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Abstract 

Traumatic brain injury (TBI) is a leading cause of disability worldwide. Annually, 

150 to 200/1,000,000 people become disabled as a result of brain trauma. Axonal 

degeneration is a critical, early event following TBI of all severities but whether axon 

degeneration is a driver of TBI remains unclear. Molecular pathways underlying the 

pathology of TBI have not been defined and there is no efficacious treatment for TBI.  

Despite this significant societal impact, surprisingly little is known about the 

molecular mechanisms that actively drive axon degeneration in any context and 

particularly following TBI. Although severe brain injury may cause immediate disruption 

of axons (primary axotomy), it is now recognized that the most frequent form of 

traumatic axonal injury (TAI) is mediated by a cascade of events that ultimately result in 

secondary axonal disconnection (secondary axotomy) within hours to days.  

Proposed mechanisms include immediate post-traumatic cytoskeletal 

destabilization as a direct result of mechanical breakage of microtubules, as well as 

catastrophic local calcium dysregulation resulting in microtubule depolymerization, 

impaired axonal transport, unmitigated accumulation of cargoes, local axonal swelling, 

and finally disconnection. The portion of the axon that is distal to the axotomy site 

remains initially morphologically intact. However, it undergoes sudden rapid 

fragmentation along its full distal length ~72 h after the original axotomy, a process 

termed Wallerian degeneration.  

Remarkably, mice mutant for the Wallerian degeneration slow (Wlds) protein 

exhibit ~tenfold (for 2–3 weeks) suppressed Wallerian degeneration. Yet, 
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pharmacological replication of the Wlds mechanism has proven difficult. Further, no one 

has studied whether Wlds protects from TAI. Lastly, owing to Wlds presumed gain-of-

function and its absence in wild-type animals, direct evidence in support of a putative 

endogenous axon death signaling pathway is lacking, which is critical to identify original 

treatment targets and the development of viable therapeutic approaches.  

Novel insight into the pathophysiology of Wallerian degeneration was gained by 

the discovery that mutant Drosophila flies lacking dSarm (sterile α/Armadillo/Toll-

Interleukin receptor homology domain protein) cell-autonomously recapitulated the Wlds 

phenotype. The pro-degenerative function of the dSarm gene (and its mouse homolog 

Sarm1) is widespread in mammals as shown by in vitro protection of superior cervical 

ganglion, dorsal root ganglion, and cortical neuron axons, as well as remarkable in-vivo 

long-term survival (>2 weeks) of transected sciatic mouse Sarm1 null axons. Although 

the molecular mechanism of function remains to be clarified, its discovery provides 

direct evidence that Sarm1 is the first endogenous gene required for Wallerian 

degeneration, driving a highly conserved genetic axon death program. 

The central goals of this thesis were to determine (1) whether post-traumatic 

axonal integrity is preserved in mice lacking Sarm1, and (2) whether loss of Sarm1 is 

associated with improved functional outcome after TBI. I show that mice lacking the 

mouse Toll receptor adaptor Sarm1 gene demonstrate multiple improved TBI-

associated phenotypes after injury in a closed-head mild TBI model. Sarm1-/- mice 

developed fewer beta amyloid precursor protein (βAPP) aggregates in axons of the 

corpus callosum after TBI as compared to Sarm1+/+ mice. Furthermore, mice lacking 

Sarm1 had reduced plasma concentrations of the phosphorylated axonal neurofilament 
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subunit H, indicating that axonal integrity is maintained after TBI. Strikingly, whereas 

wild type mice exhibited a number of behavioral deficits after TBI, I observed a strong, 

early preservation of neurological function in Sarm1-/- animals. Finally, using in vivo 

proton magnetic resonance spectroscopy, I found tissue signatures consistent with 

substantially preserved neuronal energy metabolism in Sarm1-/- mice compared to 

controls immediately following TBI. My results indicate that the Sarm1-mediated 

prodegenerative pathway promotes pathogenesis in TBI and suggest that anti-Sarm1 

therapeutics are a viable approach for preserving neurological function after TBI.  
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CHAPTER I: 

INTRODUCTION 

Epidemiology of traumatic brain injury 

Traumatic brain injury (TBI) represents a major public health problem affecting 

more than 10 million people worldwide each year.1 It is the leading cause of long-term 

disability among children and young adults in high-income countries and results in a 

high burden on patients’ families and friends.2 Annually, 150 to 200/1,000,000 people 

become disabled as a result of brain trauma.3 According to projections from the World 

Health Organization a significant rise in TBI incidence is expected by 2020, which is 

related to a sharp increase in traffic accidents in low- and middle income countries.4,5 

Although TBI-related disability disproportionally affects young individuals due to their 

greater life expectancy, it is a disease of all ages with a trimodal incidence distribution 

across age groups.6 The highest risk is among children aged 0-4 years (1,218 per 

100,000) followed by age groups 15-19 years (896 per 100,000), and ≥75 years (932 

per 100,000).6 Across all ages there is male preponderance of TBI incidence with males 

approximately 1.4 times more likely to sustain a TBI than females.6 

In the USA, each year approximately 1.7 million people present to emergency 

rooms after suffering a TBI.6 Of these more than 300,000 patients require hospital 

admission, 52,000 of whom ultimately die as a consequence of their TBI and related 

injuries.6 It has been estimated that an additional 1.1 million TBI patients seek medical 

attention in community health clinics and are seen by office based physicians.7 
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Accordingly, almost 3 million TBI patients require medical attention in the USA per year. 

Although the precise proportion of TBI survivors living with TBI-related disability is 

unknown, it has been estimated that about 5.3 million people live with long-term or life-

long disability after hospitalization for TBI in the USA alone, corresponding to about 1 in 

60 people.8,9 Epidemiological data on TBI indicate an annual cumulative incidence of 

hospitalized and fatal TBI of approximately 41-600 per 100,000 population with 

substantial variation between different geographic localities and countries.2,6,7,9-11 The 

estimated overall economic burden in the USA is a staggering US$ 60 – 406 billion, 

whereby the majority of the cost relates to work loss and loss of quality of life.7,12  

Nevertheless, these estimates do not include the large number of patients who 

do not seek medical attention after mild TBI, such as after concussions related to 

recreational activities, household accidents, and after military deployment, which led to 

the coining of the term ‘silent epidemic’.10 Approximately 70-90% of all TBIs are 

considered mild;2 yet, despite the seemingly mild injury severity a significant subset of 

these patients suffer residual deficits including cognitive, behavioral, and emotional 

consequences that adversely affect a person’s ability to perform daily activities and to 

return to work.13-17 For this reason mild TBI has been declared a major public health 

problem by the National Institutes of Health in 1999.18 Given the high clinical relevance 

of mild TBI this thesis specifically sought to determine the molecular mechanisms of 

acute brain trauma using a mild TBI animal model.  
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Definition and classification of traumatic brain injury 

TBI is a highly heterogeneous condition resulting from a variety of injury types 

and severities. Traditionally, TBI has been classified according to the injury mechanism 

(closed head, blast, penetrating, crash), clinical severity (e.g., level of consciousness as 

assessed by the Glasgow coma scale [GCS]19 or presence of additional non-brain 

injuries as assessed by the Injury Severity Score20), structural damage as determined 

by neuroimaging (e.g., Marshall computed tomography [CT] classification21 or the 

Rotterdam CT Score22), and prognosis.23,24  

Closed head injury constitutes the most common TBI mechanism with the leading 

causes relating to falls and traffic-related injuries.6 Although penetrating TBI, such as 

after gunshot wounds and battle field injuries, represents only a small fraction of all TBI 

it is often devastating and associated with a high mortality rate of 44-100%.25,26 In 

recent years, there has been a significant rise in the incidence of blast-related TBI 

related to changes in modern warfare that has seen an increased use of improvised 

explosive devices. Although overall mortality has decreased on the battle field through 

improved protective armor and battle field medical care, it is increasingly recognized 

that standard body armor does not provide the same protection from blast injuries as 

from ballistic injury.27 Long underrecognized, given absent overt tissue damage on 

standard neuroimaging, it is now appreciated that blast injuries frequently cause unique 

microscopic brain damage that associates with lasting neurocognitive symptoms.27  
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Irrespective of the injury mechanism it is critical to accurately determine the 

clinical severity. Probably the most commonly used clinical TBI classification system is 

the GCS, which has evolved into a universal classification tool for the severity of TBI 

since its inception more than 4 decades ago.5,19,28 The GCS assigns a sum score that 

ranges from 3 (worst) to 15 (best) of the best eye, motor, and verbal response scales.19 

Based on the sum score, TBI severity is graded as mild (14-15), moderate (9-13), and 

severe (3-8), whereby the GCS cut off for mild TBI is sometimes defined as GCS 13-

15.29 A major advantage of the GCS relates to the fact that it is widely recognized, 

allows for rapid and reliable patient assessment, has been proven and repeatedly 

validated for use in various clinical settings, and has additional use for outcome 

prediction.30 Nevertheless, it is frequently limited for the assessment of the most 

severely affected patients given potential confounding of the mental status by medical 

sedation, paralysis, intoxication, and need for intubation (and thus inability of the patient 

to provide verbal responses), in the setting of facial injuries (inability to assess eyes) as 

well as due to its varied inter-rater variability particularly among inexperienced raters.30 

Furthermore, it overproportionally weighs the motor subscale while at the same time not 

capturing focal deficits:30 a hemiplegic patient may score fully on the motor GCS as long 

as he has full use of the unaffected side. Although novel rating scales have been 

introduced for the assessment of the moderate-to-severe TBI none has gained similar 

universal acceptance as the GCS to date.26,30,31 Lastly, available severity scores are 

heavily biased towards recognizing severe deficits. Although the overwhelming majority 

of all TBIs in both civilian and military populations are mild in nature, available clinical 



5 

severity scales lack the ability to differentiate mild injuries and accurately predict long-

term sequelae following mild TBI.6,32,33 

Assessment of structural brain injury by neuroimaging has the advantage that it is 

not influenced by clinical confounders of clinical severity rating tools. Given its 

widespread availability, rapid image acquisition, and absent contraindications, head CT 

remains the standard diagnostic modality to assess TBI-related hemorrhagic and non-

hemorrhagic injuries.34 The Marshall-CT classification is probably the most frequently 

used CT classification scheme for the assessment of structural TBI.21 It considers the 

degree of brain swelling, mass lesions, and surgical evacuation to classify brain 

damage into 6 categories.21 However, the CT-based classification is limited due to the 

broad differentiation between diffuse injuries and mass lesions and is particularly poor 

at identifying traumatic axonal injury (so-called “stealth” pathology), which particularly 

limits its use in mild TBI.35,36 To overcome the limitations of CT for the assessment of 

subtle, but clinically important brain injury, various experimental brain magnetic 

resonance imaging (MRI) techniques have been developed that are highly promising for 

the detailed evaluation of axonal injury and to improve on outcome predicition such as 

diffusion tensor imaging (DTI) MRI.37,38 However, though conventional MRI adds 

prognostic value with superior discrimination39 compared to CT,21,22 it is much less 

feasible in the early acute phases of trauma related to patient instability for transport 

and lying flat during the relatively long acquisition time.39,40 Thus, until MRI, including 

advanced and highly sensitive techniques such as DTI, becomes a widespread 

standard modality for acute brain assessment in TBI, CT remains the mainstay of 

imaging evaluation during the critical acute phases of trauma.  
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In this dissertation, I probe brain integrity after mild TBI through a combination of 

behavioral, neuroimaging, cerebral blood flow, and histological assessments to account 

for the fact that outcome prognostication for this form of TBI remains challenging due to 

its heterogeneous presentation and pathophysiology that escapes detailed assessment 

by standard clinical tools that requires the integrative, simultaneous evaluation of 

multiple injury-related assessment domains.  
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Pathophysiology of brain trauma 

Mechanical loading through sudden impact, acceleration, rotation, or explosive 

blast generate both localized and distributed forces throughout the brain. Often 

occurring in combination, these mechanical forces are associated with different injury 

types to the brain. Localized forces such as through a blunt hit against the head typically 

contribute to brain injury through deformation of the brain tissue during impact against 

the rigid skull and cause focal injuries such as brain contusion and hemorrhage near the 

impact site.41-43 Focal injuries tend to increase with greater injury severity as they are 

the consequence of direct impact on the brain that results in tissue compression at the 

site of impact (coup) or the tissue opposite to the impact (contre-coup).44-46  

Conversely, diffuse injuries dominate the neuropathological consequences after 

mild closed head TBI and explosive blast. The most common diffuse injury types are 

diffuse vascular and axonal injury that result from blast-induced increased pressure 

gradients; as well as rapid acceleration, deceleration, and rotation that are associated 

with diffuse brain tissue deformation and injury due to inertial effects whereby rotational 

brain acceleration more readily induces injury than isolated linear acceleration.42,47-49  

As previously discussed, clinically available brain imaging with CT and MRI can 

readily identify focal brain pathology but has a low sensitivity for detecting diffuse brain 

injury, which may explain why the extent of detected brain pathology often does not well 

correlate with clinical outcomes, particularly after milder TBI.50 Indeed, it is now well 

understood that diffuse brain injury is associated with widespread disruption of 

neuronal, axonal, and vascular integrity.51-56 Injury to the neurovascular compartment 
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and the interaction between neurons and the vasculature (so called neurovascular unit) 

leads to disordered regulation of cerebral perfusion, metabolism, and brain function.   

 

Traumatic vascular injury, brain hypoperfusion, and cerebral metabolic 

dysfunction 

Like no other organ the brain relies on a steady state of blood supply for the 

delivery of oxygen and nutrients (glucose) to meet its high metabolic demands. The 

degree of brain perfusion is controlled via three main mechanisms. Cerebral 

autoregulation allows to maintain a constant cerebral blood flow (CBF) across a wide 

range of cerebral perfusion pressures. Furthermore, CBF can be adjusted through 

cerebral vasoreactivity in response to altered carbon dioxide levels. Lastly, 

neurovascular coupling is the increase in CBF in response to increased neuronal 

activity and metabolic demands. While the exact pathophysiology of traumatic cerebral 

hypoperfusion remains to be elucidated, disruption of each of these mechanisms has 

been described after TBI and associated with impaired brain function after both 

experimental and human TBI.56-64  

 

Cerebral autoregulation  

Pressure induced cerebral autoregulation is typically observed within a cerebral 

perfusion pressure range of 50 to 150 mmHg.65,66 Within this range the cerebral 

vasculature maintains the CBF by dilation and constriction in response to an increased 
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and reduced systemic arterial blood pressure, respectively.65,66 The constriction and 

dilatation occurs primarily in the cerebral arteries, arteriolar vessels, and to a lesser 

degree in the capillaries with the overall vascular response lagging about 10 seconds 

from the systemic blood pressure change.67-69 However, these vessels have only a finite 

ability to vasoconstrict and vasodilate. Accordingly, CBF begins to decline once cerebral 

perfusion pressure falls below the lower limit of the autoregulatory range and vice versa. 

TBI of all severities has been shown to impair CBF autoregulation in response to both 

decreasing and increasing perfusion pressures across all age groups.64,70-75 In its 

extreme, when autoregulatory mechanisms are abolished, the CBF linearly follows the 

cerebral perfusion pressure (CPP) and rapidly leads to cerebral ischemia with 

decreasing systemic blood pressure. Conversely, when the CPP increases cerebral 

hyperperfusion results and this leads to increased intracranial pressure. It needs to be 

emphasized that the  autoregulatory perfusion pressure ranges discussed above are 

variable and also dependent on comorbid conditions. For example, both the lower and 

upper limits are shifted towards higher levels among individuals with chronic 

hypertension or in the setting of increased intracranial pressure (right shift of the 

curve).76 Accordingly, critical cerebral hypoperfusion may already ensue at higher 

cerebral perfusion pressures particularly among the elderly who frequently have 

hypertension and when TBI is complicated by focal mass lesions. For this reason blood 

pressure monitoring and management needs to be individualized after TBI.77 Although 

autoregulatory dysfunction is common after TBI, as many as 10-50% of patients may 

have preserved autoregulatory function particularly after mild TBI.78 Conversely, 

although cerebral autoregulation gradually recovers and typically normalizes by day 14 
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after TBI,57,66,77,79 it may remain perturbed long-term and has been related to lasting 

functional impairment.80,81 

 

Cerebrovascular reactivity  

Compared to the pressure-induced autoregulatory response, cerebrovascular 

reactivity to PaCO2 is typically greater indicating that it has a more direct impact on 

cerebral vessels to dilate and constrict as compared to the CPP.76,77 The physiological 

range of PaCO2 is 35–45 mmHg and with each increase in PaCO2 by 1 mmHg up to 5% 

increase in CBF has been found.79 An acute decrease in PaCO2 to approximately 25 

mmHg (e.g., with hyperventilation) results in cerebral vasoconstriction and a decrease 

of CBF by 30-35%. Conversely, hypercapnia due to hypoventilation or CO2-inhalation to 

a PaCO2 of over 50 mmHg causes cerebrovascular dilatation and increase in CBF by 

about 75%.76 However, the cerebrovascular response to PaCO2 attenuates over several 

hours and baseline CBF levels are reached within about 6 hours despite constantly 

altered PaCO2.
76 Because changes in the PaCO2 can profoundly affect cerebral 

perfusion, tight monitoring and maintenance within the physiological range after TBI is 

required in patients to mitigate the risk for hypoperfusion-associated brain injury with 

hypocapnia (PaCO2 <35 mmHg). Conversely, hypercapnia (PaCO2 >45 mmHg) needs 

to be avoided to mitigate the risk for vasodilation-associated cerebral blood volume 

increases, which can raise the intracranial pressure (ICP) and cause secondary brain 

damage. Although cerebral autoregulation and cerebrovascular reactivity are both 

impaired after TBI, the extent of impairment may not correlate and depend on the 
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severity of brain trauma.74,77,82 In particular, completely abolished cerebrovascular 

reactivity has been shown to carry a poor prognosis indicating that cerebrovascular 

reactivity may serve as a more robust predictor of outcome and aid therapeutic decision 

making to maintain CBF and perfusion.74,77,83  

 

Neurovascular uncoupling  

The phenomenon that links transient neuronal (but also glial) activity to a 

corresponding increase in CBF has been termed neurovascular coupling. It is now 

understood that the functional hyperemia accompanying neuronal activity is the result of 

a complex interplay between multiple vasoactive molecules (including ions, metabolic 

by-products, vasoactive neurotransmitters, and vasoactive factors) that are released in 

response to neurotransmitters from neurons and glia to act in concert on endothelial 

cells, pericytes, and smooth muscle cells to result in a highly coordinated adjustment of 

the CBF.84 Correspondingly, perturbations of individual aspects of the complex 

molecular interplay underlying neurovascular coupling have the potential to adversely 

affect the finely tuned blood flow response to neuronal demand. Several studies have 

suggested that during trauma-related cerebral hypoperfusion metabolic needs of brain 

tissue are initially met, but that later neurovascular coupling is lost as evidenced by 

hyperemia beyond physiological values several hours after TBI.62,85-89 The clinical 

importance of neurovascular uncoupling has been highlighted by observations that 

uncoupling by pharmacological means (i.e., in the absence of brain injury and other 

circulatory and neuronal changes) induces cognitive deficits in mice.90 Discussed 
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underlying mechanisms include mitochondrial dysfunction, impaired local oxygen 

diffusion into cerebral tissues, vascular microthrombosis, endothelial cell damage, as 

well as capillary compression due to astrocytic endfeet swelling that leads to functional 

shunting of oxygenated blood through the capillary bed without efficient extraction of 

oxygen.58,61,91  

 

Cortical spreading depolarizations  

A unique cause for profound neurovascular uncoupling after TBI relates to the 

phenomenon of cortical spreading depolarization (CSD). CSDs represent a pathological 

event that has been consistently described in the cerebral grey matter of animals and 

patients with TBI and other brain injuries. CSDs were originally discovered and 

described as spreading depression by Aristides A. P. Leão during his thesis research on 

seizures.92,93 The CSD phenomenon is highly conserved across species, has been 

observed in both invertebrates and vertebrates, and can occur in the cortex, striatum, 

thalamus, cerebellum, brain stem, spinal cord, and retina.94 Although spreading 

depression can be induced in the healthy brain via electrical, chemical, and mechanical 

stimulation, it has been proposed that the occurrence of a spreading depression in the 

perturbed (e.g., ischemic) brain should be more aptly termed CSD because of differing 

pathophysiological details such as a prolonged time course, the possibility to occur in 

compromised brain tissue that is already electrically silent, and, probably most 

important, its contribution to brain injury.95 
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In the unperturbed brain CSDs are associated with normal neurovascular 

coupling to neuronal activation albeit with pronounced alterations of electrical, ionic, and 

metabolic disturbances that can be magnitudes larger than those seen with normal 

electrophysiological activity in the brain.94-96 Interestingly, although the 

electrophysiological features of CSDs are conserved across species and nervous 

tissues, the associated vascular response differs quite substantially depending on the 

experimental condition, species, and the vascular bed.94 Restoration of the ionic 

gradients after a CSD is in part energy dependent and requires a significant rise in O2 

and glucose consumption that is associated with substantial CBF changes that reflect 

multiple opposing vasomotor influences at different stages of the CSD wave.94 The 

prototypical CBF response in the unperturbed brain consists of four components. 

