
University of Massachusetts Medical School University of Massachusetts Medical School 

eScholarship@UMMS eScholarship@UMMS 

Program in Bioinformatics and Integrative 
Biology Publications and Presentations 

Program in Bioinformatics and Integrative 
Biology 

2017-02-14 

IRaPPA: information retrieval based integration of biophysical IRaPPA: information retrieval based integration of biophysical 

models for protein assembly selection models for protein assembly selection 

Iain H. Moal 
Barcelona Supercomputing Center 

Et al. 

Let us know how access to this document benefits you. 
Follow this and additional works at: https://escholarship.umassmed.edu/bioinformatics_pubs 

 Part of the Biochemistry Commons, Bioinformatics Commons, Biophysics Commons, Computational 

Biology Commons, and the Structural Biology Commons 

Repository Citation Repository Citation 
Moal IH, Barradas-Bautista D, Jimenez-Garcia B, Torchala M, van der Velde A, Vreven T, Weng Z, Bates PA, 
Fernandez-Recio J. (2017). IRaPPA: information retrieval based integration of biophysical models for 
protein assembly selection. Program in Bioinformatics and Integrative Biology Publications and 
Presentations. https://doi.org/10.1093/bioinformatics/btx068. Retrieved from 
https://escholarship.umassmed.edu/bioinformatics_pubs/108 

Creative Commons License 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Program in 
Bioinformatics and Integrative Biology Publications and Presentations by an authorized administrator of 
eScholarship@UMMS. For more information, please contact Lisa.Palmer@umassmed.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eScholarship@UMMS

https://core.ac.uk/display/129346468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://escholarship.umassmed.edu/
https://escholarship.umassmed.edu/bioinformatics_pubs
https://escholarship.umassmed.edu/bioinformatics_pubs
https://escholarship.umassmed.edu/bioinformatics
https://escholarship.umassmed.edu/bioinformatics
https://arcsapps.umassmed.edu/redcap/surveys/?s=XWRHNF9EJE
https://escholarship.umassmed.edu/bioinformatics_pubs?utm_source=escholarship.umassmed.edu%2Fbioinformatics_pubs%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/2?utm_source=escholarship.umassmed.edu%2Fbioinformatics_pubs%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=escholarship.umassmed.edu%2Fbioinformatics_pubs%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/4?utm_source=escholarship.umassmed.edu%2Fbioinformatics_pubs%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/28?utm_source=escholarship.umassmed.edu%2Fbioinformatics_pubs%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/28?utm_source=escholarship.umassmed.edu%2Fbioinformatics_pubs%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/6?utm_source=escholarship.umassmed.edu%2Fbioinformatics_pubs%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1093/bioinformatics/btx068
https://escholarship.umassmed.edu/bioinformatics_pubs/108?utm_source=escholarship.umassmed.edu%2Fbioinformatics_pubs%2F108&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:Lisa.Palmer@umassmed.edu


Structural bioinformatics

IRaPPA: information retrieval based integration

of biophysical models for protein assembly

selection

Iain H. Moal1,2,*, Didier Barradas-Bautista2, Brian Jiménez-Garc�ıa2,
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Abstract

Motivation: In order to function, proteins frequently bind to one another and form 3D assemblies.

Knowledge of the atomic details of these structures helps our understanding of how proteins work

together, how mutations can lead to disease, and facilitates the designing of drugs which prevent

or mimic the interaction.

Results: Atomic modeling of protein–protein interactions requires the selection of near-native

structures from a set of docked poses based on their calculable properties. By considering this as

an information retrieval problem, we have adapted methods developed for Internet search ranking

and electoral voting into IRaPPA, a pipeline integrating biophysical properties. The approach en-

hances the identification of near-native structures when applied to four docking methods, resulting

in a near-native appearing in the top 10 solutions for up to 50% of complexes benchmarked, and up

to 70% in the top 100.

