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ABSTRACT

Modulating chromatin strcture is an important step in maintaning control over

the eukarotic genome. SWISNF, one of the complexes belonging to the growing

famly of ATP-dependent chromatin remodeling enzymes, is involved in controllng the

expression of a number of inducible genes whose proper regulation is vita for

metabolism and progression though mitosis. The mechanism by which SWISNF

modulates chromatin strctue at the nucleosome level is an important aspect of ths

regulation. The work in this disserttion focuses on how the Saccharomyces cerevisiae

SWISNF complex uses the energy of ATP-hydrolysis to alter DNA-histone contacts in

nucleosomes. Ths has been approached in a two par fashion. First, the thee-

dimensional strcture and subunit composition of 
SWI/SNF complex has been

determned. From this study we have identified a potential region of the SWI/SNF

complex that might a site for nucleosomal interaction. Second, functional analysis of the

ATPase domai of Swi2p, the catalytic subunit of SWISNF, has revealed that a specific

conserved motif is involved in coupling A 
TP hydrolysis to the mechanism of chromatin

remodeling. These results provide a potential model for the function of the SWI/SNF

chromatin remodeling complex at the nucleosome level.



Vll

TABLE OF CONTENTS

Copyright

Approval Page

Acknowledgements

Abstract

Table of Contents V11

List of Tables

List of Figures

List of Abbreviations X11

CHAPTER I: Introduction

CHAPTER II: Structural Analysis of the Yeast SWISNF

Chromatin Remodeling Complex

Summar

Introduction

Results

Discussion

Material and Methods

CHAPTER III: Characterizing How A TP Hydrolysis Leads to

Chromatin Remodeling by SWISNF

Summar

Introduction



V11

Results

Discussion

Material and Methods

CHAPTER IV A Motif with the Swi2p ATPase Domain Critical for

coupling A TP hydrolysis to Chromatin Remodeling

Summar 102

Introduction 104

Results 106

Discussion 132

Material and Methods 144

CHAPTER V Perspectives 150

References 164

Appendix 184



, ,::'

LIST OF TABLES AND EQUATIONS

TABLES

Table 1: SWI/SNF complex kinetic parameters

Table 2: Motif V alignment withn the SWI2/SNF2 ATPase famly 134

Table 3: Cancer mutations found in the ATPase motif V of hBRG 142

Table AI: Yeast Strains used in thesis research 184

EQUATIONS

Equation 1: Michaelis-Menten equation 100



LIST OF FIGURES

Figure 1. Chromati fiber condensation

Figure 2. Strctural features of the nucleosome core parcle

Figure 3. Classes of A TP-dependent chromati remodeling enzymes

Figure 4. Torsional model for nucleosome DNA-histone contact disruption

Figure 5. Generation of novel nucleosomal structues durig octaer mobilization

Figure 6. Swi2p is present in only one copy in yeast SWIISNF

Figure 7. Tagging and purfication scheme for ySWISNF stoichiometry determiation

Figure 8. Gel fitration analysis of TAP-tagged SWIISNF

Figure 9. Schematic for Chloramne- T based iodination

Figure 10. Stoichiometry of the yeast SWISNF complex

Figure 11. STEM mass analysis

Figure 12. Three dimensional structure of the yeast SWIISNF complex

Figure 13. Principal featues of the SWISNF 3D reconstrction

Figure 14. Cryo-EM strcture of the TAP tagged yeast SWISNF complex

Figure 15. Schematic of helicases with known crystal strctures

Figure 16. Schematic of the Swi2p protein from S. cerevisiae

Figure 17. Sequence algnment of chromati remodeling A TPases

Figure 18. Strategy for the purification of ATPase-defective SWIISNF complexes

Figure 19. Silver Stai of SWIISNF complexes containg Swi2p amio acid substitutions



Figure 20. Relative ATPase activity of Swi2p amo acid substitution

contaig SWISNF complexes

Figure 21. ATPase kietics for Swi2p ATPase-defective complexes

Figue 22. Sal I coupled chromatin remodeling results for Swi2p ATPase

defective SWIISNF complexes

Figure 23. The dSTRAGGLG complex functions catalytically to remodel

nucleosomal arays simiar to WT SWISNF

Figure 24. Torsion generation by motif il and motif V alterations

Figure 25. Swi2p specific ATPase linker region

Figure 26. Carbon source growth phenotypes of SWI2- TPase motif V mutats 107

Figure 27. Motif V mutations affect torsion generation on chromatin substrates 110

