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Abstract 

Crosspresentation allows antigen presenting cells to present peptides 

from exogenously derived antigens onto MHC Class I for presentation to CD8+ T 

cells. Though this pathway shares key players with the Classical Class I and 

Class II pathways, several questions remain. A genomewide siRNA screen was 

performed to look for genes that selectively affected the crosspresentation or the 

Class II pathways. Among the genes identified in the screen was the Rab 

GTPase Rab39a. Rab39a was required for efficient crosspresentation but was 

dispensable for the presentation of endogenously expressed antigen. Both TAP-

dependent and independent antigen required Rab39a for efficient presentation. 

Rab39a localized to late endosomes and phagosomes, though interestingly it 

was not required for the Class II pathway. Analysis of phagosomes from Rab39a 

KO or rescued cells has shown that in the presence of Rab39a, phagosomes 

were enriched for the open form of MHC Class I as well as TAP1, a member of 

the peptide loading complex. The enriched open form of MHC-I was peptide 

receptive, suggesting that it could contribute to crosspresentation. Phagosomes 

from Rab39a positive cells had reduced degradative capability and had 

increased levels of Sec22b, a SNARE protein reported to deliver ER-golgi 

sourced cargo to phagosomes. Furthermore, inhibition of ER-golgi transport via 

brefeldin A abolished the phenotype conferred by Rab39a. Thus, we hypothesize 

that Rab39a mediates the delivery of ER-golgi derived cargo to the antigen 

containing phagosome. This delivery allows peptide receptive MHC-I, as well as 



v 
 

the peptide loading complex to reach the antigen, thereby facilitating 

crosspresentation. 
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CHAPTER I: A Genomewide SiRNA Screen Identifies Genes Important For 

The Crosspresentation And Class II Presentation Pathways 

 

I. Introduction 

A. Crosspresentation and its relevance 

The initiation of an effective T cell response begins with the stimulation of 

naïve T cells by antigen presenting cells (APCs). This stimulation is primarily 

mediated by the interaction between the T cell receptor and its cognate peptide-

MHC molecule presented on the APC surface. Peptide presented on MHC Class 

I stimulate CD8+ T cells to become cytolytic (CTL) and produce cytokines. 

Meanwhile, peptides presented on MHC Class II stimulate CD4+ T cells, which 

have a variety of functions including cytokine production and in some cases, 

cytolytic function as well.  

Traditionally, it was thought that the presentation of peptides on MHC 

Class I vs Class II molecules was based solely on the source of antigen. MHC 

Class I was responsible for the presentation of endogenously expressed 

proteins, while MHC Class II was responsible for the presentation of peptides 

acquired from exogenous sources, i.e. those eaten by phagocytic macrophages 

and dendritic cells. This delineation was questioned however, when it was 

observed that antigens from transplanted tumors were somehow being presented 
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by host APCs for the generation of CTLs (1). This phenomenon was eventually 

discovered to be brought about through crosspresentation.  

Crosspresentation (XPT) is the process wherein exogenous antigen is 

taken up by antigen presenting cells (APCs) to be processed and presented on 

MHC Class I molecules. In vivo, the main APCs that are capable of XPT are the 

dendritic cells (DC) (2-4) , though macrophages (5, 6) and more recently other 

cell types, have been demonstrated to have this ability (7-12).  

Besides the original case of transplant rejection, it turns out that XPT has 

an important role to play in the adaptive immune response. Naïve T cells are 

mainly localized in the lymphoid tissues (13), and rely on incoming APCs for 

activation. XPT allows antigen in the peripheral tissues to reach these T cells via 

migrating APCs. DCs, through XPT, can present viral antigen to CD8+ T cells, 

even though the DCs themselves are not infected (14). Presentation of tumor 

antigens is another important role (15). On the flipside, XPT has also been 

implicated in the initiation of autoimmunity, through the presentation of self 

antigens (16, 17). Islet dendritic cells are able acquire antigen from β-cells and 

initiate diabetogenic CD4+ and CD8+ T cell responses. 

B. Specialized Antigen Presenting Cells 

While many cells that are able to take up antigen has been shown to cross 

present, it is the dendritic cell that is the most efficient in this activity (3, 4). Of the 

various dendritic cell subtypes in the mouse, the CD8+ dendritic cell is the most 
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capable of XPTing many antigens(18-20). These cells normally reside in the 

spleen and lymph nodes. Meanwhile, in the periphery, the CD8+ CD103+ 

migratory DCs share similar qualities.  Why these DC subtypes are most 

specialized to crosspresent has been under intensive study.  

One of the characteristics that CD8+ DCs have is their expression of 

Clec9A. Clec9A is a cell surface receptor that recognizes F-actin in dead and 

dying cells (21). This receptor allows the DC to engulf cellular debris more 

efficiently, and also directs engulfed material to endosomes that promote XPT 

(22). CD8+ DCs also express higher amounts of MHC-I related presentation 

genes, such as components of the peptide loading complex (TAP1, TAP2, 

Calnexin, Calreticulin, ERp57) as well as proteases known to trim MHC-I 

destined peptides (ERAP1) (23). CD8+ DCs can also regulate endosomal pH via 

Nox2 (24), which limits antigen degradation and preserves them for presentation. 

Conversely, CD8+ DCs also express lower amounts of genes that can 

compromise XPT. For instance, these cells express lower levels of Siglec-G, a 

lectin whose activation deactivates NOX2, thus promoting excessive antigen 

degradation (25). 

C. Pathways of Crosspresentation 

The ability of antigen presenting cells to XPT was soon discovered to be 

more complex than it seemed. XPT shared key players with the Classical Class I 

pathway, but it also shared key steps with the MHC Class II pathway. The degree 
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of contribution by the Classical Class I and the Class II pathways differed 

depending on the type of antigen given to cells. This section attempts to 

subdivide the pathways of crosspresentation into 3 general classes – the 

phagosome to cytosol to ER (P2C2E), the phagosome to cytosol to phagosome 

(P2C2P) and the vacuolar pathways. Recent advances in the field however, 

indicate that there might be novel pathways still waiting to be characterized.  

i. The Classical MHC Class I pathway 

Before discussing the pathways of XPT, it is important to detail the steps 

in the Classical Pathway of Class I presentation (26) (Figure 1). XPT shares 

numerous key players with the Classical Pathway such as the proteasome and 

TAP1. The known pathways of XPT can be roughly subdivided on how much 

they overlap with the Classical Pathway. Furthermore, for several antigens, the 

pathway of XPT that overlaps most with the Classical Pathway, particularly the 

requirement for proteasomal processing of antigen, seem to have the biggest 

contribution to the generated immune response (27). 

Cellular proteins constantly undergo degradation as part of the normal 

catabolism of cells. These proteins are ubiquitinated and are hydrolyzed by the 

cytosolic proteasome to generate oligopeptides around 8-11 amino acids long 

(28). Most of these peptides are further degraded into amino acids by cytosolic 

peptidases (29). However, some peptides enter the endoplasmic reticulum (ER) 

through the transporter associated with antigen processing (TAP).  
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In the same compartment, newly synthesized MHC-I molecules associate 

with the peptide loading complex (PLC) which includes chaperone proteins such 

as Calnexin and Tapasin (30). These chaperones promote proper folding of free 

MHC heavy chains and facilitate β2m binding. Through association with the 

peptide loading complex (PLC), these now peptide receptive MHC Class I 

molecules are stabilized in the ER and can then accept peptides coming through 

the TAP transporter. In some cases, peptides that reach the ER are a bit too long 

– these peptides are trimmed by the ER resident protease ERAP1 prior to Class I 

loading (31, 32). Peptide-loaded MHC Class I molecules are freed from the PLC, 

and are shuttled to the cell surface for presentation. 
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Figure 1. Classical class I antigen presentation.  

Figure 1. Classical class I antigen presentation.  The classical pathway 
monitors the self-proteins and foreign proteins that are synthesized by cells. 
Expressed proteins destined for degradation are  conjugated with ubiquitin 
and then  degraded by proteasomes. Long peptides undergo trimming by 
cytosolic peptidases.  A fraction of peptides are translocated into the lumen 
of the ER via TAP. Some long peptides undergo trimming in the ER by ERAP. 
Newly synthesized MHC-I molecules associate first with the chaperone 
calnexin and then, via Tpn, with TAP in the PLC. After  binding TAP-
transported peptide, the MHC class I:peptide complexes are  transported 
through the secretory pathway to the plasma membrane, where they are 
presented to CD8+ cytotoxic T cells. Abbreviations: ER, endoplasmic reticulum; 
ERAP, ER aminopeptidase; ERGIC, ER-Golgi intermediate compartment; 
PLC, peptide loading complex; TAP, transporter associated with antigen 
processing, Tpn, tapasin. This figure was taken from a previous publication 
(Cruz, Colbert et al. 2017) 
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ii. The Phagosome – Cytosol - ER pathway 

The intrinsic link between the Classical Class I and the XPT pathways can 

be traced to the observation that a number of exogenously derived antigens were 

dependent on cytosolic cellular components for presentation. The presentation of 

ovalbumin-coated beads for instance, could be disrupted using inhibitors of the 

proteasome (33). The absence of TAP also abrogated XPT (33). What these 

data implied was that exogenous antigen was being transferred to the cytosol, 

and thereafter can follow the same steps that occur in the Classical Pathway. 

Further experiments have confirmed this transfer. The ribosome inactivator 

Gelonin, when given to dendritic cells, was able to cause cell death (33, 34). The 

same occurred with exogenous cytochrome c (35). These proteins caused cell 

death through interactions with cytosolic cellular components. Exogenously given 

horse radish peroxidase has been found active in cytosolic fractions (36). 

Exogenous β-lactamase was able to cleave cytosolic fluorescent substrates 

when given to DCs (37). While still under intense study, the transport of 

phagosomal components into the cytosol has been attributed to translocation 

channels recruited to the phagosome such as Sec61 (38). Another hypothesized 

mechanism of transfer is phagosomal  membrane disruption (39). 

  Thus, for a variety of antigens, the XPT pathway is no different to the 

Classical Pathway after a prior phagosome-to-cytosol step (Figure 2). 
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Figure 2. Cross-presentation, phagosome-to-cytosol pathway. 

Figure 2. Cross-presentation, phagosome-to-cytosol pathway.  For 
cross-presentation, exogenous antigen is internalized via pinocytosis, 
receptor-mediated endocytosis, or phagocytosis.  Components of the PLC 
traffic to the endocytic compartment through a mechanism involving Sec 22b. 
 MHC-I molecules may also traffic to endosomes from the plasma membrane 
(in part via a Rab11a and SNAP-23 mechanism) or from the ER (potentially by 
way of CD74 or another mechanism).  Antigen within the phagosome 
escapes to the cytosol either by membrane disruption or through an ERAD-
like translocation (green).  Antigen is then conjugated with ubiquitin and 
degraded by the proteasome.  Peptides are then transported by TAP into the 
ER (red lines) or back into the endocytic compartment (blue lines).  Long 
peptides in the ER can be further trimmed by ERAP (pink), whereas those in 
the endosome can be trimmed by IRAP (blue-green) before binding MHC-I. 
The peptide-MHC I complexes are then exported to the plasma membrane. 
Dashed lines indicate steps in the pathway that are not fully understood. 
Abbreviations: ER, endoplasmic reticulum; ERAP, ER aminopeptidase; 
ERGIC, ER-Golgi intermediate compartment; IRAP, insulin-regulated 
aminopeptidase; NOX2, NADPH oxidase 2; PLC, peptide loading complex; 
TAP, transporter associated with antigen processing; Tpn, tapasin. This figure 
was taken from a previous publication (Cruz, Colbert et al. 2017). 
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iii. The Phagosome – Cytosol – Phagosome pathway 

A layer of complexity was added to the phagosome to cytosol pathway 

when it was found that TAP was also recruited to some phagosomes (40). 

Phagosomal TAP was functional, and could mediate transport of peptides into 

purified phagosomes for Class I loading (41). Other novel transporters have also 

been reported to exist, as some peptides could be transported into phagosomes 

in the absence of TAP (42). When DCs were incubated with soluble US6, a viral 

inhibitor of TAP1, XPT of soluble ova was abrogated. This was due to the 

inactivation of TAP within the endosome itself, preventing re-entry of peptides 

(41). Moreover, members of the peptide loading complex (Tapasin, Calreticulin, 

Erp57) were found in the endosomes, providing the machinery required for Class 

I stabilization and loading.  

Further evidence of this phagosome-cytosol-phagosome route has been 

shown by the finding that several antigens, such as ova coated beads, required 

the Insulin-Regulated Aminopeptidase (IRAP) for optimal XPT (43-45). IRAP was 

localized in endosomal compartments, and functioned similarly to ERAP – 

trimming peptides to the correct length. Knockout of IRAP caused around a 50% 

decrease in ova bead XPT, similar to ERAP deficiency, and double knockout 

cells had a more severe phenotype than single knockouts of either genes.  

Collectively, these data suggested that phagosomes contained most if not 

all the necessary machinery to load MHC Class I. While the studied antigens still 
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required entry into the cytosol (presumably for proteasomal processing), the 

proteasomally generated antigen peptides could instead go back into the 

phagosome for Class I loading instead of heading through the ER. (Figure 2, blue 

lines) 

iv. The Vacuolar pathway 

This capability of certain phagosomes to recruit the Class I loading 

machinery became all the more apparent when it was observed that certain 

antigens, particularly bacteria (46, 47), did not require a cytosolic step in order to 

be presented. For some studies, XPT of this antigen was found to be brefeldin A 

and cycloheximide resistant, suggesting that presentation did not make use of 

newly synthesized MHC Class I molecules in the ER.  Bacterial antigens were 

also presented in TAP knockout APCs, and were resistant to proteasome 

inhibitors – indicating that antigen processing was also occurring in a self-

contained phagosomal environment. Since then, a variety of antigens, including 

polymer beads and cell associated antigen, have been found to at least be 

presented in part via this ‘vacuolar pathway‘ (27). 

In the vacuolar pathway, phagosomal proteases, particularly Cathepsin S, 

were responsible for generating the correct MHC-I peptide within the phagosome 

(27, 48-50). These proteases were able to generate the correct length of peptide, 

bypassing the need for the cytosolic proteasome and accessory trimming.  



11 
 

Phagosomal MHC Class I was then loaded with the peptides, and shuttled to the 

surface (Figure 3). 
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Figure 3. Cross-presentation, vacuolar pathway. 

Figure 3. Cross-presentation, vacuolar pathway.  Exogenous antigen is 
internalized via phagocytosis, pinocytosis, or receptor-mediated endocytosis. 
 Antigen is cleaved by proteases within the endocytic compartment (primarily 
by cathepsins) and can be further trimmed by IRAP.  MHC-I molecules are 
recruited either from the plasma membrane (blue lines) or from ER (red lines), 
presumably through similar mechanisms as in the P2C pathway.  Peptide is 
loaded onto MHC-I in the endosome,  and the complexes are then presented 
at the plasma membrane. Dashed lines indicate steps in the pathway that are 
not fully understood. Abbreviations: ERGIC, Endoplasmic reticulum--Golgi 
intermediate compartment; IRAP, insulin-regulated aminopeptidase.  This 
figure was taken from a previous publication (Cruz, Colbert et al. 2017). 
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D. Unanswered questions 

Throughout the years, a lot of progress has been made in characterizing 

XPT, though several questions remain. Dendritic cells have been shown to be 

specialized in preserving antigen and transferring it to the cytosol, but how this 

transfer occurs is unclear. Both XPT and the Class II pathway share the step of 

antigen internalization, but when or if these pathways diverge is still under study. 

While XPT and the Classical pathway share several key players such as the 

proteasome, new data suggest that the overlap between them is not as thorough 

as previously thought. 

i. How is antigen transferred to the cytosol? 

Notwithstanding the vacuolar pathway, the dependence of the majority of 

antigens on proteasomal processing implies that phagosome to cytosol transfer 

is a critical step in XPT. However, the mechanism of this transfer is poorly 

understood. Because phagosomes have been shown to acquire ER components, 

it has been proposed that antigens in the phagosome shuttle into the cytosol 

through an ER-associated degradation (ERAD)-like pathway (51). ERAD is the 

mechanism of how misfolded proteins escape the ER to be degraded by the 

cytosolic proteasome (52). These proteins are ubiquitinated and then transported 

by a complex including the ATPase p97 through an ER channel. The Sec61 
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translocon has been proposed to be this channel (38, 53), but other candidates 

such as Derlin or Hrd1 have also been put forward (52, 54, 55).  

On the other hand, because several proteins have been shown to undergo 

phagosome to cytosol transfer intact (33-35), other mechanisms besides ERAD 

may play a role, as ERAD normally involves ubiquitination and denaturation of 

target proteins. Perhaps phagosome disruption might be one such mechanism. It 

has been shown that large particles like silica crystals can cause phagosomal 

membrane disruption in macrophages, releasing the vacuole’s contents into the 

cytoplasm (39). Nevertheless, proteins in the phagosome may be denatured and 

chaperoned into the cytosol, where they can renature (56). This does not explain 

however, how non-proteins such as dextrans can also undergo cytosolic transfer 

(34). 

ii. Which compartment does crosspresentation take place? 

Another question is if there is a specialized phagosomal/endosomal 

compartment dedicated to XPT. In the MHC Class II pathway, antigen loading on 

Class II molecules occurs in the MHC Class II Compartment (MIIC), which 

contains antigen processing proteases, the Class II molecule, its associated 

Invariant Chain / Class II-associated invariant chain peptide (CLIP), and the 

peptide editing chaperones H2-DM and H2-DO (57, 58). Are there counter parts 

for XPT? Furthermore, the contrasting characteristics of the phagosome to 
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cytosol and vacuolar pathways adds another layer of complexity. What makes an 

antigen go through either? 

The transport of intact, bioactive proteins from the phagosome to the 

cytosol suggests that this occurs in a relatively early phagosome, wherein the 

conditions for sufficient antigen degradation have not yet been met. This 

hypothesis is supported by the finding that Sec61, a proposed channel that 

mediates this transfer, colocalizes with the antigen in early endocytic (Rab5+) 

compartments (38). Sec22b, proposed to transport the PLC from the ER to the 

phagosome, begins to be recruited to the phagosome within 15 minutes of 

phagocytosis (59). TAP1 and IRAP1 colocalize to these early vesicles as well 

(43, 60, 61). Several cell surface receptors implicated in XPT, such as Clec9a 

and the mannose receptor, directs antigen they bind to EEA1+ / Rab5+ vesicles 

(22, 62).  

In contrast, antigens that go through the vacuolar pathway must be 

completely processed within the phagosome, suggesting that they are loaded 

onto MHC Class I in relatively late/mature phagosomes. Indeed, several studies  

show that targeting antigen to Dec205 or to TLR2 also promotes XPT (63, 64). 

These target the antigen to late endosomes (Lamp1+ Rab7+). In the case of 

TLR2, antigen presentation is shown to be TAP independent. When soluble ova 

is given to DCs for presentation, staining with the SIINFEKL – H2-Kb specific 

antibody 25D1.16 shows that peptide loading occurs in both early and late 

compartments (65) . Elucidating the requirements for a particular antigen to 
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undertake the P2C vs the vacuolar pathway is of increasing interest. As the two 

pathways make use of different proteases to process the antigen, it is 

conceivable that differences would arise in the MHC Class I peptides they 

generate. This in turn can lead to the development of different immunodominant 

epitopes and the corresponding CD8+ T cell hierarchy. In a viral infection 

situation for instance, infected cells would mostly generate Class I peptides 

through the Classical Pathway. This being the case, efficient vaccine design 

would probably require targeting the antigen to the P2C pathway in DCs, as 

opposed to the vacuolar pathway, to better match with the target cells the T cells 

will encounter. 

iii. Where does phagosomal Class I come from? 

While XPT along the P2C route is able to make use of newly synthesized 

MHC-I in the ER, the source of MHC-I for the phagosomal pathways of XPT is 

currently under intense study. Internalization of cell surface MHC-I along with the 

antigen is one proposed route (65-69). The cytoplasmic tail of MHC Class I 

contains a conserved tyrosine that controls its recycling, and mutation of this 

amino acid decreased localization of MHC-I in endolysosomal compartments 

(66). This mutation, as well as deletion of Class I exon 7, was subsequently 

shown to decrease MHC-I internalization in DCs as well as XPT of soluble 

ovalbumin (65). 
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Phagosomal MHC Class I has also been proposed to be sourced 

internally rather than from the cell surface. Invariant chain (CD74), responsible 

for trafficking MHC Class II from the ER-golgi to late endosomal compartments, 

has been also shown to traffic Class I (70). Splenic derived DCs from CD74 KO 

mice were defective in XPT of soluble ovalbumin. However, different forms of 

antigen, such as polymer bead ova, were shown to be independent of CD74 (27). 

Recently, it has been proposed that APCs contain an internal pool of MHC 

Class I that is recruited to antigen containing phagosomes (71). The Rab 

GTPase Rab11a, implicated in MHC Class I recycling, supplies a specialized 

endosomal recycling compartment (ERC) with MHC from the surface. Once the 

APC internalizes antigen containing TLR ligands, MyD88 dependent signaling 

from the antigen containing phagosome triggers recruitment of MHC Class I 

containing vesicles from the ERC. Fusion of these vesicles with the phagosome 

brings the MHC in proximity of antigen derived peptides, for loading and XPT. 

iv. What is the relationship between the XPT and Class II 

Pathways? 

A big conundrum in the field of XPT is its relationship with the Class II 

pathway. While both pathways involve presentation of exogenous antigen, there 

are several divergences that occur even from the initial step of antigen 

acquisition. For instance, while both pathways are efficient in presenting 

particulate and cell associated antigens, soluble antigen is a particularly poor 
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source for XPT (5, 72). The phagosome to cytosol pathway of XPT involves the 

release of antigen into the cytosol. However, antigen processing for MHC Class II 

loading occurs in late endosomes/phagosomes. Thus, are the XPT and Class II 

pathways in competition for antigen? It has also been observed that dendritic 

cells have mechanisms to dampen endosomal degradative capability, allowing 

persistence of antigen for XPT. One example of which is the neutralization of 

endosomal pH by Nox2 (73).  On the other hand, several endosomal proteases, 

such as Cathepsin B (74-78), are activated by low pH, and these same proteases 

have been shown to generate peptides destined for Class II presentation. 