Availability and Implementation: IRaPPA has been implemented in the SwarmDock server (http://

bmm.crick.ac.uk/�SwarmDock/), pyDock server (http://life.bsc.es/pid/pydockrescoring/) and ZDOCK

server (http://zdock.umassmed.edu/), with code available on request.

Contact: moal@ebi.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Interactions between proteins are central to biology, from intracellu-

lar and intercellular signal transduction to the mesoscopic assem-

blies which regulate cell morphology. Although a full understanding

of these interactions can only be gained through consideration of

their atomic details, the rate at which structures are determined lags

far behind the rate interactions are discovered, with only 7% of the

known human interactome structurally characterized (Mosca et al.,

2013). Protein–protein docking can close this gap and potentially in-

crease coverage to 50% (Mosca et al., 2013). A major impediment,

however, is the ability to pick out the correct solution from a set of

decoys generated by a docking program.
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The task of ranking docked poses is achieved by a function

whose arguments are a set of predicted structures and output is an

ordered list of the same structures. For some complexes this can be

achieved successfully using functions based on physical models for

which docked poses were not used in their formulation (Camacho

et al., 2000; Gabb et al., 1997; Moal and Fern�andez-Recio, 2013;

Moont et al., 1999; Moal et al., 2015b; Wodak et al., 1987;

Zacharias, 2003). However, with the growing availability of struc-

tural data, functions that are trained using docking decoys tend to

have better success rates. These ad-hoc functions range from

weighted terms in a linear combination of metrics such as electro-

static and desolvation energy (Cheng et al., 2007; Pierce and Weng,

2007), to pair potentials calculated directly from structure (Chuang

et al., 2008; Tobi, 2010). The form of the scoring function, the ob-

jective function used to parameterize it, and the method used to

solve the objective function vary; Tobi (2010) use linear program-

ming to derive a potential function to satisfy the constraints that

non-native decoys should be higher in energy than the native struc-

ture of the same complex. Cheng et al. (2007) and Pierce and Weng

(2007) employ the simplex method to optimize term weights so as to

minimize the sum of the ranks of the top-ranked near-native decoy,

with Cheng et al. (2007) optimizing the logarithm of the ranks to

shift the focus away from the poorly ranked complexes and towards

cases for which near-native structures could be highly ranked. The

common factor in these approaches is the use of domain knowledge

to tailor the method to the docking problem: the implicit acknow-

ledgement that the scores of decoys only matter relative to those of

other decoys of the same complex and it need not be the case that

the score of a near-native for one complex be better than a non-

native decoy of a different complex; the recognition that a low-

ranking near-native should not be considered detrimental to the per-

formance of the method as long as a different near-native solution is

high-ranking; and accounting for the fact that improving a near-

native ranking of, for example 10 positions, is a lot more significant

when going from rank 11 to rank 1 than going from rank 411 to

rank 401.

The sorts of idiosyncrasies outlined above are not addressed by

’black box’ machine learning approaches. A standard binary classi-

fier for distinguishing near-natives from non-natives may struggle

with class imbalance due to the large number of non-natives relative

to near-natives. Further, a hard threshold to distinguish between the

two classes is coarse and ignores the fact that while non-native struc-

tures may be categorically incorrect, near-natives have a gradation

of accuracy. A standard regression model against quality measures

such as RMSD or DockQ score (Basu and Wallner, 2016) would be

unaware that only the ordering of top-scoring decoys matters and

unduly attempt to order structures far from the binding site. Both re-

gression and classification would require the lumping together of

decoys from different complexes. However, a procedure with many

parallels to the ranking of docked poses is undertaken by Internet

search engines. When searching for a query, the engine identifies

many documents which match the query and characterizes them

using metrics such as the number of times the query appears in the

document. Similarly, docking a complex also undertakes a search, a

conformational search, and the returned conformations are charac-

terized by metrics such as statistical potentials. Search engines use

these metrics to return a ranked list of the documents where only the

first page of search hits, the topmost ranked items, are usually con-

sidered by the user, just as only the top-ranked poses are generally

considered by the users of docking software. The web-search algo-

rithms are trained from a set of queries and their corresponding

document lists, partially ordered by document relevance.