Figure 28. Nucleosomal' substrates rescue the Rl164A ATPase defect 112

Figure 29. Defections in the generation of torsion by disruption of motif V is furter

exacerbated on nucleosomal arays lackig histone N -termi 114

Figure 30. Nucleosome mobilty by motif V altered SWIISNF complexes 119

Figure 31. Exo il mapping of nucleosome positions after SWIISNF remodelig 120

Figure 32. Motif V is required for enhanced restrction enzyme accessibilty

on mononuclesosomes 125

Figure 33. SWISNF enzyme accessibilty on end-positioned nucleosomes 126

Figure 34. SWISNF remodelig of 5S rDNA mononucleosomes 127

Figure 35. Generation of recombinant xenopus mononucleosomes with and without

histone tals
129



Xll

Figure 36. Restrction enzyme accessibilty on histone taiess octamers 130

Figure 37. Theoretical modeling of Swi2p ATPase motis 139

Figure 38. Torsional models for chromati remodelig 155

Figure 39. Model for how SWISNF interacts with nucleosomes 159



17"

= -

AMPPNP
ATP
ATR

TRt
BAP

BRGI
BRM
BSA
CBD
CSAlCSB

termnal
dCTP

DNA
DNase I
DSBs
dsDNA
DTT
E buffer

EDTA
EGTA

Endo 
Exoil
FSC
GDa

HAT
HCV
HDAC
HMT
HPI 

hSWI/SNF

xii

LIST OF ABBREVIATIONS

Angstrom
amno acid
atomic force microscopy
Adenosine 5 imdo )trphosphate
Adenosine 5 trphosphate
alpha-thlassemia X-linked menta retardation
TR trncated splice varant

Braha associated proteins
base pai
Braha-related gene 1

Braha
Bovine serum albumin

calmodulin binding domain
Cockayne Syndrome complementation group A or B
carboxyl termnal
deoxycytidine 5 trphosphate
Drosophila melanogaster
deoxyribonucleic acid
Deoxyribonuclease I
double strand (DNA) breaks
double stranded DNA
dithotheitol
extraction buffer
Ethylenediamnetetraacetic acid
Glycol ether diame tetraacetic acid
electron microscopy
T 4 endonuclease VII
Exonuclease il

Fourier shell correlation
gigadaltons
infuenza A virs haemagglutinin

histone acetyltransferase

Hepatitis C Virs
histone deacetylase
histone methyl transferase
heterochromatin protein 1
homologous recombination
Homo sapiens
human SWISNF



IF -(1

IgG

kDa

MDa
MNase

termnal
NUR
ODp,j
oligo

PAGE
PBAP
PDB
PEl-cellulose
PHD
pmols
RAD
rDNA
RNA
rpm
RSC
SANT

SDS
SF 1 or 2

SIN
SIR
SNF

ssDNA
STEM
SWI
TAP
TBE
TCA

TEV
TLC
TMV

(v/v)
(w/v)

XIV

interferon-alpha
immunoglobin G
kiobase
kiodalton
kiovolts
Megadalton
micrococcal nuclease

amno terminal
nucleosome-remodeling factor (ISWI famly)
optical density at wavelength
oligonucleotide
phosphate
polyacrylamde gel electrophoresis
Polybromo Braha-associated proteins complex
Protein Database
pol yethyleneimine cellulose
pleckstrn homology domain
picomoles
radiation sensitive

ribosomal DNA
ribonucleic acid

revolutions per minute
remodels the strcture of chromatin
Swi3p, Ada2p, N-CoR, and TFm
Saccharomyces cerevisiae
Sodium dodecyl sulfate
helicase super famly 1 or 2
SWI independent
silent information regulators (yeast gene)
sucrose non-fermentig (yeast gene)
Schizosaccharomyces pombe
single stranded DNA
scanning transmission electron microscopy
mating type SWItching
tandem affinity purication cassette
Tris , Boric acid , EDT A
Trichloroacetic acid

Tris N aEDT A buffer
Tobacco Etch Virs
thn layer chromatography
Tobacco Mosaic Virs
Enzyme Units
volume to volume
wei t to volume



YEP
YEPD

wild type
yeast extract, peptone, media
YEP supplemented with 2% Dextrose



CHAPTER I

INTRODUCTION

The study of chromatin and how this dynamc 
strctue modulates events in the

eukarotic nucleus has 
become an increasingly important topic in biomedical research. 

large number of enzymes have been discovered that are responsibl
for modifying and

altering chromatin strctue either globally or specifically at 
parcular gene promoters or

regions of the chromosome. This chapter 
wil provide an introduction 

to the structue of

chromatin and then describe how special classes of 
enzymes modulate chromatin

strcture to allow access to 
DNA.