Following initial hypoperfusion (component I) a massive peak hyperemia (component II) 

with 30–250% CBF increase is observed 15-20 s after CSD onset and peaks usually at 

1-2 min.94 Following the initial hyperemia peak a second smaller hyperemia peak 

(component III) with a 10-50% CBF increase is inconsistently observed 3-5 min later 

that can last 4-8 min.94 Finally, prolonged oligemia (component IV) with a CBF reduction 

by 10-40% below baseline may persist for an hour or longer after a CSD.94 Figure 1.1 

depicts the characteristic CBF response to a CSD on the example of the mouse.  
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Figure 1.1 Prototypical CBF response after a cortical spreading depolarization (SD). Original laser speckle 

flowmetry tracing showing the multiphasic cerebral blood flow (CBF) response to a CSD in the cortex of an isoflurane-

anesthetized mouse to demonstrate the timing and magnitude of the four prototypical vasomotor components (I–IV) 

shaping the CBF-response as described in text. From94 (used with permission).  

 

Because restoration of the massive ionic gradients after a CSD requires energy, 

CSDs may have deleterious consequences on tissue viability in the injured brain 

because they aggravate the already tenuous metabolic supply and demand mismatch in 

the affected tissue.97-99 Indeed, among severe TBI up to 56% of patients have been 

shown to have CSDs that are frequently repetitive over hours to days and relate to a 

poor outcome.100-103 However, although it is well established that CSDs occur in the 

setting of catastrophic TBI, their presence and possible contribution to outcome in mild 

TBI remains uncertain.104,105  

In summary, TBI is associated with acute, complex, and heterogeneous CBF 

dysregulation that can lead to profound and long-lasting cerebral hypoperfusion and 

neurovascular uncoupling, which compounds the adverse effects on brain health and 
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overall functional outcome after TBI. For this reason it is critical to characterize the CBF 

dynamics after experimental TBI, which I incorporate in this thesis study.  
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Traumatic axonal injury represents a pathological hallmark of TBI 

Historical perspective of traumatic axonal injury 

The most common diffuse injury type, aside from the previously discussed diffuse 

vascular injury, is diffuse axonal injury (DAI). Originally thought to represent a 

consequence of traumatic vascular injury-related cerebral hypoxia, ischemia, and brain 

herniation as well as other non-mechanical factors,48 it is now recognized that DAI, 

though associated with vascular injury, occurs independently and as a direct 

consequence of TBI and constitutes a critical determinant of post-traumatic functional 

impairment.48,106-110 Specifically, broad injury to axons within the cerebral white matter is 

observed following TBI of all severities.107,111,112 

The term DAI was originally coined to describe the widespread and interspersed 

axonal injury pattern in clinical TBI. In an attempt to more clearly indicate the traumatic 

nature of TBI-related axonal injury and because axonal injury after TAI is not exactly 

diffuse, but rather preferentially involves specific locations within white matter tracts (in 

particular the corpus callosum, cerebral hemispheres, and brainstem) the term 

traumatic axonal injury (TAI) was subsequently introduced.35 Because the distinction 

between DAI and TAI is largely based on historical reasons and TAI is the preferred 

terminology in reference to axonal injury after experimental TBI (the topic of this work), 

TAI will be the terminology used in this text.  

Widespread white matter injury as a unique consequence of chronic TBI was first 

described by Rosenblath in 1899.113 Subsequently, it was recognized that the subtle 

and widespread traumatic white matter injury represents a unique and important 
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consequence of chronic TBI.114-116 From these early studies onward it became 

increasingly clear that axonal pathology was an early event after TBI that could be 

identified across a range of injury severities.117-119 In the early 1980s the now accepted 

concept of TAI was introduced based on extensive neuropathological characterization of 

large series of human TBI as well as based on a landmark non-human primate TBI 

study that established the links between TBI-mechanism, TAI, and functional 

impairment.48,54,108,120  

 

Microscopic findings of TAI 

TAI has been assessed using various standard histological techniques including 

silver staining and hematoxylin & eosin staining techniques to detect axonal swellings or 

bulbs.48,108,114-116 However, immunohistochemical methods using antibodies raised 

against proteins that are concentrated in injured axons, specifically beta amyloid 

precursor protein (βAPP), have the distinct advantage to identify even subtle TAI both 

clinically as well as in experimental studies with high sensitivity within minutes after 

TBI.111,121-127 Although βAPP staining has some caveats including its non-specificity to 

TAI, loss of labeling after about 1 week, as well as the availability of various alternative 

immunohistochemical staining techniques, βAPP-staining remains the gold standard 

technique for the detection of TAI.128-135 For this reason βAPP-immunohistology staining 

was chosen for this study to determine the extent of post-TBI TAI. With this approach it 

is possible to detect axonal swellings, which refer to a localized axonal distension 

(“axonal varicosity”) that commonly occurs in a periodic (“beaded”) arrangement along 

the length of an otherwise intact axon, whereas axonal bulb (“retraction ball”) refers to a 
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swollen end either proximal or distal to the site of disconnection.35,136 Although axonal 

distension is probably the easiest and most characteristic pathological feature of TAI 

other pathologies including an undulating appearance have been described.137 These 

morphological patterns likely indicate different stages of axon injury progression rather 

than distinct pathological entities.133,137 Therefore, in this study the presence of any of 

these histopathological patterns is considered a sign of axonal injury that leads to 

axonal degeneration.  

 

Mechanism of TAI 

In contrast to many other neurological conditions associated with axonal 

degeneration, TAI has a comparably rapid onset within just a few hours of insult.127,138 

Although severe brain injury may rarely cause immediate disruption of axons (primary 

axotomy), it is now recognized that the most frequent form of TAI is mediated by a 

cascade of events that ultimately results in secondary axonal disconnection (secondary 

axotomy) within hours to days.111,124,139  

The proposed key pathological mechanism underlying secondary axotomy 

relates to trauma induced cytoskeletal disruption. Axons are thought to be particularly 

vulnerable to mechanical forces due to their parallel arrangement within long white 

matter tracts and their ultrastructural linear organization of microtubules and 

neurofilaments.111 Ultrastructural axon cytoskeletal assessment in vitro demonstrated 

periodic breaks of individual microtubules along axons within 2 minutes of axonal 

stretch injury that corresponded regionally with undulations.137,140,141 Following this initial 

phase, axons resume their straight orientation while developing periodically organized 
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axon swellings over an hour that spatially correspond to the undulations; until they 

finally disconnect distal to these swellings (i.e., distal to the microtubular breakage site) 

due to the ensuing transport block for cargoes that causes an unmitigated local cargo 

accumulation and finally secondary axotomy by axonal membrane rupture.137,140-142 

Support for this hypothesis stems from the observation that application of the 

microtubule-stabilizing drug paclitaxel mitigates axonal degeneration after stretch 

injury.140 This proposed sequence of events is summarized in Figure 1.2.  
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Figure 1.2 Proposed mechanism of varicosity formation after traumatic axonal injury. (a) Illustration displaying 

two illustrated microtubules within an intact axon (pre-injury). (b) Following injury, mechanical breaking occurs at 

different sites in microtubules resulting in their misalignment and deformation of the axon observed as two discrete 

undulations. (c) Shortly afterward, catastrophic depolymerization from the broken ends of the microtubules allows the 

undulations to collapse and the axon recovers its linear morphology. (d) Microtubule breakage leads to impaired 

axonal transport, subsequent accumulation of transported cargoes near the microtubule breaking point, likely 

accounting  for the formation of swellings that give axons a varicose appearance following traumatic axonal injury. 

From137 (used with permission).  
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In addition to microtubule disruption, alterations of neurofilaments, which 

represent a major component of the axonal cytoskeleton,143 have also been described 

as an early event after TBI.144 Specifically, reductions in the interfilament spacing due to 

altered phosphorylation or proteolysis of side arms (termed neurofilament compaction) 

has been demonstrated to precede microtubule fracturing.145-147 Both neurofilament 

compaction and microtubule disruption represent early events after TBI indicating that 

cytoskeletal failure is a direct effect of mechanical trauma. While the role of 

microtubules in cytoskeletal disruption has been well characterized, the precise role of 

neurofilament protein pathology in TAI remains to be clarified. For example, it has been 

shown that microtubular breakage and neurofilament compaction do not exactly co-

localize within traumatized axons indicating that they represent different aspects of 

TAI.137,139-141,148,149 Importantly, serologic detection of microtubule and neurofilament 

breakdown products has been shown to correlate with the severity of TBI and it is 

increasingly explored as a non-invasive marker for trauma-related brain injury.150-154 

This study takes advantage of this correlation by using a plasma phosphorylated 

neurofilament heavy chain (pNFH) assay as a complementary method to serially 

determine the extent of TAI after mouse TBI. 

Although cytoskeletal disruption in response to shearing and torsional 

mechanical forces is well documented, the precise mechanism by which TBI initiates 

this process, as well as subsequent secondary axon degeneration, is only incompletely 

understood. It is thought that local intra-axonal calcium dysregulation plays a central 

role in post TBI axonal degeneration. This hypothesis is supported by observations of 

altered calcium ATPase activity and calcium entry into axons after stretch injury.155-158 
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The post-traumatic increase in intra-axonal calcium appears to originate from 

intracellular stores as well as the trans-axolemmal sodium entry via mechanosensitive 

sodium channels that results in the reversal of the Na+/Ca2+ exchanger and opening of 

voltage-gated calcium channels.159,160 The primary mechanism by which Ca2+ is thought 

to lead to cytoskeletal breakdown is via Ca2+-dependent activation of calpain. This 

serine-threonine protease is capable of cleaving critical components of the axonal 

cytoskeleton including neurofilaments and microtubule-associated components such as 

tubulin and spectrin.135,161-167 In addition calpain appears responsible for ion channel 

degradation, which contributes to progressive increases of intra-axonal calcium 

concentrations.159,168 Conversely, inhibition of calpain was found to mitigate TAI as well 

as improve post-traumatic outcome.164,166,169 Figure 1.3 summarizes the major pathways 

that lead to cerebral compromise and functional impairment. 
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Figure 1.3 Summary flow chart of the major molecular pathophysiological pathways of mild TBI. NMDA 

indicates N-methyl-D-aspartate. Used with permission from.46  
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Sarm1 -mediated Wallerian degeneration after axon injury 

Intriguingly, the portion of the axon that is distal to the axotomy site remains 

initially morphologically intact. However, it undergoes sudden rapid fragmentation along 

its full distal length after a predictable lag-period of approximately 36-72 hours after the 

original axotomy.106,111,170-174 This process has been termed Wallerian degeneration, 

honoring the British neurophysiologist Augustus Volney Waller who first described 

delayed distal axon degeneration in nerve transection experiments in 1850.173 

Originally, this process was thought to represent the passive wasting away of the distal 

axon portion because of its deprivation from a constant supply of nutrients and other 

molecules from the neuronal cell body. However, this view was fundamentally 

challenged by the serendipitous discovery of a mouse strain expressing the unique 

Wallerian degeneration slow (Wlds) protein, in which the axon distal to the transection 

site remains morphologically and functionally intact tenfold (for 2–3 weeks) longer than 

normal.170,175-177 This remarkable observation raised the possibility that injury-induced 

axonal degeneration must be controlled by a regulated endogenous and genetically 

encoded self-destruction pathway.  

However, pharmacological replication of the Wlds mechanism has proven 

difficult.170 Further, although improved functional outcome after TBI has been described 

in Wlds mice178 no one has studied whether Wlds protects from TAI.179 Lastly, owing to 

Wlds presumed gain-of-function and its absence in wild-type animals, direct evidence in 

support of a putative endogenous axon death signaling pathway has been lacking,170 

which is critical to identify original treatment targets and the development of viable 

therapeutic approaches.  
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Novel insight into the pathophysiology of Wallerian degeneration was gained by 

the discovery that mutant Drosophila lacking dSarm (sterile α / Armadillo/Toll-Interleukin 

receptor homology domain protein) cell-autonomously recapitulated the Wlds 

phenotype.180 Furthermore, artificial activation of SARM1 in intact axons induced 

degeneration181 indicating that SARM1 is both essential and sufficient for axonal 

degeneration. The dSarm gene (and its mouse homolog Sarm1) encodes a protein with 

an Armadillo/HEAT (ARM) domain, two sterile alpha motifs (SAM), and a 

Toll/interleukin-1 receptor homology (TIR) domain. Its necessity for degeneration is 

conserved in mammals as shown by in-vitro protection of superior cervical ganglion, 

dorsal root ganglion, and cortical neuron axons as well as remarkable in-vivo long-term 

survival (>2 weeks) of transected sciatic mouse Sarm1 null axons.180 Sarm1 is highly 

conserved across phyla.182 Sarm1 is enriched in the mouse brain and mutant mice 

lacking Sarm1 display a broadly normal neural development, though a reduction in the 

complexity of neuronal dendritic arborization has been noted.183-185 The discovery that 

axons lacking Sarm1 are protected from injury-induced degeneration provided direct 

evidence that Sarm1 is the first defined endogenous gene required for Wallerian 

degeneration, driving a highly conserved genetic axon death program.180  

Although it has yet to be confirmed that the SARM1-mediated Wallerian 

degeneration pathway plays a critical role in trauma-induced axonal injury and 

degeneration, the data available indicate that the pro-degenerative SARM1 pathway is 

highly conserved and plays an integral role across different axon injury paradigms and 

neurological disorders that involve axon loss. Recent studies have shown that genetic 

depletion of Sarm1 prevents chemotherapy-induced peripheral axon degeneration186 as 
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well as excitotoxicity-induced degeneration of retinal ganglion cells and their axons.187 

Accordingly, it appears possible that blocking Sarm1 could attenuate TAI. Since TAI 

represents the pathological hallmark underlying TBI-induced functional impairment, it 

seems quite possible that mice lacking SARM1 not only exhibit reduced axonal 

degeneration but also improved functional outcomes, which forms the central 

hypothesis of my thesis. 
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The mouse as a model organism to study traumatic brain injury 

Commonly used mouse models of human TBI 

Given the heterogeneous nature and high complexity of TBI-related pathology 

and pathophysiology, no single animal model is capable of mimicking all aspects of 

human TBI. Accordingly, numerous models have been developed, each possessing 

distinct advantages and disadvantages.188-190 Although animal species with larger, 

gyrencephalic brains may exhibit pathophysiology that more closely resembles that of 

humans, high cost and ethical considerations restrict their widespread use. In contrast, 

rodents are particularly advantageous for use in TBI owing to their modest cost, small 

size, availability of standardized functional outcome measurements, and—specifically 

with respect to the mouse—availability of many gene mutants and relative ease of 

genetic manipulation.183,191  

A particular challenge is the modeling of TBI with TAI, because the rotational 

acceleration-deceleration forces required to induce axonal damage increase 

exponentially with decreasing brain sizes; for this reason no single model has been 

developed that reliably produces this type of injury in rodents without causing additional 

massive brain hemorrhage and high mortality.190,192,193 Among the most commonly used 

mouse TBI models designed for the study of the complex molecular cascades 

accompanying TAI188 are the fluid-percussion injury (FPI),194 controlled cortical impact 

injury (CCI),195-198 blast injury,199-201 and weight-drop injury models.191,202-208  

Although the FPI and CCI models have been extensively characterized, are 

highly reproducible, and show a close correlation between injury severity and outcome, 



28 

they have the main disadvantage that they require a skull trephination to allow for 

rapidly striking the exposed dura mater with either a fluid bolus (FPI) or an impactor 

(CCI).191,194-198 Blast injury is typically induced by exposing the mouse to an 

overpressure gas shock wave of defined size, duration, and intensity delivered within a 

shock tube and has been shown to produce pathology that mimics war-fare related 

injuries as well as chronic, repetitive brain trauma.199-201 However, none of these models 

represents the most common human TBI condition: mild TBI due to blunt, closed head 

trauma. Therefore, using a model that employs a mechanical impact to the closed skull 

promises easier translation of results from ‘bench to bedside’. The weight-drop injury 

model fulfills this requirement by using a guided, free-falling weight onto the intact 

skull.191 A further advantage relates to the brevity of the required surgical procedure as 

well as the ability to easily control injury severity through adjustment of the falling weight 

mass, fall height, and head displacement after impact to produce a reproducible focal 

brain injury that mimics a wide range of mild human closed head injury pathologies 

including TAI.188,191,202-208 In addition, impairment of neurological function that correlates 

with injury severity has been repeatedly demonstrated.191,202,205,206,209,210 Lastly, this 

model can be used to mimic repetitive TBI,211,212 which provides a critical foundation for 

future studies investigating mechanisms of neuroaxonal degeneration in the context of 

repeated TBI, given its purported association with chronic neurodegenerative 

disorders.213-216 To take advantage of these unique properties, a closed head mouse 

mild TBI model is utilized in all trauma studies described in this thesis.  
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Behavioral assessment after closed head TBI in the mouse 

Arguably the most important outcome measure in neurological diseases is 

behavioral function. The Neurological Severity Score (NSS) is a standardized functional 

test battery that has been specifically designed to assess motor and other 

neurobehavioral (dys)function in the closed head mouse TBI model.191,202,209,210 The 

NSS is easy to perform, sensitive to TBI-induced functional deficits, objective in 

interpretation and thus fairly robust against subjective investigator appraisal.191 Equally 

important, it has been shown to correlate highly with the severity of TBI-induced brain 

damage as assessed by histology and brain MRI rendering it suitable for the 

comparison of functional outcomes with the herein used study methods.191 The NSS 

assigns 1 point each for the presence of paresis, failure of the mouse to walk straight, 

failure to exit a circle within 3 minutes, failure to exhibit a startle response to a loud clap, 

absent physiological seeking behavior, inability to cross beams of different width (3, 2, 

and 1 cm, respectively), as well as ability to balance on a 7 mm square and 5 mm round 

stick, respectively (Table 1.1).202,210 Accordingly, a score of zero indicates normal 

function and a score of 10 a maximal deficit. A score of 3-4 at 1-4 hours after TBI is 

considered consistent with a mild injury and a score of >6 considered a severe injury. 