Consequently, the same algorithms can be used to train ranking

functions from sets of complexes and their corresponding decoy

sets, partially ordered by the evaluation criteria developed by the

docking community over the early rounds of the CAPRI experiment

(Lensink et al., 2007). These algorithms have received much atten-

tion due to their ubiquity and importance, with the field being

stimulated by competitions such as the Internet Mathematics contest

in 2009, the Yahoo! Learning to Rank Challenge in 2010, and the

ICDM Expedia Challenge in 2013. However, the protein–protein

docking community has not yet exploited this equivalence and

embraced the tools and conceptual frameworks used in the design of

information retrieval systems (Moal et al., 2013).

Here, we present IRaPPA (Integrative Ranking of Protein–

Protein Assemblies), a method to select and combine physicochemi-

cal descriptors for ranking docked poses (Fig. 1 and Methods).

Decoys are characterized with a large selection of metrics (Moal

et al., 2015a), including biophysical models, statistical potentials

and composite energy functions. These are combined using ranking

support vector machines (R-SVMs), an efficient method that is

popular for information retrieval (Joachims, 2002). As the ranking

of decoys does not need to be performed instantaneously, as would

be required for an Internet search engine, we take advantage of the

accuracy and stability of aggregating an ensemble of learners

(Breiman, 1996). To combine the individual rankings of the R-SVM

ensemble, we generate a consensus ranking using the Schulze voting

method, a common method that is popular due to its ease of imple-

mentation and desirable rank aggregation properties (Schulze,

2011). Our approach was applied independently to decoy structures

from four state of the art docking programs, SwarmDock (Moal and

Bates, 2010), pyDock (Cheng et al., 2007), ZDOCK (Chen et al.,

2003) and SDOCK (Zhang and Lai, 2011).

2 Materials and methods

2.1 Biophysical functions
Physicochemical descriptors were calculated in an identical manner

to the CCharPPI server (Moal et al., 2015a). The descriptors suf-

fixed with _MIN or _CB were omitted due to computational cost,

and the pyDock and SIPPER terms were omitted due to difficulties

with the computing cluster used. The NSC and NIPacking descrip-

tors were also discarded due to a large number of failures, leaving

an overall failure rate of 0.16%. The corresponding missing descrip-

tor values were imputed as the mean within the docking method.

We also included cluster sizes as descriptors, calculated with the

g_cluster tool in GROMACS (Pronk et al., 2013), using single-

linkage clustering of ligand Ca positions after superposition on the

receptor, with cut-offs at 0.5 Å intervals in the 3–7 Å range. This

gave 91 features in total, the values of which were normalized as

z-scores. See Supplementary Table S2 for a complete feature list and

Moal et al. (2013) for a more detailed description of the features.

2.2 Decoy sets
The interactions used in this study were taken from the docking

benchmark 5.0 (Vreven et al., 2015). SwarmDock decoys were ob-

tained from the SwarmDock server (Torchala et al., 2013), generat-

ing around 480 poses per complex. ZDOCK 3.0.1 was run using

dense angular sampling (Chen et al., 2003), pyDock was run using a

grid size of 0.7 Å, surface thickness of 1.3 Å, and rotational step of

12
�

(Cheng et al., 2007), and SDOCK poses were generated using

default settings (Zhang and Lai, 2011). To reduce the computational

cost of training, which scales linearly with the number of complexes

IRaPPA 1807
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but quadratically with the number of decoys within a complex, we

