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Abstract

Individual regulatory proteins are typically charged with the simultaneous regulation of a bat-

tery of different genes. As a result, when one of these proteins is limiting, competitive effects

have a significant impact on the transcriptional response of the regulated genes. Here we

present a general framework for the analysis of any generic regulatory architecture that

accounts for the competitive effects of the regulatory environment by isolating these effects

into an effective concentration parameter. These predictions are formulated using the

grand-canonical ensemble of statistical mechanics and the fold-change in gene expression

is predicted as a function of the number of transcription factors, the strength of interactions

between the transcription factors and their DNA binding sites, and the effective concentra-

tion of the transcription factor. The effective concentration is set by the transcription factor

interactions with competing binding sites within the cell and is determined self-consistently.

Using this approach, we analyze regulatory architectures in the grand-canonical ensemble

ranging from simple repression and simple activation to scenarios that include repression

mediated by DNA looping of distal regulatory sites. It is demonstrated that all the canonical

expressions previously derived in the case of an isolated, non-competing gene, can be gen-

eralised by a simple substitution to their grand canonical counterpart, which allows for sim-

ple intuitive incorporation of the influence of multiple competing transcription factor binding

sites. As an example of the strength of this approach, we build on these results to present

an analytical description of transcriptional regulation of the lac operon.

Introduction

Transcriptional regulation is essential for shaping cellular response and dynamics. At the heart

of these responses is the specific arrangement of regulatory features around the promoter that

governs how a gene will respond to the available regulatory molecules [1]. A primary goal in

the field of systems biology is to elucidate the rules governing how regulation is encoded in the
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DNA enabling a bottom-up approach to designing regulatory architectures and understanding

cellular physiology. A necessary step towards this goal is the development of detailed, predic-

tive theory that takes as input the regulatory architecture (how the regulatory features are

arranged on the DNA) and the nature of the regulatory environment and yields a prediction

for the level of transcriptional output.

Statistical mechanical models have been used to quantitatively describe transcriptional reg-

ulation for a variety of regulatory motifs [2–17]. In those models, the activity of a gene is

assumed to be proportional to the probability of an RNA-polymerase (RNAP) being bound to

the promoter sequence. This is a precondition for the subsequent initiation of the transcription

process, which ultimately leads to the production of proteins [18–21]. However, the equilib-

rium assumptions needed to treat transcription regulation in this quasi-static limit are subtle.

There exists a corresponding class of models that are based on kinetics and therefore do not

require as many assumptions, at the cost of increasing the number of parameters that are

required [22–28]. In both classes of models, transcription factors can bind to specific binding

sites on the DNA and regulate transcription, often by interacting with the RNAP and altering

its probability to bind to the promoter. The magnitude of transcriptional regulation is typically

quantified as the fold-change in gene expression (fold-change), defined as the level of gene

expression in the presence of those transcription factors divided by the level of gene expression

in the absence of the transcription factors.

While statistical mechanical models of gene expression have thus far proven to be very suc-

cessful, they have traditionally been derived in the “non-interacting” limit, i.e. the gene of

interest is treated as being isolated and the relevant molecules only interact with the gene itself

and a competing “non-specific reservoir” accounting for the generic interaction between the

molecules and the rest of the genome [8, 10, 29, 30]. However, in most cases transcription fac-

tors act on multiple different genes and as a consequence, the number of available transcrip-

tion factors can be substantially reduced due to binding at those genes (see e.g. [31] Fig 3b). In

addition, multiple copies of the same gene may exist within one cell, for example in the form

of duplicate chromosomes, plasmids or viral DNA. Several theoretical efforts have explored

the consequences of the titration effect considered here [32–36]. The impact of these competi-

tive interactions can be accounted for in the canonical ensemble using combinatorics to keep

track of the possible arrangements of transcription factors to an arbitrary arrangement of

binding sites, however the resulting predictions do not lend themselves to simple intuitive

interpretation [17, 34, 37]. We have recently shown that a formalism based on the grand-

canonical ensemble provides a clear and straightforward interpretation of the impact of tran-

scription factor sharing for one particular regulatory architecture [38]. Our model leads to a

simple analytical expression for the fold-change that is in excellent agreement with the avail-

able experimental data.

In this work we go well beyond these earlier efforts to show that the grand-canonical

approach can be generalized to include more complex regulatory architectures, opening the

door to considering regulation in the setting of real cellular processes. Specifically, we demon-

strate how to derive expressions for the fold-change for regulatory architectures that have not

previously been described using this formalism, including how to characterize such architec-

tures in the case of multiple gene copies and competing reservoirs for transcription factors.

Interestingly, all grand-canonical expressions that are derived in this work differ from their

corresponding canonical expressions merely by a simple substitution.

In the remainder of this article, we derive expressions for the fold-change for regulatory

architectures that include repression, activation and repression by DNA looping, and show

how to combine different regulatory elements into more complex architectures. We will pro-

vide, as a case study, a worked example for the fold change in expression from the lac operon,
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a regulatory architecture that includes repression, both through proximal binding and by

DNA looping interactions, and activation. Table 1 shows an overview of the notation used in

this work.

Repression architectures

Simple repression

Transcription initiation is a complex process involving multiple steps, each with their own

rate. In its most simplified form, it can be described in three steps: the binding of RNAP to the

promoter to form a closed complex, the (irreversible) isomerisation of the closed complex to

an open complex, followed by the escape of the open complex to form an RNAP complex

active in transcription [18–21]. When the rearrangement of RNAP and transcription factors is

fast compared to the formation of an open complex, we can assume that the rate at which the

open complex is formed—the first kinetically significant step in the transcription process—is

proportional to the occupation probability of the promoter by RNAP. The applicability of this

approximation has to be considered on a case by case basis, as there is evidence for slow tran-

scription factor binding and unbinding kinetics in some organisms and circumstances

[39–43].

Statistical mechanics provides the tools to calculate the occupation probability of RNAP

and transcription factor binding sites, where the RNAP and transcription factors are shared

between many different binding sites. The ensemble of choice for a system where the number

of molecules is allowed to fluctuate is the grand canonical ensemble. While strictly most suit-

able for systems with large numbers of particles, the relative fluctuations decrease quickly as

s=hNi ¼ 1=
ffiffiffiffi
N
p

, as the number of particles grows [44]. We therefore consider the gene of

interest as a grand canonical system that is decoupled from the rest of the genome, which acts

Table 1. Summary of notation used in this work.

Symbol Explanation

λm Fugacity of transcription factor m

�m Adsorption energy of transcription factor m to its specific site

xm exp(−β�m)

θm Average occupation of transcription factor m on its specific site

�nm Adsorption energy of transcription factor m to site n

xnm expð� b�nmÞ

y
n
m Average occupation of transcription factor m to site n

Fab
L

Free energy of forming a loop between sites a and b*

xab
L

expð� bFab
L
Þ

y
ab
m

Average occupation of transcription factor m, adsorbed to sites a and b, forming a loop

DFabmL
Change in the looping free energy between sites a and b, due to the presence of transcription

factor m

xabmL
expð� bDFabmL

Þ

P, R, A Number of RNAP, repressor or activator molecules in the cell

N Gene copy number

Nns Number of non-specific sites on the DNA

Ξ Grand canonical partition function

Z Relevant part of the canonical partition function

*The superscript has been dropped if the loop between sites a and b is the only possible loop

https://doi.org/10.1371/journal.pone.0179235.t001
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as the reservoir. The system is kept in equilibrium with reservoirs for all other types of binding

site, characterised by a constant chemical potential of the proteins. Each reservoir of a certain

type of binding site is considered an independent grand canonical system in its own right. The

chemical potential is then found self-consistently by application of the appropriate boundary

condition, namely, the conservation of the number of proteins in the cell. The transcription

factors that we consider generally have a very high affinity for DNA, even outside of its specific

binding site [1, 45]. Consequently, the fraction of transcription factors that is not adsorbed to

any DNA site can usually be neglected, as we have shown in our previous work [38]. We have

chosen to measure all binding energies with respect to the binding energy of proteins to the

non-specific genomic background. An added complication here is that not every non-specific

site has an equal binding energy. In first approximation the occupation of a reservoir with a

Gaussian distribution of binding energies is equal to that of a reservoir of identical sites with a

binding energy of h�nsi − βσ2/2 with h�nsi, σ the mean and standard deviation, respectively, of

the distribution of binding energies to non-specific sites and β = (kBT)−1 [46]. All energies in

this work are given relative to this reference energy.