The vacuolar pathway of XPT is similar to the Class II pathway in that antigen 

processing and loading into MHC molecules occurs in a self-contained 

phagosome. They also share key proteases such as Cathepsin S, which 

processes antigen for XPT (27, 48-50) and degrades invariant chain for Class II 

presentation (74, 76). A still unanswered question is what makes an antigen go 

through the vacuolar vs the P2C (P2C2E/P2C2P) pathway. Cell associated 

antigen as well as polymer bead encapsulated ova undergo XPT using both P2C 

and vacuolar pathways (27) while iron oxide bound antigen seems to be 

restricted to P2C. Perhaps the presence of pathogen or damage associated 

molecular patterns (PAMPS or DAMPS) is the key. Bacterial antigens have been 

mostly associated with the vacuolar pathway (46, 47) . Moreover, the presence of 

TLR ligands on beads causes the recruitment of both MHC Class I and II to the 

bead containing phagosomes (71, 79). These PAMPS/DAMPS might be 
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triggering mechanisms that divert internalized antigen to degradative lysosomes 

(where pathogens are destroyed) rather than allow their release into the cytosol. 

Thus, the vacuolar pathway is utilized to allow XPT from these cytosol (more 

specifically, proteasome) inaccessible antigens.  

E. The rationale for a genomewide siRNA screen for 

crosspresentation  

Because of the several gaps in our understanding of the various XPT 

pathways, we have chosen to develop and utilize a forward genetic screen to 

identify genes involved in XPT. We hoped to do this by using a mouse 

genomewide siRNA library to look for such genes in an unbiased manner. The 

development of this screen as well as its results are discussed in this chapter. 

II. Materials and Methods 

A. Cell Lines and Culture Conditions 

i. Media 

Cells were maintained in Hybridoma Culture Media (HCM) composed of 

RPMI 1640, 10% FCS, 1X HEPES, 1X non-essential amino acids, 1X Antibiotic-

antimycotic, 1X L-glutamine and 54 uM 2-mercaptoethanol (Sigma). All 100x 

reagents were purchased from Gibco (Invitrogen, Thermo Scientific). 

For some experiments, complete DMEM (cDMEM) media was used. cDMEM is 

composed of all HCM supplements except 2-mercaptoethanol. The rationale for 
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the use of DMEM is its lack of glutathione, which is a reducing agent present in 

RPMI. Several experiments necessitated the need for reducing agent free 

environments. 

ii. DC3.2 

DC3.2 is one of the dendritic cell clones isolated from the work of Z.Shen 

& K.L.Rock (2). This clone was chosen as it has high levels of MHC Class I and 

Class II and gene silencing with siRNA worked well in this cell. In addition, these 

cells can be readily transduced with lentivirus harboring eukaryotic expression 

vectors. 

iii. DC3.2R 

DC3.2R is a variant of the DC3.2 cell line transduced with a lentiviral 

construct containing Renilla luciferase. The Thymidine Kinase – Renilla 

Luciferase insert from plasmid pRL-Tk (Promega) was PCR amplified and 

inserted into the lentiviral vector pCDH1-CMV-MCS-EF1-Puro (System 

Biosciences). 

DC3.2R was chosen because it coincidentally had very good crosspresentation 

and Class II presentation abilities as compared to other DC clones. 

iv. Luciferase expressing T cell Hybridomas (RF33-Luc, and 

MF2-Luc) 
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The RF33.70 cell line is a CD8+ T cell hybridoma that recognizes the ova 

peptide SIINFEKL on H2-Kb (80). MF2.2D9 is a CD4+ T cell hybridoma that 

recognizes the ova peptide Ova258-276 on I-Ab  (2).  

The T cell hybridomas were transduced with lentivirus containing NFAT-

Luciferase. The NFAT-Luciferase insert from plasmid pGL3-NFAT luciferase (A 

gift from Jerry Crabtree, Addgene plasmid #17870) (81) was PCR amplified and 

inserted into pCDH1-CMV-SV40-Bsd. This backbone vector is a modification of 

pCDH1-CMV-MCS-EF1-Puro (System Biosciences) wherein the EF1-Puro region 

was replaced with the blasticidin resistance gene under the SV40 promoter. 

Lentiviral infection was performed according to listed protocol below.  

B. Lentiviral transduction of Dendritic Cell Lines 

Lentivirus was produced by transfecting HEK-293T (ATCC) cells with the 

viral construct along with equimolar amounts of the plasmids Delta8.9 and VSVg 

(gifts from Dr. Eicke Latz, UMASS Medical School). Transfection conditions were 

done according to Lipofectamine 2000 protocol (Invitrogen). After 24 hours post 

transfection, cell culture media was replaced. The viral supernatant at 48 hours 

was collected and filtered through a 0.45 µm syringe filter. 1x105 DC3.2 cells 

were seeded in 6 well plates. The next day, media was removed and replaced 

with 1:1 mix of viral supernatant and HCM with 5 µg/ml polybrene (Sigma-

Aldrich). After 24 hours, cell media was replaced and after 48 hours post 

infection, 5 µg/ml puromycin/blasticidin (depending on vector) was added. Cells 



22 
 

were maintained in antibiotic media for at least two weeks, replacing media with 

fresh antibiotic every 2 days. 

 

C. siRNA transfections 

The siRNA used were SiGenome smartpools purchased from 

Dharmacon/GE. To transfect dendritic cell lines, the protocol for Lipofectamine 

RNAiMax (Invitrogen) was followed with the following conditions. Each well of a 

384 well plate was seeded with a mixture containing 0.2 µl of RNAiMax, 6.8 µl of 

1X siRNA buffer (Dharmacon/GE) and 3 µl of 0.5 µM siRNA. The mixture was 

incubated for 20 mins at room temperature. Then, 20 µl of dendritic cells (total of 

2.5x103) in RPMI 1640 with 15% FCS were added. The plate was spun down at 

200xg for 1 minute and incubated for 48 hours prior to assays.  

D. Antigen Presentation Assay 

i. Biomag-ova beads 

Biomag-ova beads are magnetic particles (Iron oxide) covalently 

conjugated to ovalbumin.  

BioMag Amine and BioMagPlus Amine Protein Coupling Kit were 

purchased from Bangs Laboratories. Chicken ovalbumin was purchased from 

Sigma-Aldrich. Protein conjugation was performed using the glutaraldehyde 

method according to bead manufacturer instructions. Briefly, beads were washed 
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in pyridine buffer and activated with 5% glutaraldehyde for 4 hours. The beads 

were then washed and incubated with 5 mg/ml ovalbumin dissolved in pyridine 

buffer overnight. Beads were extensively washed and resuspended in PBS. Ova 

concentration on the beads were measured using absorbance at 280 nm of pre 

and post coupling solutions. 

ii. Protocol for XPT and Class II Presentation assays 

To the transfected dendritic cells, biomag-ova was added along with a 1:1 

(DC:T cell) number of luciferase expressing reporter T cells. We assumed 1x104 

DCs were on the wells after 48 hours of transfection. For the genomewide siRNA 

screen, the concentration used for the XPT assay was 20 µg/ml ova (1 µg of ova 

in 50 µl total volume of the well). For the Class II assay, the concentration was 2 

µg/ml ova. After overnight incubation, luciferase expression by the T cells was 

measured using Oneglo reagent (Promega) according to manufacturer 

instructions. The luminometer used was an Envision (Perkin Elmer) equipped 

with ultra-sensitive luminescence module.  
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III. Results  

A. The Dharmacon Mouse Genome siRNA Library 

We performed the screen in collaboration with the Institute for Chemistry 

and Cell Biology Screening Facility (ICCB-L) at Harvard Medical School. We 

utilized Dharmacon siGenome siRNA library plates containing 20,552 siRNA 

wells. Of these, 719 were targeted against mouse Kinases and phosphatases, 

474 against GPCRs and the remainder for the rest of the genome. The library 

was composed of siRNA pools, with 4 different siRNA sequences targeting the 

same gene mixed in a single well. This increased the likelihood of gene 

knockdown, by targeting different regions of the mRNA. 

The siRNA library was reverse transfected into dendritic cells in 384 well 

plates. Each plate also contained controls containing H2-Ab or β2m siRNA using 

lipofectamine RNAiMax. 

B. DC3.2R as antigen presenting cells 

Before proceeding with the siRNA screen, our first task was to choose the 

appropriate antigen presenting cell for our assay. For this we chose a variant of 

the dendritic cell line DC3.2 (2). We have chosen to go through the cell line route 

as opposed to using primary cells as isolation of dendritic cells from mice is 

technically difficult and results in poor yields. Moreover, the isolated cells are of a 

mixed population, and various dendritic cell subsets have been reported to have 

differing crosspresentation abilities (23). Generation of large amounts of DCs 
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from the bone marrow is possible through GM-CSF or Flt3 ligand (82), though 

these only last for a week (requiring multiple preps that can increase variability) 

and are not amenable to siRNA transfection (Cruz F, Rock K, unpublished data). 

 DC3.2 was chosen among the various clones generated in the previous 

work because this clone retained high amounts of MHC Class II, which we would 

be using as a counter screen for XPT.  

DC3.2 was lentivirally transduced to express Renilla luciferase under a 

thymidine kinase promoter to create a new cell called DC3.2R. This was initially 

done in order to incorporate a viability assay along our siRNA screen. The 

rationale was that healthy, living cells would express Renilla luciferase 

commensurate to cell number and viability, and this can be correlated with T cell 

activity (discussed below). This would have allowed us to screen out genes that 

affected XPT nonspecifically, by disrupting normal cellular metabolism.  

However, during the optimization of the siRNA screen, we found that 

incorporation of this viability screen was not technically feasible. First, the siRNA 

screen was designed to have a 48 hour knockout period. When siRNA against 

several housekeeping genes was tested as positive controls, the knockdowns did 

not alter renilla luciferase signal significantly at 48 hours (Cruz F, Rock K, 

unpublished data). Moreover, the screen was to be done in 384 well plates, 

which greatly limited the volumes we could manipulate. Adding in the viability 

screen necessitated the dilution of reagents to keep the same volumes, and this 
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compromised the integrity of the T cell assay due to signal variability. Thus, we 

decided to drop this assay. 

Nevertheless, we proceeded to use the DC3.2R cells in the screen 

because it was found to have better XPT and Class II presentation abilities than 

its parental cell.  

C. Biomag-ova as particulate antigen 

We chose to use biomag-ova (ovalbumin covalently conjugated iron-oxide 

particles) as the antigen for the screen. This antigen was found to be TAP and 

proteasome dependent (33), suggesting that it goes through the phagosome to 

cytosol pathway. We chose to use this antigen as it was readily crosspresented 

by our various dendritic cell lines, that led to strong and consistent signals from 

the reporter T cells.  

Other antigens exist that are able to go through the vacuolar pathway as 

well (27). These include polymer encapsulated ova (PLGA-ova) and cell 

associated antigen. One concern in using this form of antigen was that if the P2C 

and vacuolar pathways had redundancy, then knockdown of genes that only 

affected one pathway would be missed by the screen. Furthermore, we were 

beset with technical difficulties in using them. In vitro, these forms of antigen 

were not crosspresented well by our cell lines and required steps not compatible 

with 384 well plates such as washing. These issues prevented us from utilizing 

them in a screen that required reproducibility and data reliability. 
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D. Reporter T cells (RF33-Luc and MF2-Luc) Compatible With 

High Throughput Assays 

The XPT ability of dendritic cells in vitro can be read in a number of ways. 

It can be read through the use of specific peptide-MHC antibodies such as 25-D1 

(83). A similar method was employed in a genome wide siRNA screen for Class 

II presentation, wherein antibodies against MHC II – peptide and MHC II-CLIP 

were employed (84). However, XPT in vitro is very inefficient as compared to the 

Class II and Classical Class I pathways, making surface detection of peptide-

MHC even from high amounts of antigen nearly undetectable (Cruz F, Rock K, 

unpublished data). For better sensitivity, readouts using T cell activity have been 

employed (2, 85). 

CD8+ T cell hybridomas exist for the detection of peptide-MHC I 

complexes in vitro (85, 86). Traditionally, target cell lysis, or T cell IL-2 production 

have been used to correlate with APC XPT. The level of sensitivity by these T 

cells far exceed that of peptide-MHC antibodies (83), making them ideal for 

detecting slight changes in surface peptide MHC levels. 

Nevertheless, due to the high throughput nature of siRNA screens, we had 

to modify these cell lines to make them feasible for use in our assays, typically 

done in bulk and contained within the confines of a 384 well plate. These 

limitations prevented the use of IL-2 detection and target killing (which require 
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washing steps for ELISA and reagent additions) as well as the use of IL-2 

dependent cell lines (85), which require radiometric analysis. 

Thus, we modified CD8 + (RF33.70) and CD4+ (MF2-2D9) T cell 

hybridomas (2, 85) by transducing them with a luciferase construct under the 

control of a minimal IL-2 promoter and 3x NFAT binding sites (now called Rf33-

Luc and MF2-Luc). T cell activation upon interaction with the appropriate peptide-

MHC activates NFAT, allowing expression of luciferase at levels that correspond 

to T cell signal. While reporter CD8+ T cells employing the same design but 

expressing β-galactosidase have been constructed (87), putting in luciferase in 

our reporter cells allowed us to take advantage of the greater speed and high 

throughput compatibility of luciferase’s luminescent read out as compared to 

other assays that employ colorimetry.  

As shown in (Figure 4), the generated reporter T cells were able to detect 

XPT and Class II presentation by APCs, and expressed luciferase in proportion 

to the amount of peptide MHC presented on the APC surface. 
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Figure 4. Reporter T cells express luciferase upon interaction with cognate MHC peptides 
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Figure 4. Reporter T cells express luciferase upon interaction with 
cognate MHC peptides. 
5 x 104 RF33-Luc or MF2-Luc were incubated with the same number of APCs 
(DC2.4 cell line) as well as the indicated amounts of biomag-ova overnight. T 
cell luciferase activity was measured using Promega Oneglo reagent. Error bars 
indicate the standard deviation between triplicate wells. Data shown represents 
one experiment of >3. 
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E. Developing a Class II Counter Screen 

In designing a genome-wide siRNA screen, it was important to be able to 

determine if the phenotype observed was due to a gene specifically involved in 

the pathway studied, or was due to a pleiotropic effect commonly associated with 

housekeeping genes. For our assay, we have chosen to run a counter screen for 

the Class II pathway.  

In parallel to the XPT screen, we also screened the Class II pathway. The 

same transfected cells were instead exposed to reporter CD4+ T cells. If a gene 

being silenced was a housekeeping gene, and its knockdown caused cell death, 

then both XPT and Class II pathways would drop. This scheme also allowed us 

to determine if a particular gene was involved in a process shared by both XPT 

and the Class II pathway. Antigen internalization, as well as phagosomal 

degradation of proteins are among these shared processes. This permitted us to 

not only reduce the screen background but also uncover potential Class II 

specific genes. 

F. siRNA knockdowns effectively reduce XPT or Class II 

presentation 

When known MHC Class I related genes (β2m, TAP1) were knocked 

down with siRNA, XPT by DC3.2R of biomag-ova was selectively reduced 

(Figure 5). Conversely, when Class II related genes (I-Ab, H2-DMα) were 

silenced with siRNA, only Class II presentation was decreased. The decrease in 
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presentation was effectively measured by the luciferase expressing reporter T 

cells. Thus, we now had all the components necessary for the siRNA screen.  

We then performed the screen in following the workflow shown in (Figure 

6). 
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Figure 5. Knockdown of antigen presentation using sirna.

Figure 5. Knockdown of antigen presentation using sirna. 
2.5 x103 DC3.2R cells were transfected with 50 nM sirna using Lipofectamine 
RNAiMax. After 48 hours, 1 x 104 Rf33-Luc or Mf2-Luc cells were added along 
with 20 µg/ml (XPT) or 2 µg/ml (Class II) of biomag ova. After overnight 
incubation (~18 hours), Luciferase activity of the T cells were read using Oneglo 
reagent (Promega). Error bars indicate the standard deviation between triplicate 
wells. Data shown represents one experiment of >3. ns indicates p >0.05 in 
ANOVA. For xpt, all siRNA treatments except H2-DM have p< 0.05 against I-
Ab. For Class 2, all siRNA treatments except Tap1 have p< 0.05 against β2m. 
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Figure 6. Screen Workflow

Figure 6. Screen Workflow 
In each well of a 384 well plate, 2.5 x103 DC3.2R cells were transfected with 50 nM sirna using Lipofectamine 
RNAiMax. This was done for 2 sets of triplicate plates. After 48 hours, 1 x 104 Rf33-Luc or Mf2-Luc cells were 
added along with 20 µg/ml (XPT) or 2 µg/ml (Class II) of biomag ova. After overnight incubation (~18 hours), 
Luciferase activity of the T cells was read using Oneglo reagent (Promega). 

Transfect two sets of dendritic cells  
(3 replicates each) 

(~320 gene targets / plate) 

48 hours later: 
Add antigen and reporter T 

cells 
+18 hours: luciferase assay 

CD8 

CD4 
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G. Statistical Analysis for the Genome Wide Primary Screen 

To interpret the primary screen results, we have performed the statistical 

analysis as described below. All statistical analyses were performed in 

collaboration with Dr. Stephen Baker of UMASS Medical School. 

The entire mouse genome siRNA library consisted of 69 (384 well) plates 

and these were screened across several months. In order to account for 

experimental variation between library plates, we normalized plate values against 

internal controls. 

 Each library plate (done in triplicate) contained siRNA wells against H2-

Ab1 (beta chain of the Class II molecule I-A) and β2m. For each plate, the 

average T cell readouts from these controls were taken and were set to 100 

(percent signal from negative control) and 0 (positive control) respectively by 

generating a scaling factor using the equation: 

𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =
100

𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 −  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 

For the XPT screen this translates to: 

𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 =
100

𝐼𝐴𝑏 −  𝛽2𝑚
 

* the controls are reversed during analysis of the Class II screen 
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The T cell readout from each siRNA well in a particular plate was then 

normalized to both positive and negative controls in the same plate. For the XPT 

screen, this was done in the equation: 

𝑠𝑐𝑎𝑙𝑒𝑑 𝑣𝑎l𝑢𝑒 = (𝐼𝐴𝑏 − 𝑠𝑖𝑟𝑛𝑎) ∗ 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 

This generated values that represent each siRNA’s position in relation to 

the negative and positive controls. Thus, when a variation in the experiment 

caused an increase or decrease in overall plate signal (which can be due to cell 

condition, plate reader variability, transfection and knockdown efficiency, etc), the 

relative value of the siRNA wells was preserved. This allowed comparison of 

values generated from multiple plates read over several days. 

 

All 69 plates of a single replicate were then merged, and z-scores for each 

gene were calculated: 

𝑧 𝑠𝑐𝑜𝑟𝑒 =
𝑠 − 𝑀

𝑀𝐴𝐷
 

where: 

s = scaled value of individual siRNA 

M = median of all experimental siRNA scaled values 

MAD = median absolute deviation 

where: 
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𝑀𝐴𝐷 =
𝑚𝑒𝑑𝑖𝑎𝑛(𝑠 − 𝑀)

0.6745
 

*0.6745 constant assuming a normal distribution 

The z score transformed the raw luminescence values into their distance 

to the genomic median. It was expected that majority of the genes would not hit 

XPT and would have z scores close to 0. Very low (negative values) represented 

genes that caused a huge knockdown in XPT, while very high values 

represented an augmentation in XPT. In genomewide screens, a threshold z-

score is chosen to limit the number of hits. Before that however, we needed to 

take into account experimental variability. 

 The siRNA plates were done in triplicate plates. To take into account 

variability among the plates, the following equation was applied: 

𝑡𝑠𝑡𝑎𝑡 =
𝑍𝑎𝑣𝑒

√(𝑍𝑠𝑑
2 /3)

 

where: 

𝑍𝑎𝑣𝑒 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑧 𝑠𝑐𝑜𝑟𝑒 𝑜𝑓 𝑎𝑛 𝑠𝑖𝑟𝑛𝑎 (𝑡𝑟𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑒𝑠) 

𝑍𝑠𝑑 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑧 𝑠𝑐𝑜𝑟𝑒𝑠 𝑜𝑓 𝑎𝑛 𝑠𝑖𝑟𝑛𝑎 

 

 To determine the confidence level that a particular gene has of being a 

real hit, a T-distribution was then generated using the EXCEL equation: 
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𝑝 = 𝑇𝐷𝐼𝑆𝑇(𝐴𝐵𝑆(𝑡𝑠𝑡𝑎𝑡), 2,1) 

* 2 degrees of freedom, 1 tailed 

 

If a given gene had a good z score (in this case, very negative meaning a 

huge average knockdown in T cell signal), but was extremely variable between 

its triplicates (due to technical/human error), the variability brought down the tstat. 

This would have brought down its p value lowering the confidence that it was a 

real screen hit. 

 

For selecting primary screen crosspresentation hits, the following criteria was 

chosen: 

𝐶𝐷8 𝑠𝑐𝑎𝑙𝑒𝑑 𝑘𝑛𝑜𝑐𝑘𝑑𝑜𝑤𝑛 ≥ 50% 

This corresponds to a CD8 z-score = 0.5 

𝐶𝐷4 𝑠𝑐𝑎𝑙𝑒𝑑 𝑘𝑛𝑜𝑐𝑘𝑑𝑜𝑤𝑛 ≤ 0 

and 

𝑝 ≤ 0.02 
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H. Association of genes with available databases 

497 of the 20,552 screened genes (2.4%) passed the thresholds we set 

for the primary XPT screen. In order to limit the number of candidates for further 

study, a number of genes were selected for siRNA deconvolution (discussed 

below). Before this however, we screened the hits against publicly available 

literature and databases in order to determine which genes would be suitable for 

this analysis. 

i. Clustering and enrichment of hits via General Ontology 

One method used to analyze large scale gene datasets is to cluster them 

via functional annotation. Genes that clustered around the same pathways or had 

conserved domains/structures would likely have similar or complementary roles 

in XPT, therefore aiding in their characterization. Several tools such as DAVID 

(The Database for Annotation, Visualization and Integrated Discovery)(88) and 

the Panther (Protein Analysis Through Evolutionary Relationships) Classification 

System (89, 90) exist that allow  clustering of genes via common properties, such 

as involvement in the same cellular pathway. Once clustered, we wanted to see if 

certain gene subsets were being enriched by the screen. This was calculated by 

the above listed tools by comparing the proportion of the generated clusters 

within our gene set to their natural proportion in the whole mouse genome. 