Depending on the injury severity, but also the tested mouse strain, animals 

spontaneously recover until they reach their pre-TBI functional status within 

approximately 1-7 days.191,207,210 Finally, given the number of tests and variability 

between animals and strains, mice may exhibit pre-TBI baseline functional deficits.191 

These potential confounders are considered in this study by serially evaluating animals 

and including a pre-TBI test session.  
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Task  Description Score (success/failure) 

Exit circle Ability and initiative to exit a circle of 30 cm diameter within 3 min 0/1 

Paresis  Paresis of upper and/or lower limb of the contralateral side 0/1 

Straight walk Alertness, initiative and motor ability to walk straight 0/1 

Startle response Innate reflex; the mouse will bounce in response to a loud noise clap 0/1 

Seeking behavior Physiological behavior as a sign of ‘interest’ in the environment 0/1 

3 cm beam Ability to cross a 30-cm long beam of 3 cm width 0/1 

2 cm beam Same task, increased difficulty on a 2-cm wide beam 0/1 

1 cm beam Same task, increased difficulty on a 1-cm wide beam 0/1 

7 mm beam Ability to balance on a beam of 7 mm width for at least 10 s 0/1 

5 mm beam Ability to balance on a round stick of 5 mm diameter for at least 10 s 0/1 

Maximal score  10 

 

Table 1.1 Neurological severity score. Used with permission from.191 
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Significance of the work in this thesis 

In summary, traumatic axonal injury and subsequent Wallerian degeneration of 

the axon represent key pathological events that relate to functional deficits after TBI of 

all severities. Although it is now well established that axon degeneration is an active 

process, the molecular mechanisms driving this process are incompletely understood. 

Discovery of SARM1 as a prodegenerative molecule driving this process has propelled 

the field forward as it provided first evidence for an endogenous axon “suicide” pathway.  

The central goal of this dissertation is to determine whether the Sarm1 pathway 

is critical for trauma-induced axonal degeneration. Specifically, I hypothesize that 

Sarm1 deficiency preserves axonal structure and results in improved functional 

outcome after TBI. To closely mimic the most common form of human TBI I employ a 

mild closed head brain trauma model. 

I first characterize the CBF response to TBI given the reported association 

between traumatic vascular and axonal injury. I provide evidence that mild TBI causes 

profound cerebral hypoperfusion that is consistent with CSD and that relates to worse 

brain tissue integrity and functional outcome. However, I show that Sarm1 wild type and 

knockout mice show a similar CBF-response to TBI assuaging concerns that loss of 

Sarm1 affects traumatic vascular injury, which could have confounded the main 

investigation. I demonstrate that Sarm1 knockout mice have significantly attenuated 

TAI, improved brain metabolism, and functional outcome providing novel insight into the 

pathophysiology of TBI by showing for the first time that TAI after TBI is mediated by a 
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SARM1-associated “programmed axonal death” pathway representing a unique and 

novel target for TAI therapy. 
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CHAPTER II: 

ACUTE CEREBRAL BLOOD FLOW DYNAMICS AFTER 

MOUSE TRAUMATIC BRAIN INJURY 

 

 

 

 

 

 

 

 

 

 

Data in this chapter has been presented at the annual National Neurotrauma Society 

meeting 2016 as: 

 

Bouley J, Henninger N. Association between hyperacute, transient, cerebral blood flow 

changes and outcome after mild closed head injury in the mouse. 

 

Author contributions: J.B. conducted animal surgery, behavioral testing, histological 

preparations, and genotyping. N.H. designed the study, conducted animal surgery, laser 

Doppler measurements, histology analyses, statistical analyses, wrote the abstract, and 

presented the data.   
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Summary 

Traumatic vascular injury and cerebral hypoperfusion accompany TBI and have 

been associated with a worse outcome. However, the acute CBF dynamics after mild 

closed head TBI have not been well characterized and it remains unclear whether 

observed CBF alterations related to a worse outcome. This study shows that mild TBI 

induces a siginficant decrease in the CBF immediately following the traumatic impact, 

which is followed by a progressive decline in CBF to reach a nadir (median 56±5% of 

baseline values) at 20 min. Subsequently, the CBF recovers to approximately 80% of 

baseline by 90 min after TBI. When stratified according to the median CBF at 20 min, 

mice with a CBF below the median showed significantly greater histological tissue injury 

and worse functional outcome as compared to mice with a CBF remaining above the 

median. I show that the CBF responses were unrelated to cardiovascular depression as 

indicated by a stable mean arterial blood pressure throughout the observation period. 

Careful examination of the temporal and spatial CBF responses to TBI revealed cortical 

blood flow dynamics that were prototypical for those seen in the wake of CSDs. These 

results indicate that mild TBI in the used mouse model triggers CSDs in a subset of 

animals, which is associated with profound, transient depression of CBF, as well as 

worse histological and functional integrity after TBI. These observations may inform 

experimental study design and provide novel avenues for outcome prediction and 

therapeutic intervention. 
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Introduction 

Profound and lasting decreases in CBF have been consistently observed after 

moderate-to-severe TBI. However, relatively little is known about the association 

between mild TBI and very early CBF dynamics and how they relate to the degree of 

brain injury and functional outcome. Specifically, there is a paucity of data regarding the 

relation of early CBF-changes on outcome. The importance of TBI induced CBF 

alterations is highlighted by the fact that post traumatic hypoperfusion has been 

associated with adverse functional outcomes because intact neuronal metabolism relies 

on a constant, and carefully adjusted, blood supply, which, when disrupted, impairs 

neuronal function and structural integrity.56-64  

To gain novel insight into the pathophysiological CBF dynamics after TBI this 

study sought to determine (i) the temporal and spatial CBF responses to TBI in the 

immediate post-injury period, as well as their relation to (ii) the mean arterial blood 

pressure and (iii) the degree of histological and functional outcome in an established 

mouse TBI model.  

The results gained from these experiments will lay the foundation for the studies 

designed to examine the central thesis goal: to determine whether blocking the axon 

prodegenerative Sarm1 pathway attenuates TAI after TBI. This is important because it 

is unknown whether Sarm1 wild type and knockout mice have a differential vascular 

response to trauma, which could confound data interpretation.  

  



36 

Material and Methods 

Ethical approval 

All procedures were approved by the University of Massachusetts Medical 

School Institutional Animal Care and Use Committee (Protocol #A-2405-15).  

 

Mice 

Spontaneously breathing male C57BL6/J mice (Jackson Laboratories) age 8-12 

weeks were subjected to closed head injury (n=38 [n=32 over the ipsilesional and n=6 

over the contralesional hemisphere]) or sham injury (n=6) to assess CBF-changes after 

TBI. A femoral artery catheter was placed in an additional 6 TBI mice to continuously 

assess the mean arterial blood pressure during the first 60 min after TBI and in 5 mice 

cortical light transmission was used to determine spatial CBF dynamics after TBI. Mice 

who had a femoral catheter placed (n=6) were euthanized immediately after the end of 

the CBF measurements and did not undergo histological assessment.  

 

Anesthesia, analgesia, and TBI induction 

Animals were anesthetized with isoflurane (5% for induction, 2% for surgery, 

1.5% for maintenance) in room air. Anesthesia was discontinued immediately prior to 

TBI and sham injury. Body temperature was monitored continuously with a rectal probe 

and maintained at 37.0 ± 0.5 °C. To alleviate pain,  animals received 0.05 mg/kg 
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subcutaneous buprenorphine (Patterson Veterinary, Devens, MA, USA) 30 min before 

the end of anesthesia and every 6 h afterwards for 24 h. Additionally, each animal 

received 5 mg/kg subcutaneous carprofen (Patterson Veterinary, Devens, MA, USA) at 

the end of the anesthesia.  

Closed head TBI was produced using a weight drop device as previously 

described in detail and as adapted for use in mice191,217 with the following modified 

specifications: Briefly, the skull was exposed, anesthesia discontinued, and the animal 

positioned on a 6.4 mm thick Ethylene Propylene Diene Monomer (EDPM) rubber 

surface (60 durometer hardness) with the head placed under the weight drop device. A 

weight (50 g) was freely dropped 15 cm to strike a cylindrical polyacetal transducer rod 

(Delrin©, tip-diameter 2 mm, 17.4 g) that was placed with its tip directly on the mouse’s 

skull (-2.4±0.3 mm posterior and 2.6±0.3 mm lateral from Bregma) under the tip at an 

angle of 90° (Figure 2.1 A-C). Holding the transduc er rod with one hand immediately 

following the initial impact prevented rebound impact. Following TBI, skulls were 

examined for potential fracture and the wound closed with interrupted sutures. Sham 

animals were anesthetized, surgically prepared and placed under the impact device, but 

were not subjected to injury.  
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Figure 2.1 Traumatic brain injury setup. (A) Schematic of the impact device (adapted from208). (B) Approximate 

impact center over the intact mouse skull. (C) Impact area (orange) relative to the mouse brain (adapted from 218). 

Figure modified from.219  
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CBF measurement 

CBF was measured in animals using a PR407-1 straight needle LDF-probe 

(Perimed, Järfälla, Stockholm, Sweden) connected to a standard laser Doppler monitor 

(PF5010 LDPM Unit and PF5001 main unit, Perimed, Järfälla, Stockholm, Sweden). 

The probe was placed over the traumatized hemisphere (approximately 3 mm posterior, 

6 mm lateral, and 1 mm ventral to the Bregma) on the intact lateral aspect of the skull to 

assess CBF (Figure 2.2 A) 220. A stable baseline was established and recorded for 15 

min, TBI was induced, anesthesia resumed following return of regular spontaneous 

breathing, and relative regional CBF (rrCBF) was continuously assessed for 90 min. For 

analysis, values were averaged across 1 min epochs at the designated time points (at 

baseline as well as 1, 5, 10, 15, and 20 min as well as every 10 min afterwards).  

 
Figure 2.2 Laser Doppler setup. (A) Approximate location of the laser Doppler probe relative to the impact site 

(blue). (B) Representative relative regional cerebral blood flow (rrCBF) time curve over the right, traumatized 

hemisphere as assessed by laser Doppler (arbitrary units). Figure modified from.219   



40 

Cortical light transmission 

After midline incision and scalp reflection, the intact skull overlying both 

hemispheres was covered with a thin layer of mineral oil to prevent drying and enhance 

transparency. Images were continuously obtained every 2 s from pre-TBI to 30 min 

post-TBI using a 3.1 megapixel microscope digital camera (Model #300MU-CK, 

AmScope, Irvine, CA, USA). Raw images (10x; 2048x1536 resolution) were converted 

off-line to inverted grey-scale (arbitrary units) and by subtracting each image from the 

subsequent image to highlight temporal changes using Matlab (version R2016a, 

MathWorks, Natick, MA, USA).  

 

Neurologic evaluation 

Presence of seizure activity was evaluated clinically (facial twitching as well as 

tail, forelimb, and hindlimb tonic-clonic or tonic movements). All seizures occurred while 

animals were still unconscious. Therefore, no attempt was undertaken to grade seizure 

severity according to previously developed grading scales as these are partially based 

on loss of posture in previously conscious animals.221 

Sternal recumbency was measured as the time (s) from TBI/sham injury to 

righting from a supine to prone position after discontinuation of anesthesia.  

The NSS was assessed prior to TBI as well as at 2 h, 24 h, and 48 h, 7 d, 14 d, 

21 d, and 28 d postoperatively as previously described in detail.191 To account for the 

fact that with repeat testing animals no longer crossed the beams consistently due to 
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inactivity, we modified the readout as follows: If a mouse did not cross the 1, 2, or 3 cm 

beams within the allotted time of 3 min, it was gently nudged once. If the mouse then 

successfully crossed the beam it was assigned a score of zero. Only if they still did not 

cross were they assigned a score of one. In addition, mice were tested on all beams 

irrespective of whether they crossed the next wider beam (e.g., if a mouse did not cross 

the 3 cm beam but then crossed the 2 and 1 cm beams it was assigned a total of 1 point 

for these three subtests).  

 

Histological assessment 

For histology, animals received an overdose of pentobarbital (150 mg/kg Fatal-

Plus, Vortech Pharmaceuticals). Then animals were perfused under isoflurane 

anesthesia through the ascending aorta with 50 mL saline and then with ice cold 

phosphate-buffered 4% paraformaldehyde (PFA) for 10 min. Brains were removed from 

the cranium, postfixed overnight in the same fixative, and then stored in 0.5% PFA at 

4°C until further processing. Prior to paraffin emb edding, brains were pre-sectioned 

using a brain matrix. Histological paraffin sections, 10-µm thick, were obtained from a 

slice below the impact site and evaluated with immunohistochemistry. All histological 

analyses were performed by an investigator blinded to the animal groups (N.H.). 

Immunohistochemistry was performed against βAPP (1:200, CT695, polyclonal rabbit, 

Zymed, San Francisco, CA, USA) as previously described.217 Briefly, for antigen 

retrieval, sections were washed for 5 min with phosphate buffered saline (PBS) and 

three times for 5 min with 1% PBS + Triton. Endogenous peroxidase was blocked with 

0.5% H2O2 in PBS and methanol (1:1) for 30 min and sections heated for 20 min in a 
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600 W-microwave. After incubation in normal swine serum (10%) for 30 min followed by 

the primary antibody overnight at 4°C, immunoreacti vity was visualized by the avidin–

biotin complex method (Vectastain, Vector Laboratory Inc.) with consecutive enhanced 

diaminobenzidine staining. Omitting the primary antisera in a subset of control slides 

resulted in no immunostaining. 

To evaluate axonal injury, the number of βAPP immunopositive axon profiles 

were quantified within the corpus callosum. To this end all axons that included axonal 

deposits, swelling, and bulbs were systematically counted in non-overlapping fields of 

view (FOV) at a magnification of 63x. Counts were conducted in 2 adjacent sections 

(100 µm apart) from beneath the impact center to obtain the mean number of βAPP 

immunopositive axonal profiles across the width of the entire corpus callosum. βAPP 

has been shown to localize almost exclusively to the proximal (but not distal) end of the 

injured axon and identifies axons that proceed towards complete disconnection and 

degeneration.194,222 This property of the βAPP stain has the advantage that it minimizes 

the risk for multiple counting of the same injured axon and thus overestimation of the 

degree of axonal injury.  

To assess cell death, the In Situ Cell Death Detection Kit (Sigma-Aldrich, 

Billerica, MA, USA) was used following the manufacturer’s instructions. Samples were 

imaged at 10x magnification to quantify the number of terminal deoxynucleotidyl 

transferase-dUTP nick end labeling (TUNEL) / 4',6-diamidino-2-phenylindole (DAPI) co-

stained cells in each section and averaged for both sections to provide the final count. 

Cell counts were counted separately for the corpus callosum, caudate putamen, and the 

cerebral cortex.  
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Statistics 

Unless otherwise stated, continuous variables are reported as mean ± SEM and 

categorical variables are reported as proportions. Normality of data was examined using 

Shapiro-Wilk test. Between-group comparisons for continuous variables were made with 

unpaired t-Test, Mann-Whitney U-test, Kruskal Wallis with post-hoc Dunn’s method, 

two-way repeated measures analysis of variance (ANOVA), and two-way ANOVA as 

appropriate. Categorical variables were compared using the χ2-test or Fisher exact test 

as appropriate. Two-sided significance tests were used throughout and a two-sided 

P<0.05 was considered statistically significant. All statistical analyses were performed 

using SigmaPlot 12.5 (Systat Software, Inc., Germany) or IBM® SPSS® Statistics 22 

(IBM®-Armonk, NY).   
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Results 

Cerebral blood flow response to trauma 

Figure 2.3 summarizes the temporal evolution of the rrCBF changes observed in 

sham and TBI animals during the first 90 min after trauma. In sham operated animals 

rrCBF remained stable over the 90 min observation period. In contrast, there was an 

immediate, progressive reduction of the rrCBF in the ipsilateral, traumatized hemisphere 

reaching a nadir of 56±5% of baseline values by 20 min post TBI. Thereafter rrCBF 

gradually recovered to 81±3% of pre-TBI values by 90 min. Over the contralesional, 

non-traumatized hemisphere rrCBF also immediately declined after TBI to 75±6% of 

baseline values by 1 min post TBI, but rapidly recovered to 90±3% of baseline values by 

5 min and remained stable afterwards over the remaining observation period.  
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Figure 2.3 CBF responses after TBI. Temporal evolution of the relative regional CBF (rrCBF) in the ipsilesional 

(blue circles) and contralesional (grey circles) hemisphere after traumatic brain injury (TBI) or sham (open circles) 

surgery. TBI mice had a significant decrease in the rrCBF immediately following impact with a progressive decline to 

a nadir (median 56±5%) at 20 min and subsequent recovery to 81±3% by 90 min. rrCBF was relatively less affected 

in the non-traumatized hemisphere. There were significant group (P<0.001) and time (P<0.001) effects as well as 

presence of a significant group x time (P<0.001) interaction (*P<0.05 for within-group comparisons versus baseline; 

#P<0.05 for between-group comparisons versus sham; two-way RM ANOVA with post-hoc Holm-Šídák test).  
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Reduced CBF is associated with histological markers of brain injury 

Sham animals (n=6) had virtually no TUNEL positive cells. Overall, in TBI mice 

(n=24) there was a trend towards a greater number of apoptotic cells in the traumatized 

compared to the non-traumatized hemisphere (P=0.1470). This trend was similar for all 

investigated regions and only reached significance for the corpus callosum (P=0.0335) 

but not the caudate putamen (P=0.5538) and cerebral cortex (P=0.2251; Figure 2.4).   