Chromatin Structure: A Short Primer

The strcture and function of chromatin is inherently dynamc. 
During mitosis

individual chromatids become highly compact, algn 
on the metaphase plate, separate

into mother and daughter cells, and then decondense after anaphase. In interphase, local

chromati strcture at gene promoters must be pertubed to 
allow the binding of a

multitude of factors necessar for proper gene 
activation. Likewise, detection and repai

of DNA damage must take place in the 
context of a chromati environment.

Furtermore, chromatin structue must also be maintained and propagated during

replicatio



Chrmatin strctnre is an interestig 
parox. How do 

you matan a compacte

genome that wil fit in the eukarotic nucleus 
while sti mantaning a DNA template that

is readily accessible for replicati
, transcriptio and DNA damage repai? 

The answer

lies in the fact that chromatin is a dynamc 
strctu with many layer of complexity and

reguatio . The basic unit of chromati, the nucleosome core parcle, 
consists of tWo

copies of each of the four core histones, H2A, H2B, H3 and H4 (fhomas 

and Kornberg,

1975). The hitones H3 and H4 fold 
together to fonn a tetrer to which two H2A-H2B

diers bind, resultig in the canonical histone octamer 
(Arnts et al., 1991). Around this

roughy cylindrcal octaer 
ar wrappd 147 bas pai of DNA (Luger et al., 1997).

The individual hitones have short N-tennna (-15-40 amno acids in lengt), and in

some cases C-terminal domais, which 
radiate out from the core 

nucleosome strctue

(Luger et al., 1997). Amino acid residues in these "
tas" have been found to be the

tagets of numerus post-
translationa modifications (See 

Figu 2, and reviewed in

Fischle et al., 2003; Rake et al., 2004).

The contacts made between DNA and histones are important for the 

stabilty and

organati of th nucleosome core 
parcle. Recently 

it has ben demonstrated that the

mehancal forces neede to dirupt DNA-histone conta at the entr/exit sites of DNA

ard the nucleosome are lower then at the central, dyad axs (Brower-

Toland et al.,

2002). It has also been shown, 
in vitro, 

that there is a slow intrsic, yet spontaneous

accessibilty of DNA in the 
absence of nucleosome movement (Anderson et al., 2(02).

Ths nuc1eosome hreathng could, in vivo, 
alow protein binding at th edges of

nucleosomes. Once bound, these proteins might recruit other 
chromatin modifying



enzymes, which might then disrupt the stronger histone-
DNA interactions located near

the nucleosome dyad.

100 - 400nm

'-'

Linker Histones

LOng Range
Flbet-Flber
InteracionS

30nm

ShOrt Range
Intern Stmsl

Inteactions

10nm

Nuclsome

Figure 1. Chromatin fiber condensation. The varous levels of compaction of the

chromatid fiber are ilustrated here. A number of chromatin associated proteins are

involved in organzing chromatin folding from the simple "bead on a strng" aray to

the fully condensed G 1 chromatid. Adapted from (Hansen, 2002).

At the next layer of complexity, nucleosomes are aranged into 
long linear arays

with a width of -10 nm (See Figure 1) (Olins and Glins, 1974; Thoma and Koller
, 1977;

Thoma et aI., 1979). These linear arays are furter compacted by intra- and inter-

nucleosomal interactions 
to compacted chromatin fibers (reviewed in Hansen, 2002).



Such interactions are mediated and stabilized by association of the histone N-termnal

domains with neighboring nucleosomes. As such , removal of the histone tails elimnates

the folding of model nucleosomal arays in vitro (Carthers and Hansen, 2000). The

incorporation of linker histones into the nucleosomal arays also stabilzes aray folding.