When genes selectively affecting XPT were clustered according to cellular 

component / localization, significant enrichment of golgi and cilum localized 
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genes was observed (Table 1). When looked at more closely, these genes 

seemed to be involved in cytoskeleton and membrane/trafficking processes (Rab 

GTPases, EHD1, dynein, etc) (Table 2, Table 3). 

Concordant to this finding, when XPT selective genes were clustered 

according to their involvement with specific biological processes, we observed 

significant enrichment in genes involved in vesicle organization and organelle 

fusion (Table 4, Table 5, Table 6).  

Despite not being a category particularly enriched in the 

clustering/annotation process, we also looked for genes that were specifically 

localized in the endosomes and lysosomes, where the XPT and Class II 

pathways were likely to diverge. Several endo-lysosomal and vesicular 

components have been recently published to affect XPT. Among these were 

several Rab GTPases (discussed in later chapters), usually implicated in 

controlling vesicular transport (44, 67, 71, 91). While the Class II pathway was 

not specifically addressed in these studies, most of the proposed models seemed 

to indicate a role of these proteins in the specific trafficking of MHC Class I. Our 

primary screen also identified genes localized in the vesicles / endo-lysosomes 

(Table 7). How these affect XPT but not Class II would be an interesting field to 

study. 
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Table 1. Clustering of XPT selective hits via cellular component/localization 

Table 1. Clustering of XPT selective hits via cellular 
component/localization 
XPT selective hits were annotated using DAVID (https://david.ncifcrf.gov) using 
the specified categories. Count represents the number of genes that fall in each 
term and percentage represents its proportion in comparison to the whole gene 
list. P-values represent the probability that the given term is enriched within the 
gene list when compared to the whole mouse genome. Shown are categories 
with p values < 0.05. 
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Table 2. Golgi localized genes involved in XPT 

 
Table 2. Golgi localized genes involved in XPT 
Genes associated with the golgi apparatus, a subset of Table 1 
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Table 3. Cilium localized genes involved in XPT  

Table 3. Cilium localized genes involved in XPT 
Genes associated with the golgi apparatus, a subset of Table 1. 
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Table 4. Clustering of XPT selective hits via involvement with specific biological processes  

Table 4. Clustering of XPT selective hits via involvement with specific 
biological processes 
XPT selective hits were annotated using DAVID (https://david.ncifcrf.gov) using 
the specified categories. Count represents the number of genes that fall in each 
term and percentage represents its proportion in comparison to the whole gene 
list. P-values represent the probability that the given term is enriched within the 
gene list when compared to the whole mouse genome. Shown are categories 
with p values < 0.005. 
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Table 5. Genes associated with vesicle organization  

Table 5. Genes associated with vesicle organization 
List of genes associated with vesicle organization, a subset of Table 4. 
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Table 6. Genes associated with organelle fusion  

Table 6. Genes associated with organelle fusion 
List of genes associated with organelle fusion, a subset of Table 4. 
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Table 7. Screen Hits enriched in endosomes and lysosomes. 

Table 7. Screen Hits enriched in endosomes and lysosomes. 
Primary screen hits selective for crosspresentation were functionally annotated 
with DAVID (https://david.ncifcrf.gov). Tabulated are genes found in endosomes 
and lysosomes as characterized under the GOTERM_CC_DIRECT database 
(Gene Ontology Consortium, cellular component). 
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ii. Expression in immune cell subsets 

Another criterion we used to determine gene candidates was their 

expression in specific immune subsets. Dendritic cells have been shown to be 

specialized for XPT, and among the DCs, the CD8α+ (and CD103+) subsets were 

the ones with the most XPT potential. Studies have shown that CD8α+ DCs 

highly expressed genes involved in the Classical Class I Pathway such as ERAP 

and the members of the PLC (TAP1/2, Calnexin, Erp57, etc) (23). This subset 

also expressesed high amounts of Clec9a (92) and Nox2 complex components 

(24). Because of this, screen hits that were highly enriched in CD8α+ DCs were 

taken for further study. 

We matched our database with that of Immgen (93), which contained 

probe-based (Affymetrix) gene expression profiles of specific immune subsets. 

(Table 8) shows crosspresentation selective genes that were enriched in CD8α+ 

DCs from various tissues. 
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Table 8. Screen Hits enriched in CD8α+ Dendritic Cells. 

Table 8. Screen Hits enriched in CD8α+ Dendritic Cells. 
Primary screen hits for crosspresentation were matched with the Immgen 
database (Immgen.org). Standard z scores of the entire Immgen database were 
calculated using the database mean and standard deviation. P values from the 
generated T distribution of z scores were obtained and the gene list was filtered 
for genes that were positively enriched (z > 0) in any of the listed CD8α DC 
subsets. Tabulated are p values and highlighted are p < 0.05. *THY, thymic; 
MLN, mesenteric lymph node; SLN, skin draining lymph node; SPL, splenic 
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iii. Comparison with a published MHC Class II screen 

Neefjes et. al. has published a genomewide siRNA screen for human 

genes affecting Class II presentation (84). In their screen, they utilized antibodies 

specific for MHCII-CLIP peptide (CerCLIP antibody) as well as peptide bound 

MHCII (L243 antibody).  

In the Class II pathway, MHC Class II is trafficked by the invariant chain to 

late endosomes, wherein invariant chain is degraded into a remnant CLIP 

peptide that caps the MHC Class II molecule. Through the function of low pH as 

well as chaperones such as H2-DM and H2-DO, this CLIP peptide is replaced by 

peptides that derive from exogenous antigen taken up by the APC.  

The multidimensional approach employed in their screen allowed them to 

differentiate genes that affected general MHC Class II trafficking (which would 

decrease staining of cells by both antibodies) or those that had more specific 

effects, such as peptide loading and/or invariant chain processing (would likely 

increase staining of CerClip). 

We compared Class II pathway hits in our screen to the mouse orthologs 

of the published screen hits. Of the 262 candidate genes in the published work, 

43 of them were also hits in our Class II screen (with at least 50% knockdown in 

Class II presentation and a p value of < 0.05 for Class II presentation). These 

common hits are shown in (Table 9). 
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Table 9. Common hits with a previously published screen for Class II presentation  

Table 9. Common hits with a previously published screen for Class II 
presentation 
Shown are hits in our screen that had > 50% knockdown in Class II presentation 
as well as  p < 0.05 for the Class II pathway. These genes are mouse orthologs 
of genes that were previously published to affect Class II presentation in a 
human sirna screen (Paul, van den Hoorn et al. 2011).   
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However, several of these common hits also affected crosspresentation in 

our primary screen. This was expected as XPT and the Class II pathways shared 

the steps of phagocytosis as well as endosome/phagosome maturation. Of these 

hits, 7 genes were reliably selective for the Class II pathway and did not hit the 

crosspresentation pathway (with p < 0.05 for both pathways). These genes are 

shown in (Table 10). Many genes were not considered selective primarily due to 

the fact that they did not pass the statistical test for variability (p value). Thus, 

these 7 genes were probably an underestimation of the real hits. How these 

genes only selectively affect the Class II pathway would be interesting to study.  
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Table 10. Class II selective hits that are common with a previously published screen for Class II presentation. 

Table 10. Class II selective hits that are common with a previously 
published screen for Class II presentation. 
Shown are hits in our screen that had > 50% knockdown in Class II presentation 
as well as p < 0.05 for the Class II pathway. The genes also did not affect the 
crosspresentation pathway with p < 0.05. 
The human orthologs of these genes were previously published to affect Class 
II presentation in a human sirna screen (Paul, van den Hoorn et al. 2011).   
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I. siRNA Deconvolution 

Before proceeding with the characterization of the primary screen hits, we 

performed siRNA deconvolution. This process allowed us to determine if our 

primary screen phenotype was due to the knockout of the particular gene or was 

due to siRNA off target effects. 

 A particular siRNA can have sequence specific off target effects. The 

siRNA pathway generally requires a perfect match between the guide siRNA and 

its target to initiate Argonaute mediated mRNA cleavage (94), and siRNA 

libraries are constructed to generate guide sequences unique to target genes. 

However, a parallel pathway in the cell -  the miRNA pathway, mediates a similar 

knockdown of genes but do not require exact miRNA-target complementarity. In 

this pathway, complementarity between an inner “seed” sequence of the miRNA 

and its target is sufficient to mediate knockdown, while the miRNA flanking 

sequences are allowed some variability. Because of this, particular regions of an 

siRNA introduced into cells have a chance of mimicking miRNAs, thereby 

causing unintended knockdowns. Besides mimicking miRNAs, partial siRNA 

complementarity to nonspecific mRNA can decrease gene expression by 

blocking translation initiation. 

 Furthermore, siRNAs can also demonstrate sequence independent off-

target effects (94). Rather than binding to nonspecific mRNA, siRNA, particularly 

in high concentrations, can instead disrupt normal miRNA processes occurring 



54 
 

within cells. High concentrations of siRNA can displace miRNA from the RISC 

complex, or compete with miRNA trafficking and export factors (95) . The 

disruption of miRNA can have global effects on the cell, as they are utilized to 

regulate gene expression. Other sequence independent siRNA effects include 

the activation of immune sensors and increased cell stress. 

 In order to account for siRNA off-target effects, a selection of genes was 

subjected to siRNA deconvolution.  The siRNA smartpool used in the primary 

screen (composed of a mixture of 4 different siRNA oligos) was separated into its 

individual components. Cells were transfected separately with each of the 

individual oligos. Genes that had at least 2 different siRNAs recapitulating the 

phenotype (affected XPT but not Class II presentation) were picked for further 

study (Table 11). 
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Table 11. A selection of genes that passed siRNA deconvolution screening. 

Table 11. A selection of genes that passed siRNA deconvolution. 
Listed are genes with at least 2 individual sirna oligos causing a knockdown in 
crosspresentation but not Class II presentation. 
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IV. Discussion 

In this work, we have successfully developed and utilized a genomewide 

siRNA screen for genes that affected crosspresentation or the Class II pathway. 

A number of genes are currently undergoing characterization. 

From the entire annotated mouse genome, our primary screen has identified 

472 genes to be selectively involved in XPT based on the thresholds we have 

set. This was not an absolute number, as one can loosen the thresholds to 

identify additional genes. We had set the threshold to only pick genes that 

caused a large decrease (> 50%) in XPT. This was done to limit the number of 

genes to a more manageable number. Certainly, there could be genes relevant 

to XPT that do not cause such huge defects. Examples of these are certain 

proteases/peptidases that can have important but redundant effects. The 

specialized proteasome subunits (immunoproteasome & thymoproteasome) are 

an example. These subunits have been shown to critically influence antigen 

presentation and T cell development (96-98) but their lack or deficiency can be 

rescued by components of the constitutive proteasome.  

Several limitations affected the number of hits and the nature of the genes 

that we got from the screen. One of these was the nature of the antigen used for 

screening. XPT in vitro is a very inefficient process, as compared to Classical 

presentation in vitro or XPT in vivo. This inefficiency limited us to using magnetic 

bead conjugated ova, as this form of antigen was the most consistent in in vitro 
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experiments. Because of this, the screen was limited to the P2C pathway of XPT. 

On the other hand, this might have been a benefit as well, as using antigens that 

routed through multiple pathways (like cell associated antigen), might encounter 

redundancy. For instance, knockdown of cytosolic proteases (proteasome) might 

not greatly affect XPT of cell associated antigen if this antigen can alternatively 

be processed in the endosomes by Cathepsins.  

Besides limiting the nature of the antigen, the assay had to be constrained in 

384 well plates with a relatively short assay duration. The use of 384 well plates 

prevented media exchange or excessive additions of reagents. Thus, we could 

only work within 48 to 72 hours post siRNA transfection, to prevent media 

exhaustion or cell overgrowth. This meant that we could not extend the 

knockdown periods. Therefore, we could expect that genes important to XPT, but 

had long enough protein half lives might have been missed by the screen.  

The very small volumes in 384 well plates also meant that small variations in 

pipetting volume or even temperature could produce huge effects in well to well 

variability. In fact, we have experienced this as we observed a significant edge 

effect while optimizing the screen. We observed decreased XPT from wells near 

the edges of the 384 well plate regardless of siRNA. Edge effects in high 

throughput screens have been reported, and these effects were primarily brought 

about by temperature changes occurring on plate edges (99). The edges of the 

plate changed temperature more rapidly than the center, and this had effects on 

cell growth and settling distribution. We did our best to combat these pitfalls 
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through the use of robotics for pipetting as well as the use of special humidified 

plate chambers to normalize temperature. However, other factors could have 

affected our screen, causing several potential candidate genes to fail our 

threshold tests due to variability between its triplicate wells. 

Nevertheless, the candidate genes that did pass our strict thresholds that we 

chose to follow up on all recapitulated the phenotype when we repeated the 

experiments in our laboratory, using less constrained methods. These genes only 

affected XPT and not the Class II pathway, showing that our screen and method 

of picking gene candidates were robust. These genes are now being 

characterized by several members of our group.  

One cannot truly say that a particular gene is important to XPT based on an 

siRNA screen alone. In order to do so, the candidate genes need to be further 

characterized and their mechanism in relation to XPT established. One such 

gene, the Rab GTPase Rab39a, has been identified by the screen to affect XPT. 

The characterization of this gene – its nature, mechanism and relevance to XPT 

is the focus of the next chapter of this dissertation. 
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CHAPTER II: Rab39a Promotes Crosspresentation Through The Delivery Of 

ER-Golgi Components To The Nascent Phagosome 

 

I. Introduction 

A. Rationale for Rab39a 

Using a genome-wide siRNA screen for genes affecting the XPT and 

Class II pathways, we have identified Rab39a as having a potential and specific 

role. We were particularly interested in this candidate because the screen 

showed that its knockdown only affected XPT, but left Class II presentation 

intact. Published data (discussed in later sections) showed that Rab39a is 

localized in endosomes and phagosomes. XPT and the Class II pathway both 

acquire exogenous antigen similarly, and Rab39a might be able to shed light on 

how and when these pathways diverge.  Another interesting observation was that 

this gene is primarily expressed in the professional APCs, with the highest 

expressers being the CD8α+ dendritic cells (Immgen) (93). 

 

B. Role of vesicular trafficking and Rab GTPases 

The apparent divergence of antigen into the XPT and Class II pathways is 

still a mystery. The notion of phagosome to cytosol transfer of antigen, which is a 

requirement for several XPT antigens due to their requirement for proteasome 
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processing, seems detrimental to the Class II pathway. This is because Class II 

antigen processing and MHC Class II loading occurs within the phagosomes. Are 

some antigens routed to XPT while others are sent to the Class II pathway? If so, 

how and when? Are phagosomes segregated based on what internalization 

receptor is utilized for entry? Does kinetics and maturation state of the 

phagosome play a role, wherein early phagosomes are more suitable for XPT 

while later, more mature ones are used for Class II? 

The discovery of Rab39a as a selective hit for XPT led us to look into the 

role of Rab GTPases and vesicular trafficking. Rab proteins (ras gene from rat 

brain) are monomeric GTPases that serve as molecular switches that regulate 

trafficking, fusion and organization of membranes in eukaryotic cells (100). They 

exist in two forms, a GDP-bound ‘inactive’ form, and an ‘active’ form bound to 

GTP. Upon synthesis Rabs are in the inactive form, and are chaperoned by Rab 

escort proteins (REP) to geranylgeranyl transferase (GGT). This enzyme 

modifies the cytosolic tail of the Rab protein, allowing it to be membrane bound. 

Targeting to their cognate membranes is then mediated by Rab GDP dissociation 

inhibitors (GDI) and GDI displacement factors (GDF). Membrane bound inactive 

Rabs are then activated by guanine nucleotide exchange factors (GEF), 

switching the bound GDP for GTP. This activation causes a conformational 

change on the Rab protein, allowing it to bind specific effectors to mediate its 

function. Examples of these effectors include motor adaptors, that permit 

trafficking of Rab bound vesicles along the cytoskeletal track. Other effectors are 
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tethering proteins, that stabilize opposing membranes with t- and v- SNARES 

(SNAP (soluble NSF attachment protein) receptor) and prepare them for fusion. 

Once its work is done, Rab proteins are inactivated by GTPase activating 

proteins (GAP) – returning the Rab to its original GDP bound state for recycling. 

Recently, a variety of Rabs have been implicated in the regulation of XPT. 

Rab11a, first implicated in the recycling of MHC-I (69), has been shown to cause 

accumulation of Class I molecules in a distinct intracellular compartment (71). 

These Class I molecules are then shuttled to phagosomes containing TLR4 

ligands. It has been proposed that this intracellular pool can be the source of 

Class I molecules utilized by XPT, particularly during phagosomal loading in the 

phagosome-cytosol-phagosome and vacuolar pathways. A similar phenotype has 

been observed with Rab22a, wherein its knockdown caused a decrease in the 

recycling and intracellular pool of Class I (68). Rab3b/3c, identified in an siRNA 

screen of Rabs affecting XPT by DCs, has been proposed to be involved in 

exocytosis of recycled Class I (67). Rab14 positive endosomes have been 

associated with Insulin Responsive Aminopeptidase (IRAP), which trims peptides 

in the phagosomes. Rab27a regulates recruitment of NADPH oxidase (NOX2), to 

dendritic cell phagosomes. NOX2 modulates phagosomal pH and prevents 

extensive antigen degradation and loss, thereby increasing DC XPT capability 

(101). In Rab43 knockout mice, XPT of cell associated antigen is defective 

specifically in CD8α+ dendritic cells (91). This might be due to its role in 

Cathepsin D delivery, which can aid in peptide generation (102).  



62 
 

C. Background on Rab39a 

Rab39 was first described after having been isolated from a human 

dendritic cell cDNA library (103). It was found to colocalize with the golgi 

apparatus, and overexpression increased endocytosis by HeLa cells.   

Further advances in the field has shown that while Rab39 is conserved in most 

metazoans, there are in fact 2 isoforms (in this case, a Rab of similar protein 

sequence) of the gene in mouse and humans (104). Rab39a localizes at the 

periphery of Lamp2 positive vesicles, while Rab39b is golgi localized (105). 

Rab39a has been reported to bind Caspase-1 and mediate IL-1β release in 

thymocytes (106). It has also been shown to downregulate LPS-mediated 

autophagy by macrophages (105). Rab39b on the other hand, is involved in 

neurite morphology and has been linked to X-linked mental retardation (107). 

In the field of immunology, Rab39a has been shown to be utilized by the 

immune response against pathogens (102) as well as being utilized by the 

pathogens themselves (108). In macrophages fed with S.aureus or 

M.tuberculosis, Rab39a is recruited to late phagosomes (peaking at 1 hour post 

phagocytosis). Overexpression of the dominant negative form of Rab39a led to a 

decrease in phagosome staining by Lysotracker dye, implying that it plays a role 

in host defence through phagosome acidification. Chlamydia has been shown to 

recruit Rab39a to its inclusions (108). It has been proposed to mediate delivery of 
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multivesicular bodies and sphingolipids to the parasite inclusion to facilitate its 

growth. 

 Our work sheds light on a new role of Rab39a in the immune response. 

Here we show that Rab39a specifically promotes XPT, while having no effect on 

both the Classical Class I and the Class II pathways. We propose that Rab39a 

achieves this by facilitating transport of ER-golgi derived cargo to phagosomes. 

This cargo includes Sec22b, as well as components of the peptide-loading 

complex such as TAP and open forms of MHC-I. In accordance to published 

reports on Sec22b, this delivery also facilitates a downregulation in phagosomal 

antigen degradation (59), which can possibly aid in antigen persistence. An 

interesting finding of this work shows that Rab39a expression leads to an 

accumulation of peptide receptive MHC Class I molecules in the phagosome – 

possibly shedding a light on the source and nature of the Class I molecule used 

for XPT.  
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II. Materials and Methods 

A. Chapter I Protocols 

Parts of Chapter 2 utilized the same experiments as those in Chapter I. 

The detailed protocols for them can be found in that Chapter. Modifications of the 

protocols are detailed below. For reference, the protocols that can be found in 

Chapter 1 are: 

  

 
Cell lines and culture conditions 

 
Lentiviral transduction of Dendritic Cell 

Lines 
 

SiRNA transfections 
 

Antigen presentation assay 
 

 

B. Cell terminology 

Various cell lines have been used in this study. Cell creation and detailed 

cell properties are discussed in other sections of Materials and Methods. Here is 

a list of cells and a summary of their properties: 
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Cell name Property 

DC2.4 Dendritic cell line 

DC3.2 Dendritic cell line similar to DC2.4 but 

with high levels of MHC Class II 

DC3.2R DC3.2 cell line expressing Renilla 

Luciferase. Cloned for high XPT and 

Class II ability 

DC3.2-Rab39aKO DC3.2 cells where Rab39a was 

knocked out with CRISPR 

DC3.2-Rab39aKO-Rab39a A doxycycline inducible Rab39a 

construct was transduced into the 

knockout cells 

DC3.2-Rab39aKO-Rab39a-Ld H2-Ld was transduced in the above 

cell 

DC3.2-Rab39aKO-Rab39a(DN) A doxycycline inducible Rab39a 

dominant negative construct was 

transduced into the knockout cells 
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DC3.2-Rab39aKO-Rab39a(CA) A doxycycline inducible Rab39a 

constitutively active construct was 

transduced into the knockout cells 

RF33.70 CD8+ T cell hybridoma recognizing 

SIINFEKL on H2-Kb 

RF33-Luc RF33.70 that expresses Firefly 

luciferase upon activation via TCR 

MF2-2D9 CD4+ T cell hybridoma recognizing 

ISQAVHAAHAEINEAGR on I-Ab 

MF2-Luc MF2-2D9 that expresses Firefly 

luciferase upon activation via TCR 

12.64-Luc CD8+ T cell hybridoma recognizing the 

ASNENMETM peptide of the influenza 

peptide NP366. Expresses Firefly 

luciferase upon activation via TCR  

DC3.2 NSova DC3.2 cells transduced with a 

doxycycline inducible cytosolic 

ovalbumin 

DC3.2 UbS8L DC3.2 cells transduced with a 

doxycycline inducible SIINFEKL 



67 
 

conjugated to the C-terminus of 

Ubiquitin 

C. Additional cell lines used in this study 

i. DC3.2 NSova and DC3.2 UbS8L 

DC3.2 NSova is a variant of DC3.2 (see Chapter I) that expresses a non-

secreted form of ovalbumin upon induction with doxycycline. The gene for 

chicken ovalbumin (109) was amplified without the first 50 amino acids, replacing 

it with a methionine. The insert was put into the Age-I Mlu-I sites of pTRIPZ 

(Open Biosystems) for lentiviral production and transduction of DC3.2. pTRIPZ 

contains the tet on promoter system allowing dox inducible expression of cloned 

genes. 

