100%)  

8 Positive 3+ (100%)  Amplified -  Positive 3+ (100%)  

9 Positive 3+ (60%)  Amplified -     

10 Positive 3+ (80%)  Amplified -  Positive 3+ (100%)  

11 Negative 2+ (70%) Negative - R678Q     

12 Negative 0  - V308M     

13 Negative 0  - A879delinsAE     

14 Negative 2+ (80%) Negative - R647K  Negative 0  

15 Negative 0  - R678Q     

Abbreviations: HER2, human epidermal growth factor receptor 2; CGS, comprehensive genomic sequencing; IHC, 

immunohistochemistry; FISH, fluorescence in situ hybridization. 
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Table 3. HER2 status and other clinicopathological characteristics 

 HER2 status  

Variable Positive 

(n = 10) 

Negative 

(n = 191) 

P-value 

Age (years)    

<65 4 96 0.748 

≥65 6 95  

Sex    

Male 7 110 0.526 

Female 3 81  

Location    

Right side 1 55 0.289 

Left side 9 136  

Tumor size (mm)    

<50 5 83 0.751 

≥50 5 108  

T category    

T1, 2 3 21 0.102 

T3, 4 7 170  

Histopathological grading    

G1, 2 7 140 0.730 

G3 3 51  

Lymphatic invasion    

Absence 6 73 0.195 

Presence 4 118  

Venous invasion    

Absence 3 45 0.705 

Presence 7 146  

N category    

N0 3 56 0.999 

N1, 2 7 135  

M category    

M0 3 87 0.517 

M1 7 104  

MLH1/MSH2 status    

Normal 5 86 0.942 

Abnormal 1 18  

Medullary type    

Presence 0 5 0.999 
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Absence 10 186  

Mucinous type    

Presence 0 15 0.999 

Absence 10 176  

Crohn-like lymphoid reaction    

Presence 0 31 0.366 

Absence 10 160  

Tumor infiltrating lymphocytes
a
    

Presence 0 36 0.214 

Absence 10 155  

KRAS codon 12/13    

Wild-type 9 133 0.286 

Mutant 1 58  

NRAS codon 12/13    

Wild-type 10 190 0.999 

Mutant 0 1  

BRAF V600E    

Wild-type 10 179 0.999 

Mutant 0 13  

Abbreviations: HER2, human epidermal growth factor receptor 2. 
a
 Cut-off value = 10 lymphocytes/5 high power fields. 
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Table 4. Comparison of HER2 status between 45 primary sites and 

corresponding metastatic sites 

 HER2 status at metastatic site 

 Positive Negative 

HER2 status at primary site   

Positive 3 1 

Negative 0 41 

Abbreviations: HER2, human epidermal growth factor receptor 2. 

n = 45, P < 0.001. 
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