These histones are different from the canonical histones in that they are not found within

the nucleosome core parcle. Linker histones (e.g. HI and H5), bind at the DNA

entr/exit point on the nucleosome with a stoichiometr of one linker histone per

nucleosome in vivo (Hansen, 2002). The binding of linker histones stabilizes an

additional 20 bp of DNA with the nucleosome (167 bp total), forming a paricle called a

chromatosome (Muyldermans et aI., 1981; Noll and Kornberg, 1977; Simpson, 1978).

While abundant in vivo, linker histones alone are not sufficient for folding; the histone N-

termin are still necessar (Carthers and Hansen, 2000; Garcia-Ramez et al., 1992).

As chromatin compaction increases furter, long-range interactions, either direct

or mediated though other non-histone proteins, increase the level of folding and

condensation (W olffe, 1998). Several groups have used electron microscopy (EM) or

atomic force microscopy (AFM) to investigate the strcture of nucleosomal arays.

These experients have used both in vitro generated arays as well as chromatin fibers

isolated from chicken erythocytes (Bednar et al., 1995; Zlatanova and Leuba, 2003). 

low ionic strengths the extended linear arays of nucleosomes appear as beads on a strng

(Olins and Olins , 1974; Thoma and Koller, 1977; Thoma et al., 1979). At higher ionic

strengths these arays fold into a thick, sausage-like fiber that is commonly known as the

30 nm fiber (Caruthers et al., 1998; Hansen et al., 1989). Electron microscopy and



analytical ultracentrfugation of both folded and unfolded arays have elucidated some of

the characteristics and shapes that chromatin arays can assume (see Figure 1). In the late

1970s and early 1980s researchers using electron microscopy began to look at higher

order chromatin folding. Early EM studies suggested that nucleofilaments (-40mer

nucleosomal arays containg linker histone HI) isolated from rat liver nuclei might be

organized into a superhelical strcture, or solenoid strcture (Finch and Klug, 1976).

Other groups found that the addition of linker his tones into nucleosomal arays creates 

zigzag repeating pattern in the arays seen in chromatin fibers purified from chicken

eryocytes (Thoma et al. , 1979; Woodcock et al. , 1984). This has led to two models for

folding into the 30nm fiber. At ths level of compaction the chromatin arays could fold

into either a solenoid strcture with the nucleosomes forming a helical arangement or in

a zigzag pattern where nucleosomes are positioned such that the entr/exit sides are

buried inside of the chromatin fiber (reviewed in Hansen, 2002). These theories are stil

being investigated to determne exactly how chromatin folds in vivo.

Numerous varants exist for some of the histones, which are incorporated into

nucleosomes in different regions of chromatin and play specifc roles in the organzation

of chromatin and the establishment of specific domains with different folding

characteristics (reviewed in Horn and Peterson, 2002). The basic histone fold remains

highly conserved from yeast to humans but the composition of nucleosomes at different

regions within chromatin can change. For instance, at centromeres, the histone 

varant centromere protein A (CENP-A) replaces the major form of H3 (Ahmad and

Henioff, 2001; Lo et aI. , 2001). While evidence supports that H3 is replaced, all the
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other histones H2A, H2B and H4 are stil present. Centromeres are known areas of

heterochromatic composition with higher than average levels of compaction, and CENP-

A might playa key role in the maitenance of this condensation. Disruption of CENP-

gene expression in yeast, fles and worms has ilustrated that deposition of this histone

varant is important for proper generation of new centromeres (Smith, 2002).

Interestingly, it was found that CENP-A is deposited in a replication independent manner

which seems to be tre of all the histone varants (Ahmad and Henikoff, 2001). Other

histone varants are known to exist such as H2AZ, H2AX, macroH2A and H3.3 (Ahad

and Henikoff, 2002; Ladurner, 2003; Redon et al., 2002).