DC3.2 UbS8L is another doxycycline inducible cell line. This line 

expresses the SIINFEKL peptide fused to the C-terminus of Ubiquitin. The 

Ubiquitin-S8L construct (110, 111) was PCR amplified and inserted into the 

above listed lentiviral vector.   

ii.  12.64-Luc T cell Hybridoma 

12.64 is a CD8+ T cell hybridoma recognizing the ASNENMETM peptide 

of the influenza peptide NP366 (86). This hybridoma was also transduced with 

the NFAT-Luciferase construct similarly to RF33-Luc and MF2-Luc (see Chapter 

I). The 12.64-luc cell was made by D. Farfan (96). 
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D. Antibodies  

The following antibodies were used: H2-Kb (Af6-88.5, BD biosciences) I-

A/I-E (M5/114.15.2, BD biosciences), Lamp1 (1d4B, Bd biosciences), Lamp2 

(abl-93, abcam) ovalbumin (ova-14, Sigma-Aldrich), mouse IgG1 anti HA-tag 

(6E2, Cell Signaling), rabbit anti HA-tag (C29F4, Cell Signaling), H2-Ld closed 

conformer (30-5-7s, Thermo Scientific) Sec22b (rabbit polyclonal, Synaptic 

Systems), TAP1 (B-8, Santa Cruz Biotech), Mouse anti actin (C-4, Santa Cruz) . 

The antibody for H2-Ld open conformers (64-3-7) was generated by Dr. Clifford 

Harding (Case Western Reserve University) and is a gift from Dr. Xiaoli Wang 

(Washington University, St Louis MO). Fluorescently labelled secondary 

antibodies (goat anti mouse IgG2a, goat anti mouse IgG2b, goat anti mouse 

IgG1, goat anti mouse IgG, Donkey anti rabbit IgG) were purchased from Thermo 

Scientific.  HRP conjugated secondary antibodies were purchased from Jackson 

Immunoresearch. 

E. Quantitative PCR 

After siRNA treatment of cells, total RNA was extracted using RNeasy 

Mini Kit (Qiagen) according to manufacturer instructions. Quantitative PCR was 

performed using Luna Universal One-Step RT-qPCR kit in a Bio-Rad CFX96 

cycler. HPRT was used as housekeeping control and relative expression were 

calculated using ΔΔCT method. The primers used were HPRT (5’-

AGGGATTTGAATCACGTTTG-3’ and 5’-TTTACTGGCAACATCAACAG-3’), 
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Rab39a (5’-CGCTTCAGATCAATAACTCG-3’ and 5’-

TGTCCCACCAGTAGAAATAC-3’) Rab39b (5’- 

GGATACAGCGGGTCAAGAGAGG -3’ and 5’- 

GTTGGTAATGTCAAATAAGAGAAGAC -3’). Primers for Rab39b were derived 

from a previous work (107). 

 

F. Antigen presentation assay 

The protocol antigen presentation can be found in Chapter I. Some 

experiments in this Chapter make use of different antigen concentrations and 

different forms of antigen. These are detailed within the figures. Detailed below 

are new forms of antigen we used in this Chapter, not found in Chapter I. 

 

i. Peptide beads 

Peptide beads are biomag beads conjugated to various peptides via a 

disulfide bond.  

All peptides were custom made to >98% purity (Genscript). For bead 

conjugation, biomag Amine beads were reacted with SPDP (succinimidyl 3-(2-

pyridyldithio)propionate) (Thermo Scientific) according to manufacturer 

instructions. 1 mg of lyophilized cysteine containing peptides were dissolved in 

DMSO and added 1:1 with PBS to SPDP-activated beads for overnight 
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incubation at room temperature. Peptide-bound beads were extensively washed 

with PBS. 

As a control, full length ovalbumin (Sigma-Aldrich) was also conjugated to 

biomag beads via a disulfide bond rather than the previously used 

glutraraldehyde method. To do this, 1 mg/ml ova was prepared in PBS with 2 mM 

EDTA (Thermo Scientific). In a separate tube, 2 mg/ml of Traut’s reagent 

(Thermo Scientific) was prepared in PBS-EDTA. 10 µl of Traut’s solution were 

added to 1 ml of ova, and the solution was rotated for 1 hour at room 

temperature to convert some of the ova amine groups to sulfydryls. After 

incubation, the ova solution was mixed with SPDP-modified biomag beads, 

rotated overnight and extensively washed. 

 

ii. Latex-ova beads 

Latex-ova beads are polystyrene beads covalently conjugated to 

ovalbumin. 

1 µm polystyrene latex (amine group modified) beads were purchased 

from Bangs Laboratories. Beads were washed with PBS and incubated with 10% 

glutaraldehyde (Thermo Scientific) for 2 hours. Beads were washed twice with 

PBS and incubated with 5 mg/ml of ovalbumin in PBS overnight. Beads were 

then washed and resuspended in PBS. 
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iii. Antigen-expressing Bacteria 

*This protocol was designed and performed by Jeff Colbert, UMASS Medical 

School. 

E.Coli (BL21 strain) expressing GST-peptide fusion proteins (GST-

ASNENMETM or GST-SIINFEKL cloned into vector pGEX-6P) were cultured in 

LB+ampilicillin medium overnight. OD600 was adjusted to 0.1 in new LB medium 

containing 0.5mM IPTG. Cultures were then grown from 4-6 hrs at 30oC to an 

OD600 of 1.0. Bacteria were washed 3x by centrifugation in PBS and 

resuspended in 1ml PBS following the last wash. E.coli expressing GST-fusion 

proteins were heat inactivated by incubating cells at 70oC for 50 min vortexing 

bacteria every 15 min. Inactivation of bacteria was confirmed by plating cells on 

LB-agar plates overnight.  Heat inactivated bacteria was resuspended in PBS at 

1X108 cfu/ml. Bacterial cell numbers were determined on live bacteria by 

counting colonies of serially diluted bacteria grown overnight on LB agar plates 

with amplicillin. Colony numbers were calculated from the OD600 of the original 

stock culture. E.coli expressing GST-fusion proteins grown to an OD600 of 1.0 

were shown to correlate to 12.5X106 bacteria/ml. Heat inactivated bacteria were 

cultured with DCs and peptide-specific T cell hybridoma overnight at 37oC. T cell 

activation was determined based the luciferase reporter assay as described.  
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G. Assaying the Classical Pathway with NSova and UbS8L 

In a 384 well plate, 30 µl of DC3.2 NSova and DC3.2 UbS8L cells were 

plated at the indicated cell numbers in media with the indicated amount of 

doxycline. After a period of time (depending on the experiment), 20 µl of reporter 

T cells (corresponding to 1:1 ratio with DCs) were added along with a final 

concentration of 1:1000 brefeldin A (Golgiplug, BD). Brefeldin A stops further 

egress of H2-Kb – SIINFEKL to the surface, thereby allowing titration of peptide-

MHC expression. The cells were incubated overnight and luciferase expression 

of the T cells was measured.   

 

H. Creation of Rab39a CRISPR knockout cells (DC3.2-Rab39aKO) 

Rab39a was knocked out at the genomic level using CRISPR. The target 

sequence was elucidated using an algorithm as presented (112). The guide 

sequence of gtgatcggagactccacggt was chosen because it had an endogenous 

restriction site (BtgI) within the CRISPR cutting site. This allowed screening of 

clones via restriction enzyme digestion. Guide sequence was inserted into 

CRISPR plasmid pX330-U6-Chimeric_BB-CBh-hSpCas9 (Addgene plasmid 

#42230) (113). A gfp construct was PCR amplified from pEGFP-N1 (Clontech) 

and inserted within the Nar1 site of the CRISPR plasmid. 

2x106 DC3.2 were electroporated with 2 µg of the CRISPR construct using 

Amaxa nucleofector II with program T-030 and Cell Line Nucleofector Kit V. Cells 
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were allowed to recover overnight in HCM. GFP expressing cells were flow 

sorted into 96-well plates at 1 cell per well (UMASS Medical School Flow 

Cytometry Core Facility).  

The sorted DC clones were screened by DNA sequencing. DNA from 

clones were extracted using DNeasy Blood and Tissue Kit (Qiagen). A region of 

Rab39a containing the CRISPR target site was PCR amplified using primers    

5’AGGTGCTGAAGGGACAGTTC3’ and 5’AAACTGCGGAGGAGGAAGTC3’. 

PCR products were screened by cutting with BtgI (New England Biolabs). 

Successful mutations generated by CRISPR would have destroyed this cutting 

site. PCR clones that resisted digestion were cloned into PCR2.1-TOPO 

(Invitrogen) according to manufacturer instructions. For every dendritic cell clone, 

10 bacterial clones were sequenced to check mutations in the CRISPR target 

site. Clones that showed exactly 2 different mutations (which indicated that both 

alleles of the gene were mutated) were chosen. 

The generated cell was called DC3.2-Rab39aKO.   

 

I. Rab39a rescue on knockout cells (DC3.2-Rab39KO-Rab39a) 

For Rab39a rescue experiments, a Rab39a CRISPR clone of DC3.2 was 

transduced  with a lentiviral vector containing doxycycline inducible Rab39a. The 

cDNA for Rab39a was amplified from C57BL/6 cDNA, with an HA tag added on 

the N-terminus. This construct was inserted within the Age1 – Mlu1 sites of the 
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plasmid pTRIPZ (GE Dharmacon). Lentivirus production and DC transduction 

was performed as described. Selection was done at 5 µg/ml puromycin. 

Knockout cells were rescued with Rab39a by adding 1 µg/ml doxycycline (Sigma 

Aldrich).  

Western blot was performed to determine expression levels and 

inducibility of the transduced Rab39a (HA-tag). 

The generated cell was called DC3.2-Rab39aKO-Rab39a. 

Some experiments necessitated the need for the Class I molecule H2-Ld. 

H2-Ld was PCR cloned and inserted into the lentiviral vector pCDH1-CMV-SV40-

Bsd. DC3.2-Rab39aKO-Rab39a was transduced using this lentiviral construct. 

These cells were called DC3.2-Rab39aKO-Rab39a-Ld 

To generate GDP (DN) and GTP-locked (CA) Rab39a mutants, mutations 

were generated via pcr using primers as described (102). The DN form of 

Rab39a has an S22N mutation while the CA form has Q72L.The mutant 

constructs were cloned into lentivirus vectors and transduced into DC3.2-

Rab39KO cells.  

The generated cells were called DC3.2-Rab39aKO-Rab39a(DN) and DC3.2-

Rab39aKO-Rab39a(CA). 
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J. pH and DQ ova assay 

i. Beads for assaying protein degradation and pH 

DQ-ovalbumin (Thermo Scientific) was conjugated to Compel 6 µm COOH 

modified beads (Bangs Laboratories) using 1-ethyl-3-[3-

dimethylaminopropyl]carbodiimide hydrochloride (EDC) (Thermo Scientific) 

following manufacturer instructions. 1 mg of DQ-ovalbumin was conjugated to 

200 µl stock beads.  

To make pH sensor beads, the pH sensor dye pHrodo (Thermo Scientific) 

was conjugated to 1 µm latex or Compel 6 µm COOH modified beads. For latex 

beads, 500 µg of pHrodo Green STP Ester was mixed with 100 µl of stock beads 

to make a final volume of 500 µl in PBS. The mixture was rotated overnight and 

washed extensively with PBS. For 6 µm COOH beads, Lysine was conjugated to 

200 µl Compel beads using EDC. After extensive washing with PBS, 500 µg of 

pHrodo Green STP Ester was bound following manufacturer instructions.  

ii. Ova degradation and pH assay 

To assay for overall ova degradation, dendritic cells were fed with DQ-ova 

beads at 1 bead per cell for the listed number of hours. Uneaten beads were 

washed off with PBS and the cells were detached with Versene (Thermo 

Scientific). Cells were resuspended in 1% FCS in PBS for flow cytometric 

analysis. 



76 
 

To assay for overall phagosomal pH, dendritic cells were fed with pHrodo 

beads at 1 bead per cell for the listed number of hours. Uneaten beads were 

washed off with PBS and the cells were detached with Versene (Thermo 

Scientific). Cells were resuspended in 1% FCS in PBS for flow cytometric 

analysis. In some cases, cells were treated with 25 nM bafilomycin A1 (Sigma-

Aldrich) during the feeding period. 

K. Staining and Confocal microscopy 

i. Fixed cell microscopy  

For fixed cell imaging, cells were grown in coverslips overnight. The next 

day, cells were washed and fixed with 4% PFA for 10 minutes. Cells were 

permeabilized and stained in 0.25% saponin, 1% BSA in PBS and mounted in 

ProLong Antifade (Thermo Scientific). Cells were imaged under a Leica TCS SP5 

confocal microscope. Image analysis and processing were done in ImageJ 

software. 

ii. Live cell microscopy 

For live cell imaging, DC3.2-Rab39aKO cells were transduced with 

lentivirus containing inducible Rab39a (see previous protocol) fused with an N-

terminal mcherry construct. Cells were grown to 70% confluency in 7mm glass 

bottom dishes (MatTek Corporation) with 1 µg/ml doxycycline overnight. The next 

day, cells were fed with 3 µm polystyrene beads (Bangs Laboratories) for 2 
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hours. Cells were imaged live under a Leica TCS SP5 confocal microscope. 

Image analysis and processing were done in ImageJ software. 

L. Phagosome Flow Cytometry (PhagoFACS) 

i. C6-biotin 

To make biotinylated 6 µm magnetic beads, COMPEL COOH (Bangs 

Laboratories) were conjugated to Biotin Hydrazide (Covachem) using EDC 

(Thermo Scientfic). 

ii. C6-ova biotin 

To make biotinylated ova beads, COMPEL COOH beads were conjugated 

with ovalbumin (Sigma Aldrich) using EDC. After extensive washing, beads were 

conjugated to Biotin-NHS (Thermo Scientific) using manufacturer instructions. 

iii. Phagosome Preparation and Flow Cytometry 

(PhagoFACS) 

Dendritic cells were plated with or without 1µg/ml doxycycline for 24 or 48 

hours in tissue culture plates (12 well or 6 well). After 1-2 days, cells were about 

75% confluent. Media was replaced and dendritic cells were fed with the 

appropriate number and type of biotinylated beads depending on the experiment. 

Phagocytosis was done at 37oC in a 10% CO2 incubator at the listed time point. 

Cells were then washed with PBS and detached with room temperature Versene 
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for 5 minutes. Cells were spun down at 180xg using a swinging bucket centrifuge 

and resuspended in 1% FCS in ice cold PBS. 

Uneaten or surface-bound beads were first stained by incubating cells in 

6.4 µg/ml of Streptavidin Pacific Blue or Orange (Thermo Scientific) in 1% FCS-

PBS for 10 mins on ice. Cells were then washed in 1% FCS-PBS. Cells were 

then resuspended in ice cold homogenization buffer (HB) containing 250 mM 

sucrose, 10 mM CaCl2 with 1X HALT EDTA free protease inhibitor (Thermo 

Scientific). Cell disruption was performed in a 0.3 ml dounce homogenizer 

(Kimble Chase) using the tight fitting “B” pestle. The extent of homogenization 

was observed under a microscope and cells were dounced to at least 50% lysis 

while minimizing disruption of the nucleus. Phagosomes were extracted 

magnetically. 

To stain ruptured phagosomes, phagosomes were washed in Wash Buffer 

(1% BSA in PBS) and stained once again with streptavidin pacific blue/orange for 

10 minutes. After extensive washing, phagosomes were fixed in 2% 

paraformaldehyde for 20 minutes or directly permeabilized and stained. 

For staining, the isolated magnetic bead phagosomes were incubated for 

10 minutes in Perm Buffer (1% BSA in PBS with 0.25% saponin). Phagosomes 

were stained with the indicated antibodies. For FACS analysis, phagosomes 

were resuspended in wash buffer. 
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For flow cytometric analysis of phagosomes, events were gated according 

to the FSC and SSC of plain magnetic beads as well as the lack of Pacific 

Blue/Orange staining. 

iv. Peptide loading of phagosomes 

Isolated, unfixed phagosomes were permeabilized in ice cold Perm Buffer 

supplemented with 1X HALT protease inhibitor (Thermo Scientific). Peptide was 

added (nature and concertation was dependent on the experiment) and the 

mixture was rotated at room temperature for 3-4 hours. The phagosomes were 

washed extensively in Perm Buffer before staining for FACS analysis. 

 

III. Results   

A. Lack of Rab39a inhibits crosspresentation 

 Before characterizing the role of Rab39a in XPT, we sought to validate the 

primary screen and siRNA deconvolution phenotype observed for Rab39a. 

To do this, we transfected DC3.2R with either the smartpool (mixtures of 4 

different oligos against the same gene) or individual siRNA sequences targeting 

Rab39a. The transfected cells were then fed with biomag-ova (ova conjugated to 

magnetic iron oxide beads) and exposed to reporter CD8+ T cells (RF33-Luc). 

The use of smartpool and individual oligos was done to determine if the 

phenotype previously observed in the siRNA screen was due to siRNA artifacts 



80 
 

or to a specific requirement for Rab39a in XPT. Smartpool siRNA is primarily 

used to mitigate the off-target effects of each individual oligo through dilution (1/4 

of final concentration), while keeping their effects on the intended target intact. 

However, we also tested the effects of the individual oligos, to make sure that the 

majority of the smartpool components were able to produce the phenotype. Both 

the smartpool (Figure 7), and all individual siRNAs (Figure 8) against Rab39a 

decreased XPT. 
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Figure 7. Rab39a sirna reduces crosspresentation of biomag-ova. 

Figure 7. Rab39a sirna reduces crosspresentation of biomag-ova. 
2.5 x103 DC3.2R cells were transfected with 50 nM sirna pools using 
Lipofectamine RNAiMax. After 48 hours, 1 x 104 Rf33-Luc cells were added 
along with the indicated amounts of biomag ova. After overnight incubation (~18 
hours), Luciferase activity of the T cells were read using Oneglo reagent 
(Promega).  Error bars indicate the standard deviation between triplicate wells. 
Data shown represents one experiment of >3. For all wells with antigen, all p-
values (ANOVA) between Rab39a or β2m vs that of I-Ab are <0.05.  
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Figure 8. The effects of individual Rab39a sirna on crosspresentation. 
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Figure 8. The effects of individual Rab39a sirna on crosspresentation. 
2.5 x103 DC3.2R cells were transfected with 50 nM sirna pools or individual 
oligos using Lipofectamine RNAiMax. After 48 hours, 1 x 104 RF33-Luc cells 
were added along with biomag beads (4 µg of ova). After overnight incubation 
(~18 hours), Luciferase activity of the T cells was read using Oneglo reagent 
(Promega).  *Rab39a-01 to 04 are the individual oligos that comprise the 
smartpool. Error bars indicate the standard deviation between triplicate wells. 
Data shown represents one experiment of >3. Using I-Ab as negative control, 
all siRNA treatments are p<0.05 using ANOVA. 
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  Similar to magnetic bead particles, Rab39a knockdown also inhibited XPT 

from OVA-latex beads, another form of antigen substrate that utilizes the P2C2E 

and P2C2P pathways (Figure 9). Though inherently less efficient than XPT of 

particulate antigen, the cell lines we used were also capable of presenting 

soluble ova, though only at very high protein concentrations. Nevertheless, 

Rab39a was still required for efficient XPT of this form of antigen (Figure 10). 
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Figure 9. Rab39a affects crosspresentation of latex ova. 

Figure 9. Rab39a affects crosspresentation of latex ova. 
2.5 x103 DC3.2R cells were transfected with 50 nM sirna pools using 
Lipofectamine RNAiMax. After 48 hours, 1 x 104 Rf33-Luc cells were added 
along with the indicated amounts of latex ova. After overnight incubation (~18 
hours), Luciferase activity of the T cells were read using Oneglo reagent 
(Promega). Error bars indicate the standard deviation between triplicate wells. 
Data shown represents one experiment of > 3. For all wells with > 5 µg/ml 
antigen, all p-values (ANOVA) between Rab39a or β2m vs that of I-Ab are 
<0.05. 
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Figure 10. Rab39a sirna affects crosspresentation of soluble ova.  

Figure 10. Rab39a sirna affects crosspresentation of soluble ova. 
2.5 x103 DC3.2R cells were transfected with 50 nM sirna using Lipofectamine 
RNAiMax. After 48 hours, 1 x 104 Rf33-Luc cells were added along with the 
indicated concentrations of ova. After overnight incubation (~18 hours), 
Luciferase activity of the T cells were read using Oneglo reagent (Promega). 
For all wells with > 1.25 mg/ml antigen, all p-values (ANOVA) between Rab39a 
or β2m vs that of I-Ab are <0.05.  

0 1 2 3 4 5
0

2 0 0 0

4 0 0 0

6 0 0 0

8 0 0 0

x p t  o f  s o lu b le  o v a

m g/m l ova

R
L

U

I -A b

R a b 3 9a

 2m
ns



86 
 

We also confirmed the necessity of Rab39a for XPT by generating a 

conditional Rab39a knockout dendritic cell. Rab39a was knocked out at the 

genetic level using CRISPR. This was done to further confirm that the phenotype 

observed in the siRNA experiments was not due to siRNA off-target effects. The 

generated cell line showed that both alleles of the Rab39a gene were mutated, 

thereby causing frameshifts that prevented the proper expression of full length 

Rab39a (Figure 11). To this knockout cell, we transduced in an HA-tagged 

doxycycline inducible Rab39a construct. Thus, we were able to “rescue” 

expression of Rab39a in knockout cells through the addition of doxycycline 

(Figure 12). XPT of biomag-ova was enhanced upon rescue with Rab39a, 

confirming our previous siRNA knockdown experiments (Figure 13). Interestingly, 

the knockout cells were still capable of XPT, which suggested that either Rab39a 

was not absolutely essential for XPT of this form of antigen or there were 

compensation mechanisms that occurred in long term Rab39a knockouts (as 

opposed to short term knockdowns with siRNA). 