 

Figure 2.4 Comparison of apoptotic cell death in the ipsi- versus contralesional hemisphere. Quantification of 

apoptotic cell profiles within the traumatized versus contralesional, non-traumatized (grey) hemisphere at 48 h after 

TBI (n=24). There were significantly more apoptotic cells in the ipsilesional versus contralesional corpus callosum but 

not the caudate putamen or cerebral cortex. Sham animals (n=6) had virtually no TUNEL positive cells and data are 

omitted from the figure for clarity (Mann-Whitney U-test). Cell counts are averages from 2 adjacent sections (100 µm 

apart) from beneath the impact center.   
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Strikingly, there was substantial variability in the degree of the ipsilesional CBF 

reduction during the first 60 min with the CBF ranging from 24.5% to 104.9% of baseline 

values at 20 min between mice. To determine whether the degree of CBF-reduction 

relates to the extent of histological brain injury and functional outcome, TBI mice with 

available ipsilesional CBF measurements were assigned to “low” versus “high” CBF 

groups based on the median CBF measured over the traumatized hemisphere at the 20 

min nadir (56±5% of baseline). Using this stratification scheme, substantial differences 

in the temporal rrCBF evolution between low and high CBF mice were noted from 1 to 

60 min after TBI (Figure 2.5). However, by 70 min rrCBF was similar between 

subgroups.  
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Figure 2.5. Stratification of TBI-related CBF responses to low versus high. Temporal evolution of the relative 

regional cerebral blood flow (rrCBF) after TBI in mice stratified according to their CBF above (high CBF, yellow 

triangles) or below (low CBF, red triangles) the 20 min CBF nadir. Despite significant early between-group differences 

in the hyperacute rrCBF, values in both groups were similar by 70 min post TBI (***P<0.001; *P<0.05 for between-

group differences). There were significant group and time effects, as well as presence of a significant group x time 

interaction (P<0.001, each). In both groups post-TBI values remained significantly below baseline throughout the 

entire observation period (P<0.05 for each time point). All statistical comparisons were made by RM-ANOVA with 

post-hoc Holm-Šidák test. Due to movement related artifacts CBF was not recorded at the time of impact.   
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Histological comparison indicated significantly greater numbers of TUNEL and 

βAPP positive cell profiles in the traumatized hemisphere in low versus high CBF mice 

(P<0.05 each; Figure 2.6 A-B).   

 

Figure 2.6. Low CBF mice have greater tissue injury. Histological comparison of low (red bars; n=12) with high 

(yellow bars; n=12) CBF mice 48 h after TBI. High CBF mice had significantly fewer (A) TUNEL and (B) βAPP 

positive profiles in the injured hemisphere than high CBF mice indicating that lower CBF relates to a greater degree 

of apoptotic cell death and traumatic axonal injury (Mann-Whitney U test).  
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Lower CBF relates to worse neurological function 

There was no significant difference in the proportion of impact seizures 

immediately after trauma in low (52.9%; n=9 of 17) versus high (40%; n=6 of 15) CBF 

mice (P=0.502; Fisher exact test).  

Furthermore, there was no difference in the time to regain sternal recumbency 

after discontinuation of anesthesia at the end of the observation period in low (339±68 

s; n=12) versus high (460±75 s; n=12) CBF mice (P=0.964; t-Test).  

Neurological function was serially assessed by the NSS. I found that compared to 

pre-TBI, mice with a lower CBF remained significantly impaired by 48 h post-TBI, 

whereas mice with a high CBF showed no significant functional deficits by 24 h (Figure 

2.7 A). The differences between the two CBF-groups were mainly attributable to worse 

performance on 7 mm beam balancing, 10 mm beam balancing, startle response, and 

circle exiting in low CBF mice (Figure 2.7 B-D).  
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Figure 2.7 Acute CBF responses impact functional outcome. Neurological severity score (NSS) before and after 

TBI stratified by low versus high CBF. (A) By 24 h after TBI, there was no significant difference in the NSS to pre-TBI 

values in high CBF mice. Conversely, in low CBF mice a significant difference remained by 48 hours (*P<0.05 versus 

baseline; two-way RM ANOVA). (B-D) Differences in the NSS between low and high CBF groups at 24 h and 48 h 

were driven by the subscores derived from the 7 mm beam balancing, 10 mm beam balancing, startle response, and 

circle exiting (blue arrowheads; two-way RM ANOVA: P<0.05 for between group differences; group x time interaction 

P=0.0464). 
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Acute CBF dynamics are consistent with the phenomenon of traumatic CSD 

Given the transient and heterogeneous nature of the observed profound cerebral 

hypoperfusion after TBI, this followup study sought to determine whether the CBF 

dynamics were related to global cardiovascular depression and systemic hypotension 

as well as to assess whether the temporal and spatial blood flow dynamics in the 

cerebral cortex indicate cortical spreading depolarization. By concurrently assessing the 

mean arterial blood pressure and rrCBF it was noted that there was no significant 

change in the MAP throughout the observation period (Figure 2.8). In contrast, 

characteristic rrCBF changes were observed after TBI that closely match the CBF 

dynamics seen in CSDs indicating the profound CBF alterations occurring in this mouse 

head injury model are driven by CSDs (Figure 2.8).  
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Figure 2.8 Absent association between systemic blood pressure and acute cerebral blood flow. Temporal 

evolution of the mean arterial blood pressure (MAP) and relative regional cerebral blood flow (rrCBF) during the first 

60 min after TBI in 6 mice. There was no significant change in the MAP (red circles) during the study period (one-way 

RM ANOVA, P=0.08). Conversely, rrCBF (blue triangles) significantly declined by 1 min, partially recovered, and then 

demonstrated a secondary decline with significantly depressed rrCBF from approximately 6 -30 min after TBI after 

rrCBF again recovered (*P<0.05 versus baseline; one-way RM ANOVA on Ranks with post hoc Dunnett test). The 

observed rrCBF dynamics match the prototypical four components (I-IV) observed in the wake of a cortical spreading 

depolarization elicited in the same mouse strain and under the same anesthetic (compare also with Figure 1.1).94 

Note, rrCBF flow curves were averaged by denoting the time just prior to the initial CBF decline after TBI as “zero” 

minutes.  
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To gain further insight into the CBF dynamics after trauma, non-invasive cortical 

light transmission was used to map the temporospatial evolution of CBF changes, which 

cannot be achieved with standard LDF due to its low spatial resolution. These 

experiments revealed the occurrence of a spreading concentric wave of cortical 

hypoperfusion that coincided with the CBF dynamics as assessed by LDF (Figure 2.9). 

Conversely, mice without a spreading wave of cortical hypoperfusion after TBI had no 

significant perturbation of CBF as assessed by LDF. 

 

Figure 2.9 Spatiotemporal evolution of post-traumatic cortical hypoperfusion. (A) Representative view of the 

intact mouse skull after TBI. (B-H) Corresponding time-lapse subtraction images of transilluminated cortical light 

transmission (intensities inverted) show a spreading concentric wave of an initial increase in light transmittance (i.e., 

reduction in cortical CBF; arrows) followed by a central decrease in light transmittance (**) consistent with cortical 

spreading depolarization related CBF dynamics. *indicates the edge of skull at which point the spreading wave 

moves ventrally out of the field of view. Of note, in this mouse the impact center was located ~3 mm cephalad to the 

usually used impact location.  
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Discussion 

Although the complex molecular and cellular mechanisms responsible for post-

traumatic functional deficits are incompletely understood, there is substantial data 

indicating that trauma-induced cerebral hypoperfusion underlyies a significant 

proportion of TBI-related disability.56-64 Yet, the mechanisms driving traumatic cerebral 

hypoperfusion, particularly after mild TBI, remain relatively understudied.223 Several 

different mechanisms may contribute to CBF depression and associated functional 

impairment, including impaired cerebral autoregulation, cerebrovascular reactivity, and 

neurovascular uncoupling.57,62,66,74,77,79-81,83,85-89  

In this study, I demonstrate profound, transient cerebral hypoperfusion after mild 

closed head injury as assessed by non-invasive LDF. Consistent with prior studies, I 

show that worse cerebral hypoperfusion is associated with greater tissue injury and 

worse functional outcome. Importantly, no significant change in the systemic blood 

pressure was observed after injury. Furthermore, lasting cerebral hypoperfusion was 

exclusively noted in the ipsilesional (traumatized) hemisphere, but not in the 

contralesional (non-traumatized) hemisphere. This rules out significant cardio-

respiratory depression as a cause for the CBF alterations as it would have been 

expected to result in a concomitant blood pressure decline, as well as to affect the 

entire brain rather than one hemisphere.  

Although not specifically assessed, these results further argue against a 

significant contribution of cerebral dysautoregulation to the observed histological 

damage and functional impairment. In the setting of impaired autoregulation the CBF 
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follows the systemic blood pressure and, falling below a critical threshold, leads to 

cerebral ischemia and brain injury. However, because the blood pressure remained 

stable within the physiological range, cerebral hypoperfusion as a result of impaired 

autoregulation (even if present) would not be expected to ensue.  

A likely explanation for the noted CBF-responses is the occurrence of CSDs. The 

herein described temporal and spatial CBF dynamics are highly consistent with the 

published prototypical CBF responses to CSD.94 Although CSDs were originally defined 

based on associated electrophysiological phenomena, assessment of the characteristic 

spatial and temporal CBF dynamics in response to a CSD are increasingly utilized as 

accepted surrogate markers for CSDs and to assess related pathophysiology.97,224-226 In 

this respect, the presented data may serve as a valid marker for CSD in the used 

mouse model. Nevertheless, future studies seeking to provide comprehensive insight 

into the association between traumatic CSDs may benefit from additional assessment of 

neuronal electrical activity, which represents the foundation of cerebral function.  

The minimal volume of brain tissue that needs to be simultaneously depolarized 

in the rodent brain to elicit a CSD has been estimated to be ~1mm3 in vivo.227 In the 

herein used TBI model the impacted cortical brain surface is approximately 3 mm2. 

Using the most conservative estimates that only the cortex beneath the impact zone is 

impacted (which is unlikely due to impact-related skull deformation and strain related 

energy propagation to cortical tissues beyond the actual impact zone228,229) and a 

cortical thickness of 1 mm,218,230 a cortical volume of approximately 2 mm3 is directly 

impacted in the used model—well above the critical threshold of 1mm3. Nevertheless, it 

is interesting to note that only a subset of traumatized mice exhibited CSD-like CBF 
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changes (~53%; compare Figure 2.5). However, inter- and intra-individual variability in 

CSD occurrence, propagation, and duration is a well-recognized phenomenon in both 

animal and human studies.95,96,226,231-233 The reasons for this are not well understood, 

but may include differences in the cortical vascular anatomy as well as possible 

cytoarchitectural differences.226 In addition, preceding depolarization, anesthetic depth, 

differences in physiological parameters, baseline CBF, studied species and strain, as 

well as the cortical location have been shown to modulate CSDs.94,224,226 Yet, a 

confounding effect of these factors appear less likely given absent cardiovascular 

depression, occurrence of only a single CSD, non-invasive surgical approach 

(assuaging concerns regarding inadvertent CSD-triggering during animal surgery), and 

identical experimental conditions between studied animals.  

The importance of understanding the association between CSDs and TBI is 

highlighted by the fact that CSDs have been shown to aggravate tissue injury in the 

setting of acute brain injury including after TBI.97-103,234 During a CSD, neurons are 

unable to elicit action potentials because the sustained depolarization remains above 

the threshold for inactivation of the membrane channels that generate action 

potentials.235 In addition to massive ion shifts during a CSD there is an additional 

massive release of amino acid neurotransmitters including glutamate and aspartate.95 It 

has been proposed that CSDs represent a rudimentary form of cell-to-cell signaling; yet, 

a physiological role is unlikely because they do not originate spontaneously in the 

healthy brain.96,236 The release of depolarizing glutamate via N-methyl-D-aspartate 

(NMDA) receptors in conjunction with K+-release into the extracellular space overloads 

the extracellular K+-clearing mechanisms and thus generates depolarization in 
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neighboring regions that gives rise to a self-propagating depolarization wave 

front.94,237,238 Consistent with this hypothesis, tissue susceptibility to CSDs is increased 

in the setting of chemical or genetic astroglial dysfunction as astroglia have a high K+-

buffering capacity.239-241 In addition, it is possible that CSDs propagate directly via gap-

junctional neuron-to-neuron transcellular channels.96 CSDs typically expand at a speed 

of 2-5 mm/min over the cerebral cortex and are characterized by near-complete and 

sustained depolarization of neurons as well as astrocytes causing suppression of 

synaptic activity (hence the original term spreading depression).95,96,99,101,102,242-245 

Because of the substantial metabolic demands to restore homeostasis after a CSD it is 

not surprising that in the injured brain CSDs are associated with deleterious 

consequences on tissue viability by aggravating the already tenuous metabolic supply 

and demand mismatch in the injured brain tissue.97-99 

In summary, my data closes an important knowledge gap by showing that CSD-

related CBF changes are common after mouse TBI. This is an important finding 

because it (i) provides a pathophysiological rationale for the observed CBF responses, 

(ii) helps explain possible inter-animal variability with respect to their histological and 

functional outcome, (iii) and may inform experimental study design. The CSD-related 

CBF alterations have the potential to confound results despite their transient nature and 

may be easily missed unless CBF is continuously assessed after TBI. This observation 

may provide the impetus for human studies to determine whether CSDs occur after mild 

(concussive) head injury, which could provide novel avenues for outcome prediction and 

therapeutic intervention. 
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CHAPTER III: 

ATTENUATED TRAUMATIC AXONAL INJURY AND 

IMPROVED FUNCTIONAL OUTCOME AFTER TRAUMATIC 

BRAIN INJURY IN MICE LACKING SARM1 
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Summary 

Axonal degeneration is a critical, early event in many acute and chronic 

neurological disorders. It has been consistently observed after TBI, but whether axon 

degeneration is a driver of TBI remains unclear, molecular pathways underlying the 

pathology of TBI have not been defined, and there is no efficacious treatment for TBI. 

This study shows that mice lacking the mouse Toll receptor adaptor Sarm1 gene, a key 

mediator of Wallerian degeneration, demonstrate multiple improved TBI-associated 

phenotypes after injury in a closed-head mild TBI model. Sarm1-/- mice developed fewer 

βAPP aggregates in axons of the corpus callosum after TBI as compared to Sarm1+/+ 

mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the 

phophorylated axonal neurofilament subunit H, indicating that axonal integrity is 

maintained after TBI. Strikingly, whereas wild type mice exibited a number of behavioral 

deficits after TBI a strong, early preservation of neurological function in Sarm1-/- animals 

was observed. Finally, using in vivo proton magnetic resonance spectroscopy, tissue 

signatures were found consistent with substantially preserved neuronal energy 

metabolism in Sarm1-/- mice compared to controls immediately following TBI. These 

results indicate that the Sarm1-mediated prodegenerative pathway promotes 

pathogenesis in TBI and suggest that anti-Sarm1 therapeutics are a viable approach for 

preserving neurological function after TBI. 
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Introduction 

It has long been recognized that wide-spread axonal degeneration accompanies 

TBI of all severities and it is thought to represent a key pathological feature underlying 

the observed functional deficits in affected patients.35,106,107,111 However, whether axon 

degeneration is in fact a driver of pathology and functional loss in TBI has not been 

directly tested, the molecular pathophysiology promoting axon loss in TBI remains 

undefined, and there is no efficacious treatment for TBI.111  

A number of studies suggest that axon degeneration after TBI is similar to that of 

Wallerian degeneration,173,174,246,247 which is the catastrophic fragmentation of the distal 

portion of an axon severed from its cell body.173,179 Recently, novel insight into Wallerian 

degeneration and axonal death has been gained by identifying endogenous genes that 

actively promote axon death. It has previously been shown that Wallerian degeneration 

of transsected nerves can be suppressed weeks in homozygous mutant mice lacking 

the Sarm1 gene.180 This exciting observation provided a direct target for potential 

therapeutic intervention during axon degeneration. It also raised the intriguing possibility 

that Sarm1-mediated axon death pathways play a critical role in many neurological 

conditions associated with axonal degeneration including TBI.179  

To test this hypothesis, I use a mouse model of mild closed head injury to 

determine whether loss of Sarm1 mitigates the histological and behavioral 

pathophysiology of TBI by promoting axonal integrity. Such a model is highly relevant 

clinically given epidemiological studies showing that 80% of TBIs are due to blunt, 

closed head trauma.6 If true this would indicate (i) that traumatic axonal injury is driven 
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by molecular pathways similar to those promoting Wallerian degeneration, (ii) that axon 

degeneration through these pathways is associated with the functional deficits observed 

after TBI, and (iii) that Sarm1-based therapies could represent a viable and novel 

opportunity for TBI treatment.  
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Material and Methods 

Experimental design 

This preclinical study was designed to determine whether Sarm1 knockout in 

mice protects from axonal injury and improves outcome after TBI. βAPP 

immunohistology was performed to determine the spatiotemporal distribution of axonal 

pathology after TBI. Assays of plasma pNFH concentration were assessed by 

electrochemiluminescence assay (ECL) to determine axon cytoskeletal breakdown 

products in peripheral blood as a complementary marker of axonal injury. 

Neurobehavioral deficits were determined from acute to subacute time points utilizing 

the NSS, which has been validated to determine neurological sequelae in closed head 

mouse TBI.191 Cerebral neurochemical profiling was conducted using proton magnetic 

resonance spectroscopy (1H-MRS). In addition, parameters shown to influence post-TBI 

outcome including blood gases and CBF were assessed.58 For each experiment, 

G*Power248,249 was used to calculate sample sizes to achieve a power (1-β) of 0.8 to 

detect a significant between-group difference at a two-sided significance level of 0.05. 

All experiments were conducted in a randomized manner and masked to the mouse 

genotype and experimental group.  

 

Ethical approval 

All procedures were approved by the University of Massachusetts Medical 

School Institutional Animal Care and Use Committee (Protocol #A-2405-12).  
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Mice 

Sarm1+/- males and females on the C57BL6/J (Jackson Laboratories) were bred 

to obtain age-matched, male Sarm1+/+ and Sarm1-/- littermate mice.183 All animals were 

socially housed on 12-h light : 12-h dark lighting with food and water ad libitum. In light 

of prior data indicating lack of protection from Wallerian degeneration in Sarm1+/- 

mice,180 this study focused examinations on Sarm1-/- mice.  