While it seems that many histone variants are involved in the regulation of

specialized chromati strctures like telomeres and centromeres, there is a well

characterized histone varant, H2AZ, which has been linked to activation and repression

of gene activation (Adam et al. , 2001; Dhilon and Kamakaka, 2000). This varant is

found in numerous regions of both the Drosophila and yeast genomes, and in Drosophila

H2AZ is essential and cannot be substituted for by canonical H2A (Leach et aI. , 2000;

Santisteban et al., 2000). In vitro, nucleosomal arays that contan H2AZ are defective

for intra-molecular folding suggesting that chromatin domais contaning H2AZ might

not be compacted to the same degree as chromatin regions containing only H2A (Fan et

aI., 2002). In general the incorporation of different histone varants within chromatin

fibers is likely to create specialized domains with distinct propertes.
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Figure 2. Structural features of the nucleosome core particle. (a) Strcture of the

nucleosome with histones H2A (red,) H2B (light blue), H3 (green), and H4 (yellow)

represented based on the 1.9A crystal strctue (Luger et al., 1997). The path of the

DNA is represented by the curve around the histone octamer. The varous shades

represent the wraps of DNA. (b) Features of the N and C-terminal tail regions of core

histones. The colored shapes represent known modifications of the amno acid

residues in the tails. The histone tails can be methylated (blue circles) at lysines and
arginines, phosphorylated (yellow croses) at serines, ubiquitylated (orange stars) at

lysines and acetylateg"(green trangles) at lysines.



A TP-Dependent Chromatin Remodeling Enzymes

Among the major contributors to the dynamc natue of chromatin are the

chromatin modification and remodeling enzymes. The fIrst class of enzymes, the histone

modifying enzymes, directly add or remove post-translational modifications to amino

acids in the varous histone proteins. As seen in Figue 2, numerous histone

modifications have been found to date (reviewed in Khorasanizadeh, 2004). Lysine

residues can be the tagets of acetylation , methylation (mono, di- or trmethylated), or

ubiquitination. Serines and theonines are phosphorylated and arginines can either be

mono- or dimethylated. These modifications are likely to alter the strcture or function

of chromatin fibers. Indeed, different modifcations are associated with distinct

chromatin-mediated events such as transcriptional activation, silencing, and histone

deposition. For example histone hyperacetylation usually correlates with

transcriptionally active regions, whereas methylation of H3 at lysine 9 correlates well

with transcriptional repression (Hake et al., 2004). Much of the current research into

chromati biology has focused on these histone modifications and their role in the

regulation of chromatin mediated events (Fischle et al., 2003; Hake et al., 2004; Jenuwein

and Allis, 2001; Khorasanizadeh, 2004).

The second class of chromatin remodeling enzymes contans those enzymes that

alter chromatin strcture by disrupting or mobilzing nucleosomes in an energy

dependent manner (ATP-dependent chromatin remodeling enzymes). For the purpose 

this work I wil focus on the roles that ATP-dependent chromatin remodeling enzymes
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play in altering nucleosomal and chromatin fiber strcture. ATP-dependent chromatin

remodeling enzymes use the free energy derived from the hydrolysis of hundreds of

molecules of ATP per miute to disrupt chromatin strcture (Cote et al. , 1994; Elfring et

aI. , 1994; Khavar et al., 1993; Kwon et al. , 1994; Seelig et al. , 1995). These enzymes

range from a single catalytic subunit to multi -subunit complexes that can exceed 1 MDa

in mass (reviewed in Lusser and Kadonaga, 2003). At the heart of each ATP-dependent

chromatin remodeling enzyme is a helicase-like subunit of the SWI2/SNF2 famly of SF2

helicases (Eisen et aI., 1995). This class of ATPases has been furter subdivided into '

least thee major subfamlies: the SWI/SNF2, Mi-2/CHD, and ISWI familes as well as

a potentially new famly of In080-like complexes. These famly assignments are based

priarily on sequence homology withn the catalytic subunit as well as the peculiarties

of their remodeling activities (Boyer et al., 2000a; Eisen et al., 1995; Shen et al. , 2000).

The helicase contaning subunits in these enzymes are large multi-domain proteins that

contain additional domains, including bromodomains, pleckstr homology domains

(PHD), chromodomains, SANT domais, and AT hook regions (See Figure 3). These

other domains might play a role in stabilizing interactions with histones and/or

nucleosomal DNA. For instance, bromodomains interact with acetylated lysines, AT

hook regions interact with the minor groove of AT rich regions of DNA, and SANT

domains are believed to interact with histone tails (Aravind and Landsman, 1998; Boyer

et aI. , 2004; Goodwin and Nicolas, 2001).