Through two different assays – that of siRNA knockdown and a full 

knockout with CRISPR, we were able to show that efficiency of XPT was 

enhanced by the presence of Rab39a, and this phenotype was not due to artifact 

that might arise from siRNA experiments. 
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Figure 11. DNA sequence of DC3.2 Rab39a CRISPR cells. 

Figure 11. DNA sequence of DC3.2 Rab39a CRISPR cells. 
Rab39a was knocked out using CRISPR and a DC clone was isolated (DC3.2-
Rab39aKO). A region of DNA corresponding to the CRISPR target site for 
Rab39a was amplified through PCR, cloned into TOPO vector and transformed 
into E.coli. Several bacterial clones were sequenced and compared to wt 
Rab39a. The figure shows two different mutations (1 base and 2 base deletion) 
corresponding to both alleles of the Rab39a gene. Alignment done with Multalin 
(http://multalin.toulouse.inra.fr/multalin/) 
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Figure 12. HA-tagged Rab39a is used to rescue Rab39a CRISPR DCs. 
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Figure 12. HA-tagged Rab39a is used to rescue Rab39a CRISPR DCs. 
A doxycycline inducible construct of Rab39a (N-terminal HA-tagged) was 
lentivirally transduced into the generated Rab39a knockout DC (DC3.2-
Rab39aKO) to generate rescuable cells (DC3.2-Rab39aKO-Rab39a). After 
puromycin selection, 5x105 cells were plated in 6 well plates with the indicated 
amount of doxycycline at the indicated amounts of time. Cells were harvested 
and lysed with RIPA buffer then run in a Western Blot. Data shown represents 
one experiment of 2. 

time 
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Figure 13. Rab39a rescue of knockout DCs increases crosspresentation. 
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Figure 13. Rab39a rescue of knockout DCs increases crosspresentation. 
1.25x104 DC3.2-Rab39aKO-Rab39a cells were incubated with 1 µg/ml dox for 
48 hours in a 96 well plate. Then, the indicated amounts of biomag-ova beads 
were added along with 5 x 104 Rf33-Luc. After overnight incubation, luciferase 
activity from the T cells were quantified using Oneglo reagent (Promega). Error 
bars indicate the standard deviation between triplicate wells. Data shown 
represents one experiment of > 3. P-values (ANOVA) at 2 µg ova and beyond 
are < 0.05. 
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B. Silencing Rab39a does not inhibit Class II presentation 

 Next, we sought to confirm the selectivity of Rab39a for XPT by assaying 

for its effect on Class II presentation. The siRNA experiment was performed as 

discussed above but this time, the DCs were exposed to reporter CD4+ T cells 

(MF2-Luc). 

Treatment of cells with Rab39a smartpool siRNA did not inhibit the Class 

II pathway when using biomag-ova (Figure 14), latex -ova (Figure 15) or soluble 

ova (Figure 16). In some cases, a slight increase in Class II presentation was 

observed (data not shown). Rab39a knockdown did not affect Class II 

presentation across the entire antigen dose range. This showed that the lack of 

inhibition of Class II presentation was not due to antigen saturation.  

For the individual oligos, 2 out of 4 caused a decrease in Class II 

presentation (Figure 17). It is in this case that the smartpool data proved 

important. Because dilution of the individual oligos to a 4th of their original 

concentration (in a smartpool) abolished their Class II effect, the observed 

phenotype was probably due to off-target effects of these particular oligos.  

This off-target effect on the Class II pathway was confirmed using Rab39a 

knockout cells. When these knockout cells were rescued through doxycycline 

induction of Rab39a, there was little to no effect on Class II presentation (Figure 

18).  
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Figure 14. Rab39a sirna does not reduce Class II presentation of biomag-ova. 

Figure 14. Rab39a sirna does not reduce Class II presentation of biomag-
ova. 
2.5 x103 DC3.2R cells were transfected with 50 nM sirna pools using 
Lipofectamine RNAiMax. After 48 hours, 1 x 104 MF2-Luc cells were added 
along with the indicated amounts of biomag ova. After overnight incubation (~18 
hours), Luciferase activity of the T cells were read using Oneglo reagent 
(Promega). Error bars indicate the standard deviation between triplicate wells. 
Data shown represents one experiment of > 3. For all wells with antigen, all p-
values (ANOVA) between Rab39a vs that of β2m are > 0.05. For I-Ab vs β2m, 
all are p < 0.05 for wells with antigen. 
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Figure 15. Rab39a does not affect Class II presentation of latex ova. 

Figure 15. Rab39a does not affect Class II presentation of latex ova. 
2.5 x103 DC3.2R cells were transfected with 50 nM sirna pools using 
Lipofectamine RNAiMax. After 48 hours, 1 x 104 Mf2-Luc cells were added along 
with the indicated amounts of latex ova. After overnight incubation (~18 hours), 
Luciferase activity of the T cells were read using Oneglo reagent (Promega). 
Error bars indicate the standard deviation between triplicate wells. Data shown 
represents one experiment of > 3. For all wells with antigen, all p-values 
(ANOVA) between Rab39a vs that of β2m are > 0.05. For I-Ab vs β2m, all are 
p < 0.05 for wells with antigen.  
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Figure 16. Rab39a sirna does not affect  Class II presentation of soluble ova. 

Figure 16. Rab39a sirna does not affect  Class II presentation of soluble 
ova. 
2.5 x103 DC3.2R cells were transfected with 50 nM sirna using Lipofectamine 
RNAiMax. After 48 hours, 1 x 104 MF2-Luc cells were added along with the 
indicated concentrations of ova. After overnight incubation (~18 hours), 
Luciferase activity of the T cells were read using Oneglo reagent (Promega). 
Error bars indicate the standard deviation between triplicate wells. Data shown 
represents one experiment of > 3. For all wells with antigen, all p-values 
(ANOVA) between Rab39a vs that of β2m are > 0.05. For I-Ab vs β2m, all are 
p < 0.05 for wells with antigen. 
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Figure 17. The effects of individual Rab39a sirna on Class II presentation. 
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Figure 17. The effects of individual rab39a sirna on Class II presentation. 
2.5 x103 DC3.2R cells were transfected with 50 nM sirna pools or individual 
oligos using Lipofectamine RNAiMax. After 48 hours, 1 x 104 Mf2-Luc cells were 
added along with biomag beads (0.4 µg of ova). After overnight incubation (~18 
hours), Luciferase activity of the T cells was read using Oneglo reagent 
(Promega).  *Rab39a-01 to 04 are the individual oligos that comprise the 
smartpool. Error bars indicate the standard deviation between triplicate wells. 
Data shown represents one experiment of > 3. Using β2m as negative control, 
p-values (ANOVA) of smartpool, -01 and -04 oligos are not significant. P values 
for -02 and -03 < 0.05. 
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Figure 18. Rab39a rescue of knockout DCs does not affect Class II presentation. 

Figure 18. Rab39a rescue of knockout DCs does not affect Class II 
presentation. 
1.25x104 DC3.2-Rab39aKO-Rab39a cells were incubated with 1 µg/ml dox for 
48 hours in a 96 well plate. Then, the indicated amounts of biomag-ova beads 
were added along with 5 x 104 MF2-Luc. After overnight incubation, luciferase 
activity from the T cells were quantified using Oneglo reagent (Promega). Error 
bars indicate the standard deviation between triplicate wells. Data shown 
represents one experiment of > 3. P-values for all wells between samples are 
not significant based on ANOVA (p>0.05) 
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C. Rab39a knockdown does not affect overall phagosomal pH in 

dendritic cells 

The observation that Rab39a caused a defect in XPT but not Class II 

showed that the gene was playing a selective role in the XPT pathway. If Rab39a 

was necessary for normal cell homeostasis, then its loss would have affected the 

Class II pathway as well (due to cell death or other defects). The lack of effect on 

the Class II pathway also meant that Rab39a was probably not playing a role in 

the common steps between XPT and Class II presentation. These steps include 

antigen acquisition and internalization. This was an interesting finding as Rab39 

was first described as promoting endocytosis when expressed in HeLa cells 

(103).  

Another common step between XPT and the Class II pathway is 

endosome/phagosome maturation. These steps include a decrease in 

phagosomal pH as well as the acquisition and activation of various phagosomal 

proteases. Previously, Rab39a was described to promote phagosome 

acidification (102). In that study, overexpression of the dominant negative form of 

Rab39a (a non functional competitor to the endogenous form’s binding partners) 

decreased the number of phagosomes that colocalized with lysotracker dye (a 

dye that stains acidic compartments). We however, hypothesized that the effect 

of Rab39a on XPT was not due to a change in phagosomal acidification, at least 

in dendritic cells. This was because the MHC Class II pathway relied on 

acidification and subsequent activation of various phagosomal proteases to 
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generate Class II peptides (74, 76). Furthermore, it has been shown that the 

deliberate blocking of endosomal acidification using agents such as chloroquine 

and bafilomycin inhibited Class II presentation (114) (also our unpublished data). 

Thus, if Rab39a promoted phagosomal acidification, then its knockdown would 

have also decreased presentation via the Class II pathway. 

On the other hand, some extent of phagosomal acidification could 

conceivably influence XPT. It could influence vacuolar proteolysis to generate 

MHC I peptides, particularly for the XPT of vacuolar pathway antigens. It could 

destabilize MHC I molecules and in theory possibly promote exchange of MHC I- 

bound peptides with ones derived from internalized antigen. 

In order to directly determine the role of Rab39a on phagosomal 

acidification, we fed dendritic cells with pH sensing beads. Beads conjugated to a 

pH sensor dye (pHrodo, Thermo Scientific) were fed to siRNA treated dendritic 

cells. This dye increased fluorescence as the environment pH became more 

acidic. If Rab39a was necessary for acidification, then its knockdown should 

have caused a decrease in bead fluorescence. As shown in (Figure 19), we did 

not see significant changes in fluorescence by cells that were treated with 

Rab39a siRNA as compared to cells treated with control siRNA. In contrast, the 

vacuolar ATPase inhibitor Bafilomycin A1 effectively prevented phagosomes 

from acidifying as expected, and served as a positive control that the assay was 

working.  
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The same lack of phenotype was observed when pH sensing beads were 

fed to either Rab39a knockout cells or doxycycline induced / rescued cells 

(Figure 20). Thus, it appears that for the cell lines we are using, phagosome 

acidification proceeded normally despite the lack of Rab39a. 

The discrepancy between our results and that of previously published data 

(102) can be attributed to several factors. First, we utilized dendritic cell lines 

while the previous study used macrophages. It has been shown that dendritic 

cells, unlike macrophages, have specialized pathways to neutralize phagosomal 

pH (73). Second, the method of Rab39a disruption was different between our 

and the published experiments. In our experiments, we reduced Rab39a via 

siRNA, or eliminated it completely via CRISPR. In the published work, Rab39a 

was disrupted through the overexpression of the dominant negative form (GDP 

locked form) of Rab39a. While the dominant negative forms of Rab GTPases are 

usually used to compete out the wildtype forms from their natural binding 

partners, there are some cases where the GDP bound form of a Rab protein has 

a unique function as compared to its GTP bound form (discussed further in later 

sections) (69, 115-117). In addition, dominant negative forms of proteins have 

the potential to block other interacting proteins and thereby cause broader 

inhibitory effects that selective depletion of the wild type protein. 
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Figure 19. Rab39a does not affect overall phagosome pH. 
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Figure 19. Rab39a does not affect overall phagosome pH. 
8 x 104 DC3.2R cells were transfected with 50 nM sirna using lipofectamine 
RNAiMax in a 24 well plate. 48 hours later, cells were fed at 10 beads / cell of 1 
µm pHrodo latex beads for 2 hours at 37oC. Wells were washed and the cells 
were detached with trypsin, washed in 1%FCS-PBS then run for facs analysis. 
For control, untransfected cells were treated with 100 nM bafilomycin during 
phagocytosis. Shown are gMFI of indicated fluors. Data shown represents one 
experiment of >3. 
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Figure 20. Rab39a rescue does not affect overall phagosome pH. 
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Figure 20. Rab39a rescue does not affect overall phagosome pH. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a cells were incubated with 1 µg/ml dox for 
48 hours in a 12 well plate. Cells were fed at 1 bead / cell of 6 µm magnetic 
beads  conjugated with pHrodo for 4 hours at 37oC. Wells were washed and the 
cells were detached with versene, washed in 1%FCS-PBS then run for facs 
analysis. Shown are gMFI of cells that have eaten beads. Data shown 
represents one experiment of >3. 
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D.  GDP and GTP locked Rab39a as well as Rab39b do not 

affect XPT 

To further characterize role of Rab39a in the XPT pathway as well as 

address the previously discussed discrepancy in data, we utilized the dominant 

negative (DN, GDP-locked) and constitutively active (CA,GTP-locked) forms of 

Rab39a in our CRISPR rescue experiments. 

Rab proteins, being GTPases, can either be in a guanosine diphosphate 

(GDP)-bound or guanosine triphosphate (GTP)-bound form (118). The activation 

state of the Rab determines its function, with many Rabs only being active when 

gtp is bound. Because of this, several studies on Rab GTPases have made use 

of Rab mutants, wherein the GTPase is permanently bound to GDP or GTP. 

Dominant negative mutants can be overexpressed to compete out endogenous 

Rabs from their interaction partners, thereby inhibiting their function. The reverse 

is true for constitutively active mutants, which when overexpressed, have no 

need for prior activation.  

To test the effect of the Rab39a DN and CA forms in XPT, we transduced 

the Rab39a knockout cells with doxycycline inducible forms of these Rab39a 

mutants. Interestingly, only the wildtype form of Rab39a, and not DN or CA, 

could enhance crosspresentation of bead bound antigen (Figure 21). While this 

was expected for the DN, the lack of phenotype even with the CA form was 
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surprising. These data suggest that the proper cycling of Rab39a from the GDP 

to the GTP bound form (and back) was important for conveying the XPT 

phenotype.  

It is important to note that the wt, DN and CA rescue cell lines used in this 

experiment arose from separate transductions of lentivirus constructs. The 

random integration of the constructs in the genome, as well as the time needed 

for proper antibiotic selection of transduced clones caused these three cell lines 

(wt, DN and CA) to diverge in their characteristics. These characteristics included 

cell size, division time, culture plate adherence properties, Class I and 2 levels, 

as well as crosspresentation and Class 2 presentation abilities. As such, in figure 

21, one cannot compare the reporter T cell signals (RLU) of the three cell lines 

against each other (eg. Wt vs DN baseline xpt). What this figure shows, is the 

effect of dox (Rab39a rescue) on each of the independent cell lines.    

 The requirement for a fully functional Rab GTPase on-off cycle was also 

described with Rab3a (116). In mouse chromaffin cells, only the wt form of 

Rab3a was able to regulate secretory vesicle docking, while both DN and CA 

forms failed to do so. In a large scale screen for Drosophila Rab effectors, it was 

shown that while majority of effector proteins bound to the GTP-bound form of 

Rab GTPases, there are indeed some that prefer the GDP bound form (117). 

Rab22a, involved in recycling of cell surface molecules including MHC Class-I, 

has also been shown to require both GDP and GTP bound forms for full activity 

(69). Knockdown of Rab22a or overexpression of its DN form blocked MHC-I 
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recycling and depleted recycling tubules in human cell lines. When the CA form 

was overexpressed however, there was an increase in recycling tubules and 

peripheral vesicles, but MHC-I recycling was still defective. The data suggested 

that while the active form of Rab22a was required to initiate the formation of 

recycling tubules and vesicles, its inactivation is required for fusion of these 

vesicles to the cell surface. Our data show that Rab39a is similar in that it 

requires active GDP/GTP cycling to confer its phenotype on XPT. 
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Figure 21. Mutants of Rab39a cannot rescue of crosspresentation of knockout DCs. 
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Figure 21. Mutants of Rab39a cannot rescue of crosspresentation of 
knockout DCs. 
DC3.2-Rab39aKO cells were transduced with doxycycline inducible constructs 
containing the wt sequence of Rab39a, or its DN (S22N), or CA (Q72L) mutants 
and selected with puromycin. 1.25x104 cells were incubated with 1 µg/ml dox 
for 48 hours in a 96 well plate. Then, the indicated amounts of biomag-ova 
beads were added along with 5 x 104 Rf33-Luc. After overnight incubation, 
luciferase activity from the T cells were quantified using Oneglo reagent 
(Promega). Error bars indicate the standard deviation between triplicate wells. 
Data shown represents one experiment of > 3. For Rab39a (wt), all wells with 
antigen at and beyond 2 µg ova have p-values (ANOVA) < 0.05. P-values for all 
wells in both DN and CA setups are not significant (p > 0.05) 
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Further investigation of the Rab39a mutants showed that while both 

Rab39a wt and CA forms were stable in the cell, the DN form had a short half 

life. As shown in (Figure 22), cells expressing the DN form had very low levels of 

Rab39a unless rescued by addition of the proteasome inhibitor MG132. This 

might indicate a difference in Rab39a regulation between dendritic cells (our 

data) and macrophages (102), where overexpression of the DN form decreased 

phagosome acidification. Why the stable CA form did not cause an increase in 

XPT would be interesting to study.  
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Figure 22. Mutants of Rab39a have differing protein stabilities. 
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Figure 22. Mutants of Rab39a have differing protein stabilities. 
DC3.2-Rab39aKO cells were transduced with Doxycycline inducible constructs 
containing the wt sequence of Rab39a, or its DN (S22N), or CA (Q72L) mutants 
and selected with puromycin. 1 x 106 cells were incubated with or without 1 
µg/ml dox for 24 hours in a 6 well plate. A set of cells preincubated with dox 
were further incubated with 10 µM MG132 for 4 hours. Cells were harvested, 
lysed in RIPA buffer and run in a Western Blot. Data shown represents one 
experiment of >3. 
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Rab39b is another isoform (different gene with high homology of protein 

sequence) of Rab39 that shares 78% amino acid similarity with Rab39a (104). 

This difference in amino acid sequence completely changed Rab39a and b 

localization. While Rab39a was present on late endosomes, Rab39b was golgi-

localized (105). Nevertheless, we tested whether Rab39b also affected XPT.  

Silencing of Rab39b with siRNA did not affect XPT of biomag-ova (Figure 

23). Thus, despite high sequence homology, Rab39a was distinct enough from 

Rab39b to affect XPT. We hypothesized that the endosomal localization of 

Rab39a was the reason and this is discussed in the later sections. 
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Figure 23. Rab39b does not affect crosspresentation.  
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Figure 23. Rab39b does not affect crosspresentation. 
A. 2.5 x103 DC3.2R cells were transfected with 50 nM sirna pools using 
Lipofectamine RNAiMax. After 48 hours, 1 x 104 Rf33-Luc cells were added 
along with the indicated amounts of biomag ova. After overnight incubation (~18 
hours), Luciferase activity of the T cells were read using Oneglo reagent 
(Promega). Error bars indicate the standard deviation between triplicate wells. 
For all wells, p-values (ANOVA) between Rab39b vs that of β2m are not 
significant (> 0.05). B. qPCR of Rab39a and Rab39b following siRNA 
treatments. Expression was normalized to that of siRNA control (I-Ab). Data 
shown represents one experiment of > 3. 
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E. Silencing Rab39a does not inhibit the Classical Pathway  

Given that inhibition or lack of Rab39a affected XPT but not the Class II 

pathway, we next determined whether or not Rab39a affected the Classical MHC 

Class I pathway. The XPT and Classical pathways are intricately linked by 

several key molecules. 

The phagosome to cytosol pathways (P2C2E and P2C2P) of XPT shared 

with the Classical pathway genes such as TAP1, the proteasome, and in some 

cases, other peptidases like ERAP1 (28, 29, 31, 32) (33). Moreover, for XPT 

antigens that route through the ER for Class I loading, pathways that allow MHC-

I egress and trafficking to the cell surface are also shared. 

A XPT antigen that routed through the vacuolar pathway could also be 

potentially affected by components of the Classical pathway. The source of 

MHC-I utilized for phagosomal loading has been proposed to come from the cell 

surface, the endpoint of the Classical pathway (65-69). Class I stability and 

peptide loading in the ER could also be important, as several models proposed 

that MHC-I loaded with low affinity peptides in the ER were the ones primarily 

being loaded with peptides derived from phagosomally processed antigens (119, 

120). Thus, genes that encoded proteins that altered the MHC peptide repertoire 

(chaperones, peptidases, etc) could be important for both pathways. 

In order to determine the role of Rab39a in the Classical Class I pathway, 

we transfected siRNA into two different ova expressing cell lines. 
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First, we generated a dendritic cell line that could inducibly express a 

cytosolic form of ovalbumin (DC3.2 NS-ova) upon addition of doxycycline. The 

expressed ovalbumin protein underwent all the steps involved in the Classical 

pathway – proteasomal processing, import into the ER through TAP1, trimming 

by ERAP and finally Class I loading in the ER and egress toward the surface.  

We also generated a second DC line (DC3.2 Ub-S8L) that instead 

inducibly expressed the SIINFEKL peptide conjugated to the C-terminus of 

Ubiquitin (110). In this cell, deubiquitinases free the S8L peptide, thereby 

bypassing proteasomal processing and peptidase trimming (121). The S8L 

peptide however, still required transport through TAP1 and ER loading onto 

Class I.  

We utilized both cell lines to be able to distinguish between the antigen 

processing and Class I-loading steps of the Classical pathway. A defect in NSova 

presentation but not UbS8L would probably mean a defect in a cytosolic (or ER) 

antigen processing step (protein unfolding, chaperoning to proteasome, trimming, 

etc). A defect in both NSova and UbS8L would likely point to a defect in peptide 

transport (through TAP1) or MHC-I trafficking (from the ER to the cell surface). 