We start with the simplest nontrivial regulatory architecture referred to as ‘simple repres-

sion,’ as illustrated in the first column in Fig 1. This architecture consists of a promoter and an

operator site for a repressor molecule. An RNAP can bind to the promoter with binding

energy �P, and a repressor can bind to the operator site with energy �R, while the simultaneous

binding of both, RNAP and repressor is prohibited by excluded-volume interactions.

The grand canonical partition function [38] of a single gene with this regulatory architec-

ture unit is given by

X ¼
X1

p¼0

X1� p

r¼0

l
p
Pl

r
RZðp; rÞ ¼ 1þ lPxP þ lRxR; ð1Þ

where the fugacity of a repressor molecule is given by lR ¼ ebmR , where μR is the chemical

potential of a repressor molecule. Similarly lP ¼ ebmP where μP is the chemical potential of an

RNAP molecule. The indices p and r reflect the number of RNAP and repressor molecules,

respectively, that are bound to the gene in a given occupational state with Z(p, r) the relevant

part of the canonical partition function. The factor Z is given by the product of all the Boltz-

mann exponents of the individual binding free energies of the DNA-bound transcription fac-

tors, and of the interactions that take place between them when they are bound in that

arrangement. All other internal degrees of freedom remain constant, and therefore do not con-

tribute to the weight of a configurational state. This modular approach allows the framework

to be used in conjunction with automated scripts to calculate the statistical weight of a configu-

rational state. While for simple promoter architectures it is possible to write down the statisti-

cal weights for all the individual configurational states, this quickly becomes cumbersome

when the complexity of the promoter architecture increases. Similar state-weight scripts have

been demonstrated for models based on the canonical ensemble, for example in ref [47].

For the motif of simple repression Z(0, 0) = 1, Zð1; 0Þ ¼ e� b�P ¼ xP and

Zð0; 1Þ ¼ e� b�R ¼ xR. Binding of both RNAP and repressor is prohibited by excluded volume

interactions, effectively meaning that the weight of Z(1, 1) is zero and that term is excluded in

Eq (1). In the case of N statistically independent gene copies we have Xs = XN as in our previ-

ous work (Eq (2) in [38]). It can immediately be checked that X is given by adding up the

weights in the third column in Fig 1. Similarly, the relevant canonical partition function in [4,

7, 8] is given by adding up the weights in the right-hand column in Fig 1.

Self-consistent theory of transcriptional control
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The fraction of binding sites occupied by its cognate transcription factor is calculated by

[48]

yi ¼
1

N
@ logXs

@ logli
; ð2Þ

with λi the fugacity of the cognate transcription factor i. Since all N gene copies are indepen-

dent and identical, the occupational fraction θi can (and will in the remainder of this work)

also be calculated from the single gene partition function X from the easier, but mathematically

equivalent equation

yi ¼
li

X

@X

@li
: ð3Þ

Fold-change, defined as the gene expression in the presence of transcription factors divided

by gene expression in the absence of transcription factors, can be calculated as fraction of pro-

moters occupied by RNAP in the presence of repressors normalized by the fraction of RNAP

occupied promoters the absence of repressor. In the presence of transcription factors, this frac-

tion becomes,

yPðlP; lRÞ ¼
lP

X

@X

@lP
¼

lPxP
1þ lPxP þ lRxR

: ð4Þ

In the absence of repressors we have

yPðlP; 0Þ ¼
lPxP

1þ lPxP
: ð5Þ

Fig 1. States and their weights in the simple repression architecture. All allowed states of the simple repression architecture are shown with their

associated energies and statistical weights. �P is the binding energy of the RNAP onto the promoter site, �R the binding energy of a repressor molecule

onto the operator site. The third column shows the grand canonical weights, where the λi is the fugacity of the RNAPs (i = P) or repressors (i = R), and

xi ¼ e
� �i=kBT . The right column lists the weights in the canonical ensemble where P is the number of RNA-polymerase molecules, R the number of

repressors, and Nns the number of non-specific binding sites of the genome.

https://doi.org/10.1371/journal.pone.0179235.g001
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In writing down Eqs (4) and (5), we assumed that the fugacities λP, λR are independent, that is,

the value of λP does not depend on the repressor concentration (or fugacity). As shown in the

supporting information (see S1 Text), this is an excellent approximation for all the cases con-

sidered here. Fold-change is now given by

fold � change ¼
yPðlP; lRÞ

yPðlP; 0Þ
¼

1þ lPxP
1þ lPxP þ lRxR

: ð6Þ

Using the grand canonical ensemble, we have essentially decoupled the individual gene

copies from each other and the rest of the genome. With the system in quasi-static equilibrium

with non-regulatory and other competing reservoirs, the chemical potential of the RNAP and

repressors is equal in all binding reservoirs. Therefore, we can obtain the values of the fugaci-

ties λP, λR self-consistently by applying the appropriate boundary conditions, that is, conserva-

tion of the total number of RNAP and repressors in a cell.

In general, the molecules can bind to their specific binding sites related to N� 1 copies of

the gene of interest, to the reservoir of Nns� 1 non-specific binding sites, or to a set of i� 0

additional reservoirs, each with Ni binding sites, which can be binding sites related to competi-

tor genes. Individual molecules can transfer between reservoirs, while the total number of mol-

ecules in the cell is conserved. When needed, a reservoir for free transcription factors can be

included. However, as mentioned before, the fraction of transcription factors unbound to

DNA is generally negligible, hence our choice is to not to include a reservoir for free transcrip-

tion factors in solution. The fugacities λP, λR are set by the constraint that mass is conserved

inside the cell, and can be found by setting up a mass balance that contains all relevant reser-

voirs. For repressors, λR follows from

R ¼ NyR þ Nnsy
ns
R þ

X

i

Niy
i
R; ð7Þ

with yR; y
ns
R and y

i
R being the repressor bound fraction of specific sites, non-specific sites and

sites belonging to any additonal reservoir i, respectively. If we have a set j containing additional

reservoirs for RNAP, each with Nj binding sites, the value of λP follows similarly from

P ¼ NyP þ Nnsy
ns
P þ

X

j

Njy
j
P; ð8Þ

now with yP; y
ns
P and y

j
P being the RNAP bound fraction of specific sites, non-specific sites and

sites belonging to reservoir j, respectively.

In the rather general situation that λPxP� 1, referred to as the weak promoter limit, we

have

fold � change ¼
1

1þ lRxR
; ðlPxP � 1Þ ð9Þ

which is exactly the result in [38]. Unless stated otherwise, we will focus in this work on the

weak-promoter limit, yet in all the contexts that follow it is straightforward to consider the

more general limit where the inequality in parenthesis in Eq (9) does not apply. In the weak

promoter limit there is only a single conservation relation to be solved, that is, conservation of

repressor, in order to obtain the value of λR. In this limit, θR follows from Eq (1) where λPxP�

1, i.e.

yRðlRÞ ¼
lRxR

1þ lPxP þ lRxR
’

lRxR
1þ lRxR

: ðlPxP � 1Þ ð10Þ

Self-consistent theory of transcriptional control
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Interestingly, solving for an isolated promoter in the canonical ensemble using the states and

weights in the right hand column in Fig 1, results in [7, 8, 37, 45]

fold � change ¼
1

1þ
R
Nns

� �

xR
: ðcanonicalÞ

ð11Þ

The similarity between Eqs (9) and (11) implies that in order to obtain an expression for the

fold-change that is valid for any number of gene copies, additional binding sites, etc, we may

simply take the canonical, single-gene result and replace R/Nns by λR. This proves to be the

case for any regulatory architecture, as we show in the supporting information (see S5 Text).