Spontaneously breathing mice (n=120) weighing 25.8±2.5 g (age 8-12 weeks) 

were subjected to closed head injury (n=88) or sham injury (n=32) to assess 

neurological deficits (all animals), βAPP staining (n=86; of note βAPP staining was 

repeated at the 48 h time point in a subset of TBI mice [n=7, each] resulting in n=13 for 

this time point), and plasma pNFH concentrations (n=98). In addition, 32 mice were 

used for laser Doppler blood flow analyses to avoid confounding of behavioral and 

neurochemical profiles given the need for prolonged anesthesia. Further, 14 mice were 

used to determine brain neurochemical profiles in vivo using 1H-MRS and 5 mice for 

axon fiber quantification using Toluidine blue staining and light microscopy.  

We excluded 5 Sarm1+/+ mice (1 had a depressed skull fracture, 1 had traumatic 

diastasis of cranial sutures; 1 with subdural hematoma; 1 perioperative death; 1 animal 

moved at impact) and 9 Sarm1-/- mice (1 with pre-TBI skull deformation; 5 had traumatic 

diastasis of cranial sutures; 2 perioperative deaths; 1 animal moved at impact). An 

additional 4 mice were excluded from the 1H-MRS experiments (see below for details). 

Figure 3.1 summarizes the time line of key experiments.  
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Figure 3.1 Experimental timeline. (LDF=laser Doppler flowmetry; 1H-MRS=proton magnetic resonance 

spectroscopy; βAPP=beta amyloid precursor protein; pNFH=plasma phosphorylated neurofilament heavy chain; 

NSS=neurological severity score). 

 

Closed head TBI, cerebral blood flow measurements, neurologic evaluation, and 

βAPP immunohistochemistry 

For details regarding the closed head TBI model, CBF measurements with LDF, 

details of the immunohistological methods to detect βAPP positive axon profiles, clinical 

seizure assessment, quantification of the time to regain sternal recumbency, and 

assessment of the NSS see Chapter II. In this experiment the NSS was assessed prior 

to TBI as well as at 2 h, 24 h, 48 h, 7 d, 14 d, 21 d, and 28 d postoperatively as 

previously described in detail.191  
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Anesthesia, analgesia, and TBI induction 

Animals were anesthetized with isoflurane (5% for induction, 2% for surgery, 

1.5% for maintenance) in room air. Anesthesia was discontinued immediately prior to 

TBI and sham injury. Body temperature was monitored continuously with a rectal probe 

and maintained at 37.0 ± 0.5 °C. To alleviate pain,  animals received 0.05 mg/kg 

subcutaneous buprenorphine (Patterson Veterinary, Devens, MA, USA) 30 min before 

the end of anesthesia and every 6 h afterwards for 24 h. Additionally, each animal 

received 5 mg/kg subcutaneous carprofen (Patterson Veterinary, Devens, MA, USA) at 

the end of the anesthesia.  

In a subset of animals (n=12), whole blood (100 µL) was obtained after trauma 

surgery from the tail artery to measure blood gases (pH, PaO2, PaCO2, base excess, 

HCO3, SaO2), electrolytes (Na+, K+, ionized Ca2+), glucose, hematocrit, and hemoglobin 

concentration (CG8+ Cartridge; VetScan iStat1; Abaxis, Union City, CA).  

 

Toluidine blue staining, axon fiber quantification, and βAPP 

immunohistochemistry 

Three Sarm1+/+ and 2 Sarm1-/- mice were transcardially perfused with 4% 

formaldehyde in 0.9% saline. Brains were removed and post-fixed in 2.5% 

glutaraldehyde in 0.1 M cacodylate buffer, pH 7.2, and left overnight at 4oC.  The 

samples were then rinsed four times (10 min each time) in 0.1 M cacodylate buffer and 

then post-fixed with 1% Osmium Tetroxide for 1h at room temperature. Samples were 
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then washed three times with distilled water for 20 minutes each at room temperature 

and then dehydrated through a graded ethanol series of 20% increments, before two 

changes in 100% ethanol.  Samples were then infiltrated first with two changes of 100% 

Propylene Oxide and then with a 50%/50% propylene oxide / SPI-Pon 812 resin 

mixture. The following day three changes of fresh 100% SPI-Pon 812 resin were done 

before the samples were polymerized at 68oC in flat embedding molds. Finally, 1 µm-

thick sections were obtained from 1 mm blocks cut in the mid-saggital plane and from -

1.5 mm to -3.5 mm from Bregma, placed on glass slides, and stained with Toluidine 

Blue.  

Analysis of the axon density in the Toluidine blue stained images (magnification 

63x; resolution 72 dpi; 8 bit grey scale) was performed using CellProfiler 

(http://www.cellprofiler.org).250 Image series were acquired using an oil immersion 

objective with identical camera settings at constant conditions and were processed 

using the NIS-Elements analysis software (Version 4.2, Nikon).  

In a derivation cohort, all axons within 1 randomly sampled 25x25 µm region of 

interest (ROI) from each Sarm1+/+ mouse were manually counted using Photoshop. For 

derivation, CellProfiler was used to automatically quantify axon profiles by adjusting the 

settings until the results matched the manual counts both quantitatively as well as 

qualitatively. Key module settings were as follows: Object size 3 to 20 pixel. 

Thresholding: adaptive as per Otsu method with two-class thresholding and minimizing 

of the weighted variance as well as automatic smoothing. Threshold correction factors 

were 0.0 for the lower and 1.0 for the upper bound. Clumped objects were distinguished 

based on shape and intensity with automatic smoothing for declumping and calculation 
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of minimally allowed distance between local maxima. For validation, CellProfiler and 

manual counts were compared in three separate randomly selected ROIs, indicating 

98.9% accuracy of the automatically counted axon profiles. Following this procedure, 5 

ROIs for each animal were randomly chosen from 3 adjacent toluidine blue stained 

sections to quantify axon profiles for a total of 15 ROIs per animal.  

 

Plasma phosphorylated neurofilament heavy chain 

Under deep isoflurane anesthesia whole blood (500-800 µL) was collected from 

the right ventricle into Eppendorf tubes containing 6 µL ethylenediaminetetracetic acid 

(EDTA). Samples were immediately centrifuged at 3000-g for 15 minutes at 4°C and the 

layer containing plasma immediately removed and stored in low bind Eppendorf tubes 

at −80°C. Plasma pNFH levels were measured using an  ECL and a Meso Scale 

Discovery (MSD, Gaithersburg, MD) SECTOR 2400 Imager. Briefly, MSD 96-well plates 

were coated overnight with mouse anti-human pNFH antibody (EnCor Biotechnology 

Inc., Gainesville, FL, USA). Plasma was diluted 1:1 with 0.5M urea and 40 µL added per 

well for 90 min incubation at room temperature. After washes, 40 µL of sulfo-tagged 

polyclonal anti-pNFH antibody (EnCor Biotechnology) was added to each well and 

incubated for 60 min. After final washes, 150 µL 2X Read Buffer (MSD) was added to 

each well and ECL measured in the SECTOR 2400 Imager. Samples were run in 

triplicate and each experiment repeated at least twice. 
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MRI 

MRI experiments were performed on a 4.7 T/40 cm horizontal magnet (Oxford, 

UK) equipped with 450 mT/m magnetic field gradients and interfaced with a Biospec 

Bruker console (Bruker, Germany). A 1H radiofrequency coil configuration with 23 mm 

inner diameter was used. Throughout the imaging experiment, mice were anesthetized 

with isoflurane (1.5%) delivered through a nose cone and custom-fitted with a head 

restrainer containing a built-in saddle coil. The body temperature of the animal was 

monitored and maintained at 37 °C with a feedback c ontrolled heating pad. For each 

imaging session, anatomical images were acquired using a multi-slice fast spin-echo 

sequence (RARE) (repetition time [TR]: 2000 ms, echo time [TE]: 12 ms, RARE factor: 

8, matrix size: 256 × 256, FOV: 1.8 cm × 1.8 cm, slice number: 18, slice thickness: 0.7 

mm). The 1H-MRS data acquisition was performed using single voxel Point-REsolved 

Spectroscopy Sequence (PRESS) (TR: 2500 ms, TE: 20 ms, Naverage: 512) with variable 

power and optimized relaxation delays (VAPOR) sequence for water suppression, 

following shimming using the FASTMAP sequence. The voxel (3 mm × 3 mm × 3 mm) 

was placed in the right hemisphere and centered beneath the impact zone of each 

animal using high-resolution anatomical images. PRESS was run with exactly the same 

voxel placement and parameters except for water suppression was off and the Naverage 

was set to 16. Imaging was conducted immediately prior to TBI as well as at 2 h and 48 

h after TBI. The overall imaging time including animal setup and sequence optimization 

was approximately 1.5 h.  
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1H-MRS data analysis 

The proton spectra were fit using LCModel (Version 6.3-0l), which analyzes in 

vivo proton spectrum as a linear combination of model in vitro spectra from individual 

metabolite solutions (including l-alanine [Ala], aspartate [Asp], creatine [Cr], 

phosphocreatine [PCr], GABA [γ-Aminobutyric acid], glucose [Glc], glutamine [Gln], 

glutamate [Glu], glycerophosphocholine [GPC], phosphocholine [PCh], glutathione 

[GSH], inositol [Ino], l-lactate [Lac], n-acetylaspartate [NAA], n-acetylaspartylglutamate 

[NAAG], scyllo-inositol [Scyllo], taurine [Tau], total choline [tCh], total n-acetylaspartate 

[tNAA], total creatine [tCr], glutamate and glutamine [Glx], lipids and 

macromolecules).251,252 LCModel utilizes a built-in (simulated) radial basis set for the 

PRESS sequence we are using and produces absolute fits, metabolite quantifications 

(in institutional units), and percent standard deviation of the estimated concentration of 

each metabolite (Cramér-Rao lower bound [CRLB]) as a measure of the reliability of the 

fit. The spectral inclusion criteria (CRLB) were less than 15% for all metabolites. Values 

are institutional units and expressed as mean±S.D. 

One Sarm1-/- mouse died during the first MRI scan and data from an additional 3 

mice (2 Sarm1+/+ and 1 Sarm1-/- mouse) were excluded because their metabolite 

concentrations were more than 2 standard deviations from the mean for their groups. 
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Statistical analysis 

Unless otherwise stated, continuous variables are reported as mean ± S.E.M. 

and categorical variables are reported as proportions. Normality of data was examined 

using Shapiro-Wilk test. Between-group comparisons for continuous variables were 

made with unpaired t-Test, Mann-Whitney U-test, Kruskal Wallis with post-hoc Dunn’s 

method, two-way repeated measures ANOVA, and two-way ANOVA as appropriate. 

Categorical variables were compared using the χ2-test or Fisher exact test as 

appropriate. Two-sided significance tests were used throughout and a two-sided P<0.05 

was considered statistically significant. All statistical analyses were performed using 

IBM® SPSS® Statistics 22 (IBM®-Armonk, NY). 
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Results 

To determine whether Sarm1 knockout attenuates axon pathology after TBI, a 

closed head mouse trauma model was used. The primary outcome of this study was the 

degree of axonal injury as measured by βAPP immunohistology after TBI. Secondary 

outcomes were neurobehavioral deficits measured throughout the 4-week observation 

period using the NSS,191 pNFH concentration as assessed by ECL assay, and cerebral 

neurochemical profiling using 1H-MRS. In addition, physiological parameters shown to 

influence post-TBI outcome including blood gases and CBF were assessed.58  

 

Sarm1 -/- is associated with long-term suppression of traumatic axonal injury 

First, the temporal evolution of axonal pathology was determined by quantifying 

the number of βAPP positive aggregates (a marker for axonal injury) in axon profiles 

within the corpus callosum from 2 hours to 4 weeks after TBI. A remarkable reduction of 

axonal βAPP staining in Sarm1-/-animals was observed when compared to Sarm1+/+ 

mice at 2 h and 48 h after TBI (Figure 3.2 A). Importantly, no increase in βAPP 

aggregation in axons of Sarm1-/- mice was observed between 48 hours and the first 28 

days after TBI. This indicates that Sarm1 loss does not merely delay axonal 

degeneration, but is associated with long lasting axonal preservation. Next the spatial 

distribution of axonal βAPP staining was examined within the corpus callosum at the 

time of maximal axonal injury (48 h). While the distribution of βAPP aggregates across 

the width of the corpus callosum was similar between groups (i.e., maximal injury was 

observed beneath the impact zone), a substantial reduction in axonal βAPP staining in 



73 

Sarm1-/- versus Sarm1+/+ mice was noted (Figure 3.2 B and D). Importantly, when the 

number of axons within the uninjured corpus callosum of sham operated Sarm1+/+ and 

Sarm1-/- mice was quantified no significant difference was observed between groups in 

the number of axons (Figure 3.2 E and F). Therefore, the reduction in βAPP-positive 

axon profiles in Sarm1-/- mice was not biased by differences in baseline axon density 

within the corpus callosum in germ-line knockout mice. Together these data 

demonstrate that loss of Sarm1 is associated with suppressed axon pathology after TBI 

and long-lasting effects on axonal preservation. 

 

Sarm1 -/- is associated with reduced plasma concentrations of the axon injury 

marker pNFH  

TBI-related axon injury results in the release of pNFH into the plasma. In a rat 

model of cortical impact, levels of pNFH increased and peaked in the plasma within 48 

h after injury.152 Time dependent increased levels of plasma pNFH have also been 

correlated to the extent of axonal injury and patient outcomes from mild TBI.253,254 

Therefore plasma pNFH concentrations were quantified in this study as an additional 

marker of axonal injury after TBI in Sarm1-/- animals and controls using an ECL. In this 

study the plasma pNFH concentration peaked in wild type mice within 48 h post injury, 

similar to prior reports.152 However, Sarm1-/- mice exhibited no statistically significant 

increase in pNFH in the plasma post-injury (Figure 3.2 C). As with the studies of βAPP, 

this suppression of pNFH release was sustained, lasting for 28 days after TBI.  
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Figure 3.2 Suppressed axon pathology after TBI in mice lacking Sarm1 . (A) Temporal evolution of traumatic 

axonal injury as assessed by βAPP-staining in the corpus callosum (n=6 for all time points except 48 h TBI with n=13, 

each; two-way ANOVA) Overall, there were significant group (P=0.013) and time (P<0.001) effects as well as 

presence of a significant group x time (P=0.011) interaction (#P<0.01 versus Sarm1+/+ Sham; *P<0.05, **P<0.01, 

***P<0.001 for between-group differences). (B) Spatial distribution of βAPP-stained axons within the corpus callosum 

48 h after TBI (two-way RM ANOVA). Overall, there were significant differences in the counts of βAPP-stained axons 

between groups (P=0.008), the left-to-right distribution across the corpus callosum (P<0.001), as well as significant 

group x distribution (P<0.001) interaction (*P<0.05, **P<0.01 for between-group differences). (C) Sarm1+/+ mice had 

significantly earlier and higher peak phosphorylated neurofilament heavy chain (pNFH) concentrations as compared 

to Sarm1-/- mice (two-way ANOVA; n=8-9 per group, n=6 for 28 d Sarm1-/-). There were significant group (P=0.016) 

and time (P<0.001) effects as well as presence of a significant group x time (P<0.001) interaction (***P<0.001 for 

between group difference at 48 h; ###P<0.001 for Sarm1+/+ Sham versus Sarm1+/+ TBI at 48 h). (D) Representative 

βAPP-stained sections from the corpus callosum showing βAPP-positive axons in the field of view corresponding to 

“center right” in panel B at low power (asterisks) and higher power (black arrows) magnification. Bars represent 100 

µm. (E) Representative toluidine blue stained transection of the corpus callosum of uninjured Sarm1+/+ and Sarm1-/- 

mice (bar at high power magnification represents 10 µm). (F) Quantification of callosal axons in the mid-sagittal plane 

indicated no significant difference in the number of axons between Sarm1+/+ and Sarm1-/- mice (Mann-Whitney U 

test). For clarity in the figure only significant results are indicated in panels A-C.  
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Improved functional phenotype in Sarm1 -/- mice after TBI  

Given the significant axonal preservation observed in Sarm1-/- mice, this study 

explored the possibility that blockade of Sarm1 signaling might also suppress 

neurological defects associated with TBI. Therefore it was investigated whether loss of 

Sarm1 was associated with improved functional outcome after TBI by subjecting 

animals to the NSS: a battery of behavioral tests specifically developed to assess motor 

and neurobehavioral outcome in mice subjected to closed head TBI.191 The NSS is a 

composite of ratings measuring a combination of overall inquisitiveness, postural 

stability, and motor function. The NSS is highly correlated with the severity of brain 

damage; a score of 10 points represents maximal neurological impairment and 0 is 

normal.191 Remarkably, when compared to controls, Sarm1-/- mice had significantly 

attenuated neurological deficits as early as 2 h after TBI (Figure 3.3 A). When the 

temporal evolution of functional deficits was examined, Sarm1+/+ mice were found to 

recover approximately 1 week after TBI whereas Sarm1-/- animals displayed reduced 

functional performance only 24 h post-TBI (Figure 3.3 A). Analysis of the individual NSS 

components revealed that Sarm1-/- was associated with improved outcomes across key 

functional domains tested by the NSS, including more frequent circle exiting at 48 h 

(P=0.026, not shown) and improved straight walk at 2 h (P=0.044, not shown), but not 

startle response and seeking behavior (P>0.05 for each time point). More importantly, 

Sarm1-/- mice had less focal paresis (Figure 3.3 B) and improved postural instability as 

shown by improved balance beam testing across all beam sizes at 2 h post-TBI (P<0.05 

each; Figure 3.3 C-D summarizes the results for the 5, 7, and 10 mm beams). This is 

notable since postural instability is a commonly observed sequela of closed head TBI, 
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highlighting the potential clinical relevance of the observations with Sarm1-/- animals in 

this study.255 Notably, the recovery time from anesthesia (defined as the time to 

spontaneously right from a supine to prone position after discontinuation of anesthesia) 

was similar between Sarm1+/+ and Sarm1-/- groups subjected to TBI versus sham injury 

(Figure 3.3 F). This observation indicates that anesthetic effects are unlikely to have 

contributed to the observed between-group differences in the NSS. Finally, there was 

no significant difference in the incidence of impact seizures between TBI groups 

(P>0.05) and no sham injured animals exhibited seizure activity (Figure 3.3 G).  
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Figure 3.3 Attenuated TBI-induced behavioral deficits in Sarm1 -/- mice. (A) Composite neurological severity 

score (NSS; #P<0.05 versus pre-Trauma; *P<0.05 versus Sarm1+/+ TBI; two-way ANOVA). Overall, there were 

significant group and time effects as well as presence of a significant group x time interaction (P<0.001, each). (B-E) 