The hallmark of ATP-dependent chromatin remodeling enzymes is the ability to

remodel chromatin by altering the DNA-histone contacts within individual nucleosome
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xMi- Xenopus (aevis Mi- -1 MDa

hNURD Homo Sapiens Mi- -1.5MDa

Figure 3. Classes of A TP-dependent chromatin remodeling enzymes.
This cartoon depicts representative featues of each subfamly of chromatin
remodeling enzymes. The tables list a number of key chromatin remodeling
enzymes with their approximate sizes, ATPase subunit, total subunit
compositions and the organism in which they are found. In Swi2/Snf2p grey
regions represent low complexity regions, green regions represent predicted
coiled-coil and darJf'blue regions are AT regions.



resulting in either localized disruption of the histone-DNA contacts or mobilzation of the

nucleosomes on the chromati fiber. In the rest of ths chapter I wil focus on the roles of

these enzymes in vivo as well as how they utilze A TP hydrolysis to remodel chromatin

strctue. As discussed below, members of each subfamly appear to play unique roles 

vivo.

A TP-Dependent Chromatin Remodeling Enzymes Are Involved in the

Control of Numerous Cellular Processes.

The discovery of the fIrst chromatin remodeling enzyme , the S. cerevisiae

SWISNF complex , was the result of several early genetic studies of two yeast genes, 

and SUC2. The SWIl , SWI2 and SW/3 genes were originally found to act as positive

regulators of HO transcription, the endonuclease involved in mating type switching,

hence the name SWItch genes (Stern et aI. , 1984). At the same period in tie thee other

genes, SNF2, SNF5, and SNF6 ucrose nEermentors), were found to be positive

regulators of SUC2 encoding invertase , which is needed for yeast to utilize sucrose as a

carbon source (Neigeborn and Carlson, 1984). Subsequent analysis showed that SWI2

and SNF2 were in fact the same gene and that all five of these gene products functioned

together in a complex as positive regulators of transcription (Laurent et al., 1991;

Peterson et al. , 1994; Peterson and Herskowitz, 1992). Genetic interactions between SWI

and SNF genes and games encoding components of chromatin were also observed. A



mutant screen for WI-Independent, or SIN genes , that could alleviate the effects of swt

mutations, identifed two chromatin proteins encode by the SINl and SIN2 genes (Krger

and Herskowitz, 1991; Peterson et al. , 1991). The SINl gene encodes a non-histone

protein with homology to HMG 1/2 proteins and the SIN2 gene was found to encode

histone H3. These genetic studies suggested that this large megadalton complex

regulated transcription by antagonizing chromatin strctue. The identification of

SWI/SNF then led to the subsequent identification of numerous , related ATP-dependent

complexes simlarly involved in the alteration of chromatin (Vignal et al. , 2000).

The SWI/SNF2 complexes: transcriptional reguators

The yeast SWI/SNF complex comprises eleven subunits (encoded by the SWIl

SWI2/SNF2, SWI3, SNF5, SNF6 , SNFll SWP82 , SWP73, SWP29, AR7 and AR9

genes) (Cais et al., 1998; Cais et al. , 1996a; Cairs et al., 1996b; Peterson et al.,

1994; Peterson et al. , 1998). The catalytic subunit of the SWI/SNF complex, Swi2p,

contains a bromodomain and an AT-hook region as well as the helicase-like ATPase

domain. Bromodomains are believed to be involved in interactions with histone tais and

the AT-hook region appears to be involved in binding to AT rich regions of DNA: these

domains might be important for tageting the ATPase subunit to chromatin (Aravind and

Landsman, 1998; Boyer et al., 2004). Swi2 homologs are found in all eukarotes,

including Drosophila (Braha), and humans (hBRM and BRGI complexes) (Marens

and Winston, 2003). Sthlp, a very close yeast paralog of Swi2p, is found in the RSC
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chromatin remodeling complex (Cais et al., 1996c; Du et al., 1998; Tsuchiya et al.,

1998).

SWISNF is important in the activation of a subset of highly inducible genes in

yeast, including genes involved in metabolism (RIS3, SUC2, IN01, 
and PR08) and

mating-type switching 
(RO) (Winston and Carlson, 1992). Although SWISNF activity

is only required for -5% of constitutively expressed yeast genes, an important subset of

highly inducible genes require SWI/SNF (Holstege et al., 1998; Krebs et al., 2000;

Sudarsanam et al., 2000). Likewise, gene expression at the end of mitosis also appears to

require global SWISNF activity (Krebs et aI., 2000). Interestingly the Caenorhabditis

elegans homolog of SWISNF has been shown to be required in late mitosis for the

asymmetrc division of T cells (Sawa et al., 2000). 
A global role for SWI/SNF during

mitosis is consistent with the view that SWISNF might regulate higher order 
chromatin

strcture in vivo (Horn et al., 2002; Krebs and Peterson, 2000).