In the limit that 1� R� Nns, the canonical and grand-canonical expressions become

equivalent. To see that, consider the average number of repressors bound to non-specific sites,

which is given by

hRnsi ¼ Nnsy
ns
R ¼ Nns

lRxnsR
1þ lRxnsR

� NnslR: ð12Þ

Since we have set the reference point of energy to the binding energy of repressors to non-spe-

cific sites as discussed above, xnsR ¼ e0 ¼ 1, and we took λR� 1 which is valid as long as R�
Nns [38]. Thus, we have λR = hRnsi/Nns, which, for a single gene copy per cell, asymptotically

approaches R/Nns at large R. While not exact for small R, λR� R/Nns is a good approximation

in most physiological situations (again with a single gene per cell) where cells typically contain

multiple repressor copies.

In the remainder of the paper we show that more complicated regulatory architectures that

have been analyzed in the canonical ensemble [7, 8] can easily be translated into the grand-

canonical formalism making it possible to calculate fold-change for the cases of multiple gene

copies or competing binding sites.

Repression with looping

Though it is one of the most common architectures, the simple repression regulatory motif

described above is only one of many common regulatory motifs [49, 50]. In the following sec-

tion we consider the impact of transcription factors with two DNA binding domains that are

capable of binding two operator sites simultaneously. These auxiliary operator sites can

enhance the efficacy of the transcription factor by increasing the probability of occupancy of

the main operator site, where it is able to regulate transcription, by allowing for loops in the

DNA between the operator sites. Thus we must take into account both the energetic benefit to

the system from binding an extra operator weighed against the free energy penalty associated

with the reduced configurational freedom of the DNA [51].

Consider N copies of a gene that contains a main and an auxiliary operator site, denoted by

m and a, respectively, and a promoter site P for RNAP. The architecture as well as a table of

states and weights is shown in Fig 2A. The grand partition function of a single copy of this reg-

ulatory unit reads

X ¼
X1

p¼0

X2

r¼0

l
p
Pl

r
RZðp; rÞ

¼ 1þ lPxP þ lRðxa
R þ xmR þ xaRx

m
R xLÞ þ lPlRxaRxP þ l

2

Rx
a
Rx

m
R ;

ð13Þ

where the fugacities have been defined below Eq (1). Z(p, r) is the relevant measure of the

canonical partition function when p RNAP molecules and r repressors are adsorbed onto the

Self-consistent theory of transcriptional control
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Fig 2. Grand canonical states and weights in the looping architecture. (A) Looping architecture where a repressor bound to the

main operator and RNAP binding are mutually exclusive. (B) Additional states and weights for the exclusive looping scenario. In this

scenario, repression is only effective in the looped state.

https://doi.org/10.1371/journal.pone.0179235.g002
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promoter region. Just as in the case of simple repression above, configurations that include a

repressor bound to the main site and an RNAP bound to the promoter simultaneously are

given zero weight. Further we define xP ¼ e� b�P , xaR ¼ e� b�aR , xmR ¼ e� b�mR with �P, �aR, and �mR the

binding energy of RNAP to a promoter site, and the repressor to an auxiliary site and to a

main site, respectively. In addition, we define xL ¼ e� bFL where FL is the free energy cost associ-

ated with forming a loop. In writing down the right side of Eq (13) we used for Z(p, r):

Zð0; 0Þ ¼ 1; Zð1; 0Þ ¼ xP; Zð0; 1Þ ¼ xaR þ xmR þ xaRx
m
R xL;

Zð1; 1Þ ¼ xPxaR; Zð0; 2Þ ¼ xa
Rx

m
R :

ð14Þ

The procedure is analogous to adding up the weights indicated in the right column in Fig 2A.

Note that in general repressor molecules could bind to operator sites of two different gene

copies at the same time, which has been observed in several experiments in vitro [52, 53]. It

would be very interesting to study the effect of this situation on transcriptional regulation,

especially in cases where the gene is located on mobile DNA elements such as plasmids. For

the purposes of this paper, we restrict our attention to the simplest scenario and do not include

those states in our partition function.

The fraction of promoters occupied by an RNAP molecule can by analogy to Eq (4), be cal-

culated as

yPðlP; lRÞ ¼ X� 1ðlPxP þ lPlRxPxaRÞ: ð15Þ

In the absence of repressors we have

yPðlP; 0Þ ¼
lPxP

1þ lPxP
’ lPxP: ðlPxP � 1Þ

ð16Þ

The fold-change is given by the ratio of Eqs (15) and (16). Furthermore, we will again work in

the weak promoter limit where λPxP� 1, resulting in

fold � change ¼
yPðlP; lRÞ

yPðlP; 0Þ

’
1þ lRxaR

1þ lRðxa
R þ xmR þ xaRxm

R xLÞ þ l
2

RxmR xa
R

: ðlPxP � 1Þ

ð17Þ

The result of Eq (17) is shown in Fig 3. By comparing the result of Eq (17) with the canoni-

cal result as given in [45] (Eq 18.35 p. 827), we see that the two equations differ only in a substi-

tution: We obtain the grand canonical result upon replacing in the canonical result R/Nns by

λR and RðR � 1Þ=N2
ns by l

2

R. We must stress that, except in the limit of R� 1, the two ensem-

bles are not equivalent—the value of λR is not equal to either R/Nns or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðR � 1Þ=N2

ns

p
. The

grand canonical fugacity λR merely plays the role of the canonical concentrations in otherwise

identical expressions.

In order to facilitate a consistent comparison between theory and experimental gene activ-

ity data over different scenarios (here, simple repression and looping), we can write the result

of Eq (17) in the same form as the simple repression result in Eq (9).

fold � change ¼
1

1þ zL
; ðloopingÞ ð18Þ
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where we have

zL ¼
lRðxm

R þ xaRx
m
R xLÞ þ l

2

Rx
m
R x

a
R

1þ lRxa
R

: ð19Þ

This allows us to plot the experimentally determined fold-change of a promoter architecture

against z = λRxR (for simple repression) or zL (for the looping architecture), which should

cause data from both types of promoter architecture to collapse onto the same scaling law

(1 + z)−1.

(A) (B)

(C) (D)

Fig 3. Fold-change and occupation for the looping scenarios. (A) Fold-change as a function of the fugacity λR for the

looping scenario (blue curve, Eq (17)) and the exclusive looping scenario (green curve, Eq (20)). The pink curve is the

simple repression scenario. (B) Average occupation of repressors to a single gene hRadsi/N in Eq (22) in the looping

architecture. (C) Fold-change as a function of the total number of repressor molecules R for the looping scenario (blue

curve) and exclusive looping (green curve) scenario. (D) the repressor fugacity as function of the total number of

repressor molecules R for both the looping and exclusive looping scenario. The value of �m
R
¼ �a

R
¼ � 17:3kBT, and FL =

+10kBT as in [34]. Furthermore, we took the number of promoters to be N = 10 and the number of non-specific sites to be

Nns = 5 × 106.

https://doi.org/10.1371/journal.pone.0179235.g003
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Exclusive looping

The exclusive looping architecture is a variant of the generic looping architecture where bind-

ing of RNAP to the promoter site is prohibited if and only if DNA looping occurs. For

instance, a famous example of this is seen for AraC regulating the araBAD operon in the

absence of arabinose [54]. In this case, RNAP is not prevented from binding next to a repressor

occupied main operator. We will therefore have to consider two more configurations in addi-

tion to the ones shown in Fig 2A. These additional configurations are shown in Fig 2B together

with their grand-canonical weights. Using the same procedure as in the previous section, we

obtain the following expression for the fold-change in the exclusive looping scenario, written

here in the same form as Eq (17) to allow a consistent comparison.

fold � change ¼
1

1þ zEL
; ðexclusive loopingÞ ð20Þ

with the scaling factor zEL given as

zEL ¼
lRxaRx

m
R xL

1þ lRðxa
R þ xm

R Þ þ l
2

RxaRxm
R

: ð21Þ

Eq (20) is plotted in Fig 3A making it possible to compare the two different looping architec-

tures. The consequence of exclusive looping is that repression is only effective at intermediate

repressor concentrations. At lower fugacity, not enough repressor is present to cause repres-

sion, while at higher fugacities it becomes much more likely that both operators are occupied

by two individual repressors, a situation that still allows RNAP to bind to the promoter.