only consider the top 500 structures from the latter three programs,

and thus discard the 41, 51 and 55 complexes for SDOCK, pyDock

and ZDOCK respectively, for which a near native can be found but

is ranked below 500. Of these 8, 15 and 14 are from the benchmark

5.0 update. Poses were classified as incorrect, acceptable, medium

quality, or high quality, using the CAPRI criteria, outlined in

Lensink et al. (2007). For the 55 new complexes in the benchmark

5.0 update (Vreven et al., 2015), the number of complexes for which

a near-native could be found was 41, 33, 25 and 32, for

SwarmDock, pyDock, ZDOCK and SDOCK respectively. For the

176 benchmark 4 complexes (Hwang et al., 2010), these are 126,

103, 114 and 109. Affinity, flexibility and type data were obtained

from the benchmark and Kastritis et al. (2011).

2.3 Overview of training, validation and metaparameter

optimization
Once the decoys were classified according to the CAPRI criteria and

characterized using the descriptors, the process for training and vali-

dating the models consisted of several steps. These steps were per-

formed independently for the four docking methods, using the

decoys generated by that docking method. Additionally, two differ-

ent procedures were taken for validating the method (denoted A and

B), such that the steps below were repeated eight times.

1. The complexes were split into multiple sets:
• A: The BM4 complexes were randomly partitioned into a

training set and model selection set with a 2:1 ratio, and the

new complexes in the BM5 set form the test set. This was re-

peated 200 times.
• B: All complexes were randomly partitioned into training,

model selection and test set in a 2:1:1 ratio. This was

repeated 800 times, so that for each complex there are ap-

proximately 200 splits for which that complex is in the test

set.

2. The training sets were used to train ranking support vector ma-

chines (R-SVMs, see Section 2.4).

3. Each R-SVM was scored by applying it to its corresponding

model selection set (see Section 2.5).

4. Model selection and application to test set:
• A: All but the top scoring n R-SVM models are discarded.

These are applied to the BM5 test set to produce n rankings

for each complex.
• B: For each complex in the BM4, all but the top scoring n

R-SVM models for which that complex is in its corresponding

test set, and thus not used for training or model selection, are

discarded. The remaining R-SVM models are applied to that

complex. Thus, n rankings are produced for each complex.

5. The rankings for each complex are combined using the Schulze

method (Section 2.6) to produce a consensus ranking for each

complex. These rankings are used to calculate the retrieval rates

and success rates.

During the training of the method there are two adjustable param-

eters, c (see Section 2.4) and n, the number of R-SVM models kept

in step 4 above. As c is multiplicative, it was sampled logarithmically

50 times in the 10�4 to 103 range inclusive. Steps 2 to 5 were per-

formed 50 times concurrently for each sample of c. The value of n

was also sampled 50 times (from n¼1 to n¼50) and tested concur-

rently in steps 4 to 5. Thus, results were gained for the entire

50�50 metaparameter grid. This systematic evaluation of param-

eter space reveals that the method is both insensitive to small

changes and robust across a wide range of c and n values. For in-

stance the SwarmDock benchmark 4 top 10 retrieval rate only

Fig. 1 An overview of the algorithm. 1: The training decoys are characterized using physicochemical descriptors, which are organized into a matrix (see Section 2.1). 2: R-

SVMs are calculated with a random model training and model selection split (Section 2.3). Each R-SVM generates a weight vector (w) in descriptor space such that decoys

for each complex (ellipses), when projected upon it, are ordered to minimize the number of swapped pairs relative to a perfect ranking: high quality (red)> medium quality

(orange) > acceptable (yellow) > incorrect (gray) (Section 2.4). 3: The highest performing models are selected according to their performance on the model selection set