 Knocking down Rab39a in these cell lines showed no defect in Class I 

presentation of S8L (Figure 24). Because the Classical pathway is much more 

efficient that XPT, there was a danger of oversaturating the system with MHC-
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peptide. Titration of doxycycline allowed for the expression of minute amounts of 

antigen, and even in these cases, Rab39a did not have an effect. 
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Figure 24. Rab39a does not affect the Classical Class I pathway. 
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Figure 24. Rab39a does not affect the Classical Class I pathway. 
2.5 x103 DC3.2 NS-ova or DC3.2 UbS8L cells were transfected with 50 nM sirna 
pools using Lipofectamine RNAiMax. After 48 hours, the listed concentrations 
of doxycycline were added. After 6 hours (NS-ova) or 2 hours (UbS8l) incubation 
at 37oC, Classical presentation was stopped by the addition of 1:1000 Brefeldin 
A (Golgiplug, BD). 1  x 104 Rf33-Luc cells were added and luciferase activity 
measured after overnight incubation. Error bars indicate standard deviation of 
triplicate wells. Data represents one experiment of > 3. Using I-Ab as negative 
control, for all wells with dox, p-values of β2m are < 0.05 (ANOVA). None of the 
wells for Rab39a show significant difference compared to the control. 
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 We also looked at the effect of Rab39a on surface MHC Class I levels via 

flow cytometric analysis of siRNA treated cells. This allowed determination of 

overall peptide supply because peptide-binding is required for MHC I molecules 

to exit the ER and therefore reduction in peptide supply reduces steady state 

surface Class I levels. Defects in MHC-I trafficking could also be observed using 

this assay. The steady state levels of MHC Class I were unchanged despite 

Rab39a knockdown (Figure 25). The same phenotype was observed when we 

rescued knockout cells with Rab39a (Figure 26). 

These data indicated that Rab39a affected XPT in a process distinct from 

those shared with the Classical pathway. Because of this, and Rab39a’s 

published endosomal localization (102, 105), we then focused on the 

phagosomal processes that occur during XPT.  
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Figure 25. Rab39a sirna does not affect surface MHC Class I levels. 

Figure 25. Rab39a sirna does not affect surface MHC Class I levels. 
8 x 104 DC3.2R cells were transfected with 50 nM sirna using lipofectamine 
RNAiMax in a 24 well plate. 48 hours later, cells were detached and stained for 
MHC Class I (H2-Kb). Shown are gMFI of indicated stains 
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Figure 26. Rab39a rescue does not change steady state surface MHC Class I levels. 

Figure 26. Rab39a rescue does not change steady state surface MHC 
Class I levels. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with or without 1 
µg/ml dox for 48 hours at 37oC in a 12 well plate. Cells were trypsinized, washed 
and stained for surface Class I (H2-Kb and H2-Db). Shown are gMFIs of the 
indicated stains 

No dox (KO) 
Dox (rescue) 
unstained 

No dox (KO) 
Dox (rescue) 
unstained 
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F. Rab39a is localized to late endosomes as well as antigen 

containing phagosomes 

Before studying the possible roles of Rab39a in the phagosomal steps of 

XPT, we sought to reconfirm the findings that it was indeed endosomally 

localized and was recruited to antigen containing phagosomes (102). 

In order to do this, we rescued our generated knockout cells with 

doxycycline (DC3.2 Rab39aKO-Rab39a) and stained Rab39a (via an HA tag) as 

well as endosomal markers for confocal microscopy. Confirming the previous 

reports, Rab39a colocalized with both Rab7 (Figure 27) and Lamp2 (Figure 28), 

both markers of late endosomes. 

We also rescued the knockout cells with an mcherry tagged Rab39a. This 

allowed for live cell observations during microscopy. Rab39a assumed a 

punctate pattern. When cells were fed overnight with lysosensor dextran (which 

fluoresces at 521 nm when in acidic conditions), Rab39a could be seen 

surrounding the antigen (Figure 29). It has been reported that the terminal 

destination of endocytosed dextrans are Lamp1 positive, Rab7 positive 

compartments (122). Thus, Rab39a localized with late endosomal compartments 

in live cells. 

Mcherry-Rab39a also colocalized with internalized beads in the live cell 

imaging experiments (Figure 30). Thus, Rab39a was recruited not just to 

endosomes, but also to particulate containing phagosomes.  



117 
 

Figure 27. Rab39a colocalizes with Rab7. 

Figure 27. Rab39a colocalizes with Rab7. 
DC3.2-Rab39aKO-Rab39a were grown in round coverslips placed in a 12 well plate. After overnight incubation 
with 1 µg/ml doxycycline, cells on coverslips were washed, fixed and stained according to the listed protocol and 
antibodies. A. Green = Rab39a (HA tag), B. Red = Rab7, C. Merge, D. Brightfield. Arrows highlight colocalization. 

A. B. 

C. D. 
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Figure 28. Rab39a colocalizes with Lamp2.

Figure 28. Rab39a colocalizes with Lamp2. 
DC3.2-Rab39aKO-Rab39a were grown in round coverslips placed in a 12 well plate. After overnight incubation 
with 1 µg/ml doxycycline, cells on coverslips were washed, fixed and stained according to the listed protocol and 
antibodies. A. Green = rab39a (HA tag), B. Red = Lamp2, C. Merge, D. Brightfield. Arrows highlight punctate 
structures with colocalization 

A. B. 

C. D. 
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Figure 29. Rab39a colocalizes with acidic vesicles. 

Figure 29. Rab39a colocalizes with acidic vesicles. 
DC3.2-Rab39aKO cells were transduced with a doxycycline inducible construct 
containing mcherry-Rab39a.  Cells were plated in 35 mm glass bottom dishes 
(MatTek) overnight with 1 µg/ml dox. The next day, cells were incubated with 
1mg/ml lysosensor yellow/blue dextran. After overnight incubation at 37oC, cells 
were imaged under a Leica TCS SP5 confocal microscope. Green = lysosensor 
emission at 521 nm showing acidic compartments.. Red = mcherry- rab39a. 
Arrows highlight internalized dextran surrounded by Rab39a. 
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Figure 30. Rab39a colocalizes with phagocytosed latex beads. 

Figure 30. Rab39a colocalizes with phagocytosed latex beads. 
DC3.2-Rab39aKO cells were transduced with a doxycycline inducible construct 
containing mcherry-Rab39a.  Cells were plated in 35 mm glass bottom dishes 
(MatTek) overnight with 1 µg/ml dox. The next day, 1 µm latex beads conjugated 
with Alexa 488-NHS (1 bead / cell) were added. After 2 hours at 37oC, cells were 
imaged under a Leica TCS SP5 confocal microscope. Green = Alexa 488 
labeled beads. Red = mcherry-rab39a. Arrows highlight internalized beads 
surrounded by Rab39a. 
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G. Flow cytometric analysis of isolated phagosomes 

(PhagoFACS) 

Recent studies have indicated that certain processes involved in XPT 

occur at the individual phagosome level. For instance, MHC Class I from the ER-

golgi intermediate compartment (ERGIC) have been shown to be recruited to 

specific phagosomes containing TLR4 ligands (71). In another case, it has been 

shown that XPT efficiency was enhanced when the antigen and a TLR signal 

was present in the same compartment, as opposed to pretreating cells with TLR 

ligands prior to antigen exposure (123). Because these phagosomal events might 

occur in a minority of the overall phagosomes in the cell, we needed to develop a 

method to be able analyze individual phagosomes at a sensitivity and resolution 

higher than that afforded microscopy.  

Because of this, we performed flow cytometric analysis on isolated 

phagosomes (PhagoFACS), following and further optimizing the protocol as 

presented in a previous work (124). In this protocol, we fed dendritic cells with 

magnetic beads, then isolated these beads after cell disruption. The magnetic 

phagosomes were able to be efficiently separated from the rest of the cell 

components, greatly reducing background signal usually found during 

microscopy. This also allowed us to analyze phagosomes at an individual level, 

and distinguish subclasses of phagosomes present in the cells. The gating 

strategy we employed in this analysis is shown (Figure 31). 
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Figure 31. Gating strategy for phagosomes.

Cell lysate 

Magnetic 
bead 

phagosomes 

Figure 31. Gating strategy for phagosomes. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with or without 1 µg/ml dox for 48 hours in a 12 well 
plate. Cells were fed at 1 bead / cell of biotinylated 6 µm magnetic beads for 2 hours. Then, the cells were exposed 
to Streptavidin-Pacific blue to stain uneaten beads. Phagosomes were then isolated using the listed protocol and 
broken phagosomes were stained through another round of Streptavidin- Pacific Blue. Isolated phagosomes were 
washed, permeabilized and stained for Lamp-1 (shown on APC channel).   
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H. Rab39a is recruited to late phagosomes but is not necessary 

for phagosome maturation.  

We used PhagoFACS to study phagosomal Rab39a in our generated KO 

vs reconstituted cells (DC3.2-Rab39aKO-Rab39a). As shown in (Figure 32), 

Rab39a was recruited to magnetic bead containing phagosomes. The signal was 

specific as no staining was observed when the cells did not express Rab39a. In 

agreement with previous findings (102, 105) , Rab39a was a late endosomal Rab 

GTPase, as most of the phagosomes were positive for Rab39a only at later time 

points. Rab39a had similar kinetics to Lamp1 and its presence or absence did 

not affect Lamp1 recruitment, in agreement with previous reports (105) (Figure 

33). These data showed that Rab39a was recruited as the phagosome matured, 

and its recruitment to the phagosome membrane was not required for 

phagosome maturation. 
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Figure 32. Rab39a is recruited to magnetic bead phagosomes. 
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Figure 32. Rab39a is recruited to magnetic bead phagosomes. 
5 x 105 DC3.2-Rab39aKO-Rab39a cells were incubated with or without 1 µg/ml 
dox for 24 hours in a 6 well plate. Cells were fed at 1 bead / cell of biotinylated  
6 µm magnetic beads for the indicated lengths of time. Magnetic bead 
phagosomes were isolated using the listed protocol. Phagosomes were 
washed, permeabilized and stained for Rab39a (HA-tag). Data shown 
represents one experiment of >3. 



125 
 

Figure 33. Rab39a does not affect Lamp-1 recruitment to phagosomes. 
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Figure 33. Rab39a does not affect Lamp-1 recruitment to phagosomes. 
5 x 105 DC3.2-Rab39aKO-Rab39a cells were incubated with 1 µg/ml dox for 24 
hours in a 6 well plate. Cells were fed at 1 bead / cell of biotinylated  6 µm 
magnetic beads for the indicated lengths of time. Magnetic bead phagosomes 
were isolated using the listed protocol. Phagosomes were washed, 
permeabilized and stained for Lamp-1. Data shown represents one experiment 
of >3. 
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I. Wt and CA Rab39a localizes to the phagosome but the DN 

form does not  

We then looked if the DN and CA mutants of Rab39a were being recruited 

to phagosomes, to see if this explained the lack of phenotype we observed 

during our rescue experiments. Using PhagoFACS, we saw that that while the wt 

and CA forms of Rab39a were recruited to the phagosome, the DN form was not 

(Figure 34). This was perhaps due to the high turnover rate of DN in dendritic 

cells. Nevertheless, a previous study has shown that at least in HeLa cells, the 

DN form acquired a disperse/cytosolic localization as compared to the wt form, 

which mainly localized to late endosomes and vesicular structures (108). The CA 

form did not rescue XPT despite being recruited to the phagosomes (Figure 21). 

Further studies are needed to clarify this observation. 
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Figure 34. WT and CA, but not DN  Rab39a are recruited to magnetic bead containing phagosomes.

Rab39a (WT) Rab39a (DN) Rab39a (CA) 

No dox (KO) 
Dox (rescue) 
beads alone 

Figure 34. WT and CA, but not DN  Rab39a are recruited to magnetic bead containing phagosomes. 
DC3.2-Rab39aKO cells were transduced with doxycycline inducible constructs containing the wt sequence of 
Rab39a, or its DN (S22N), or CA (Q72L) mutants and selected with puromycin. 1.25 x 105 cells were incubated 
with or without 1 µg/ml dox for 48 hours in a 12 well plate. Cells were fed at 1 bead / cell of biotinylated 6 µm 
magnetic beads for 2 hours. Phagosomes were isolated using the listed protocol. Isolated phagosomes were 
washed, permeabilized and stained for Rab39a (HA-tag). Shown are phagosomal gMFI of indicated stains. Data 
shown represents one experiment of >3. 
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J. Silencing Rab39a reduces XPT of vacuolar pathway antigens 

 Because Rab39a was phagosomal and did not affect the Classical 

Pathway of XPT, we then asked if Rab39a would affect the Vacuolar Pathway of 

XPT. The vacuolar pathway did not share the cytosolic steps involved in the 

Classical Pathway such as proteasome processing and TAP transport of 

peptides. Antigens that routed through the vacuolar pathway did not even need 

transport from the phagosome to the cytosol. Assaying the effect of Rab39a on 

this pathway would also shed light if Rab39a was playing a role in this transport 

process. 

Our lab has previously described a vacuolar pathway for XPT of polymer-

based beads and cell associated antigen (27). This pathway was shown to be 

TAP independent, and primarily used phagosomal proteases such as Cathepsin 

S to process antigen, bypassing the proteasome altogether. Other forms of 

antigen, such as bacteria, have been described to follow a similar route (46, 47). 

We therefore used heat-killed E. coli expressing GST fused to either SIINFEKL 

or ASNENMETM as a source of vacuolar pathway / TAP-independent antigen. In 

cells wherein Rab39a was knocked down via siRNA, XPT of these bacterial 

forms of antigen was reduced (Figure 35). 

The observed data further supports our hypothesis that Rab39a was 

affecting XPT in a process that was occurring within the phagosomes. The 

bacterial antigens we used had no need for TAP, suggesting that they had no 
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need for phagosome to cytosol transfer (as TAP is used for ER or phagosome 

entry from the cytosol). Because of this, we also hypothesized that the effect of 

Rab39a on XPT was not just due to a role in phagosome to cytosol transport of 

antigen. 
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Figure 35. Rab39a affects crosspresentation of TAP independent bacterial antigens. 
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Figure 35. Rab39a affects crosspresentation of TAP independent bacterial 
antigens. 
1.25 x104 DC3.2R cells were transfected with 50 nM sirna pools using 
Lipofectamine RNAiMax. After 48 hours, 5 x 104 Rf33-Luc or 12.64-Luc cells 
were added along with the indicated amounts of heat killed bacteria (E.coli). 
After overnight incubation (~18 hours), Luciferase activity of the T cells were 
read using Oneglo reagent (Promega).  (Experiment done by Colbert, J) 



131 
 

K. Rab39a inhibits phagosomal degradation of antigens 

In the case of biomag-ova, latex bead-ova and soluble ova, one way 

Rab39a could have affected the XPT of these antigens was through the 

modulation of antigen degradation in the phagosomes. These forms of antigen 

were previously shown to be processed mainly in the cytosol by the proteasome, 

as proteasome inhibitors completely abolished presentation (in this case, ova-

beads) (33). Furthermore, the presentation of these antigens was resistant to 

chloroquine, a weak base that inhibits phagosomal proteases by increasing 

phagosome pH (33). Supporting this, excessive antigen degradation in the 

phagosomes was shown to be detrimental to the XPT of these antigens (73, 

125). Dendritic cells express the NADPH oxidase (NOX2) complex that 

alkalinizes the phagosomes, preventing excessive degradation of antigen (73). 

When this complex was perturbed, crosspresentation of ova was reduced. When 

the transcription factor TFEB was overexpressed in DCs, XPT of ova was 

decreased due to enhanced phagosomal proteolytic activity (125). In APCs, 

TFEB positively regulated phagocytosis and lysosomal functions. Thus, it was 

possible that the lack of Rab39a somehow caused increased degradation of ova 

in our experiments that led to decreased XPT. 

To test this, we fed knockout or Rab39a rescued DCs with beads 

conjugated to DQ-ovalbumin (DQ-ova). DQ-ova is ovalbumin attached to Bodipy 

FL dye. While the ova protein is intact, the high concentration and proximity of 

the attached dyes cause them to self-quench, resulting in low fluorescence. Upon 
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ova degradation, the dyes are freed, resulting in bright fluorescence. When we 

analyzed whole cells (Figure 36), we saw a very slight decrease in ova 

degradation in cells that expressed Rab39a.  

However, when we looked at isolated phagosomes, we saw a much 

bigger phenotype. Knockout or rescued cells were fed with magnetic beads 

conjugated to ovalbumin. After the phagosomes have been isolated, the level of 

ovalbumin remaining on the beads/phagosomes was determined by staining with 

a monoclonal anti-ova antibody. This assay has shown that Rab39a reduced ova 

degradation in the phagosomes (Figure 37).  

Because of this finding, one could hypothesize that Rab39a was 

preventing excessive antigen degradation in the phagosomes, thereby 

preserving more antigen that could feed into the XPT pathway. 
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Figure 36. Rab39a slightly reduces overall ova degradation. 

No dox (KO) 
Dox (rescue) 
Cells alone 

Figure 36. Rab39a slightly reduces overall ova degradation. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a cells were incubated with 1 µg/ml dox for 
24 hours in a 12 well plate. Cells were fed at 1 bead / cell of 6 µm magnetic 
beads  conjugated with DQ ova 4 hours at 37oC. Wells were washed and the 
cells were detached with versene, washed in 1%FCS-PBS then run for facs 
analysis. Shown are gMFI of cells that have eaten beads. Data shown 
represents one experiment of >3. 
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Figure 37. Phagosomes from Rab39a positive cells are less degradative.  

No dox 
Dox 
beads alone 

Figure 37. Phagosomes from Rab39a positive cells are less degradative 
A. Representative experiment. 1.25 x 105 DC3.2-rab39aKO-rab39a-Ld cells 
were incubated with or without 1 µg/ml dox for 48 hours in a 12 well plate. Cells 
were fed at 1 bead / cell of biotinylated-ova conjugated to 6 µm magnetic beads 
for 4 hours. Isolated phagosomes were washed, permeabilized and stained for 
ovalbumin. B. As in A, but showing combined data for 5 independent 
experiments. The paired student’s t-test is p=0.0025. C. As in B, but the MFI of 
dox setups was normalized to no dox to show extent of inhibition of ova 
degradation. 
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i. Rab39a does not enhance XPT by limiting degradation 

of ovalbumin 

 While we observed that Rab39a was inhibiting phagosomal degradation of 

ova, we wanted to know if this inhibition of degradation was responsible for the 

augmentation of XPT seen in Rab39a expressing cells. This was because we 

also found that Rab39a was necessary for the efficient XPT of vacuolar pathway 

antigens - a process that heavily depended on phagosomal proteases (27). Thus, 

if Rab39a inhibited degradation of antigen to preserve them for the phagosome 

to cytosol pathway (biomag-ova), then its knockdown should have enhanced the 

presentation of vacuolar bacteria-ova. 

To examine this, we deliberately inhibited phagosomal degradation by 

treating knockout or Rab39a rescued dendritic cells with leupeptin - a broad 

inhibitor of cysteine and serine proteases. Once again, Rab39a expressing cells 

were better at XPT as compared to the knockout (Figure 38). Furthermore, the 

advantage of Rab39a rescued cells over the knockout remained in the presence 

of inhibitor.  

Because the deliberate inhibition of phagosomal degradation did not 

abolish the XPT advantage of Rab39a expressing cells, we hypothesized that 

Rab39a improved DC XPT in a mechanism(s) distinct from just the inhibition of 

antigen degradation. 
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Figure 38. Leupeptin does not increase XPT and does not abolish Rab39a phenotype.  

Figure 38. Leupeptin does not increase xpt and does not abolish rab39a 
phenotype. 
1.25x104 DC3.2-Rab39aKO-Rab39a cells were incubated with 1 µg/ml dox for 
48 hours in a 96 well plate. Then, biomag-ova beads (µg of ova)  were added 
along with 5 x 104 Rf33-Luc with or without the listed final concentration of 
leupeptin. After overnight incubation, luciferase activity from the T cells were 
quantified using Oneglo reagent (Promega). Error bars indicate standard 
deviation between triplicate wells. * p<0.05 based on ANOVA. Data represents 
one experiment of 3. 
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L. Rab39a affects peptide loading in the phagosome 

Our experiments have so far suggested that Rab39a was playing a role in 

the phagosomes that was not involved in antigen processing. We then reasoned 

that perhaps Rab39a was facilitating XPT by enhancing peptide loading in the 

phagosomes. This could be achieved through several ways. Rab39a could have 

been delivering MHC Class I molecules to the phagosome for loading. It could 

also have been delivering specialized chaperones that mediate peptide loading 

onto Class I (similar to H2-DM and DO in the Class II pathway). Perhaps it could 

also have been modulating the phagosome environment to optimize Class I 

loading (though we did not observe a significant effect on pH by Rab39a). 

 To test if Rab39a affected peptide loading in the phagosomes, we initially 

made use of N and C terminally extended SIINFEKL beads (peptide beads). We 

extended the SIINFEKL peptide by a cysteine containing amino acid stretch at 

the N or C terminal end, allowing us to conjugate these peptides to magnetic 

beads via a disulfide bond.  

The rationale of this was that these peptides would not need proteases to 

be released from the beads, as opposed to covalently bound full length ova. 

Instead, these peptides would be released from the beads due to the reducing 

environment dendritic cells generate in their phagosomes. This phenomenon has 

been shown to be mediated by the Gamma-interferon-inducible lysosomal thiol 

reductase (GILT) (126). Once released, the short peptides (particularly the N-
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terminal extended ones) would only need a little trimming (mediated by 

phagosomal petidases such as IRAP) before they were loaded onto phagosomal 

Class I. 

We thus fed siRNA treated dendritic cells with either N-extended 

CQLE(SIINFEKL) or C-extended (SIINFEKL)TEWC peptide beads. Our results 

have shown that efficient XPT of both these beads still depended on Rab39a 

(Figure 39). Because both N and C terminal extended beads were affected, we 

ruled out the possibility that Rab39a was specifically used to just recruit N or C 

terminal exopeptidases to the phagosome (such as IRAP) and hypothesized that 

Rab39a was instead affecting Class I loading. 

To further refine this experiment, we modified the SIINFEKL peptide 

through the generation of cysteine mutants (data not shown). We searched for a 

position in SIINFEKL wherein T cell recognition of the peptide MHC was not 

abolished even if this position was mutated to a cysteine. We found that 

CIINFEKL, bound to H2-Kb, was still able to be recognized by our reporter T cells 

(RF33-Luc). 