Finding the fugacity

We calculate the average number of adsorbed repressors onto both the main and auxiliary

sites in the looping scenario illustrated in Fig 2A by

yRðlRÞ ¼
lR

X

@X

@lR

¼ X� 1ðlRðxa
R þ xmR þ xaRx

m
R xLÞ þ 2l

2

Rx
a
Rx

m
R Þ:

ð22Þ

The value of θR as a function of λR has been plotted in Fig 3B. As before, we work in the weak

promoter limit (λPxP� 1) and additionally, we set the average binding energy of the repres-

sors to the Nns non-specific binding sites to zero. The number of adsorbed repressors to non-

specific sites in the situation that λR� 1 (which is verified later) is given by

y
ns
R ¼

lRxnsR
1þ lRxnsR

’ lR: ð23Þ

The value of λR follows by solving the mass balance equation for repressors

R ¼ Nnsy
ns
R þ NyR; ð24Þ

which can be rewritten as a cubic equation of the form al
3

R þ bl
2

R þ clR � R ¼ 0, with coeffi-

cients a, b and c given by

a ¼ xaRx
m
RNns

b ¼ ðxa
R þ xm

R þ xaRx
m
R xLÞNns þ 2xa

Rx
m
RN � xaRx

m
R R

c ¼ Nns þ ðxa
R þ xmR þ xa

Rx
m
R xLÞðN � RÞ:

9
>>>=

>>>;

ð25Þ
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The cubic equation has a positive real root

lR ¼ Dþ þ D� �
b
3a
; ð26Þ

with

D� ¼ ðC2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3

1 þ C2
2

p
Þ

1=3

C1 ¼ ðc=3aÞ � ðb=3aÞ2

C2 ¼ ðbc=6a2Þ þ ðR=2aÞ � ðb=3aÞ3:

ð27Þ

When different competing genes or other repressor binding sites are present, these can be

included as an additional reservoir in Eq (24), at the cost of increasing the order of the polyno-

mial to solve. In Fig 3(C) and 3(D) we plot fold-change and fugacity for the looping and exclu-

sive looping scenario as a function of the number of repressors in the absence of competing

genes.

The figures show several features, which can be explained by the degree of competition

between the genes for the available number of transcription factors. The fugacity equals the

reservoir concentration of transcription factors on the non-regulatory DNA. When the num-

ber of transcription factors is smaller than the number of genes, there is strong competition for

the transcription factors. Consequently, the majority of the transcription factors are primarily

adsorbed on the genes, while the non-regulatory reservoir is nearly empty. However, when the

number of transcription factors exceeds the number of genes, the surplus of transcription fac-

tors reside in the non-regulatory reservoir, with a corresponding increase in fugacity. The

crossover occurs when the number of transcription factors equals the number of genes. This

leads to strong repression in both the looping and exclusive looping promoter architectures,

since the most likely singly occupied configurational state for both architectures prohibits

RNAP binding. When the concentration of transcription factors increases even more, the dou-

bly occupied configurational states become more important which are repressive in the case of

the looping architecture, but which allows transcription in the exclusive looping architectures.

Looping and scaling

In Fig 4 we show available transcription data from the simple repression architecture. Data

from [55, 56] were used to compare with the theory for looping architectures, in the form of

the scaling function Eq (18), so that the results may be compared to the simple repression data.

For the details see the caption of the Figure. It can be seen that when scaled in this form, the

experimental data from the two repression architectures, that is, simple repression and loop-

ing, collapse to a single scaling function, as predicted in this and previous work [38]. The devi-

ation from the curve of the data from [56] likely reflect the uncertainty in the number of

repressors per cell reported, showing how sensitive this quantitative comparison is with respect

to experimental uncertainties.

The fold-change of the simple repression and looping promoter architectures are domi-

nated in the weak promoter limit by the occupation of the main operator site. Hence, when

the expressions for fold-change are cast into the scaling form of Eq (18), the scaling parameter

z could be interpreted as the relative weight of states where the main operator site is occupied,

as modified by its surroundings. There is no deeper physical meaning that we attribute to the

scaling parameter z. The exclusive looping architecture provides a borderline example that can

still intuitively be mapped onto this functional form. The scaling parameter z here reflects the

occupational weight of the looped state. However, there are many promoter architectures

Self-consistent theory of transcriptional control
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where the fold-change is not completely dominated by the occupation of a single main opera-

tor site, which limits the usability and interpretation of this scaling form in those cases.

Activation

In many situations, a transcription factor actively “recruits” RNAP to bind to a promoter.

Essentially, there is an adhesive interaction between the bound transcription factor and the

RNAP. In the following section we discuss the situation where genes are regulated by such an

activator. The simplest of such situations, from now on referred to as simple activation, as well

as the corresponding table of states and weights is shown in Fig 5.

An activator A and RNAP can bind to the operator site and promoter with energy �A and

�P, respectively. When both are bound to their appropriate sites simultaneously, there is an

additional free energy gain of �AP which reflects the effective attraction between RNAP and

activator. The situation in the canonical ensemble has been analyzed in [45](p. 810, Eq 19.6).

That result will be compared to the fold-change expression which we derive below. We write

the grand partition function for a single copy of an activator regulated gene as

X ¼
X1

p¼0

X1

a¼0

l
p
Pl

a
AZðp; aÞ

¼ 1þ lPxP þ lAxA þ lPlAxPxAxAP;

ð28Þ

where lA ¼ ebmA is the fugacity of the activator with μA its chemical potential. Further we take

Z(p, a) as: Z(0, 0) = 1, Z(1, 0) = xP, Z(0, 1) = xA, and Z(1, 1) = xPxAxAP. Here xA ¼ e� b�A and

Fig 4. Transcription activity data of simple repression and looping regulated genes. Transcription

activity data for the simple repression architecture from [17, 37], as previously shown in [38], as well as data

for the looping scenario from [55, 56], rescaled to the scaling factor z appropriate to its architecture. For simple

repression scenarios, z = λR exp(−β�R). For the looping scenario, zL is calculated using Eqs (18) and (26). The

solid blue line signifies the scaling function (1 + z)−1. The repressor binding energies are taken from [37] as

�Oid
R
¼ � 17kBT, �O1

R
¼ � 15:3kBT,�O2

R
¼ � 13:9kBT and �O3

R
¼ � 9:7kBT . Values for promoter copy numbers N and

competitor sites Nc are taken from [17] (simple repression) and [55] (looping). The value for the looping free

energy, FL = +9.1kBT, was taken from Fig 3b in [55] as the average looping free energy for a loop that has a

length in between 76 and 84 base pairs. For each data set, λR is calculated by solving the mass balance

appropriate for the architecture, Eq (7) (simple repression) or Eq (24) (looping).

https://doi.org/10.1371/journal.pone.0179235.g004
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xAP ¼ e� b�AP . The fraction of occupied promoter sites by RNAP is now given by

yPðlP; lAÞ ¼
lPxP þ lPlAxPxAxAP

1þ lPxP þ lAxA þ lPlAxPxAxAP
: ð29Þ

In the absence of activators (λA = 0) we again regain Eq (5). Here we assumed that the fugaci-

ties of activator and RNAP, λP, λA are independent, that is, λP has the same value in Eq (29) as

it has in Eq (5), independent of the presence of activators. This is not trivial here, as activators

interact with RNAP with energy �AP. As shown in the supporting information (see S3 Text),

decoupling is an excellent approximation as long as the number of non-specific sites is large.

This is even the case when activators and RNAP can also have interactions with each other

when both are bound to non-specific sites, which we also show in S2 Text. The fold-change is

then found as

fold � change ¼
yPðlP; lAÞ

yPðlP; 0Þ
’

1þ lAxAxAP
1þ lAxA þ lPlAxPxAxAP

: ðlPxP � 1Þ ð30Þ

In contrast to the simple repression and looping scenarios, the fold-change in the weak pro-

moter limit is still dependent on the RNAP fugacity. Finding the fugacities therefore becomes

a matter of solving a mass balance for activators and for RNAPs simultaneously. We can, how-

ever, greatly simplify the result if we assume that λPxPxAP� 1. This is consistent with the weak

promoter limit provided that �AP does not exceed several kBT. In that case, we can write

fold � change ¼
1þ lAxAxAP

1þ lAxA
: ðlPxPxAP � 1Þ ð31Þ

The fold-change expressions in the canonical ensemble for a single gene (Eq 19.6 p. 812 in

Fig 5. States and weights for the simple activation scenario. An activator and the RNA polymerase can bind to the activator binding site and to the

promoter site with energies �A and �P, respectively. The state where both molecules are bound simultaneously includes an additional energy �AP, which

reflects the adhesive interaction between activator and RNA polymerase.

https://doi.org/10.1371/journal.pone.0179235.g005

Self-consistent theory of transcriptional control

PLOS ONE | https://doi.org/10.1371/journal.pone.0179235 July 7, 2017 14 / 32

https://doi.org/10.1371/journal.pone.0179235.g005
https://doi.org/10.1371/journal.pone.0179235


[45]) and the grand canonical expression Eq (31) can again be related by replacing A/Nns by

λA. Finding λA is analogous to the procedure described above for the looping scenarios.