(Section 2.5), and form the R-SVM ensemble. 4: When applied to a new set of decoys, rankings from each R-SVM in the ensemble are combined into a graph whose edge

weights indicate the number of times each pose (node) is ranked higher than each other pose. For each pair of poses, a pairwise ranking is obtained by finding the stron-

gest directed path between them, from which the final consensus ranking follows (Section 2.6) (Color version of this figure is available at Bioinformatics online.)
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varying between 67% and 74% (�x ¼ 71%, r¼1.0%) in the

c¼ [1.0,103] and n¼ [5,40] grid. The success and retrieval rates in

Figures 2 and 3, and Supplementary Table S1, correspond to c and n

metaparameter values found by leave-one-out cross validation; for

each complex in the test set, the sum of the scores (Section 2.5) of

the remaining complexes was calculated for each point in the meta-

parameter grid, and the parameters corresponding to the highest

score was applied to the complex (Supplementary Tables S3 and

S4). The version implemented in the SwarmDock, ZDOCK and

pyDock servers were re-trained with the entire benchmark 5 data

using the mode average cross-validated n and c metaparameter pair

obtained using the benchmark 4.0, reported in Supplementary Table

S3. For the SwarmDock and pyDock servers, the decoys are the

same as reported here. For the ZDOCK server the decoys were re-

calculated using the most recent version of ZDOCK (3.0.2), for

which tests using the BM4 data for training and new BM5

top 100
top 10
top 1

(a)

(c)
(h)

(d)

(e)

(f)

(b)

(g)

Cross-link Cα distance (Å)

R
an

k

Rank 3
Cross-link distance 6.9 Å

ZDOCKpyDock SDOCKSwarmDock
All Complexes (230)

CAPRI category:

Flexibility (151 rigid, 44 medium, 35 difficult)

Binding affinity (47 low, 63 medium, 50 high)

SwarmDock pyDock ZDOCK SDOCK

L656

R85

I88

T90

V528

E78F15
V13

L10

F540

Y542

V519

K529 R527

Interaction type (28 A, 12 AB, 45 EI, 17 ES, 26 ER, 23 OG, 55 OX, 24 OR)

Fig. 2 The top 1 and top 10 success rates for the whole docking pipeline for (a) the 55 new benchmark 5 complexes and (b) the 176 benchmark 4 complexes, using data

from (1) this study, as original rankings (lighter colors) or using either the benchmark 5 complexes as external test set or multiple leave-many-out cross-validation with

the benchmark 4 (dark colors), (2) Vreven et al., 2015, (3) Torchala et al., 2013, (4) Schneidman-Duhovny et al., 2012, (5) Chowdhury et al., 2013, (6) Ohue et al., 2014, (7)

Huang, 2015. Results from Huang use a slightly different definition of near-native. Arrows indicate the performance prior to re-ranking and following re-ranking. The left

panels indicate (c) the performance according to CAPRI category, and when the data are partitioned by (d) flexibility, (e) affinity and (f) type categories. The docking results

for the LCP2/FLNA interaction are shown in (g) and (h). Panel (g) shows a histogram of the distribution of Ca distances between cross-linked residues K81 and K498 for all

decoys. Decoys falling within each interval are ordered and colored according to rank. Panel (h) shows the docked structure, indicating K81 and K298 in green, and V528

and L656 in purple, with zoomed in and rotated regions indicating nearby interacting residues (Color version of this figure is available at Bioinformatics online.)
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complexes for testing yielded similar results in terms of top 1/10/100

success rates and the identities of the complexes with high ranking

near-native decoys.

2.4 The R-SVM method
The R-SVM method adopted here constructs a model which is

trained to minimize the fraction of swapped pairs relative to a per-

fect ranking (Joachims, 2002). This is achieved by finding a weight

vector in descriptor space, w, such that when the descriptor values

(dik) for the decoys (i) of an interaction (k) are projected upon it to

yield positions along that vector (wdik), the decoys can be ranked ac-

cording to their positions. A perfect ranking would have the pro-

jected positions of all the decoys in the high quality CAPRI category

greater than those in the medium category, which in turn are greater

than those in the acceptable category, which are greater than those

in the incorrect category. Formally, for all pairs of decoys (i, j) not

in the same CAPRI category, where decoy i is closer to the native

structure than j, the inequality wdik > wdjk would be satisfied.