We now had a peptide that did not even require trimming. This peptide 

only needed to be released from beads – after which, it was ready to bind 

available Class I. When we fed siRNA treated cells with CIINFEKL beads, we 

observed that even with this form of antigen, efficient XPT required Rab39a 

(Figure 40). Rab39a rescue of knockout cells also increased XPT of this form of 
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antigen (Figure 41). Furthermore, this form of antigen was TAP-independent. 

This meant that CIINFEKL loading onto MHC Class I was occurring within the 

bead containing phagosome itself. This was because TAP1 is primarily used to 

transfer cytosolically processed peptides into the ER (127) or back into the 

phagosome (41). The CIINFEKL construct therefore was presented via a 

completely phagosomal route still dependent on Rab39a.  

 The same effect was seen when DCs were fed with a CSNENMETM flu 

peptide conjugated in the same manner (Figure 42). The peptide bound H2-Db 

and was recognized by reporter 12.64-Luc cells in a TAP independent but 

Rab39a dependent manner. Thus, Rab39a was shown to also affect loading on a 

different MHC-I allele. 

 The above results strongly supported our hypothesis that Rab39a was 

enhancing phagosomal Class I loading in the phagosomes, rather than affecting 

XPT through a different process such as pH modulation or antigen processing. 



140 
 

Figure 39. Rab39a sirna decreases presentation of disulfide conjugated peptide beads. 
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Figure 39. Rab39a sirna decreases presentation of disulfide conjugated 
peptide beads. 
2.5 x103 DC3.2R cells were transfected with 50 nM sirna using Lipofectamine 
RNAiMax in reducing agent free media (cDMEM). After 48 hours, 1 x 104 Rf33-
Luc were added along with the indicated amounts of biomag conjugates. After 
overnight incubation (~18 hours), Luciferase activity of the T cells were read 
using Oneglo reagent (Promega).  Error bars indicate the standard deviation 
between triplicate wells. Data shown represents one experiment of > 3. All wells 
with antigen have p-values (ANOVA) < 0.05 between β2m or Rab39a vs 
negative control I-Ab. 
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Figure 40. Rab39a sirna decreases presentation of preformed peptide. 

Figure 40. Rab39a sirna decreases presentation of preformed peptide. 
2.5 x103 DC3.2R cells were transfected with 50 nM sirna pools using 
Lipofectamine RNAiMax in reducing agent free media (cDMEM). After 48 hours, 
1 x 104 Rf33-Luc were added along with the indicated amounts of biomag 
conjugates. After overnight incubation (~18 hours), Luciferase activity of the T 
cells were read using Oneglo reagent (Promega). Error bars indicate the 
standard deviation between triplicate wells. Data shown represents one 
experiment of > 3. All wells with antigen have p-values (ANOVA) < 0.05 between 
β2m or Rab39a vs negative control I-Ab. For CIINFEKL, none of the wells for 
Tap1 are significant vs the control. 
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Figure 41. Rab39a rescue of knockout DCs increases crosspresentation of peptide beads. 

Figure 41. Rab39a rescue of knockout DCs increases crosspresentation 
of peptide beads. 
1.25x104 DC3.2-Rab39aKO-Rab39a cells were incubated with 1 µg/ml dox for 
48 hours in a 96 well plate. Then, the indicated amounts of biomag-CIINFEKL 
beads were added along with 5 x 104 Rf33-Luc. After overnight incubation, 
luciferase activity from the T cells were quantified using Oneglo reagent 
(Promega). Error bars indicate the standard deviation between triplicate wells. 
Data shown represents one experiment of > 3. All wells with antigen have p-
values (ANOVA) < 0.05 between no dox and dox. 
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Figure 42. Rab39a sirna decreases presentation of bead bound preformed peptide.  

Figure 42. Rab39a sirna decreases presentation of preformed peptide. 
2.5 x103 DC3.2R cells were transfected with 50 nM sirna pools using 
Lipofectamine RNAiMax in reducing agent free media (cDMEM). After 48 hours, 
1 x 104 Rf33-Luc were added along with the indicated amounts of biomag 
conjugates. After overnight incubation (~18 hours), Luciferase activity of the T 
cells were read using Oneglo reagent (Promega).   
This experiment was performed by Jeff Colbert 
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M. Rab39a increases open conformers in phagosomes 

Our findings that showed that Rab39a is required for the optimal XPT of 

an antigen that neither requires processing nor cytosolic transfer led us to 

hypothesize that Rab39a facilitates either delivery of MHC Class I to the 

phagosome, and/or peptide loading on MHC Class I already present there. To 

study this, we transduced the conditional Rab39a knockout DC line with H2-Ld, a 

Class I allele not normally present in C57BL/6 mice from which the DC line was 

derived. H2-Ld was a useful tool for studying peptide-Class I loading because 

there were antibodies that specifically recognized peptide empty forms (64-3-7 

antibody) or peptide occupied forms (30-5-7s antibody) of the Class I molecule 

(128). This would help us measure phagosomal Class I loading. 

Analysis of phagosomes derived from Rab39a positive cells showed a 

unique pattern of open and closed H2-Ld (Figure 43). While the majority of 

phagosomes were either negative or very low in either form of H2-Ld, a subset of 

these vesicles contained moderate to high amounts of both. There was also a 

subpopulation that mainly contained just the open or just the closed form of H2-

Ld. An interesting finding of this assay was that in Rab39a KO cells (-dox), there 

was a significantly lower subset of phagosomes with only open H2-Ld molecules 

as compared to the Rab39a-reconstituted cells (+dox)  (Figure 44). Rescuing the 

KO cells with either the DN or CA forms of Rab39a did not recover this subset 

(Figure 45). This phenotype seemed to be specific for open H2-Ld molecules as 
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the levels of MHC Class II and Lamp1 in the phagosomes were not affected 

(Figure 46).
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Figure 43. Open and closed forms of H2-L
d
 are enriched in different subsets of phagosomes.
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Figure 43. Open and closed forms of H2-Ld are enriched in different subsets of phagosomes. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with 1 µg/ml dox for 48 hours in a 12 well plate. 
Cells were fed at 1 bead / cell of biotinylated 6 µm magnetic beads for 2 hours. Phagosomes were isolated using 
the listed protocol. Isolated phagosomes were washed, permeabilized and stained for open and closed H2-Ld . As 
a control, phagosomes were also isolated from dendritic cells lacking H2-Ld. Data shown represents one 
experiment of >3. 
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Figure 44. Open H2-L
d
 conformers is enriched in phagosomes from Rab39a positive cells. 

-dox 
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Figure 44. Open H2-Ld conformers is enriched in phagosomes from 
Rab39a positive cells. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with or without 1 
µg/ml dox for 48 hours in a 12 well plate. Cells were fed at 1 bead / cell of 
biotinylated  6 µm magnetic beads for 4 hours. Magnetic bead phagosomes 
were isolated using the listed protocol. Phagosomes were washed, 
permeabilized and stained for open (64-3-7) and closed (30-5-7s) forms of H2-
Ld. Data shown represents one experiment of >3. 
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Figure 45. Only the wt form of Rab39a is able to increase open H2-L
d
 in the phagosomes. 
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Figure 45. Only the wt form of Rab39a is able to increase open H2-Ld in the 
phagosomes. 
1.25 x 105 of cells with wt, DN or CA Rab39a were incubated with or without 1 
µg/ml dox for 48 hours in a 12 well plate. Cells were fed at 1 bead / cell of 
biotinylated  6 µm magnetic beads for 4 hours. Magnetic bead phagosomes 
were isolated using the listed protocol. Phagosomes were washed, 
permeabilized and stained for open and closed forms of H2-Ld. Top panels 
representing wt Rab39a are the same as in the previous figure (Figure 44). Data 
shown represents one experiment of >3. 
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Figure 46. Rab39a rescue does not change phagosomal MHC Class II or Lamp-1 levels. 
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Figure 46. Rab39a rescue does not change phagosomal MHC Class II or 
Lamp-1 levels. 
(A) 1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with or 
without 1 µg/ml dox for 48 hours in a 12 well plate. Cells were fed at 1 bead / 
cell of biotinylated  6 µm magnetic beads for 4 hours. Magnetic bead 
phagosomes were isolated using the listed protocol. Phagosomes were 
washed, permeabilized and stained for MHC Class II (I-A / I-E) and Lamp1. (B) 
Shown are phagosomal gMFI of indicated stains. Data shown represents one 
experiment of >3. 
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i. Rab39a does not increase surface open or closed forms 

of H2-Ld 

The increase in open conformers mediated by Rab39a was found 

selectively in phagosomes, as steady state cell surface levels of both open and 

closed H2-Ld were not affected (Figure 47). Incubating the cells at 25oC 

increased overall Class I on the surface by allowing trafficking of unstable Class I 

from the ER and slowing down their internalization from the surface. Knockout 

and rescued cells had similar levels of H2-Ld despite this. Because of this finding, 

we hypothesized that the overall increase of open MHC Class I in the 

phagosomes mediated by Rab39a was not due to an overall increase in Class I 

expression. 
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Figure 47. Rab39a rescue does not change cell surface levels of open or closed H2-Ld. 
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Figure 47. Rab39a rescue does not change cell surface levels of open or 
closed H2-Ld.  
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with or without 1 
µg/ml dox for 24 hours at 37oC in a 12 well plate. Then, cells were transferred 
to either (A) 37oC or (B) 25oC for overnight incubation. Cells were detached and 
stained for the open and closed forms of H2-Ld. Data shown represents one 
experiment of >3. 
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N. Phagosomal open conformers of Class I can be loaded with 

peptide 

Open forms of Class I in the phagosome could potentially be ones that 

become loaded with peptides. Thus, with the antigen, phagosomal proteases / 

trimming peptidases (27), components of the peptide-loading complex (40, 41) 

and now the MHC Class I molecule itself, the phagosome becomes a self-

contained organelle capable of crosspresentation.  

The 64-3-7 antibody used in our assays detected open forms of MHC 

Class I whether the Class I was bound to β2-microglobulin (β2m) or was β2m 

free (129). It has been shown that β2m free Class I can be detected on the 

surface and can be utilized in other cell processes besides XPT, such as in NK 

cell recognition (130). Furthermore, open MHC Class I has been shown to be 

unstable and is internalized quickly for degradation (131, 132). Thus, it was 

important to determine whether the open H2-Ld enrichment found in the 

phagosomes of Rab39a positive cells can actually be used for antigen 

presentation. 

To do this, phagosomes were obtained from KO or Rab39a positive cells, 

permeabilized in vitro with saponin and pulsed with SPSYVYHQF, a peptide that 

can bind to H2-Ld (133). Figure 48 shows that with peptide, the open H2-Ld in the 

phagosomes decreased, while closed H2-Ld increased (though sometimes the 
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increase in closed H2-Ld was very small). This result showed that the form of 

Class I enriched in Rab39a positive cells was functional and peptide receptive. 

Pulsing with an irrelevant peptide (SIINFEKL) had no effect (Figure 49). It is 

important to note that the peptide pulsing experiments were performed in a β2m-

free solution (1%BSA-pbs). This showed that at least a fraction of the open 

conformers in the phagosomes must be associated with β2m and are ready to 

accept peptides. 
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Figure 48. A fraction of phagosomal open H2-Ld are peptide receptive. 
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Figure 48. A fraction of phagosomal open H2-Ld are peptide receptive. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with 1 µg/ml dox 
for 48 hours in a 12 well plate. Cells were fed at 1 bead / cell of biotinylated  6 
µm magnetic beads for 1 hour. Isolated phagosomes were washed, 
permeabilized and pulsed for 3 hours with the indicated peptide at 25oC. 
Phagosomes were then washed and stained for the open and closed forms of 
H2-Ld. Data shown represents one experiment of >3. 
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Figure 49. Only the correct peptide can load phagosomal open H2-Ld. 
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Figure 49. Only the correct peptide can load phagosomal open H2-Ld. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with 1 µg/ml dox 
for 48 hours in a 12 well plate. Cells were fed at 1 bead / cell of biotinylated  6 
µm magnetic beads for 4 hours. Isolated phagosomes were washed, 
permeabilized and pulsed for 3 hours with the indicated peptides dissolved in 
1% BSA-PBS at 25oC. Phagosomes were then washed and stained for the open 
and closed forms of H2-Ld. Data shown represents one experiment of >3. 
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O. Phagosomal open conformers are sensitive to endosomal 

proteases 

The percentage of phagosomes that are solely enriched with open H2-Ld 

greatly varied between experiments, but in all cases, rescue with Rab39a 

increased this percentage at least twofold compared to KO cells. Because of this 

variability, we extensively searched for factors that might influence the 

appearance of this seemingly unique population of phagosomes. 

In this search, we have found that the open form of H2-Ld was extremely 

sensitive to protease degradation, as addition of a serine and cysteine protease 

inhibitor (Leupeptin) greatly enriched its levels in the phagosomes (Figure 50 and 

51). Interestingly, the closed form of H2-Ld was not increased, indicating that this 

form was resistant to degradation. Treatment of cells with bafilomycin, which not 

only inactivates proteases due to increasing pH but may also prevent receptor 

recycling (134), enriched both the open and closed forms of H2-Ld in the 

phagosomes.  

We have previously shown that Rab39a expression reduced degradation 

in the phagosomes (Figure 37). Thus, it was possible that Rab39a was enriching 

internalized open H2-Ld in the phagosomes by preventing their degradation. 

Interestingly, both open and Closed H2-Ld were mainly in phagosomes with little 

ova degradation (Figure 52). However, it was also possible that Rab39a was 
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directly involved in delivering Class I molecules to the phagosome rather than 

just facilitating Class I persistence.
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Figure 50. Open and closed forms of H2-L
d
 are differentially affected by inhibitors. 

 

media 100 µM Leupeptin 25 nM bafilomycin 

Figure 50. Open and closed forms of H2-Ld are differentially affected by inhibitors. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with 1 µg/ml dox for 48 hours in a 12 well plate. 
Cells were fed at 1 bead / cell of biotinylated ova conjugated to 6 µm magnetic beads for 4 hours with the indicated 
inhibitors. Phagosomes were isolated using the listed protocol. Isolated phagosomes were washed, permeabilized 
and stained for open and closed H2-Ld. Data shown represents one experiment of >3. 
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Figure 51. Open and closed forms of H2-L
d
 are differentially affected by inhibitors.

100 µM Leupeptin   
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Figure 51. Open and closed forms of H2-Ld are differentially affected by inhibitors. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with 1 µg/ml dox for 48 hours in a 12 well plate. 
Cells were fed at 1 bead / cell of biotinylated ova conjugated to 6 µm magnetic beads for 4 hours with the indicated 
inhibitors. Phagosomes were isolated using the listed protocol. Isolated phagosomes were washed, permeabilized 
and stained for open and closed H2-Ld as well as ovalbumin. Shown are phagosomal gMFI of indicated stains. 
Data shown represents one experiment of >3. 
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Figure 52. H2-L
d
 is enriched in less degradative phagosomes. 

-dox (KO) +dox (rescue) 

Figure 52. H2-Ld is enriched in less degradative phagosomes. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with or without 1 
µg/ml dox for 48 hours in a 12 well plate. Cells were fed at 1 bead / cell of 
biotinylated-ova conjugated to 6 µm magnetic beads for 4 hours. Isolated 
phagosomes were washed, permeabilized and stained for ovalbumin and 
open/closed H2-Ld. Arbitrary gates divide the plots to show distinct phagosome 
populations. Data shown represents one experiment of >3. 
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P. Brefeldin A reduces Rab39a-dependent open H2-Ld molecules 

in phagosomes.  

In order to shed light on the source of the enriched open H2-Ld we 

observed in the phagosomes, we treated Rab39a knockout or rescued cells with 

brefeldin A (BFA). The rationale of this was that if the MHC molecules were 

coming from the ER-golgi compartment, then BFA would block it. Surface derived 

MHC would in contrast be resistant to short term brefeldin A treatment. 

PhagoFACS analysis has shown that when DCs were treated with BFA, 

Rab39a expression failed to increase the subset of phagosomes enriched with 

open H2-Ld (Figure 53). This suggested that MHC Class I was coming from an 

internal source (presumably the ER-golgi compartment) and were being 

delivered to the phagosome in part by Rab39a. As BFA was added along with 

the beads, surface Class I levels remained intact just prior to phagocytosis. If the 

increase in phagosomal Class I was due to surface MHC, then BFA should have 

had no effect. 

 On the other hand, we also observed that BFA abolished the inhibition of 

phagosomal antigen degradation conferred by Rab39a (Figure 54). Thus, it was 

possible that Rab39a was delivering stabilizing factors such as cathepsin 

inhibitors (cystatins) to the phagosome. Since MHC open conformers were 

sensitive to degradation (Figure 50), the Rab39a-mediated delivery of these 
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factors might be the reason why open MHC was enriched in the phagosomes, 

rather than direct delivery of MHC to these compartments. 



163 
 

Figure 53. Brefeldin A abolishes phagosomal H2-L
d
 enrichment conferred by Rab39a. 
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Figure 53. Brefeldin A abolishes phagosomal H2-Ld enrichment conferred 
by Rab39a. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with or without 1 
µg/ml dox for 48 hours in a 12 well plate. Cells were fed at 1 bead / cell of 
biotinylated-ova conjugated to 6 µm magnetic beads for 4 hours with or without 
1:1000 golgiplug. Isolated phagosomes were washed, permeabilized and 
stained for open/closed H2-Ld. Data shown represents one experiment of >3. 
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Figure 54. Brefeldin A abolishes phagosomal inhibition of degradation conferred by Rab39a. 
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Figure 54. Brefeldin A abolishes phagosomal inhibition of degradation 
conferred by Rab39a. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with or without 1 
µg/ml dox for 48 hours in a 12 well plate. Cells were fed at 1 bead / cell of 
biotinylated-ova conjugated to 6 µm magnetic beads for 4 hours with or without 
1:1000 golgiplug. Isolated phagosomes were washed, permeabilized and 
stained for ovalbumin. Data shown represents one experiment of >3. 
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Q. Brefeldin A blocks Rab39a recruitment to the phagosomes 

Our previous data showed that Rab39a was perhaps involved in bringing 

ER-derived components to the phagosome. These components might include the 

MHC Class I molecule. In order to determine if Rab39a shuttled from ER-golgi 

compartments to the phagosomes, we looked at the effect of BFA treatment on 

phagosomal Rab39a. 

Recruitment of Rab39a to the bead containing phagosome was inhibited 

by addition of BFA (Figure 55). In contrast to this, Rab7, implicated in controlling 

endosome maturation and lysosome biogenesis (135), reached the phagosomes 

despite BFA treatment. Phagosomal Lamp1, a component of the lysosome and 

another marker for phagosome maturation (136), was also not decreased (Figure 

56). These data showed that BFA treatment still allowed phagosome maturation 

to occur normally, and Rab39a was not likely playing a role in this process. 

Rab39a might instead have been delivering ER-golgi derived components to the 

developing phagosome, as disruption of this compartment reduced phagosomal 

Rab39a. Perhaps the non phagosomal GDP bound form of Rab39a was 

localized to non phagosomal organelles such as the ER-golgi compartment, and 

once activated shuttled cargo from these sources to the phagosome.  
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Figure 55. Brefeldin A inhibits Rab39a but not Rab7 recruitment to the phagosome. 

Figure 55. Brefeldin A inhibits rab39a but not rab7 recruitment to the 
phagosome. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with or without 1 
µg/ml dox for 48 hours at 37oC in a 12 well plate. Cells were fed at 1 bead / cell 
of biotinylated-ova 6 µm magnetic beads for 3 hours with or without 1:1000 BFA 
(golgiplug, BD). Phagosomes were isolated using the listed protocol. Isolated 
phagosomes were washed, permeabilized and stained. Below are phagosomal 
gMFI of indicated stains. *Rab39a stained via HA-tag. Data shown represents 
one experiment of >3. 

No dox dox dox + BFA 

2ndary Ab 
No dox 
dox 
Dox + BFA 



167 
 

Figure 56. Brefeldin A inhibits Rab39a but not Lamp1 recruitment to the phagosome. 

Figure 56. Brefeldin A inhibits rab39a but not Lamp1 recruitment to the 
phagosome. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with or without 1 
µg/ml dox for 48 hours at 37oC in a 12 well plate. Cells were fed at 1 bead / cell 
of biotinylated-ova 6 µm magnetic beads for 3 hours with or without 1:1000 BFA 
(golgiplug, BD). Phagosomes were isolated using the listed protocol. Isolated 
phagosomes were washed, permeabilized and stained. Below are phagosomal 
gMFI of indicated stains. *Rab39a stained via HA-tag. Data shown represents 
one experiment of >3. 

No dox dox dox + BFA 

2ndary Ab 
No dox 
dox 
Dox + BFA 
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R. Rab39a expression increases Sec22b levels in the phagosome 

Because Rab39a was seemingly shuttling components of the ER-golgi 

compartment to the phagosome, we looked at how Rab39a affected Sec22b, an 

ERGIC localized SNARE that was published to be important in XPT (59). In that 

study, Sec22b knockdown caused a defect in XPT and an increase in 

phagosomal degradation of antigen. Knockdown of the gene also did not cause a 

defect in MHC Class II presentation, similar to our results. Sec22b, along with 

syntaxin 4, was shown to mediate delivery of ERGIC derived components to the 

phagosome. These components included known players of the PLC (TAP, 

Tapasin, Calnexin). It was also proposed that the delivery of ERGIC components 

to the phagosome promotes phagosome to cytosol transfer of antigens. 

We used phagoFACS to determine if Sec22b levels in phagosomes from 

KO or Rab39a rescued cells were changed. When Rab39a knockout or rescued 

cells were fed with beads, we observed that Sec22b levels were increased 

(~25%) in phagosomes from rescued cells (Figure 57). We also observed a very 

small (~10%) but consistent increase in the levels of phagosomal TAP1 upon 

rescue with Rab39a (Figure 58). This was in agreement with the previous worked 

that showed PLC delivery to the phagosomes was mediated by Sec22b (59).  
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Figure 57. Rab39a recruits Sec22b to phagosomes. 
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Figure 57. Rab39a recruits Sec22b to phagosomes. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with or without 1 
µg/ml dox for 48 hours at 37oC in a 12 well plate. Cells were fed at 1 bead / cell 
of biotinylated 6 µm magnetic beads for 3 hours. Phagosomes were isolated 
using the listed protocol. Isolated phagosomes were washed, permeabilized 
and stained for Sec22b. Shown are phagosomal gMFI of indicated stains. Data 
shown represents one experiment of >3. 
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Figure 58. Rab39a expression increases Sec22b and Tap1 levels in the phagosome. 
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Figure 58. Rab39a expression increases Sec22b and Tap1 levels in the 
phagosome. 
1.25 x 105 DC3.2-Rab39aKO-Rab39a-Ld cells were incubated with or without 1 
µg/ml dox for 48 hours at 37oC in a 12 well plate. Cells were fed at 1 bead / cell 
of biotinylated 6 µm magnetic beads for 3 hours. Phagosomes were isolated 
using the listed protocol. Isolated phagosomes were washed, permeabilized 
and stained for Sec22b and Tap1. Below are phagosomal gMFI of indicated 
stains. Data shown represents one experiment of >3. 