Comparison of canonical and grand-canonical fold-change

expressions

Fig 6 shows the fold-change expressions that were derived using the grand canonical ensemble

for a variety of regulatory architectures, as well as the canonical expressions calculated in [7,

8]. The grand canonical expressions have the advantage that they analytically describe the situ-

ation where multiple genes or binding sites compete for transcription factors. In these compe-

tition scenarios, there can be multiple copies of the same gene or other genes that are regulated

by the same transcription factors. The effect of competition is described by the transcription

factor fugacity λ, which depends upon the nature (number, binding affinity) of additional

binding reservoirs for that transcription factor.

The canonical expressions shown here, in contrast, describe only the case of an isolated,

non-interacting gene. While the canonical ensemble can generally be used to describe the situ-

ation of multiple gene copies and competitor sites [17, 34], each competition scenario needs its

own formula, which can be derived using combinatorics to explicitly account for all gene cop-

ies and competitor sites. Note, that each grand canonical expression for fold-change in Fig 6

differs from the canonical expression solely by a substitution of the concentration of the tran-

scription factor by its fugacity, i.e. R/Nns by λR, A/Nns by λA or RðR � 1Þ=N2
ns by l

2

R respectively.

The fugacity can be calculated for any competition scenario that consists of a finite number of

competitor binding sites with known binding energies.

Case study: The lac operon

In this case study we will show how to calculate the fold-change in gene expression for the reg-

ulatory motif of the lac operon in Escherichia coli. A sketch of the regulatory architecture is

given in Fig 7. The architecture consists of a promoter site P next to an operator site O1 that

binds the tetrameric repressor LacI, a protein that can bind 2 DNA sites simultaneously. There

are two auxiliary operator sites O2 and O3, that also bind LacI, but binding of the repressor to

these sites does not prevent the binding of RNAP to the promoter site. In this architecture, the

repressor can bind to two operator sites at the same time which requires the DNA between the

operator to form a loop. Furthermore, there is an activator site A that binds CRP, an activator

which recruits RNAP for binding by making the adsorption of RNAP to the promoter site

more favorable. Additionally, when the activator is bound to the adsorption site, the DNA is

bent locally in such a way that the free energy penalty of a loop between the auxiliary repressor

site O3 and the main site O1 is reduced [57–59].

Grand partition function and fold-change

We write the grand partition function for the regulatory architecture of the lac operon as

X ¼
X1

p¼0

X3

r¼0

X1

a¼0

l
p
Pl

r
Rl

a
AZðp; r; aÞ; ð32Þ

where we have the fugacities li ¼ ebmi as defined above and Z(p, r, a) the relevant part of the

canonical partition function with p, r, a molecules of RNAP, LacI and CRP bound to the gene,

respectively. Since the promoter sequence partly overlaps with the main operator site O1, their

simultaneous occupation is prohibited by excluded volume interactions. Those states automat-

ically have a weight of 0. There is a partial overlap between the activator site and the auxiliary
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R
Simple repression

A
Simple activation

AH
Activation with helper

RH
Repression with helper

RQ
Dual repressors

O1O2
Single repressor, two operators

RQ
Dual repressors, interacting

ma
Looping

ma
Exclusive looping

13N ... 2
Independent combinations

Fig 6. Fold-change in the grand canonical and the canonical ensemble for a variety of regulatory architectures. The promoter is indicated by a red

patch on the DNA, with the transcription start site denoted by the straight arrow. Interactions between transcription factors bound to a site are specified by

a solid curve ending in an arrow tip (activation), in a bar (repression) or unadorned (unspecified interaction). Dashed curved lines signify looping between

two sites.

https://doi.org/10.1371/journal.pone.0179235.g006
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Fig 7. List of all allowed states of the lac operon, and their grand canonical weights. The lac operon has three binding sites (O1, O2, O3) for the lac

repressor (LacI) and one binding (A) site for a CRP activator. LacI has two binding heads and can bind to two sites simultaneously. In those cases the DNA

in between the binding sites forms a loop. States where RNAP is bound to the promoter (p) and LacI is bound to the O1 operator sites are not allowed, as

well as looped states where RNAP is bound to the promoter.

https://doi.org/10.1371/journal.pone.0179235.g007
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operator site O3. LacI was found to bind to O3 even with CRP bound to the activator site, but

its position is then shifted by 6 bp [58]. This, combined with the sharp bend in the DNA

bound by CRP causes a change in the looping free energy of loop O1O3. For steric reasons, the

loop O2O3 is thought not to occur when CRP is bound, so we have assigned those states a

weight of 0. RNAP was found to bind to the promoter simultaneously with CRP while the aux-

iliary operator site O3 was occupied by LacI, but the favourable interaction between CRP and

RNAP was decreased [16]. These states have been given the modified activator-RNAP interac-

tion �0AP. We write out the sum by summing the weights of all the allowed occupational states

noted in Fig 7 and obtain

X ¼ 1|{z}
Free gene

þ lAxA|ffl{zffl}
Activator bound

þlPxPfð1þ lAxAxAPÞ 1þ lR xO2

R þ xO3

R

x0AP
xAP

� �

þ l
2

Rx
O2

R xO3

R

x0AP
xAP

� �

þ lRx
O2

R xO3

R xO2O3

L g

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RNAP bound states

þlRðx
O1

R þ xO2

R þ xO3

R Þ þ l
2

Rðx
O1

R xO2

R þ xO1

R xO3

R þ xO2

R xO3

R Þ þ l
3

Rx
O1

R xO2

R xO3

R|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Only repressors bound; excluding looping states

þlAxA½lRðx
O1

R þ xO2

R þ xO3

R Þ þ l
2

Rðx
O1

R xO2

R þ xO1

R xO3

R þ xO2

R xO3

R Þ þ l
3

Rx
O1

R xO2

R xO3

R �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Activator and repressors bound; excluding looping states

þlRðx
O1

R xO2

R xO1O2

L þ xO1

R xO3

R xO1O3

L þ xO2

R xO3

R xO2O3

L Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Looping states with single repressor

þlAxA lRðx
O1

R xO2

R xO1O2

L þ xO1

R xO3

R xO1O3

L xO1O3

AL Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Looping states with single repressor; activator bound

þl
2

Rx
O1

R xO2

R xO3

R ðx
O1O2

L þ xO1O3

L þ xO2O3

L Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Looping states with 2 repressors bound

þlAxA l
2

Rx
O1

R xO2

R xO3

R ðx
O1O2

L þ xO1O3

L xO1O3

AL Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Looping states with 2 repressors bound; activator bound

;

ð33Þ

where xi ¼ e� b�i as before. Furthermore, �AP is the energy bonus that is gained by simulta-

neously binding RNAP and CRP, which when O3 is bound is modified to �0AP. Furthermore,

xijL ¼ expð� bFij
LÞ reflects the energy penalty needed to form a DNA loop between operators i

and j, and xO1O3
AL ¼ expð� bDFO1O3

AL Þ where DFO1O3
AL is the change in looping free energy that

results from simultaneously binding CRP and forming loop O1O3.