While in theory it may be possible for many weight vectors to

achieve a perfect ranking, and thus choose w that maximizes the

margin by which the CAPRI categories are separated by maximizing

2=jjwjj2 (Vapnik, 1998), in reality the different CAPRI categories

are not perfectly separable for all complexes. To account for this,

non-negative slack variables (nijk) can be introduced into each

inequality, the sum of which can be minimized to bring the ranking

as close as possible to a perfect ranking:

wdik � wdjk þ 1� nijk where nijk � 0 for all k (1)

Thus, the problem of getting as close as possible to a perfect ranking

becomes one of simultaneously minimizing the square norm of w in

order to maximize the soft margin, and minimizing the slack vari-

ables nijk:

arg min
w2R91 ;nijk2R�0

1

2
jjwjj2 þ c

X
nijk

� �
subject to ð1Þ (2)

The c parameter controls the trade-off between the two terms being

minimized in Equation 2. A large c puts the focus onto getting clos-

est to perfect rankings on the training examples, while a small c puts

more emphasis on maximizing the separation between CAPRI cate-

gories, even at the expense of misranking some decoys. The optimal

choice of c, and the range across which it produces models that gen-

eralize well on unseen data, depends upon the training data. For in-

stance proteins can often form long-lived associations via alternative

binding sites or binding modes that are not evident in the crystal

structure, and thus a correct binding mode may be misclassified as

incorrect in the training data. By balancing c, it is possible for the

R-SVM to find a weight vector that permits this misclassification ra-

ther than force it to be ranked highly, to the detriment of the confi-

dence in which the majority of correctly classified poses are ranked.

Fig. 3 Each panel shows the top 1 (left), top 10 (centre) and top 100 (right) retrieval rates for the original (red dots) and consensus (green dashes) rankings, as well

as the distributions for the ensembles of support vector machines when applied to the new complex in the benchmark 5 as external test set (a–d), and using mul-

tiple leave-many-out cross-validation of the benchmark 4 (e–h) (Color version of this figure is available at Bioinformatics online.)

1810 I.H.Moal et al.



The first constraint in Equation 1 can be rearranged to

wðdik � djkÞ � 1� nijk, which shows that the above ranking proced-

ure is equivalent to an SVM classifier trained on the pairs of decoys

for which an inequality is specified, with features corresponding to

the difference between the individual features of the two decoys.

Thus, the weight vector from such a classifier can be used to rank

the decoys in the model selection and test sets. The optimization of

Equation 2 was performed using the n-slack algorithm with shrink-

ing heuristics described by Joachims (2005), through the SVMrank

program (Joachims, 2006). The average components of the weight

vectors for top scoring models are shown in Supplementary

Table S5.

2.5 Scoring R-SVM models
Each R-SVM model is evaluated by its total score S, the sum of indi-

vidual scores for each of the nt complexes in the model selection set,

si, compared to the mean score for that complex across the R-SVM

ensemble, �si :

S ¼
Xnt

i¼1

ðsi � �si Þ (3)

By taking the score relative to the mean, the total score reduces

biases in the model selection set by preferentially favouring R-SVM

models which perform well on difficult complexes, those which the

other models struggle to perform well on, and disfavours models

which perform poorly on easy complexes, those which the other

models do perform well on.

For calculating the individual scores of a complex, the decoys are

first clustered at 3.5 Å (see above). The clusters, the number of

which we denote as nc, are ranked by the score of their top scoring

decoy. The overall rank for the complex, r, is the rank of the best

ranked cluster for which the top ranked decoy within that cluster is

of acceptable quality or better. The scores are then calculated as:

si ¼
log10ðncÞ � log10ðrÞ

log10ðncÞ
(4)

This score can range from 0, if only the last cluster has a top ranked

decoy that is not incorrect, to 1, where the top scoring decoy of the

top ranked cluster is not incorrect. If no acceptable or better solu-

tions appear as top ranked decoys within any cluster, si is set to

zero. The logarithmic form gives greater importance to higher ranks

such that the increase in si in going from rank 11 to rank 1 is far

greater than going from, say, rank 411 to 401.