Temporal evolution of the deficit prevalence in select individual functional components assessed by the NSS 

(***P<0.001, **P<0.01, *P<0.05 for Sarm1+/+ TBI versus Sarm1-/- TBI mice; χ2-test with post-hoc Bonferroni 

correction; for n per group and time point refer to panel A). (F) Similar time to regain sternal recumbency after 

discontinuation of anesthesia in Sarm1+/+ and Sarm1-/- mice subjected to TBI and sham injury, respectively (ANOVA 

on ranks with post-hoc Dunn’s; n=44 for TBI groups and n=16 for sham injury groups). (G) There was no difference in 

the incidence of impact seizures between Sarm1+/+ and Sarm1-/- TBI mice (χ2-test; n=44 for TBI groups and n=16 for 

sham injury groups). All statistical comparisons were made between all 4 experimental groups including for 

assessment of seizure frequency. For clarity in the figure only significant results are indicated in panels A-E. 
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Attenuated neurometabolic dysfunction after TBI in Sarm1 -/- mice 

TBI induces dramatic changes in the brain metabolic state. 1H-MRS provides a 

sensitive technique to quantify subtle alterations in neurochemical profiles after TBI that 

relate to functional outcome in patients.256 To determine whether TBI differentially 

affects the cerebral neurochemical profile in wild type versus Sarm1-/- mice, in vivo 1H-

MRS was conducted in a subset of mice prior to injury, 2 h, and 48 h post-TBI. This 

analysis of cerebral metabolites acquired from a single voxel within the right traumatized 

hemisphere (spectral fits with a Cramér-Rao lower bound [CRLB] of <15%) revealed 

that two metabolic parameters (total choline [tCh], and total n-acetylaspartate [tNAA]) 

were transiently reduced at 2 h post-trauma in Sarm1+/+ mice (Table 3.1; Figure 3.4 A 

and B). These metabolites play important roles in myelination and membrane 

metabolism257 and have been previously shown to transiently decrease after TBI in 

rodents.258,259 For example, NAA, which is the most abundant of these 

metabolites,256,258 is a marker of neuroaxonal integrity and viability; its reduction after 

TBI probably reflects impairment of neuronal metabolism.52,256-260 Strikingly, the cerebral 

metabolic depression observed in Sarm+/+ mice after TBI was abolished in the absence 

of Sarm1.  
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Metabolite Time Sarm1+/+ (n=5) Sarm1-/- (n=5) Between group P-value† 

Creatine Pre 161.7 ± 20.9 161.0 ± 23.6 n.s. 
 2 h 157.9 ± 22.4 159.3 ± 18.0 n.s. 
 48 h 156.3 ± 27.0 155.6 ± 28.5 n.s. 
Glu Pre 282 ± 8.5 282.7 ± 6.1 n.s. 
 2 h 266.8 ± 12.5 289.8 ± 16.3 n.s. 
 48 h 278.4 ± 34.0 288.6 ± 29.4 n.s. 
Gln Pre 113.7 ± 9.9 114.0 ± 7.0 n.s. 
 2 h 138.4 ± 46.9 117.1 ± 9.9 n.s. 
 48 h 132.3 ± 21.0 123.6 ± 2.1 n.s. 
Inositol Pre 122.1 ± 10.9 122.4 ± 7.1 n.s. 
 2 h 119.9 ± 10.0 119.3 ± 19.5 n.s. 
 48 h 128.4 ± 13.9 121.0 ± 16.3 n.s. 
NAA Pre 162.5 ± 6.8 174.2 ± 11.2 n.s. 
 2 h 164.1 ± 6.0 173.9 ± 13.8 n.s. 
 48 h 161.1 ± 27.3 174.0 ± 24.7 n.s. 
Taurine Pre 201.8 ± 12.8 204.1 ± 9.5 n.s. 
 2 h 216.2 ± 11.8 219.8 ± 10.7 n.s. 
 48 h 217.7 ± 21.9 227.9 ± 33.0 n.s. 
tCr (Cr+PCr) Pre 187.0 ± 8.7 197.4 ± 2.7 n.s. 
 2 h 177.4 ± 6.0 195.4 ± 10.0 n.s. 
 48 h 191.9 ± 15.2 191.6 ± 16.1 n.s. 
tCho (GPC+PCho) Pre 64.1 ± 2.0 63.7 ± 5.2 0.901 
 2 h 51.3 ± 3.2 60.2 ± 5.3 0.004 
 48 h 65.3 ± 6.2 62.9 ± 2.5 0.369 
Glx (Glu+Gln) Pre 393.1 ± 12.8 395.0 ± 7.8 n.s. 
 2 h 373.6 ± 20.3 397.7 ± 24.6 n.s. 
 48 h 405.0 ± 12.7 398.1 ± 7.8 n.s. 
tNAA (NAA+NAAG) Pre 195.6 ± 15.4 208.6 ± 4.8 0.137 
 2 h 188.1 ± 10.5 209.8 ± 5.9 0.021 
 48 h 202.2 ± 6.2 209.5 ± 16.7 0.391 

Table 3.1 In vivo  neurochemical profile alterations in Sarm1 -/- and Sarm1 +/+ control mice as assessed by 1H-

MRS. Values are institutional units and expressed as mean±S.D. †P-value comparison of Sarm1+/+ with Sarm1-/- mice 

(two-way RM ANOVA with post-hoc Holm-Šídák test). n.s, indicates not significant; Cr=creatine; Gln=glutamine; 

Glu=glutamate; Glx=glutamate and glutamine; GPC=glycerophosphocholine; NAA=n-acetyl aspartate; NAAG=n-

acetyl aspartatyl glutamate; PCho=phosphocholine; PCr=phosphocreatine; tCho=total choline (GPC+PCho); tCr=total 

creatine (Cr+PCr); tNAA=total n-acetyl aspartate (NAA+NAAG).  
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Figure 3.4 Loss of Sarm1  is associated with suppressed TBI-induced alterations in brain neurochemical 

profiles. 1H-MRS showed a transient reduction in (A) tCho (total choline = glycerophosphocholine [GPC] + 

phosphocholine [PCho]) and (B) tNAA (total n-acetyl aspartate = n-acetyl aspartate [NAA] + n-acetyl aspartatyl 

glutamate [NAAG]) within the right hemisphere of Sarm1+/+ but not Sarm1-/- mice (#P<0.05 for overall group 

difference; *P<0.05, **P<0.01 versus Sarm1-/- at 2 h; two way RM ANOVA with post-hoc Holm-Šídák test). 
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Impact of Sarm1 -/- on CBF and blood gases after TBI  

Importantly, the effect of Sarm1 loss on 1H-MRS profile changes was not 

associated with changes in CBF as there was no significant difference in the degree of 

post-TBI cerebral perfusion between Sarm1-/- and Sarm1+/+ mice (Figure 3.5). 

Furthermore, there was no difference in the number of animals that had versus did not 

have a CBF reduction below the median 20-min post-TBI CBF (P=0.653, χ2-test), 

suggesting a similar incidence of post-traumatic CSD. 

 

Figure 3.5 Similar CBF response to TBI in Sarm1  wild type and knockout mice. After TBI, relative regional 

cerebral blood flow (rrCBF) decrease to a similar degree in Sarm1+/+ and Sarm1-/- mice. Values reached a nadir of 

~60% of baseline at 20 min following trauma. Subsequently, rrCBF recovered partially to ~75% of baseline values at 

90 min following impact. Sham injured animals displayed a stable rrCBF through the sampling period. Values are 

slightly shifted on the x-axis for better visibility (*P<0.05 versus baseline; RM ANOVA on ranks with post-hoc 

Dunnett's test). For clarity in the figure only significant results are indicated throughout.  
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Lastly, blood gases, electrolytes, glucose, hematocrit, and hemoglobin 

concentration assessed in a subset of animals at the end of anesthesia indicated values 

within the normal physiological range without significant differences between wild type 

and Sarm1-/- mice (Table 3.2). Therefore the observed differences in neuronal 

metabolism as assessed by 1H-MRS were unlikely to be a result of differences in post-

traumatic cerebral CBF responses, hypoperfusion, or hypoxia.77 

 Sarm1+/+ TBI (n=6) Sarm1-/- TBI (n=6) P-value 

pH 7.45 ± 0.07 7.45 ± 0.04 0.971 

PaCO2 (mmHg) 29.6 ± 4.5 27.0 ± 2.6 0.248 

PaO2 (mmHg) 81.2 ± 6.5 86.2 ± 6.0 0.197 

Base excess (mmol/L) -3.9 ± 2.1 -4.7 ± 2.1 0.530 

HCO3- (mmol/L) 19.8 ± 1.8 18.5 ± 0.8 0.116 

SaO2 (%) 96.5 ± 1.0 97.2 ± 0.8 0.235 

Na+ (mmol/L) 144 ± 2 142 ± 1 0.190 

K+ (mmol/L) 4.8 ± 0.3 4.9 ± 0.2 0.675 

iCa2+ (mmol/L) 1.26 ± 0.04 1.23 ± 0.06 0.429 

Glucose (mg/dL) 290 ± 51 286 ± 63 0.902 

Hematocrit (%PCV) 41.7 ± 3.9 41.3 ± 0.8 0.843 

Hemoglobin (g/dL) 14.2 ± 1.3 14.1 ± 0.3 0.838 

Table 3.2 Physiologic parameters at the end of anesthesia. Post-TBI blood gases, electrolytes, glucose, 

hematocrit, and hemoglobin concentration values were within the normal physiological range without significant 

between-group differences between Sarm1+/+ and Sarm1-/- mice subjected to TBI (P>0.05 each; t-Test). Data are 

mean ± S.D. PCV indicates packed cell volume.  
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Discussion 

Wallerian degeneration represents an active process that involves an 

autonomous self-destruction pathway leading to rapid fragmentation of the distal portion 

of a separated axon after a predictable latent phase of 2-3 days.179 Critically, though 

complete axon transection is irreversible, in vitro studies have shown that axonal 

degeneration in a non-transection model can be prevented by WLDS before a 

commitment point is reached.179,261 This suggests that therapies targeting Wallerian 

degeneration pathways may preserve axons in neurological conditions where axon 

degeneration and transection are not immediate.  

This approach is of particular interest to treat TBI-related axon injury, in which the 

majority of damaged axons undergo secondary disconnection (secondary axotomy) with 

a delay of hours to days after the initial trauma.111 However, while WLDS is axon 

protective in a wide range of neurological conditions, it has not been shown to prevent 

axonal degeneration after TBI.179 Given that no pharmacological treatment is yet 

available for patients with debilitating functional impairment due to traumatic axonal 

injury caused by TBI, identifying the potential contribution of a putative active axonal 

death program in traumatic axonal degeneration is important as it holds great promise 

for the identification of original treatment targets and the development of viable 

therapeutic approaches. 

This study shows that loss of Sarm1, the first endogenous gene whose loss 

potently suppresses Wallerian degeneration,180 remarkably attenuates surrogate 

markers of traumatic axonal degeneration and functional deficits after TBI. At 48 h, the 
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median count of injured βAPP-positive axons was reduced by 85% in Sarm1-/- mice. 

Similarly, at 48 h the plasma pNFH-concentration, which is released into the 

bloodstream after axonal injury, was blunted by >90% in Sarm1-/- mice. Importantly, 

though the peak pNFH-concentration was delayed in Sarm1-/- mice, values did not 

exceed those from wild type animals indicating that Sarm1 loss prevents axonal 

degradation rather than merely delaying it. Most important, Sarm1-/- mice exhibited 

substantially preserved neurological function after TBI providing the rationale to develop 

anti-Sarm1 therapies as a means to protect from TBI-related sequelae in humans.  

Precisely how Sarm1 activates axonal degeneration is not known. SARM1 

negatively regulates Toll-like receptor–activated transcriptional programs,262 but the 

exact mechanisms by which it exerts its pro-degenerative function are not yet well 

understood. TIR domain-multimerization, mediated by its SAM domain, appears to be 

required for SARM1‘s pro-degenerative function, while the N-terminal ARM domain is 

auto-inhibitory.179,263,264 Purportedly, the key initial step in the activation of SARM1 

relates to injury-induced axoplasmatic Ca2+ elevation, possibly via Ca2+-calmodulin 

kinase.265,266 The concept that SARM1 acts downstream of Ca2+ is interesting because 

traumatic axonal degeneration is initiated by increases in axoplasmatic Ca2+155,160,267 

with subsequent activation of Ca2+-dependent proteases of the calpain family that drive 

cytoskeletal proteolysis and ultimately axonal degeneration.179,268-270 As an innate 

immunity signaling molecule, SARM1 may be activated through molecules that 

participate in post-traumatic inflammatory cell damage signaling. Conversely, Sarm1 

knockdown has been shown to increase the expression levels of the inflammatory 

cytokines interleukin-6 and interferon-β in the mouse brain,184 which have been linked to 
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outcome after rodent TBI.271-273 This may suggest that SARM1 at least in part mediates 

axon degeneration through modulating the cerebral inflammatory response after TBI. 

Lastly, loss of SARM1 has been demonstrated to protect neurons from ischemic 

injury.183 This is of relevance for TBI, which is commonly associated with post-traumatic 

cerebral hypoperfusion that can contribute to brain injury as shown in this study as well 

as by others.77,274 Indeed, we observed significant hypoperfusion following head impact 

in both Sarm1+/+ and Sarm1-/- mice. Yet, associated cerebral metabolic dysfunction as 

assessed by 1H-MRS was significantly attenuated in Sarm1-/- mice. This observation is 

consistent with prior in vitro studies reporting rescued glycolysis in cultured Sarm1-/- 

neurites275 potentially related to maintained levels of its key substrate nicotinamide 

adenine dinucleotide (NAD+).264,275,276 This also provides a possible explanation for the 

observed early functional protection of Sarm1-/- mice in our model.  

Together, these examples indicate that SARM1 may confer axon protection 

through modulating several mutually not exclusive pathophysiological cascades and 

further study is required to identify the precise role of SARM1-signalling in TBI to 

develop efficacious therapeutic approaches to axon protection. From a therapeutic 

standpoint, it will also be key to establish the time window for intervention. For example, 

in light of experience with other acute brain injuries (such as ischemic stroke) there may 

only be a tight therapeutic window of several hours after TBI111 before the axon injury 

cascade has progressed to the point that Wallerian like degeneration cannot be 

rescued. Further, it has been shown that blocking Wallerian degeneration (such as 

through WLDS) may hinder axonal regeneration.277,278 Accordingly, it will be important to 
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determine whether loss of Sarm1 impairs axonal regeneration and thereby negatively 

impact functional recovery.  

Though the results presented in this thesis are highly suggestive, they do not 

establish direct evidence that observed improvement in functional outcome in Sarm1-/- 

mice was exclusively the result of axonal protection. Thus, further studies may benefit 

from including functional assays to directly determine the contribution of axonal 

functional integrity to sensorimotor and cognitive deficit severity. A further limitation 

relates to the fact that consistent with the mild model severity the number of βAPP 

stained axons in our model was relatively low. Given the low ratio of injured-to-uninjured 

axons no attempt at quantifying the degree of axon loss over the study period was 

made. Thus, further study is required to confirm whether noted attenuation of βAPP 

staining in Sarm1-/- mice truly translates to long-term survival of cerebral axon after TBI. 

In summary, my findings support the notion that Wallerian degeneration may be 

an underlying pathological feature of TBI and its behavioral consequences. My study 

highlights the translational potential of anti-Sarm1 directed therapies as a valuable and 

novel avenue to clinical treatment of TBI and other impact-based injuries in the nervous 

system, and potentially also in a wide range of human neurological diseases associated 

with axonal injury and degeneration. 
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CHAPTER IV: 

COMPREHENSIVE DISCUSSION 

Rationale for Studies 

TBI constitutes a major public health problem as a leading cause of adult death 

and disability worldwide.3 Despite the devastating impact and prevalence of TBI, 

molecular pathways that drive pathology after TBI remain to be clarified.  

Axonal injury and degeneration represents a pathological hallmark of TBI of all 

severities and constitutes a critical determinant of post-traumatic functional 

impairment.106,107 It is now well established that the vast majority of injured axons do 

not, as originally thought, rupture as a direct consequence of the trauma forces but 

rather degenerate as a result of complex biochemical cascades that lead to the 

catastrophic destruction of the axon cytoskeletal components and axotomy over a 

period of hours to days.111,124,139 Moreover, following axotomy the distal axon portion 

undergoes sudden rapid fragmentation along its full length ~72 h after the original 

axotomy, a process termed Wallerian degeneration.106,111,170-174 Intriguingly, this is an 

active process driven by an endogenous “axonal death” pathway that can be 

suppressed for days to weeks in homozygous mutant mice lacking the Sarm1 gene, 

providing evidence of a programmed axonal death pathway.180  

The central goal of this thesis was to use an animal model of TBI that closely 

mimics the human condition and could be used to determine whether blockage of the 

Sarm1 pathway attenuates axonal injury and degeneration as well as neurological 
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sequelae after TBI. If true, this would provide novel insight into the molecular 

mechanisms underlying TAI by showing for the first time that (i) TAI after TBI is 

governed by a Wallerian degeneration-like process and (ii) that this process is mediated 

by a SARM1-associated “programmed axonal death” pathway representing a unique 

and novel target for TBI therapy.  
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Review of Results 

In this dissertation, I provide experimental evidence that the acute adverse 

effects of head trauma on neuro-axonal morphology, brain metabolism, neural function, 

and on whole animal behavior are related to the pro-degenerative axon death signaling 

cascade mediated by SARM1.  

In Chapter II, I characterize the acute CBF responses to TBI. I demonstrate post-

traumatic profound CBF reductions in the traumatized hemisphere and show that 

despite the transient nature of these CBF alterations, animals with lower CBF values 

have greater histological brain damage and worse functional deficits. I identify that the 

specific temporospatial CBF dynamics are consistent with the occurrence of CSDs. My 

observations are important because they establish that cortical hypoperfusion and CSD 

are common in the acute phase after mild TBI and relate to a worse outcome.  

In Chapter III, I present data that animals lacking SARM1 are similar to wild-type 

mice with respect to their baseline neurological function, number of axons within the 

corpus callosum, incidence of impact seizures, time to awakening from anesthesia after 

TBI, physiological parameters, and post-traumatic CBF responses. However, Sarm1 

knockout mice had significantly fewer βAPP positive axons in the corpus callosum, 

reduced plasma pNFH concentrations, 1H-MRS-defined tissue signatures of preserved 

neuronal energy metabolism, and exhibited a strong, early preservation of neurological 

function. This provides evidence that the Sarm1-mediated prodegenerative pathway 

promotes pathogenesis in TBI.  
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Impact of the Results 

The work presented in this thesis has focused on (i) characterizing the acute 

post-traumatic CBF dynamics and their relationship to histological and functional 

outcome; and (ii) the mechanisms of trauma-induced axon degeneration through the 

study of the axon prodegenerative gene Sarm1. These data have been discussed in the 

previous chapters, but what is their potential impact for treating TBI? 