The Braha complex (BRM), a homolog of SWISNF in 
Drosophila, is required

for maitenance of homeotic gene expression and E2F-dependent transcription (Kennison

and Tamn, 1988; Staehling-Hampton et aI., 1999). In adult fles loss of 
Braha causes

defects in the peripheral nervous system as well as a more general decrease in cell

viability at the larval stages (Elfring et al., 1998). Recently the BRM 
protein has been

found in two separable 
Drosophila complexes, BAP (Braha-associated proteins) and

PBAP (polybromo Braha-associated 
proteins), which contain differences in only a few

subunits (Mohrann et al., 2004). Both of these complexes colocalze to 
regions of

hyperacetylated chromatin on polytene chromosomes in a distict yet overlapping



pattern. The BAP complex also appears to be involved in repression of the wingless

target genes nubbin, Distal- less, and decapentaplegic, which are all crucial for proper

patterning of numerous strctures during fly development (Collns and Treisman, 2000).

In mamals, homologs of SWI/SNF subunits (BRG1 and INIl/SNF5) are

essential for early mouse development. highly conserved subunit of SWI/SNF,

INIl/SNF5, has been found to be crucial in early steps of fetal development and loss of

heterozygosity of INIl/SNF5 occurs during tumor formation in mice (Guidi et aI., 2001;

Klochendler- Y eivin et al., 2000; Roberts et al., 2000). Likewise, in human cells, the

varous SWI/SNF chromatin remodeling enzymes have been found to play major roles in

cell differentiation, early development and tumor suppression (Huang et al., 2003; Muller

and Leutz, 2001; Neely and Workman, 2002). For instance, induction of muscle and

adipocyte cell differentiation requires the hSWI2/SNF2 homologs 
BRG 1 and BRM (de la

Serna et al., 2001; Salma et al., 2004). 
BRG1 has also been found to activate a subset of

lP-a inducible genes in humans, linkng SWI/SNF remodeling to regulation of cytokie

mediated gene expression (Huang et al., 2002).

Many links to human disease exist for the human SWISNF complexes. Evidence

suggests that the ATPase subunits (BRG 1 and hBRM) of the hSWISNF complexes can

act as tumor suppressors in their own right. BRG 1 and BRM mutations have been seen in

primar lung cancers, and gastrc carcinomas (Reisman et aI., 2003; Sentani et aI., 2001).

A number of different mutations have been discovered in the BRG 1 gene in numerous

other cancers including breast, lung, prostate and pancreatic cancers (Wong et al., 2000).

Mutations withn hBRM as well as BRG 1, BAF 155/SWI3, BAF 180, and BAF250 genes
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have also been found to be mutated in cancer cell lines (Decristofaro et aI., 2001).

INIl/hSNF5 has also been linked to cancer in humans. Mutations in 
INIl/hSNF5 have

been found in pediatrc malignant rhabdoid tumors (Versteege et aI., 1998). The link

between chromatin remodeling enzymes and disease is currently experiencing a rapid

growth as more direct links are being found with SWI/SNF-like enzymes.

ISWI complexes: Sliding into transcription regulation and chromatin assembly

Another class of energy dependent chromatin remodeling enzymes is the ISWI

famly. The ISWI family contains multiple complexes found in yeast (ISWla, ISWlb

and ISW2), fles (NU, CHRAC and ACF) and higher eukarotes (RSF, ACF, WCRF,

and CHRC (reviewed in Langst and Becker, 2001b). In contrast to the SWI/SNF

famly members, ISWI A TPases contain SANT and SLIDE domains (Boyer et al. , 2004;

Grune et al., 2003). These domains share homology to the c-myb DNA binding module

and have been proposed to playa role in histone tail (SANT domain) and nucleosomal

DNA (SLIDE) interactions (Boyer et al., 2004).

Whereas the SWI/SNF complexes appear dedicated to transcriptional control, the

ISWI famly members appear to parcipate in a varety of nuclear processes.