For simplicity of notation we split the grand partition function into terms that are linear

with λPxP and those that are independent of λPxP, so that we can write for the grand partition

function

X ¼ lPxPSP þ S0; ð34Þ

where we have defined SP as

SP � ð1þ lAxAxAPÞ 1þ lR xO2
R þ xO3

R

x0AP
xAP

� �

þ l
2

Rx
O2
R xO3

R

x0AP
xAP

� �

þ lRxO2
R xO3

R xO2O3
L ; ð35Þ

and with all states not leading to transcription initiation grouped as S0

S0 �
X3

r¼0

X1

a¼0

l
r
Rl

A
AZð0; r; aÞ: ð36Þ
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We then write the fraction of occupied promoter sites θP as

yPðlP; lR; lAÞ ¼
lP

X

@X

@lP
¼

lPxPSP

lPxPSP þ S0

: ð37Þ

In the absence of any LacI or CRP the average number of occupied promoter sites θP(λP, 0, 0)

is given as

yPðlP; 0; 0Þ ¼
lPxP

1þ lPxP
: ð38Þ

As above, we can then find the fold-change as the ratio of the two. Thus, we write

fold � change ¼
yPðlP; lR; lAÞ

yPðlP; 0; 0Þ
¼
ð1þ lPxPÞSP

lPxPSP þ S0

’
SP

S0

: lPxP � 1; lPxP �
S0

SP

� � ð39Þ

Here we have imposed the weak promoter limit λPxP� 1, as well as a second assumption that

λPxP� S0/SP, which makes the fold-change independent of the RNAP fugacity. When repres-

sion is stronger than activation (which is the case when SP/S0 < 1), this second assumption is

already implicit in the weak promoter limit. In the case of strong activation, however, this sec-

ond assumption is stricter than the weak promoter limit and care needs to be taken when

applying it. The validity of this assumption needs to evaluated a posteriori. As we will show in

the supporting information (see S4 Text), this assumption is generally justified as long as the

fold-change� 500. If the assumption breaks down, the RNAP fugacity λP needs to be calcu-

lated explicitly.

Imposing the constraint of fixed transcription factor numbers

The fugacities λR and λA can be found self-consistently by imposing the constraint that the

total number of repressors R and activators A in the cell is conserved. We set up two mass bal-

ances which we will then decouple. LacI is not shared with other genes in the cell, hence our

choice not to include any competing reservoir for LacI. In contrast, CRP binds to approxi-

mately 350 other sites [49]. We therefore include an additional reservoir of competing sites for

CRP, reflecting the high degree to which CRP is shared between genes.

Activators. For the conservation of CRP, we can write down the following mass balance

A ¼ Nnsy
ns
A þ Ncy

c
A þ NyA: ð40Þ

Here, we have Nns non-specific sites, N specific sites and Nc competitor sites. Each reservoir

has its own occupation fraction. The fraction of CRP bound non-specific sites can be found as

above as

y
ns
A ¼

lAxnsA
1þ lAxns

A

’ lA: ðlA � 1Þ ð41Þ

As before, we have set the reference point of energy to the binding energy of non-specific sites,

hence xnsA ¼ e0 ¼ 1. We assume the competitor sites to be sites to which CRP can bind with a

binding energy �cA. The fraction of occupied competitor sites is then found as

y
c
A ¼

lAxcA
1þ lAxcA

: ð42Þ
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The fraction of CRP bound specific sites is calculated as

yA ¼
lA

X

@X

@lA
’

lA

S0

@S0

@lA
; ðlPxP � S0=SPÞ ð43Þ

¼
lAxAf

1þ lAxAf
: ð44Þ

Here, we have simplified this expression by neglecting all the terms that are linear in λPxP, pro-

vided that λPxP� S0/SP, and we have grouped all the λR-dependent terms in the factor f.
Essentially, λAf now behaves as an effective concentration in a Langmuir-like adsorption iso-

therm, where the effect of repressors is isolated in the factor f, given by

f ¼ ½1þ lRðxO1
R þ xO2

R þ xO3
R Þ þ l

2

Rðx
O1
R xO2

R þ xO1
R xO3

R þ xO2
R xO3

R Þ þ l
3

Rx
O1
R xO2

R xO3
R

þlRðxO1
R xO2

R xO1O2
L þ xO1

R xO3
R xO1O3

L xO1O3
AL Þ þ l

2

Rx
O1
R xO2

R xO3
R ðx

O1O2
L þ xO1O3

L xO1O3
AL Þ�

�½1þ lRðxO1
R þ xO2

R þ xO3
R Þ þ l

2

Rðx
O1
R xO2

R þ xO1
R xO3

R þ xO2
R xO3

R Þ þ l
3

Rx
O1
R xO2

R xO3
R

þlRðxO1
R xO2

R xO1O2
L þ xO1

R xO3
R xO1O3

L þ xO2
R xO3

R xO2O3
L Þ

þl
2

Rx
O1
R xO2

R xO3
R ðx

O1O2
L þ xO1O3

L þ xO2O3
L Þ�

� 1
:

ð45Þ

Setting up the mass balance in Eq (40) leads to a cubic equation (in the absence of competi-

tor sites, this reduces to a quadratic equation) that can be solved analytically.

al
3

A þ bl
2

A þ clA � A ¼ 0; ð46Þ

with coefficients

a ¼ NnsxAxcAf

b ¼ NnsðxAf þ xc
AÞ þ ðN þ Nc � AÞxAxcAf

c ¼ Nns þ ðN � AÞxAf þ ðNc � AÞxcA:

ð47Þ

Its solution remains a function of the repressor fugacity, however. The positive real root of the

cubic equation is given by

lA ¼ Dþ þ D� �
b
3a
; ð48Þ

with

D� ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C3

1 þ C2
2

pq

C1 ¼ ðc=3aÞ � ðb=3aÞ2

C2 ¼ ðbc=6a2Þ þ ðA=2aÞ � ðb=3aÞ3:

ð49Þ

Repressors. In order to determine the repressor fugacity λR, we write down the mass bal-

ance of repressor molecules in the absence of additional reservoirs as

R ¼ Nnsy
ns
R þ NyR; ð50Þ

where the average number of repressors bound to a non-specific site is, as in the case of activa-

tors (see Eq (41)), y
ns
R ’ lR. The average number of repressors bound to a gene is, as before,
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given by

yR ¼
lR

X

@X

@lR
’

lR

S0

@S0

@lR
; ðlPxP � S0=SPÞ: ð51Þ

As before, we simplify this result in the weak promoter limit by neglecting the terms that are

linear with λPxP, which is a good approximation provided that λPxP� S0/SP. This also

resolves any indirect coupling that λR and λA have via their mutual interaction with λP. The

fugacities λR and λA are, however, still coupled through their direct interaction. Writing out

Eq (51) explicitly, we obtain

yR ¼ ½lRðxO1
R þ xO2

R þ xO3
R Þ þ 2l

2

Rðx
O1
R xO2

R þ xO1
R xO3

R þ xO2
R xO3

R Þ

þ3l
3

Rx
O1
R xO2

R xO3
R þ lRðxO1

R xO2
R xO1O2

L þ xO1
R xO3

R xO1O3
L g þ xO2

R xO3
R xO2O3

L hÞ

þ2l
2

Rx
O1
R xO2

R xO3
R ðx

O1O2
L þ xO1O3

L g þ xO2O3
L hÞ�

�½1þ lRðxO1
R þ xO2

R þ xO3
R Þ þ l

2

Rðx
O1
R xO2

R þ xO1
R xO3

R þ xO2
R xO3

R Þ

þl
3

Rx
O1
R xO2

R xO3
R þ lRðxO1

R xO2
R xO1O2

L þ xO1
R xO3

R xO1O3
L g þ xO2

R xO3
R xO2O3

L hÞ

þl
2

Rx
O1
R xO2

R xO3
R ðx

O1O2
L þ xO1O3

L g þ xO2O3
L hÞ�� 1

;

ð52Þ

where we have isolated the λA-dependent terms into the factors g and h given by

g �
1þ lAxAxO1O3

AL

1þ lAxA
; h �

1

1þ lAxA
: ð53Þ

Eq (50) leads to a quartic equation in λR of the form

al
4

R þ bl
3

R þ cl2

R þ dlR � R ¼ 0; ð54Þ

with the coefficients given by

a ¼ xO1
R xO2

R xO3
R Nns

b ¼

( xO1
R xO2

R xO3
R ð3N � RÞ þ ½xO1

R xO2
R þ xO1

R xO3
R þ xO2

R xO3
R

þxO1
R xO2

R xO3
R ðx

O1O2
L þ xO1O3

L g þ xO2O3
L hÞ�Nns

c ¼

ðxO1
R þ xO2

R þ xO3
R þ xO1

R xO2
R xO1O2

L þ xO1
R xO3

R xO1O3
L g

þxO2
R xO3

R xO2O3
L hÞNns þ ½xO1

R xO2
R þ xO1

R xO3
R þ xO2

R xO3
R

þxO1
R xO2

R xO3
R ðx

O1O2
L þ xO1O3

L g þ xO2O3
L hÞ�ð2N � RÞ

8
>>><

>>>:

d ¼
ðxO1

R þ xO2
R þ xO3

R þ xO1
R xO2

R xO1O2
L þ xO1

R xO3
R xO1O3

L g

þxO2
R xO3

R xO2O3
L hÞðN � RÞ þ Nns:

(

ð55Þ

The quartic equation has four analytical roots, of which the positive real one is the desired

solution, given by

lR ¼ �
b
4a
þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2

4a2
�

2c
3a
þ

D0

3Q
þ
Q
3

s

þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2a2
�

4c
3a
�

D0

3Q
�
Q
3
þ
� b3a� 3 þ 4bca� 2 � 8da� 1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

4a2
�

2c
3a
þ

D0

3Q
þ
Q
3

r

v
u
u
u
t

;

ð56Þ
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with

Q ¼
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 4D
3

1
þ D

2

0

q

2

v
u
u
t

D0 ¼
c2

a2
�

3bd
a2
�

12R
a

D1 ¼
2c3

a3
�

9bcd
a3
þ

27d2

a2
�

27b2R
a3
þ

72cR
a2

:

ð57Þ

Fig 8 shows the fugacities λA and λR as a function of transcription factor copy number in

the absence and presence of the coupled complementary transcription factor. It can be seen

that the difference between the unperturbed (i.e. in the absence of the complementary tran-

scription factor) and the perturbed fugacities is negligible, and consequently it makes sense to

decouple the activator and repressor fugacities completely (f = g = h = 1). We show in S1 Text

Text how to decouple the transcription factor fugacities in the case that the perturbed fugacity

deviates from the unperturbed fugacity.

The fugacities λA and λR, shown in Fig 8, both show similar features. At high transcription

factor copy number there is a surplus of transcription factors, and the transcription factors are

not strongly competed for. When only a handful of LacI repressors are present in the cell, the

favourable binding of LacI to its cognate operator sites causes the operon to compete strongly

for the few available LacI molecules. In turn, this causes a sharp decrease in the reservoir con-

centration, hence the crossover in fugacity when the number of LacI repressors approximately

matches the gene copy number. In contrast, CRP is strongly competed for by approximately

(A) (B)

Fig 8. Fugacities of the transcription factors for the lac operon. (A) Fugacity of activators as a function of the number

of activator molecules in the cell, in the absence of repressor (blue curve) and in the presence of a high concentration of

repressor (green dotted curve). (B) Fugacity of repressors as a function of the number of repressors in the cell, in the

absence of activator (blue curve) and in the presence of a high concentration of activator (green dotted curve). In both

cases the copy number of the gene is N = 1. Note that the presence of repressor causes a slight shift in the activator

fugacity. The parameters used are listed in Table 2.

https://doi.org/10.1371/journal.pone.0179235.g008
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350 other genes and consequently the crossover from high competition to transcription factor

surplus occurs at CRP copy numbers between 102 and 103.

Results and discussion

Most of the adsorption and interaction energies that are relevant to our calculations are

known from previous experiments; only the looping free energies of the lesser studied O1O2

and O2O3 loops, the coupling strength between activator and the O1O3 loop and the reduc-

tion in the activation when O3 is occupied have yet to be verified by independent experimental

studies. In general, the looping free energy depends on several factors, notably the length of

the loop and the number of stable conformations that can be formed in conjunction with the

tetrameric repressor. These interactions can be modeled explicitly as is done in e.g. refs [60,

61]. Table 2 shows the experimentally determined values of the different adsorption and loop-

ing free energies that are known [45].

We calibrated the model to existing experiments on the lac operon to find the missing ener-

gies. In a range of experiments by Oehler in the 1990’s [56, 62], the fold-change of the lac
operon was determined in the presence of two concentrations of lac repressor. Different con-

structs were tested, where some adsorption sites were deleted from the genome, or replaced by

the sequence of a different operator. While there exists an uncertainty in the actual number of

repressors in these experiments, the number of different mutations that were tested make this

study a prime candidate to calibrate the model. Note also that in these experiments the activa-

tor site was kept intact, but Oehler et al. did not actively control the number of activators, nor

report their concentration. We have assumed a number of *1000 activators [45], at which the

activator sites are more or less saturated. Furthermore, we have used a total of Nc = 350 com-

petitor sites [49], each with an estimated binding energy for CRP of �cA ¼ � 13kBT.

We found R, FO1O2
L , DFO1O3

AL , and �0AP by calibrating the model to the constructs with deleted

O2 and O3 sites, deleted O3 site, deleted O2 site, and deleted O1 and O2 respectively. In the

presence of physiological numbers of CRP, the loop O2O3 is almost completely suppressed.

Table 2. Physical absorption and interaction energies used. All data is obtained from [45], unless stated

otherwise.

Symbol Energy / kBT Notes

�O1
R

-15.3

�O2
R

-13.9

�O3
R

-9.7

FO2O3
L

>5 *

FO1O3
L

9.1

FO1O2
L

7.6 †

�A -13.0 [63]

�AP -5.3 [63]

�0
AP

-1.8 §

DFO1O3
AL

-3.4 ‡

*This loop does not occur in the presence of CRP and could not be calibrated to the data available in [56]
†From calibration to [56] from construct with deleted O3 auxiliary site.
‡From calibration to [56] from construct with deleted O2 auxiliary site.
§From calibration to [56] from constructs with deleted main and O2 auxiliary site.

https://doi.org/10.1371/journal.pone.0179235.t002
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With no experimental data in the absence of CRP, the looping free energy FO2O3
L could not be

determined accurately.

We plot the results of Oehler et al. in Fig 9, after calibration of the model. The experimen-

tally determined fold-change (normalized in the presence of CRP) was plotted on the x-axis of

the graph, and the corresponding theoretical fold-change on the y-axis, with perfect corre-

spondence between experiment and theory when a point falls on the x = y line that is shown as

the blue dotted line in the graph. Most points in the classical results of Oehler et al. fall within

five-fold of perfect correspondence, over a very wide range of experimental parameters. For

some very repressive constructs, Oehler et al. were only able to determine a lower bound to the

level of repression (defined there as the reciprocal of the fold-change). Those constructs have

been marked with a cross in Fig 9. Those points all fall right of the x = y line, indicating that

the theoretical framework indeed predicts a lower activity than could be seen experimentally.

Vilar and Saiz [16] have proposed a model of the lac operon based on the canonical ensem-

ble, which also captures the behaviour of the classical experiments by Oehler et al. In their

canonical framework they have included explicitly the association equilibrium of LacI dimers

to tetramers, and the binding of LacI to external inducer. Their model appears to be similar in

accuracy to ours. Their use of the canonical ensemble is justified here since they do not intro-

duce the CRP activators explicitly. Rather, they scale the effect of reduced activation by the

occupation of the O3 auxiliary site with an effective fit parameter. Since LacI is not strongly

competed for in wildtype cells, there is no similar titration effect such as is the case for CRP.

When CRP is modeled explicitly, or when LacI is competed for, for example by competitor

Fig 9. Fold-change of lac operon constructs from the literature. Theoretical fold-change according to Eq

(39) compared to the experimental fold-change as determined in [56, 62]. The dashed line is the x = y line.

The blue squares correspond to the 1994 paper, the green diamonds to the older 1990 paper. For some

strongly repressive constructs, Oehler et al. were only able to measure a lower bound to the level of

repression. These points were marked with a cross.

https://doi.org/10.1371/journal.pone.0179235.g009

Self-consistent theory of transcriptional control

PLOS ONE | https://doi.org/10.1371/journal.pone.0179235 July 7, 2017 24 / 32

https://doi.org/10.1371/journal.pone.0179235.g009
https://doi.org/10.1371/journal.pone.0179235


genes or competitive inhibitors, the titration effect that arises needs to be dealt with, and those

situations can be modeled in the grand canonical framework. Moreover, the association equi-

librium of LacI dimers to tetramers, and the binding of LacI by inducers can be introduced

into the framework in a straightforward way.