2.6 Applying the method with Schulze ranking
To apply the model to the test sets or new docking cases, the physi-

cochemical features are calculated for each decoy and transformed

to z-scores using the previously determined mean and r values. The

decoys are ranked using each of the n selected models in the R-SVM

ensemble, by their order when projected onto the R-SVM weight

vector line in descriptor space (Section 2.4). Each of these rankings

is combined using the Schulze electoral voting system (Schulze,

2011). Firstly, a complete digraph is constructed in which each node

corresponds to a decoy, and the edge weights indicate the number of

times the tail node decoy is ranked higher than the head node decoy.

This graph is then used to find the strongest paths between all

ordered pairs of decoys, (a, b), where path strength corresponds to

the minimum edge weight in a directed path originating at a and ter-

minating at b. To clarify this point, the strength of any given path

between the decoys corresponds to the smallest weight of any edge

within the path. The strongest path is the path, out of all possible

paths, that gives the highest strength. The identification of the stron-

gest path is achieved using a dynamic programming approach

(Schulze, 2011). Using this information, decoy a is ranked higher

than decoy b if the strength of the strongest path of (a, b) is greater

than that of (b, a). As preferences are transitive, a consensus ranking

follows directly from the pairwise rankings.

3 Results and discussion

3.1 Validation and benchmarking
To validate the method, we trained the models using complexes in

the protein–protein docking benchmark 4 (Hwang et al., 2010), and

evaluated the ability to retrieve near-native solutions using the new

complexes added in the benchmark 5 (Vreven et al., 2015) as an

external validation set (Fig. 3a–d). Of the complexes for which a

near-native solution could be found, a near-native structure was

identified as the top ranked solution in 12–22% of the interactions

prior to re-ranking, which increased to 16–44% using our approach.

Similarly, retrieval in the top 10 increases from 33–51%, to 50–

67% and top 100 improves from 70–90% to 91–100%, indicating

that sampling becomes the limiting factor in obtaining a top 100

near-native solution within our scoring scheme. Considering this im-

provement in the context of the whole docking pipeline, which in-

cludes complexes for which no near-natives are sampled (Fig. 2a

and Supplementary Table S1), this corresponds to top 1 success rates

up to 22% for all 55 complexes in the benchmark 5 update, top 10

success rates up to 45%, and top 100 success rates up to 69%.

We also applied the method to the original complexes in the

docking benchmark 4 using multiple leave-many-out cross-valid-

ation (Fig. 3e–h). A quarter of the complexes were left out at ran-

dom from the training set for each of the R-SVM models, and for

each complex the Schulze re-ranking only combined the models for

which the complex was omitted from the training. We see improve-

ments of 10–20% to 24–42%, 31–50% to 51–68% and 69–90% to

89–100% respectively for the top 1/10/100 retrieval rates. For

SwarmDock, this corresponds to top 1/10/100 success rates of 31%,

52% and 68% respectively, when considering all 176 complex in

the benchmark 4 (Fig. 2b and Supplementary Table S1). On both

benchmarks, a large improvement can be attributed to the R-SVMs

which, when combined using Schulze ranking, typically performing

as good as or better than the average R-SVM model on its own. For

all four docking protocols, the method yields a significantly better

ranking of near-native solution (P � 0:01, Wilcoxon signed-rank

test), and large improvements compared to other methods reported

in the literature (Fig. 2a,b and Supplementary Table S1).