 

Acute post-traumatic cerebral hypoperfusion and metabolic dysfunction 

Moderate-to-severe TBI is associated with profound CBF impairment and 

metabolic derangements that predict a poor outcome.64,70-75 Although mounting 

evidence indicates lasting perturbation of CBF regulation, as well as metabolic 

dysfunction after mild TBI,52,57,66,77-81,256-260 there are no detailed analyses of the acute 

(within one hour) CBF responses after human mild TBI.58,279-283 This lack of human data 

is largely owing to practical and technical limitations because non-invasive assessment 

requires timely transfer of the patient to a facility with advanced neuroimaging 

capabilities.279-282 Experimental studies do not suffer from this limitation because trauma 

onset is under the investigator’s control. Yet, surprisingly few experimental studies have 

determined the CBF within the first hour after mild TBI and none of these has provided a 

detailed characterization of the hyperacute temporospatial CBF dynamics and their 

specific relation to cerebral metabolic dysfunction and overall outcome.57,60,284-287 The 

information gained from this thesis work may therefore be of significant value to the 

field.  
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First, this study included 1H-MRS investigations, which in prior studies 

demonstrated that certain brain metabolites are altered in the acute phase of TBI and 

may aid in diagnosing concussion related injuries.52,257-259,288-291 In particular, similar to 

this study, transient NAA reductions are consistently identified after TBI, indicating 

impaired neuroaxonal metabolism, integrity, and viability.52,256-260 Data for choline, the 

second most frequently altered metabolite after TBI, have been less consistent. While 

some investigators found post-traumatic increases in choline,291 this and other studies 

reported decreased levels indicating post-traumatic changes in membrane integrity and 

metabolism.257-259,292 Overall, the results in this study are consistent with the majority of 

publications and thus add to the notion that 1H-MRS can be used to detect subtle 

neurochemical alterations after rodent mild TBI, which correlate with the degree of 

functional impairment. Nevertheless, caveats in the interpretation of these results relate 

to the fact that 1H-MRS is based on relatively large tissue volume sampling (27 mm3). 

Further, image acquisition is relatively long. Accordingly, 1H-MRS is not well suited to 

track hyperacute changes with high spatial and temporal resolution in rodents and 

should be considered hypothesis generating only. Nevertheless, 1H-MRS may be of 

great value for investigating human TBI to predict cognitive sequelae and provide novel 

insight into the underlying pathophysiology when combined with other imaging 

modalities.293  

Second, by using non-invasive LDF, I provide indirect evidence for CSDs based 

on the prototypical CBF responses observed in TBI mice. It has long been suspected 

that CSDs may occur after mild TBI;104 yet, evidence for this hypothesis had been 

lacking. Importantly, CSDs have been associated with a poor outcome after severe TBI; 
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however, given the catastrophic TBI types in which CSDs have been studied it is not 

possible to determine with certainty whether CSDs are the cause for the observed poor 

outcomes or whether they represent a mere epiphenomenon.100-105 The herein 

described model enables the study of the contribution of CSDs to outcome after brain 

trauma in the absence of confounding pathologies such as ischemia, edema, 

hemorrhage, and other contusion-related injuries.  

Third, in addition to improving the understanding of the underlying 

pathophysiological processes accompanying mild TBI, these data may also inform 

future study designs seeking to investigate novel neuroprotective treatments. The data 

presented herein indicates that CSD and related CBF phenomena are not a uniform 

response to trauma with only a subset of animals exhibiting profound CBF decreases. 

Although CBF was similar across mice as early as one hour after TBI, the earlier CBF 

responses were correlated with the degree of histological and functional outcome. This 

is of particular interest for neuroprotection studies. To date all preclinically tested 

therapies failed to translate from the lab in TBI.294,295 The reasons for this are manifold 

and have been discussed extensively elsewhere.294 However, even in highly rigorous 

studies conducted by an expert consortium, inter-lab variability has been cited as a 

likely contributing factor: “a certain amount of ‘‘wobble’’ in the models was observed 

given the desire to produce behavioral deficits.”295 Among other molecules, this 

consortium sought to determine potential neuroprotective properties of cyclosporine 

A.296 Intriguingly, none of their experimental protocols included CBF measurements. 

Considering that cyclosporine A has been shown to mitigate CSD-related CBF 

decreases,297 it is thus tempting to speculate that unmeasured phenomena with variable 
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prevalence such as the herein described TBI associated CBF reductions could have 

contributed to model variability and bias. From a clinical investigational standpoint, it 

may be possible to refine existing concussion assessment tools to predict recovery after 

a mild TBI by emphasizing symptoms indicative of a CSD.298-300 It may be envisioned to 

use such information to inform concussion trials and select patients for acute pre-

hospital treatment aimed at mitigating CSD related sequelae.94,301,302  

 

Assessment of axonal injury after mild TBI 

Mild TBI accounts for the vast majority of traumatic brain injuries in the United 

States. However, despite its designation, consequences of these “mild” brain injuries 

are often not benign. For this reason, mild TBI has been referred to as the silent 

epidemic because problems such as impaired memory are often not visible. A major 

challenge in outcome prediction after TBI relates to its heterogeneous presentation. 

Most concussions are uncomplicated and resolve within days to weeks. However, it has 

been estimated that up to 15% of affected patients remain symptomatic more than 1 

year after TBI.303,304 Frequent complaints in the first weeks to months after TBI include 

easy distractibility, slow information processing, as well as impairment of executive 

function and memory.305 Although persistent cognitive deficits have been reported 

beyond the first months after mild TBI, there is insufficient evidence whether a single 

mild TBI is associated with long-term cognitive impairment.305 Interestingly, greater 

deficit persistence has been linked to pre-injury neuropsychiatric disorders and 

subacute symptoms do not consistently differ from those in trauma control groups.306,307 
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Therefore, there is a great interest in developing confirmatory tests that allow for 

predicting persistent cognitive deficits attributable to the original TBI.308  

As discussed in the previous chapter, 1H-MRS and CBF measurements may help 

diagnose post-traumatic derangements of cerebral metabolism and blood flow. 

However, these phenomena do not necessarily correlate with TAI and acute imaging is 

challenging to implement clinically.279-282,293 Because TAI represents a key determinant 

of post-TBI outcome,48,54,309,310 non-invasive tests aimed at specifically quantifying the 

degree of TAI are of particular promise. It has been suggested that neurofilaments may 

serve as sensitive markers for injury severity and recovery in both animals and 

humans.150-152,154,253,254,311-313 This thesis work included such an assay and found that 

mild TBI resulted in significant pNFH elevations in wild-type mice that temporally 

correlated with the degree of TAI as assessed by gold standard immunohistological 

techniques. More important, pNFH increases were blunted in Sarm1 knockout mice 

reflecting the attenuated TAI in the absence of SARM1. This indicates that 

neurofilament based assays may not only be used as a marker for TBI / TAI severity but 

may also serve as a sensitive means to determine the efficacy of therapeutic 

approaches to mitigating TAI. A major advantage over conventional histological 

techniques is the ability to non-invasively and serially monitor the progression of TAI in 

rodents, and by extrapolation, in human therapeutic TBI trials.  
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Sarm1‘s  possible role in traumatic axonal degeneration 

In this study I show that loss of the Sarm1 gene relates to attenuated neuro-

axonal injury, brain metabolic and behavioral dysfunction after TBI. In particular, by 

using sensitive immunohistological (βAPP) and serological (pNFH) assays I 

demonstrate that Sarm1 knockout mice have significantly attenuated TAI. These 

findings are consistent with the notion that Wallerian degeneration represents a key 

pathological feature driving axonal degeneration and behavioral impairment after TBI.  

The mechanisms by which Sarm1 promotes Wallerian degeneration remain 

incompletely understood. SARM1 is an intracellular protein that co-localizes with the 

outer mitochondrial membrane, microtubules, and is present at synapse.183,185,314 

Although it contains a C-terminal TIR domain (Figure 4.1) indicating a role in toll-like 

receptor (TLR) signaling, loss of Sarm1 does not impair TLR signaling.181,183,315 SARM1 

promotes neuronal death in response to hypoxia and neurotropic viral infection.183,316 

SARM1 has three major domains that seem critical for its regulation and activity. Its N-

terminal domain, which is comprised of multiple ARMs, possesses auto-inhibitory 

function because its ablation renders SARM1 constitutively active to promote axon 

degeneration.263,266,317 Its tandem SAM domains are likely critical for SARM1 

dimerization / multimerization318 to bring its TIR domains into proximity for downstream 

signaling because forced dimerization of the TIR domains triggers rapid axon 

degeneration (Figure 4.1).181,263,266,317  
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Figure 4.1 Model of SARM1 Auto-inhibition and Activation upon Injury. Top: SARM1 is made up of three 

regions: (1) an auto-inhibitory N terminus (Nterm) comprised of multiple ARMs, (2) tandem SAM domains that 

mediate SARM1-SARM1 binding (SAMx2), and (3) a TIR domain that triggers axon degeneration upon 

multimerization. Bottom: SARM1 multimers are inactive (auto-inhibited) in uninjured axons. Injury leads to SARM1 

activation, perhaps through release of inhibition, exposing TIR domain multimers that transmit a pro-destructive signal 

to unknown effector molecule(s). Used with permission from.181      
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As previously discussed, SARM1 appears to act downstream of Ca2+,265,266 which 

represents an interesting concept given the central role of intra axonal Ca2+ to activate 

proteases that subsequently cleave the cytoskeleton and trigger axonal 

degeneration.155,160,179,267-270 Recent work has indicated that SARM1-signaling relates to 

a local energy deficit in injured axons. Specifically, whereas NAD+ levels declined after 

axotomy in wild-type axons, NAD+ loss was substantially suppressed in Sarm1 null 

axons.264,319 Conversely, TIR dimerization resulted in rapid NAD+ depletion within 

minutes, presumably via cleavage into nicotinamide, that was followed by loss of ATP 

and finally axon destruction.264 TIR domains are not known to have any intrinsic 

catalytic activity for which reason it was thought that a, yet to be discovered, co-factor 

executed NAD+ cleavage.320 However, recent data provided unexpected insight into 

how SARM1 may result in NAD+ depletion by showing that the SARM1-TIR domain 

itself might have intrinsic NADase activity.321  

It has been proposed that NAD+ depletion is the essential function of SARM1264 

because (i) SARM1-independent NAD+ breakdown in Sarm1 null cells triggers axon 

degeneration and (ii) SARM1-induced axon destruction can be blocked by NAD+ 

supplementation as well as increased NAD+ synthesis via expression of the NAD+ 

biosynthetic enzymes nicotinamide phosphoribosyltransferase (NAMPT) and 

nicotinamide mononucleotide adenyltransferase (NMNAT).264 However, how SARM1 

cleaves NAD+ is presently unknown.  

Importantly, NMNAT, and specifically its axonal isoform NMNAT2 (NMNAT1 is 

located in the nucleus and NMNAT3 in the mitochondria), is an endogenous axon 

survival factor that synthesizes NAD+ from nicotinamide mononucleotide (NMN) and 
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ATP (adenosine triphosphate).261,322 In fact, it has been shown that WLDs prevents the 

early depletion of NAD+ in injured axons indicating that loss of NMNAT function is a 

crucial event in the Wallerian degeneration pathway.106 It has been hypothesized that 

loss of NMNAT2 may be key for the activation of SARM1. This is based on observations 

that axonal defects and embryonal lethality in NMNAT2 knockout mice are rescued by 

NMNAT2/SARM1 double knockout.323 In addition, that SARM1 function follows a similar 

temporal profile as NMNAT2-loss after axotomy.264 Lastly, NMNAT expression blocks 

axon degeneration, not by increasing NAD+ synthesis, but rather by blocking SARM1-

dependent NAD+ depletion.324 Under this hypothesis, loss of the NAD+ synthesizing 

NMNAT2, which has a short half-life and requires constant transport to the axon, would 

result in SARM1-activation and NAD+ cleavage and thus in catastrophic axonal NAD+ 

loss due to both reduced production and increased destruction of NAD+.181  

But how does SARM1 activation cause axon loss? It has been shown that 

SARM1-dimerization activates mitogen-activated protein kinase (MAPK) signaling, 

which is required for ATP-depletion after axon injury and represents an essential 

component of axon degeneration.317,325 However, a recent study found that MAPK 

signaling is not necessary for NAD+-depletion and axon degeneration induced by 

activated SARM1. This suggests that the MAPK pathway is a critical early event that 

leads to SARM1 activation, but once SARM1 is active the MAPK pathway is no longer 

essential to promote NAD+ and axon loss.326 The authors proposed that MAPK 

signaling may control the levels of the axon survival factor NMNAT2 and thus the axon’s 

susceptibility to degenerate (Figure 4.2).326  
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Nevertheless, whether this proposed pathway applies to TBI remains to be 

clarified. The mouse model used in this thesis work appears well suited to further 

dissect the specific molecular mechanisms driving traumatic axon degeneration and 

investigate how manipulating specific pathways may translate to functional and 

behavioral outcome after TBI. 

 

Figure 4.2 Simplified linear model of the axonal degeneration program. Mitogen-activated protein kinase 

(MAPK) signaling controls the levels of NMNAT2, which blocks SARM1-activation. Upon axon injury, delivery of the 

labile survival factor, nicotinamide mononucleotide adenyltransferase 2 (NMNAT2) via anterograde transport is 

blocked, levels fall below a critical threshold, thus activating SARM1. Activated SARM1 depletes nicotinamide 

adenine dinucleotide (NAD+), leading to loss of adenosine triphosphate (ATP) inducing a metabolic crisis and axon 

fragmentation (for details see text). Modified from.326  



100 

Future Directions 

The results presented in this dissertation provide several major avenues for 

future studies to further dissect underlying pathophysiology and test treatment 

strategies of mild TBI and TAI.  

 

Exploration of alternative mechanism of Sarm1  mediated axon degeneration 

TBI has a complex pathophysiology, requiring the interaction of multiple cell 

types.189 Germline Sarm1 knockout mice are viable and do not exhibit obvious 

pathology, and brains of Sarm1 knockout mice appear morphologically intact.183 

However, SARM1 appears to be important for embryonic and early postnatal 

development183,185 and in vitro and in vivo Sarm1 knockdown results in reduced 

dendritic arborization.185 Hence, observed protection from TAI in germline Sarm1 

knockout mice may stem from selection of intrinsically more resistant neurons rather 

than due to inhibition of a specific axon death pathway.  

Furthermore, post-traumatic glial pathology has been shown to contribute to 

axonal death.327 SARM1 has been linked to microglial activation328 and it is possible that 

knockout mice have less axon pathology due to attenuated microglial response, which 

would provide a fascinating link between innate immunity and axonal damage sensing. 

Likewise, oligodendroglial apoptosis may lead to axonal demyelination with subsequent 

axon death; thus it is important to determine whether Sarm1 knockout increases 

oligodendroglial survival. 
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Creating mouse models that provide the opportunity to investigate cell-

autonomous effects of Sarm1 gene disruption in the adult brain would be a significant 

advance in the field. Though expression of green fluorescent protein (GFP)-tagged 

Sarm1 has been exclusively observed in neurons,183 low expression beneath the visible 

threshold for GFP-tagged Sarm1 in non-neuronal cell types is possible and does not 

reliably exclude the possibility that non-neuronal sources of SARM1 may activate axon 

death. Creating mouse lines that allow for spatially and temporally controlled 

(conditional) Sarm1 disruption will allow to test whether cell-type specific Sarm1 deletion 

differentially affects axon degeneration after TBI. Such conditional gene knockout can 

be achieved by leveraging the Cre-loxP technology. Cre-loxP is a conditional gene-

targeting system based on the use of the site-specific recombinase Cre that catalyzes 

recombination between two loxP DNA recognition sites. An essential exon within Sarm1 

(gene of interest) is flanked with two loxP sites (floxed) by homologous recombination in 

embryonic stem cells (loxP sites are not native to the mouse genome). Subsequently, 

transgenic mice expressing Cre are crossed with the strain carrying the floxed target 

gene.  

Spatial control (tissue specificity) is achieved by using mice in which Cre is driven 

by a promotor that is specific to the tissue of interest. Once transcribed, Cre excises the 

intervening DNA including the exon from the chromosome creating a null allele in all 

cells where Cre is active. Temporal control of target gene expression is attained by 

using tamoxifen inducible Cre-systems. This approach can limit unwanted Cre activity 

and potential associated side effects such as ectopic recombination due to transient Cre 

expression during development or toxic effects due to prolonged high levels of Cre 
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activity. To accomplish temporal Cre-expression a fusion protein of Cre and a mutant 

estrogen receptor ligand-binding domain (Cre-ERT) are employed. In the absence of the 

specific ligand, the ERT domain is bound by heat shock proteins that presumably block 

recombinase activity. In vivo induction of recombinase activity is achieved by 

administration of tamoxifen or its active metabolite 4-hydroxy-tamoxifen, which releases 

the heat shock protein from the ERT domain resulting in translocation of Cre to the 

nucleus where it can excise the floxed target gene. Importantly, ERT binds tamoxifen 

with greater affinity than endogenous estrogens, which allows Cre-ERT to remain 

cytoplasmic in animals untreated with tamoxifen (newer, more specific, generations of 

this system have been developed and are denoted by ERT1 and ERT2, respectively). 

Several CreERT mouse strains have been developed and are commercially available to 

target neurons, microglia, astroglia, or oligodendroglia for homogenous cell-type specific 

Cre recombination after tamoxifen (but not vehicle) injection.329-332 

To determine, whether SARM1 cell autonomously drives TAI in the brain in vivo, 

Cre-ERT activity can be induced via intraperitoneal injection of tamoxifen (200 mg/kg) 

once a day for 5 consecutive days in mice ~2 months of age prior to TBI.332 Cre-

mediated excision of the floxed exons within the Sarm1 gene results in the transcription 

of aberrant RNA. This results in nonsense-mediated decay of the Sarm1 RNA due to 

frameshift and the unmasking of a premature stop codon, and thus, absent SARM1 

protein production.333 To validate the recombination properties of the Cre lines and 

tamoxifen treatment regimens it will be important to ascertain Cre expression on a 

cellular level, such as by immunohistochemistry using a monoclonal anti-Cre 

recombinase antibody334 or by crossing mice to a global double-fluorescent Cre reporter 
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line.335 Direct detection of SARM1 on a cellular level can be achieved by using Sarm1 

antibodies.185,336 Furthermore, complementary RT-PCR and Western blot can be 

employed to determine Sarm1- and SARM1-expression in the brain, respectively.183,187 

Finally, βAPP-staining after TBI can be used to determine the cell types in which Sarm1 

disruption leads to axon protection following TBI in the inducible Sarm1 knockout mouse 

lines as well as Cre-control lines337 that have received tamoxifen or vehicle, 

respectively.  