No dox (KO) +dox (rescue) 
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IV. Discussion  

  Through a genomewide siRNA screen, we have identified Rab39a as a 

gene involved in XPT. Despite being a Rab GTPase associated with late 

endosomal compartments, loss of Rab39a inhibited only XPT, while leaving 

Class II presentation intact. The presentation of endogenously expressed 

proteins through the Classical Pathway was also unaffected. This led us to 

hypothesize that Rab39a affected XPT at the phagosome level. Experiments 

using TAP independent antigens, including preformed MHC peptides conjugated 

to beads further supported this hypothesis. 

Our experiments showed that expression of Rab39a inhibited degradation 

in the phagosomes. This could lead to the interpretation that Rab39a enhanced 

XPT by promoting antigen persistence. Supporting this, previous studies have 

shown that dendritic cells, as opposed to macrophages, had the capability to 

modulate phagosomal protease activity (73, 125). This inhibition of degradation 

can also be used to explain how a peptide bead (CIINFEKL) still required 

Rab39a activity for XPT despite having no need for processing. The effect of 

Rab39a on phagosomes may have led to the preservation of very sensitive 

antigens (such as short peptides) and provided the necessary time and peptide 

concentration for optimal loading to MHC Class I. 

While Rab39a may very well exert its effects through the modulation of 

antigen degradation, we have also shown that Rab39a expressing cells still had 
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XPT advantages over knockouts despite the deliberate inhibition of phagosomal 

proteases. Even in the presence of Leupeptin, Rab39a expression caused an 

increase in XPT. Moreover, the form of antigen we used (biomag-ova) depended 

little on phagosomal proteases, and mostly required cytosolic processing through 

the proteasome to generate the necessary MHC-I peptides.  

Though previous studies have demonstrated that magnetic bead 

conjugated ova was both proteasome and TAP dependent, we have shown that 

reducing ova to the minimal peptide (in our case CIINFEKL), removed this 

dependency. The antigen, despite being conjugated to the same bead material, 

became TAP independent, being loaded onto Class I in the phagosome itself 

similar to the vacuolar pathway that certain antigens route to. Loss of Rab39a still 

diminished presentation of this antigen. This led us to hypothesize that Rab39a 

was playing a role not in antigen processing, but in the phagosomal loading of 

peptides onto Class I. We wondered if the role of Rab39a was to deliver Class I 

to the phagosome. 

 

Through the use of phagosome flow cytometry, we have shown that 

expression of Rab39a increased the levels of open MHC Class I in the 

phagosomes. This increase was specific, as other phagosomal molecules such 

as MHC Class II and Lamp 1 were not affected. The significance of this finding 

was that a fraction of these open conformers were shown to be peptide 
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receptive. The presence of peptide receptive MHC-I in the phagosome explains 

how peptides can be loaded onto Class I while bypassing the ER. Both the 

vacuolar (CatS dependent) and IRAP dependent (P2C2P) pathways do not 

undergo an ER transport step, and Rab39a may provide the necessary Class I 

for their loading.  

One of the lingering questions in the field of XPT pertains to the source of 

phagosomal MHC Class I. Some antigens are released into the cytosol for 

proteasomal processing but then go back into the phagosome through TAP for 

N-terminal trimming and Class I loading (41, 43). Other antigens do not need to 

leave the phagosome at all, and require phagosomal proteases (27). These two 

observations indicate that functional MHC Class is in the phagosomes ready to 

receive peptides. How MHC Class I reaches the phagosomes and in what form is 

under intensive study. Several models have been proposed for this.  

One of the models proposed that surface MHC molecules can be 

internalized with the antigen, and, with low pH and the activity of proteases, 

these MHCs can be loaded with crosspresented antigen peptides (65, 66, 119). 

A unique property of fully formed peptide-MHC Class I to recycle back to the 

surface instead of being degraded in the lysosomes then allowed XPT. To further 

complicate matters, it has been shown that both the closed (peptide bound) and 

open (peptide free) forms of Class I were present on the surface and were 

internalized (131). This being the case, were peptides loaded on internalized 

closed or open MHC molecules? Lucin et al. has shown that the two forms did 
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not traffic equally - it was the open form of Class I that reached late endosomal 

compartments while the closed form was rapidly recycled back to the surface 

(137-139).  

We hypothesize that it is the open form of MHC Class I that accepts 

peptides destined for XPT. It is the form present throughout 

endosome/phagosome maturation, where the antigen undergoes continuous 

processing. It is also the form that can most readily bind free peptide, as the 

closed form would require low pH and/or specialized chaperones to facilitate 

peptide exchange.  

Supporting this hypothesis, our results showed that through Rab39a, the 

levels of open MHC Class I in late phagosomes (>2hrs) were increased. At this 

time point, there was also very low levels of Closed MHC Class I. Thus, at the 

location where antigen was processed, the open form of Class I was the one 

present to receive XPT peptides. This was particularly important for antigens that 

routed through the vacuolar pathway, as these needed processing in late 

endosomes. Furthermore, a fraction of the open MHC Class I was peptide 

receptive. Addition of peptide alone to isolated phagosomes in a β2m-free 

solution was enough to facilitate Class I loading. This suggested that Rab39a 

allowed phagosomes, particularly late phagosomes, to become self-sufficient 

XPT compartments by increasing their peptide receptive Class I. 
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  If Rab39a increased open MHC in the phagosomes, how did it do so? 

This enrichment could be due in part through Rab39a mediated inhibition of 

degradation, as we have also shown that the open form of MHC-I was very 

sensitive to protease digestion. Thus, one could hypothesize that Rab39a caused 

an increase in phagosomal open conformers by preventing its degradation, 

rather than delivering them there. These open conformers could have come from 

the cell surface, internalized together with the magnetic bead antigen. 

On the other hand, we hypothesized that Rab39a mediated delivery of 

newly synthesized MHC Class I from the ER to the antigen containing 

phagosome. This was because our results have shown that the increase in open 

conformers, as well as the inhibition of degradation mediated by Rab39a, was 

abolished by BFA. Rab39a itself was inhibited from being recruited to the 

phagosomes upon BFA treatment. This suggested that Rab39a was coming from 

the ER-golgi before reaching the phagosome. If this was the case, then it might 

have been delivering ER-golgi components (which can include Class I and the 

PLC) to the antigen containing phagosome. Moreover, phagosomes from 

Rab39a positive cells had increased levels of Sec22b, an ER-golgi t-SNARE that 

conferred a strikingly similar phenotype to that of Rab39a (59). 

Sec22b was shown to inhibit antigen degradation in the phagosomes. It 

was also shown to mediate delivery of ER-golgi derived components to the 

phagosome. Of particular note were components involved in Class I presentation 

(TAP1, Tapasin, Calnexin, though Class I itself was not looked at). The delivery 



176 
 

of ER-golgi components also promoted phagosome to cytosol transfer of whole 

antigens. Thus, at least for particles/beads containing full length ovalbumin, 

Rab39a might have also played a role in this cytosolic transfer, by mediating 

delivery of Sec22b labeled vesicles to the phagosomes.  

The Sec22b data showed that the Rab39a-mediated delivery of ER-golgi 

components to the phagosome likely has multiple effects in XPT. Inhibition of 

degradation in the phagosomes promoted antigen and open MHC persistence. 

For whole antigens, ER-golgi components facilitated phagosome to cytosol 

transfer. For peptide and vacuolar pathway antigens, the enrichment of open 

MHC in the phagosome allowed for peptide loading.  

The phenomenon of nascent, MHC Class I molecules being delivered to 

the antigen containing compartment has been described before, in the context of 

human DC presentation of long peptides (120). In that model, it was proposed 

that nascent MHC, loaded with suboptimal peptide, were delivered to the 

endosome through a novel secretory mechanism independent of Sec22b and 

CD74. The delivered MHC, with unstable peptide, then underwent peptide 

exchange with the more stable long peptide antigen. While our results showed 

that Rab39a expression increased both Sec22b and open conformers of H2-Ld in 

the phagosome, we could not definitively say that the increase in open 

conformers was due to Sec22b recruitment. It was possible that Rab39a may 

also have played a role in the proposed MHC-I secretory mechanism. It would 

also be very interesting to see if the open conformers we observed in the 
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phagosome arrived there already peptide free, or were in fact MHC with 

suboptimal peptides that have subsequently lost their cargo. 

Another model for phagosomal MHC trafficking, proposed by Nair-Gupta 

et.al (71), involved a pool of MHC Class I molecules in a compartment distinct 

from the ERGIC, which were then recruited to phagosomes containing TLR4 

ligand. The antibody they used for their experiments was AF6-88.4; this antibody 

recognized the closed form of H2-Kb as pulsing H2-Kb positive cells with 

SIINFEKL peptide increased staining (our unpublished data). Thus, their 

experiments showed an intracellular pool of peptide bound Class-I molecules 

being trafficked to the phagosome. How these closed molecules were loaded 

with new crosspresented peptides is unclear – as loaded Class I molecules are 

not known to readily exchange peptides. Perhaps the open form of H2-Kb also 

resided in this intracellular pool and was recruited similarly. It was also possible 

that TLR ligand containing phagosomes recruited other factors such as pH 

modulators and chaperones that mediated peptide exchange, similar to what 

happens in the MHC Class II pathway. Their experiments have shown that this 

trafficking of Class I was independent of Sec22b, which suggested that this 

pathway might be distinct from the phenomenon we have observed. 

Furthermore, we have performed our experiments using both ova coated beads 

(which might contain LPS) and plain biotinylated beads (which have no LPS) and 

saw similar results. This suggested multiple pathways of phagosome MHC 
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recruitment - that mediated by Rab39a/Sec22b and that of a Rab11a/Snap23 

related pathway involved in TLR containing antigen. 

Several studies could provide some insight on the possible role for 

Rab39a in bridging internal cellular components and the phagosomal 

compartment. In a study involving the intracellular parasite Chlamydia, it was 

shown that Rab39a was recruited to the bacterial inclusions (108). Its proposed 

role was to deliver multivesicular bodies, as well as spingolipids to the 

parasituous vacuole, which are then used for parasite growth. Interestingly, that 

study also showed that Rab39a labeled a subset vesicles that were Lamp1 

positive but lacked Cathepsin D. Perhaps this could explain the reduction of 

antigen degradation we have observed. Another group performed an extensive 

study to characterize the interactions of various Rab GTPases in dendritic cells 

(140). They have shown that Rab39a, which is late endosomal, was able to 

interact with the golgi localized Rab39b. Furthermore, at least in Neuro2A cells, 

both Rab39a and b shared a common effector, UACA (uveal autoantigen with 

coiled-coil domains and Ankyrin repeats) (104). Thus it is possible that Rab39a 

played a role in mediating ER-golgi and endosome/phagosome interactions. 

The contribution of the ER and other organelles to the formation of 

phagosomal membranes is not a new idea, but its contribution to XPT is the 

subject of intense debate. When attempting to eat particularly large antigen, 

phagocytes such as macrophages have been shown to recruit membranes from 

organelles in order to facilitate engulfment. This was termed “frustrated 
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phagocytosis” (141, 142). When macrophages were exposed to a surface coated 

with immune complexes, the cells tried to eat it. The impossibly large size of the 

surfaced caused macrophage golgi (141) and lysosomal (142) compartments to 

localize to the site of phagocytosis, to potentially contribute extra membrane. In 

dendritic cells, it was observed that latex bead phagosomes acquired proteins 

normally localized in the ER (61). These included transporters such as Sec61, 

Sec62, and TAP, as well as members of the PLC (Calnexin, Tapasin, Erp57). 

Therefore, it was proposed that dendritic cells use ER derived membranes to 

form phagosomes, and these were delivered via ER-phagosome fusion. 

Moreover, as the ER contained the classical players of MHC I presentation, ER-

phagosome fusion was a proposed method to facilitate XPT directly in the 

phagosome compartment. 

However, other groups contended that ER-phagosome fusion did not 

occur (143). In that study, very little if any Calnexin and PDI (both ER localized 

proteins) were detected in phagosomes using electron microscopy. APCs were 

also made to express ER localized GFP through a fusion with KDEL, an ER 

retention sequence. When these cells were made to internalize beads, the 

investigators could find no trace of GFP on the phagosomes. In a modification of 

this experiment, avidin-KDEL was expressed on cells, which were subsequently 

fed with biotin-beads. Still, even with the increased sensitivity of avidin-biotin 

interactions, no pull down of ER avidin was observed. 
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A potential resolution to this debate was presented by Desjardins et.al. 

(144). Through proteomics, it was shown that bead-containing phagosomes 

isolated from macrophages did indeed contain ER resident proteins. What was 

novel about this work was that it was also found that only a subset of ER proteins 

was trafficking to the phagosomes. For instance, mVenus fused to Stx18 was 

found in the phagosome proteasome while GFP-KDEL was not. This work 

showed that while phagosomes could recruit membranes from the ER, the 

mechanism of this recruitment was probably not wholesale ER fusion. Perhaps 

the ER/ER-golgi compartment generated secretory vesicles that were then 

trafficked to phagosomes, similar to the classic secretion pathways. These 

vesicles would have required specialized adaptors and Rab GTPases to facilitate 

their proper targeting and trafficking. They would also have required proper 

SNARES to mediate fusion with their intended targets. Rab39a and Sec22b 

might have provided these requirements. 

While our data suggests a novel pathway for the XPT of both TAP 

dependent and independent antigens, several unanswered questions remain. 

First, we cannot definitively pinpoint the source of open MHC we observed to be 

enriched in the phagosomes. Both surface MHC or internal sources can 

contribute to this. This is complicated by the observation that Rab39a expression 

inhibits degradation in the phagosomes. Brefeldin A treated cells do not enrich 

open MHC in the phagosomes despite the presence of Rab39a. While this might 

imply that MHC is coming from within the cell, BFA might also block internally 
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derived phagosome modulators that limit antigen degradation. These modulators, 

which may include cystatins and Nox2, can contribute to the preservation of 

surface derived open MHC-I.  

In our phagosome FACS assays, we saw that only a small subset of 

phagosomes was enriched for open H2-Ld (while containing low levels of closed 

H2-Ld). While our experiments showed that rescue with Rab39a increased this 

population vis-à-vis the knockout, the percentage of this population varied 

between experiments. Despite our efforts, we were not able to find a way to 

increase this population besides using protease inhibitors. Treatment of cells with 

TLR ligands or recycling inhibitors did not seem to have any effect (data not 

shown). What we did observe was that this subset was more visible in later 

timepoints (>2 to 4 hours, kinetics data not shown). Because of this, we 

consistently fed cells with beads for 2-4 hours, in order to hopefully maximize this 

population. However, we could not find a timepoint that had consistently high 

numbers of these phagosomes as the percentage of these open MHC enriched 

phagosomes still varied between experiments. One possible explanation was 

that open H2-Ld was continuously being loaded by peptides in the phagosome, 

and the MHC, now closed, was being rapidly shuttled to the cell surface. Indeed, 

when we did experiments to determine the kinetics of phagosomal open and 

closed MHC, we observed that while majority of phagosomes were double 

positive for both MHC forms at very early timepoints (~15 mins, data not shown), 

the closed form of Class I disappears or is greatly decreased by 30 mins. The 
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open form on the other hand, gradually decreases but somehow is stabilized at 2 

hours and onwards, presumably by delivery of new open Class I (or by inhibition 

of degradation in the phagosomes). However, these observations must be 

verified by better controlled experiments as we had technical issues in 

synchronizing the phagocytosis of the beads by dendritic cells.  

Another unanswered question is how Rab39a expression manages to 

reduce phagosomal degradation. Both Rab39a and Sec22b have been shown to 

have this effect, but the mechanism is as yet unclear. One of the ways dendritic 

cells manage to do this is by recruiting Nox2 to the phagosomal membrane. 

Nox2 promotes ROS production, which in turn causes an increase in 

phagosomal pH. This prevents the activation of a variety of proteases, thus 

preserving phagocytosed antigen for efficient XPT.  

While we have attempted to address the role of Nox2 in our observed 

phenotype, the antibodies we used did not give sufficient signal in our 

PhagoFACS assays. Perhaps further optimization, or use of alternative assays 

such as confocal microscopy will be able to definitively look at the mechanism of 

antigen persistence mediated by Rab39a.   

A caveat in our analysis of phagosomes was that we were limited into 

observing magnetic bead containing vesicles. However, it has been shown that 

phagosomes undergo several fusion and fission events, many of which 

contribute to XPT. For instance, MHC Class I, once loaded by an optimal peptide 
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in the phagosome, was then shuttled to the surface for presentation. Though this 

mechanism is still under study, it has been proposed that vesicles, through the 

action of Rab11a and other effectors, budded out of the phagosome and were 

“recycled” back to the surface (145). These steps in XPT were missed in our 

PhagoFACS analysis as they were no longer part of our magnetic bead 

preparations. Another missing event was the activity of Rab39a before it reached 

the antigen/bead containing vesicle. It would be interesting to characterize the 

content and determine the precise source of the cargo Rab39a delivered to the 

phagosome. In previous studies, the GDP bound form of Rab39a was shown to 

be dispersed in the cell, while the GTP bound form was endosomal (108). 

Perhaps the GDP bound form allows Rab39a to gather cargo from non 

endosomal sources (such as the ER-golgi) and once activated by GTP, deliver 

them to phagosomes.  

Furthermore, while we propose that the delivery of open MHC Class I was 

responsible for the increase in crosspresentation by Rab39a positive cells, our 

phagoFACS experiments looked at the open and closed forms of a transduced 

H2-Ld molecule. However, our XPT experiments (with reporter T cells) made use 

of the endogenous H2-Kb expressed by the cells. This discrepancy was brought 

about by the lack of / availability of tools needed for the experiments. The 

reporter T cells which we used were only specific for peptides on H2-Kb (or Db for 

12.64 hybridoma) but only H2-Ld has antibodies for its open and closed forms. 

While the epitope recognized by the 64-3-7 antibody (for the open form of H2-Ld) 
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can be transferred to a synthetic construct of H2-Kb, the dendritic cells that we 

use already had their own endogenous H2-Kb, and this will complicate the 

results. While we believe that the trafficking of open H2-Kb is the same or very 

similar to that of H2-Ld, one must be aware that in our experiments, the open 

MHC that we have observed within the phagosomes are not the ones being used 

to present ovalbumin peptides to our reporter T cells.  

V.  Proposed model of Rab39a in XPT 

Given these data, we hypothesize that Rab39a regulates a transport 

mechanism that delivers ER-golgi derived vesicles to the developing phagosome. 

Perhaps the GDP bound form of Rab39a, that we failed to detect on magnetic 

bead phagosomes, localizes extraphagosomally, on membranes of the ER-golgi 

compartment or its associated vesicles. Once activated, the GTP bound form of 

Rab39a, via adaptors and the cytoskeleton, then delivers its cargo of Sec22b 

labelled vesicles to the phagosome. As SNARES are primarily used for vesicle 

fusion, Sec22b on the Rab39 delivered vesicle then mediates fusion. Thus, ER-

golgi derived components, which may include degradation inhibitors (eg 

Cystatins), the PLC and possibly MHC Class I itself, are delivered into the 

phagosome lumen where they would be available for crosspresentation. These 

factors enhance crosspresentation by promoting antigen persistence, allowing 

phagosome to cytosol transfer of antigen, providing Tap1 as a peptide re-entry 

point to the phagosome and enriching receptive open MHC Class I molecules for 

peptide loading (Figure 59).  
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 Figure 59. Model of Rab39a mediated enhancement of crosspresentation. 

Figure 59. Model of Rab39a mediated enhancement of crosspresentation. 
Rab39a mediates delivery of ER derived cargo to antigen containing phagosomes (1). 
These cargo include Sec22b (2) (for targeting phagosomes), factors that allow P2C 
transfer of antigen (proposed to be Sec61), members of the PLC such as Tap1, and 
open MHC-I molecules. Antigen is then transferred to the cytosol (3) for proteasome 
processing (4). The generated peptides enter through Tap1 to reach the ER (5a) or the 
phagosome (5b). After trimming by ERAP (6a) or IRAP (6b), peptides are loaded onto 
empty/open MHC Class I molecules (7a, 7b). Loaded MHCs are then trafficked to the 
surface for presentation to CD8 T cells. 
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VI. Conclusion 

In this work, we have successfully developed and utilized a genomewide 

siRNA screen to identify novel genes involved in XPT. The screen was able to 

identify genes that selectively affected the XPT or Class II pathways. These 

genes are currently under intense study (Cruz FM, Colbert JD, Merino E, 

Kriegsman BA). 

The genomewide siRNA screen identified Rab39a as a gene involved in XPT. 

This Rab GTPase had no previously published role in antigen presentation. 

Furthermore, this study characterized the mechanism of how Rab39a affected 

XPT. 

Through the use of both siRNA and CRISPR knockout cells, we have shown 

that Rab39a was selective for XPT, and did not affect the Classical Class I and 

the Class II pathways. We showed that Rab39a enhanced XPT of antigens that 

required cytosol trafficking, but also those that remained in the phagosome. Our 

data indicated that Rab39a did not do this by altering phagosomal pH or  just 

modulating antigen degradation. Rather, Rab39a was being utilized by the cell to 

mediate the delivery of ER-golgi derived cargo to the phagosomes. This cargo 

could contain members of the peptide loading complex as well as peptide 

receptive forms of the MHC molecule. Rab39a expression increased Sec22b 

levels in the phagosome, suggesting that the fusion of this ER-golgi cargo with 

the antigen containing phagosome was mediated by this SNARE protein. 
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