The combined results for the two benchmarks, and across the

different CAPRI quality categories, are shown in Figure 2c. A strong

improvement in success rates is seen for the acceptable and medium

categories, although there are too few data to make conclusions re-

garding the high quality category. Further, the improvements in re-

sults apply across all categories of flexibility, binding affinity or

biological role (Fig. 2d–f). As well as increasing the rank of near-

native decoys, the method also improves the quality of the decoys at

the top of the ranking, even when a high ranking near-native could

be found in the initial rankings; considering the complexes for which

a near-native could be found in the top 100 before and after re-

ranking, the top-ranked near-native was of a higher CAPRI class for

20 complexes in the re-ranked list using the SwarmDock structures,

compared to 13 that were higher in the initial rankings. For pyDock,

ZDOCK and SDOCK these figures are 14 and 3, 22 and 7 and 22
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and 6 respectively. This also holds when considering only the top 10

decoys, with values of 8 and 5, 6 and 2, 10 and 4, and 7 and 3

respectively.

3.2 Application to LCP2/FLNA interaction
To further validate the method, we investigated the interaction be-

tween the sterile alpha motif (SAM) domain of lymphocyte cytosolic

protein 2 (LCP2, pdb 2EAP) with filamin A (FLNA, pdb 4M9P).

This interaction was initially predicted based on co-expression,

co-location, shared binding partners, and co-occurrence of post-

translational modifications (McDowall et al., 2009), and was re-

cently confirmed by cross-linking mass spectrometry (Liu et al.,

2015). Using SwarmDock without distance restraints, we generated

a single structure consistent with length and steric requirements of

the observed K81-K498 disuccinimidyl sulfoxide cross-link at the

periphery of the binding site (Kao et al., 2011), with a K81-K498

Ca–Ca distance of 6.9 Å (Fig. 2g–h). This structure is ranked 3rd

using the presented method, compared to a rank of 7 using the

standard protocol from the SwarmDock server. FLNA deactivation

is associated with periventricular heterotopia, an X-linked dominant

disorder in females which is hemizygous lethal in males, that can

also arise sporadically from partially deactivating missense muta-

tions in FLNA. These mutations appear either in the first calponin

homology domain, which binds actin, or in uncharacterized 3rd

(V528M) (Kakita et al., 2002) or 4th (L656F) (Sheen et al., 2001)

Ig-like domains. Despite V528 and L656 being 18 Å apart, both resi-

dues participate in the predicted interaction, either via direct pack-

ing of L656 with LCP2 T90 and I88, or as V528 acting to support

its adjacent residues R527 and L529, of which the former forms a

salt bridge with LCP2 E78, and the latter forms a cation-p inter-

action with F15 and a hydrogen bond with N82 and V13. This sug-

gests that both mutations may interfere with communication

between the cytoskelton and the phosphotyrosine signalling network

via this interaction. Thus, our approach has allowed us to predict a

low-energy structure of a previously uncharacterized complex, vali-

dated by chemical cross-linking and by reconciling the common

pathology of spatially separate FLNA mutants which, at the same

time, establishes a link between the LCP2/FLNA interaction and

periventricular heterotopia.

3.3 Web server implementations
We have implemented the method in the following web servers:

• SwarmDock: As an option available at http://bmm.crick.ac.uk/

�SwarmDock/ (Torchala et al., 2013)
• pyDockWeb: As a separate server to re-rank results generated

with the pyDockWeb server, available at http://life.bsc.es/pid/

pydockrescoring/ (Jiménez-Garc�ıa et al., 2013)
• ZDOCK: As an option available at http://zdock.umassmed.edu/

Computation times are considerably longer than for a standard

docking run due to the cost of the descriptor calculations; tests on

the SwarmDock server between two proteins of around 250 residues

typically take 11 h from submission. On all three servers we aim to

return results within a day depending upon server loads.

4 Conclusion

In conclusion, integrating biophysical functions using methods ori-

ginally developed for information retrieval and electoral voting pro-

vides a powerful method for enhancing the atomic modelling of

protein complexes in a way that is tailored to the technique used to

generate the models, resulting in both a better ranking of near-

native decoys and an improvement in the quality of high-ranking

near-native decoys.
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