Fig 10 shows the cooperative effect of activators and repressors on the fold-change of the

operon. As expected, addition of activators leads to an increase in the fold-change at low

repressor copy number.

However, an interesting cooperative effect occurs in the presence of CRP. The presence of

activators increases the dynamic range of the repressors, whereas the presence of repressors

reduces the dynamic range of the activator. The reason for this is that bound activator assists

in forming repressing O1O3 DNA loops. Fig 11A shows the gene expression normalized to the

gene expression for the case of R = 0 (fold-changeR)in the absence and presence of A = 0,

A = 1000 activators respectively. The blue curve shows that in the absence of activator, repres-

sors cause a decrease in the transcription-rate of approximately three orders of magnitude.

Fig 10. Fold-change of the lac operon. Fold-change as a function of activator and repressor concentrations for N = 1

(yellow surface) and N = 10 (translucent blue surface). When only a single copy of the lac operon is present in the cell, the

action of LacI is significant: the introduction of as little as 2 or 3 copies of LacI cause a 100-fold drop in the transcription rate.

In vivo, E. coli cells typically contain 101 instances of LacI, keeping the activity of the lac operon low. When there are

multiple copies of the lac operon present, all copies have to compete for the availability of LacI and significant repression

only occurs when the number of LacI exceeds the operon copy number. Due to this titration effect, the transcription rate

becomes sensitive to fluctuations in wildtype LacI availability. A similar titration effect occurs for the availability of CRP, but

since CRP is already strongly competed for, the addition of multiple gene copies has no significant additional effect.

https://doi.org/10.1371/journal.pone.0179235.g010
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However, the presence of activator may cause up to an additional single order of magnitude of

decrease in the fold-change. While the net gene expression due to the presence of the activators

remains higher, the presence of the activator causes a greater difference between the unre-

pressed and the repressed system. Fig 11B shows the gene expression normalized to the gene

expression for the case of A = 0 (fold-changeA) in the absence and presence of R = 0, R = 100

repressors respectively, illustrating that in the absence of repressor, the activators may cause

up to a 200-fold-change in transcription rate, which drops down to *80-fold in the presence

of a larger number of repressors.

This effect was experimentally observed by Kuhlman et al. [10], who measured the gene

activity of the lac operon in Escherichia coli constructs that are unable to synthesize cAMP.

Since CRP needs cAMP to activate the lac operon, the activating response to the cAMP-CRP

complex could be induced externally. In the presence of cAMP in the growth medium, induc-

tion of the bacteria by IPTG (inactivating lac repressor) caused a >1600-fold-change in tran-

scription levels. In the absence of cAMP, this fold-change dropped to only <250. Saiz and

Vilar [61] also address this cooperative effect, which they term ‘robust expression with sensi-

tive induction’.

Usually, a single copy of the lac operon exists in E. coli cells per chromosome and at slow

growth rates the copy number of the lac operon is expected to be one or two. However, fast

growing cells have multiple replication forks of the chromosome which can result in a higher

copy numbers of the lac operon. Using this theory, we can calculate the effect of the existence

of multiple gene copies without significant additional effort. Fig 10 (translucent blue surface)

shows the fold-change of a lac operon regulated gene with a copy number of 10 in a single cell,

as a function of activator and repressor numbers. At higher repressor concentrations there is

no qualitative difference between this case and the single copy number case. At lower repressor

concentrations, however, we find first a plateau in the fold-change, followed by a steep drop of

(A) (B)

Fig 11. Activators increase the dynamic range of repression of the lac operon. (A) Gene expression normalized to

the gene expression at R = 0 (fold-changeR) as a function of number of repressors, in the absence (blue curve) and

presence (green) of activators. (B) Gene expression normalized to the gene expression at A = 0 (fold-changeA) as a

function of the number of activators, in the absence (blue curve) and presence (green curve) of repressors. Bound

activator causes a sharp bend in the DNA that facilitates the loop between O1 and O3. This causes an additional,

cooperative repression effect on top of the (uncooperative) activation behaviour of the activators.

https://doi.org/10.1371/journal.pone.0179235.g011

Self-consistent theory of transcriptional control

PLOS ONE | https://doi.org/10.1371/journal.pone.0179235 July 7, 2017 26 / 32

https://doi.org/10.1371/journal.pone.0179235.g011
https://doi.org/10.1371/journal.pone.0179235


over three orders of magnitude upon addition of one or two additional repressor molecules.

The presence of multiple copies of the gene causes a titration effect in which the gene copies

have to compete for the presence of LacI. The model shows clearly that in a competitive envi-

ronment the interacting gene model presented here predicts a significantly different transcrip-

tion rate than the isolated gene models.

To illustrate this, we show in Fig 12 the fold-changeA of the lac operon as a function of the

number of CRP in the cell in the case where the gene is isolated and when CRP is competed

for by 350 competitor sites. CRP is strongly competed for in E. coli and consequently, the avail-

ability of CRP to bind to the lac operon is significantly lower than in the case where CRP has

no other specific binding sites. The effect of competition on the transcription rate may exceed

an order of magnitude.

Conclusions and outlook

The rate of transcription initiation of a gene is strongly influenced by the competitive effects of

the rest of the genome. The availability of transcription factors is dictated by the number and

binding strength of competing binding sites, as well as the size of the non-specific reservoir. As

was shown in Figs 10 and 12, competing binding sites can cause orders of magnitude changes

in the transcription initiation rate. In the community of computational biology, theories for

transcription initiation have been traditionally derived in the isolated gene limit [4, 7, 8], i.e.

the transcription factors are not shared by multiple gene copies or competing binding sites in

the cell. While these theories are successfully applied in that limit, competition for the mole-

cules involved in transcription regulation is the rule, rather than the exception.

Attempts to include competition in the canonical ensemble have led to the use of combina-

torics to keep track of the possible arrangements of transcription factors, as for example was

successfully demonstrated by Burger et al. [32, 33], and Rydenfelt et al. [34]. The resulting

expressions, however, do not lend themselves to intuitive interpretation.

(A) (B)

Fig 12. Effect of the competitive environment on activation. (A) Gene expression normalized to the gene expression

at A = 0 (fold-changeA) and (B) fugacity of activators, as a function of the number of activators in the isolated gene case

(blue curves), and in the case where the activators are competed for by 350 additional competitor sites in the cell (green

curves). In the interacting gene model the effective concentration of CRP is lower due to binding to competitor sites.

Consequently, the transcription rate is significantly lower.

https://doi.org/10.1371/journal.pone.0179235.g012
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The application of the grand canonical ensemble to the process of transcription initiation

allows the native inclusion of competing binding sites. The reservoirs of binding sites are

decoupled, so that one does not need to keep track of the individual arrangements of transcrip-

tion factors in all the reservoirs simultaneously. Instead, the effect of multiple gene copies and

other competing binding sites are embedded in the fugacity of the transcription factor.

The expressions we derived for the fold-change in transcription activity found in the grand

canonical ensemble have the same intuitive form as in the case of an isolated gene. For each of

the cases shown in Fig 6 the solution for fold-change calculated in the grand canonical ensem-

ble can also be obtained by substituting R/Nns by λR, A/Nns by λA and RðR � 1Þ=N2
ns by l

2

R in

the canonical solution. In each of the substitutions the transcription factor concentration is

replaced by the appropriate fugacity λi (with i the kind of transcription factor), which can be

interpreted as the effective concentration of the transcription factor in the presence of compet-

ing binding sites for that transcription factor. This correspondence suggests that the approach

could be generalised with the help of automated computer scripts, such as has been done for

their canonical counterparts (see e.g. Vilar [47]).

Competition in cells also manifests itself in the activation or inactivation of transcription

factors by inducer molecules. In principle the effects of inducers can also be calculated using

this theoretical framework by taking into account the different association states of the tran-

scription factor-inducer equilibrium [64]. In a similar way, the formalism can be extended to

include oligomerisation equilibria for transcription factors whose function depends on those

details, a common scheme for global regulators in higher Eukaryotes [65]. The formalism

developed here also holds promise in being able to compute protein-DNA binding in the con-

text of high-throughput experiments such as Chip-Seq which explicitly examine the competi-

tion of different parts of the genome for the same proteins [66, 67].
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