Based on in vitro observations that Sarm1 promotes axonal degeneration in the 

absence of other cell types,180,264,321 I expect that only mice with neuron-specific Sarm1 

disruption would be protected from TBI and show attenuated TAI. This would support 

the hypothesis that SARM1 neuron-autonomously mediates axonal death in the brain 

after TBI. Nevertheless, if other mouse lines also show axon protection, this would 

provide exciting new insight into the contribution of other cell types to SARM1-mediated 

axon degeneration following TBI. Conversely, it is possible that no mouse line shows 

protection following localized Sarm1 disruption. This would hint that germline Sarm1 

knockout contributes to brain protection through a different, yet to be discovered, 

mechanism. Alternatively, it could be that Sarm1 disruption in multiple cell types 

simultaneously is needed for protection, which could be determined by combination of 

different Cre lines. Ubiquitously expressed tamoxifen-inducible Cre lines338 could be 

used to determine whether multiple cell types are involved versus presence of a 

developmental confound.339 This would represent a critical experiment, because future 

therapeutic approaches to target Sarm1 in adulthood may not provide significant post-

traumatic axonal protection if protection requires SARM1 absence during development.  
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Possible disadvantages of the Cre-ERT approach relate to the possibility that 

tamoxifen injection results in high mortality rates, which however, could be mitigated by 

oral administration of tamoxifen. Tamoxifen induced recombination efficiency may also 

decline with advancing age,340 requiring injection at an earlier age of 4-6 weeks.337 

Further, tamoxifen-induced recombination may be mosaic (with a hypomorphic 

phenotype) and recombination sensitivity of the Cre reporter may not correlate with that 

of the floxed target gene. Therefore, immunohistochemistry will be required to provide 

an anatomical resolution of SARM1 expression.184,185 

 

Assessment of brain functional connectivity 

TAI-associated disconnection of cerebral functional domains is considered to 

underlie observed persistent neurological deficits after TBI.48,54,309,310,341 Axon protection 

is a promising target for the treatment of brain trauma to improve functional brain 

connectivity and outcome. In this dissertation I show that loss of SARM1 confers 

profound axonal protection from TBI by using histological and serological markers of 

axon integrity. In addition, I demonstrate that Sarm1 knockout mice have significantly 

fewer functional deficits than wild type littermates. However, direct evidence that 

preserved axon integrity translates to improved functional connectivity remains to be 

established.  

To probe axon function and brain functional connectivity several techniques could 

be employed to determine whether Sarm1 knockout preserves functional connectivity 

after TBI. For example, transcallosal evoked responses allow to directly probe axon 

function.342-344 After craniotomy, stimulation electrodes are inserted into the cortex to a 
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depth of approximately 600-800 µm. For non-invasive recording from the contralateral 

cortex, a silver ball-tip electrode is placed on the intact skull at corresponding 

contralateral coordinates. To record transcallosal evoked responses, current pulses are 

applied. Once a stable response is observed, intensity response curves are recorded 

and several consecutive sweeps, obtained at maximal response, will be averaged. 

Using this technique, several prior investigations demonstrated reductions in compound 

action potential amplitudes evoked in the corpus callosum after rodent TBI both in vitro 

and in vivo, with the degree of amplitude reduction correlating with injury severity.342-344 

Accordingly, I would expect that Sarm1 knockout results in greater preservation of peak 

amplitudes after TBI when compared to wild type mice, and that the degree of amplitude 

reduction correlates with the severity of axonal degeneration.342-344 Absence of such a 

difference could indicate that white matter tracts other than the corpus callosum are 

involved in the behavioral deficits observed in this study. This would inform the design 

of future studies investigating functional white matter tract integrity in this model. 

Alternatively, this may indicate the exiting possibility that SARM1 is implicated in post-

traumatic neuronal dysfunction through action in other neuronal structures such as the 

dendrites or synapse. Potential pitfalls of this technique include the confounding of the 

electrophysiological recordings by differences in anesthetic depth and brain 

temperature. Therefore, head temperature will need to be maintained within the 

physiologic range and the anesthetic regimen kept constant between animals. Lastly, 

because the overall TBI severity is mild in the used model, assessment of the 

compound action potential may not be sensitive enough to depict minor differences 

between genetic strains. However, in this case a more severe model could be tested for 
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proof-of-principle (see also next chapter). A more important potential limitation relates to 

the need for a craniotomy. Because the used mouse model is based on a closed-head 

TBI paradigm it would not be possible to establish baseline recordings or conduct serial 

long-term monitoring. Nevertheless, this issue could be mitigated by using appropriate 

control groups (sham injury and comparison with wild type mice) as well as testing 

subgroups at different time points similar to the experimental design used for the 

histological and pNFH analyses in this study. 

An alternative, non-invasive technique to assess brain connectivity is resting 

state functional magnetic resonance imaging (rsfMRI). This MRI-based technique 

studies the temporal dependency between spatially remote neurophysiological events 

that occur when brain regions communicate during rest. Importantly, regions with a 

higher level of functional connectivity also show a higher level of structural connectivity 

through white matter tracts and decreases in white matter integrity can directly affect 

functional connectivity including after mild TBI.345,346 Based on the same general 

principle as rsfMRI, functional connectivity optical intrinsic signal imaging represents a 

novel way to assess brain function.347 It converts changes in reflected light intensity 

from the brain surface to changes in local hemoglobin concentration to determine 

intrinsic functional connectivity and has been successfully applied to determine 

disruption of brain functional connectivity in mouse models of Alzheimer’s disease and 

acute ischemic stroke.347-349 Similar to the invasive transcallosal evoked responses, 

both rsfMRI and functional connectivity optical imaging are susceptible to confounding 

by anesthesia and changes in animal physiology. Accordingly, careful attention to 

anesthetic depth, body temperature, and cardiorespiratory function is needed. 
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Repetitive TBI and chronic traumatic encephalopathy 

First evidence for an adverse compounding effect of multiple traumas stems from 

observations in boxers exhibiting cognitive, behavioral, and motor abnormalities almost 

a century ago.350-352 Originally coined “punch drunk” syndrome the term dementia 

pugilistica was subsequently introduced.352,353 Over the last decades, a concept 

emerged that multiple (mild) brain traumas can lead to a unique clinical and pathological 

picture termed chronic traumatic encephalopathy (CTE).354 Clinically, CTE is 

characterized by delayed neurodegeneration, cognitive decline, and behavioral 

abnormalities long after the recovery from the acute effects of the original TBI.354 On a 

pathological level the disease is associated with the accumulation of the microtubule 

associated protein tau in the form of neurofibrillary inclusions (neurofibrillary tangles, 

neuropil threads, and glial tangles) suggesting that repetitive TAI-related breakdown of 

the cytoskeleton and dissolution of microtubules and neurofilaments may serve as a 

toxic gain of function trigger that leads to continued accumulation of tau and to promote 

neurodegeneration.351,354,355 Given its high clinical relevance, SARM1’s role in repetitive 

TBI will need to be elucidated. I have been able to adapt the mouse model used in this 

dissertation to produce repetitive TBI. The preliminary data gained from these 

exploratory analyses indicates that Sarm1 knockout mice have significantly improved 

survival and a better functional outcome (for additional details see Appendix).  
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APPENDIX 

Modeling repetitive TBI in the mouse 

 

Material and Methods 

Ethical approval 

All procedures were approved by the University of Massachusetts Medical 

School Institutional Animal Care and Use Committee (Protocol #A-2405-15).  

 

Mice, TBI paradigm, anesthesia, and analgesia 

Spontaneously breathing male C57BL6/J mice (Jackson Laboratories) age 8-12 

weeks (n=48) were subjected to 5 mild closed head injuries spaced 24 h apart using the 

same weight-drop paradigm as described in chapter II. To alleviate pain, animals 

received 0.05 mg/kg subcutaneous buprenorphine (Patterson Veterinary, Devens, MA, 

USA) 30 min before the end of anesthesia and every 6 h afterwards until 24 h after the 

last TBI. Additionally, each animal received 5 mg/kg subcutaneous carprofen (Patterson 

Veterinary, Devens, MA, USA) after each TBI.  
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Neurological evaluation 

For neurological evaluation the NSS was assessed prior to the first TBI as well as 

at 2 h, 24 h (immediately prior to the second TBI), 26 h, 48 h (prior to the third TBI), 50 

h, 72 h (prior to the fourth TBI), 74 h, 96 h (prior to the fifth TBI), 98 h, as well as 7 d, 14 

d, 21 d, and 28 d after the initial TBI as described in chapter II. The time to sternal 

recumbency and presence of seizure activity was recorded after each TBI as detailed in 

chapter II. 

 

Statistical analysis 

Unless otherwise stated, continuous variables are reported as mean±SEM. 

Between-group comparisons for continuous variables were made with Mann-Whitney U-

test, two-way repeated measures ANOVA, and two-way ANOVA as appropriate. 

Survival was assessed with the Log-Rank test. Categorical variables were compared 

using the Fisher exact test. A two-sided P<0.05 was considered statistically significant. 

All statistical analyses were performed using SigmaPlot 12.5 (Systat Software, Inc., 

Germany) and IBM® SPSS® Statistics 22 (IBM®-Armonk, NY). 
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Results 

Sarm1  knockout is associated with improved survival after repetitive TBI 

Compared to controls, Sarm1 knockout mice had remarkably improved survival 

by 28 days after repetitive (5x) TBI (52% versus 17.4%; P=0.031; Figure A.1).  

 

Figure A.1 Loss of Sarm1  is associated with attenuated mortality after repetitive TBI. Sarm1-/- mice (n=25) had 

significantly improved survival (P=0.031) as compared to Sarm1+/+ mice (n=23).   
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Loss of Sarm1  relates to improved functional outcome repetitive TBI 

Serial evaluation of the NSS showed increasing neurological deficits with repeat 

TBI in both wild type and Sarm1 knockout mice (Figure A.2). Importantly, neurological 

deficit severity was significantly attenuated in mice lacking Sarm1. Furthermore, Sarm1 

wild type mice were found to recover approximately 10 days after the last TBI (2 weeks 

after the first TBI) whereas Sarm1-/- animals displayed no signficant functional 

impairment only 3 days after the last TBI (7 days after the first TBI; Figure A.2).  

 

Figure A.2 Loss of Sarm1  is associated with attenuated neurological deficits after repetitive TBI. Composite 

neurological severity score in the intention-to-treat analysis (i.e., all neurological severity scores were considered up 

to the animals’ death; #P<0.05 versus pre-Trauma; *P<0.05 versus Sarm1 wild type; two-way RM ANOVA with post 

hoc Dunnett's test). Overall, there were significant group (P<0.01) and time (P<0.001) effects as well as presence of 

a significant group x time interaction (P<0.01). For clarity in the figure only significant results are indicated. 
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Similar to the single TBI experiment (see chapter III), the recovery time from 

anesthesia (defined as the time to spontaneously right from a supine to prone position 

after discontinuation of anesthesia) was similar between Sarm1 wild type and Sarm1 

knockout groups (median [25th-75th percentile] 141 s [90 s - 305 s] versus 163 s [73 s – 

227 s]; P=0.838; data not shown). Likewise, although there was a trend towards fewer 

impact seizures in Sarm1 knockout (29%) versus wild type (55%) mice after the first 

TBI, this did not reach significance (P=0.134; not shown). 

Notably, in contrast to the single TBI experiments (compare also with Figure 3.3), 

there was no significant difference in NSS between wild type and Sarm1 knockout mice 

immediately after the first trauma. In particular, wild type animals appeared to have a 

lower than expected NSS at 2 h (2.1±0.5 [repetitive TBI] versus 3.0±0.4 [single TBI]).  

To better understand this apparent inconsistency, I examined the NSS of 

surviving versus non-surviving mice. Overall, non-surviving animals had a worse NSS 

after the first TBI than survivors (P=0.027, not shown). When further stratified by 

genotype, surviving wild type mice had significantly lower 2 h NSS than non-survivors, 

whereas there was no significant difference in Sarm1 knockout mice (P=0.29; Figure 

A.3, P<0.05). 
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Figure A.3 Association between initial neurological deficit severity and survival to day 28. There was a 

significant difference in the 2 h composite neurological severity score between survivors and non-survivors among 

Sarm1 wild type (P<0.05), but not Sarm1 knockout (P=0.29) mice (two-way ANOVA). Overall, there were significant 

survival effects (P=0.019) but the analysis was underpowered for valid interaction analyses.  

 

To gain additional insight into the association of survival status with neurological 

outcome, I conducted a sensitivity analysis that only included data from mice that 

survived for the entire 28 day observation period (complete-case analysis). Overall, the 

results gained from this analysis were in line with the intention-to-treat analysis. Despite 

initially lower composite NSS of Sarm1 knockout versus wild type mice, neurological 

deficit severity was significantly greater in wild type mice after the 5th TBI up to 72 h 

follow up (Figure A.4). Together, these results add to the notion that absence of SARM1 
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mitigates TBI related neurological deficits. However, because of the limited number of 

included animals in the complete-case analyses, statistical tests were underpowered, 

and results should be considered hypothesis generating only. 

 

Figure A.4 Sensitivity analysis of the neurological deficits in surviving mice. Composite neurological severity 

score in the complete-case analysis (i.e., only surviving animals were included; #P<0.05 versus pre-Trauma; *P<0.05 

versus Sarm1 wild type; two-way RM ANOVA post-hoc Holm-Šidák test). Overall, there were significant time 

(P<0.001) effects as well as presence of a significant group x time interaction (P<0.01).  
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Discussion 

In summary, in this preliminary experiment I introduce a repetitive mild closed 

head TBI model in the mouse. This is an important extension of the single TBI model 

because epidemiologic studies have demonstrated that TBI increases the risk for 

dementia and other chronic neurodegenerative diseases.351,354-357 However, while this 

association has been consistently shown even with a single moderate to severe TBI, 

data regarding such an association with single mild TBI is less convincing.358 This has 

led to the hypothesis that there exists a “dose-response” relationship between TBI and 

the risk for chronic cognitive decline and dementia: the risk increases with both trauma 

severity and the number of injuries.358 Under this concept multiple mild brain traumas 

can cause neurological injury and deficits that extend well beyond the initial impact and 

may manifest as CTE.354,359 However, it is important to note that CTE likely represents a 

disease spectrum and not all patients will develop pathology after multiple brain 

injuries.216,359 My model may help elucidate the complex pathophysiology of repeat head 

trauma.  

Most importantly, my preliminary data indicates that loss of Sarm1 remarkably 

attenuates morbidity and mortality after repetitive TBI. Although further characterization 

of this model, particularly with respect to chronic histological brain pathology, is needed, 

these data provide a strong foundation for future studies designed to determine the role 

of the Sarm1 pathway in repeat head injury and possibly CTE pathophysiology. This is 

an important step forward in the field because CTE, unlike most other 

neurodegenerative diseases, can affect healthy adults as early as in their teenage years 

and because there is presently no treatment available for this devastating disease.216 
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Impact of the brain ventricles on traumatic axonal injury: 

A biomechanical hypothesis 

 

 

 

 

 

 

 

 

 

The following work has been published in the Journal of Neurotrauma article published 

as: 

 

Bouley J, Henninger N. Lateral ventricle attenuates underlying traumatic axonal 

injury after closed head injury in the mouse. J. Neurotrauma 2017. doi: 

10.1089/neu.2017.5005. (epub) 

 

Author contributions: J.B. conducted animal surgery, behavioral testing, and 

genotyping. N.H. designed the study, conducted animal surgery, histology analyses, 

statistical analyses, and wrote the paper.  
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Using model systems it has been suggested that the lateral ventricles could act 

as strain relievers and thereby mitigate TAI in adjacent tissues by absorbing energy; yet 

biological evidence for this hypothesis from in vivo studies has been lacking.360,361 In 

this study, attenuated TAI was noted at 48 hours after TBI within the corpus callosum 

overlying the lateral ventricle of wild-type C57BL/6 mice.  

Figure A.5 summarizes the spatial distribution of βAPP positive axons within the 

corpus callosum and indicates conspicuous TAI attenuation beneath the lateral ventricle 

under the impact center. This observation supports the notion that the lateral ventricle 

may indeed attenuate TAI through its proposed energy absorbing capacity. In extension 

of this data, any larger CSF space within the brain may mitigate TAI in adjacent white 

matter tracts in a similar fashion, which may in part explain attenuated TAI in rats with 

ventriculomegaly.362 Nevertheless, although this previous rat study and the mouse 

model used in this dissertation share several features (both models employ a weight 

drop device to produce a closed head impact with associated head acceleration), there 

are also important differences including the use of different rodent species, presence 

versus absence of ventriculomegaly, use of a protective steel disc, as well as impact 

severity and degree of post-traumatic head acceleration.362 Likewise, both models can 

only mimic certain aspects of the heterogeneous human TBI pathophysiology, which is 

influenced by the injury mechanism and proportion of impact and acceleration–

deceleration type forces evoking TAI. Accordingly, the amount and location of axonal 

injury, and thus the extent by which ventricular size can affect it, will be dependent on 

the actual model utilized / the circumstances of the accident. Therefore, a one-to-one 

extrapolation of the results presented in this thesis work to other models and human TBI 
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may not be possible. Future studies seeking to unravel the complex interaction between 

the cerebral ventricles, specifically in the setting of ventriculomegaly, and TAI should 

include detailed assessment of the brain biomechanics during and after TBI to help 

assess the specific contribution of the biological (e.g., inflammation)360-362 versus 

biomechanical (e.g., energy distribution and transfer) tissue response to trauma.  

 

Figure A.5 Brain ventricular system and traumatic axonal injury. At 48 h after TBI significantly fewer beta 

amyloid precursor protein (βAPP) stained axon profiles were counted in the corpus callosum directly overlying the 

lateral ventricles (blue bars) as compared to immediately adjoining fields of view (FOVs). *indicates P<0.05 versus 

FOV3. There was no significant difference in the βAPP counts between FOVs 1 and 2 compared to FOV center right 

after adjustment (for clarity, additional pairwise comparisons are omitted). Analyses were done using repeated 

measures ANOVA on ranks with post-hoc Student-Newman-Keuls method. Bars indicate mean ± 95% confidence 

interval. For details regarding the experimental methods see chapter III. Figure adapted from219 with permission 

(compare also with Figure 3.2).  
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