Drosophila, ISWI genes are essential for viabilty and have been geneticaly associated

with numerous nuclear processes (Corona and Tamn, 2004). Like SWI/SNF, one

IS WI containing complex, NUR, activates transcription via chromatin remodeling at the

Drosophila hsp70 andftz promoters (Okada and Hirose, 1998; Tsukiyama et aI., 1994).

ISWI complexes also play roles in repression. For example, Tamn and colleagues saw



no evidence for colocalization of ISWI and RNA polymerase on Drosophila polytene

chromosomes suggestig that ISWI does not playa role in transcriptional activation like

the SWI2/SNF2 famly of chromatin remodeling complexes (Deurng et al., 2000).

Instead, ISWI complexes playa repressive role at specific genes in laral developmental

stages. Studies in Drosophila lacking ISWI have also found that the male fly larvae have

a high level of global decondensation in the X chromosome suggesting a global role in

the maintenance of chromosome strcture (Deuring et al., 2000). The developmental role

for ISWI complexes can also be ilustrated in mamals as SNF2h , the murine homolog

of ISWI, has been found to be essential for early embryonic development. In Snj2h-

mice the embryo never progresses from the pre-implantation stage (Stopka and Skoultchi,

2003). ISWI complexes have also been found to playa global role in chromatin

remodeling and reprogramng of chromatin when somatic nuclei are transplanted into

unfertlized eggs (Kikyo et aI., 2000).

While ISWI is essential in Drosophila and mice, there are two redundant copies

of ISWI (ISWl and ISW2) in yeast which are not essential (Tsukiyama et al. , 1999). The

Isw2p and Itel p proteins are components of the yeast Isw2 complex, which is required

for the transcriptional repression of a set of meiotic genes in conjunction with the

Sin3/Rpd3 HDAC complex (Goldmark et al., 2000). Iswlp, on the other hand, is found

in two different complexes Iswla (Iswlp and Ioc3p) and Iswlb (Iswlp, Ioc2p and Ioc4p)

(Var et al., 2003). An interesting role for the two Iswl complexes in transcriptional

elongation and termnation by RNA polymerase II (RNAPll) has been found. Both of

these complexes have been found to associate with RNAPll durng transcription, with the



Iswla complex associated with RNAPll at the promoter prior to gene activation keeping

gene transcription in an off state by ordering nucleosomes over the promoter region.

Upon activation, Iswla becomes dissociated and Iswlb becomes the RNAPll associated

Iswl complex (Morillon et al., 2003). It appears that Iswlb coordinates elongation

termation and mRA processing. This data suggests that the interplay between these

two complexes is necessar for proper transcript processing.

The ISWI complexes do not just playa role in transcription; ISWI containing

complexes have also been implicated in chromatin assembly and nucleosome spacing.

The ACF complex in both fles and mammals is composed of the two subunits: ISWI and

Acfl. In vitro ACF is able to assemble, space and mobilze nucleosomes in a cell-free

system (Ito et al., 1997)., ACF also appears to playa role in replication-coupled histone

deposition in vivo (Mello and Almouzni, 2001). ACF, as well as a related complex,

WSTF, has been found to co-localize with replication foci and is required for replication

though heterochromatic regions (Bozhenok et al., 2002; Collins et al., 2002). It is still

not clear if these complexes are functionally redundant or if they couple replication and

histone deposition in distinct ways. A number of related ISWI complexes (CHRC,

WSTF, and NUR) all contain subunits similar to ACF and are able to catalyze the

mobilization of nucleosomes on arays in vitro (Becker and Horz, 2002). The 

complex also contains NU-55, a subunit of CAP-I, a histone chaperone conserved in

many eukaryotes (Marnez-Balbas et aI., 1998). NU, unlike CHRC and ACF, does

not space nucleosomes but rather is believed to be involved in the randomization of

spaced nucleosomal !fays. So it appears that the ISWI famly of ATP-dependent



remodeling enzymes is involved in a number of processes including transcriptional

activation, replication-coupled histone deposition as well as the creation 
of regions of

silenced chromati at specific promoter regions.

Mi-2 complexes: General repressors

The Mi-2 (CHD) famly of chromatin remodeling enzymes al contan ATPase

subunits with one or more chromodomains. The chromodomais in Mi-2 appear to be

responsible for binding nucleosomal DNA in a histone tail independent manner

(Bouazoune et al., 2002). These enzyme complexes appear to play roles in

transcriptional repression since several Mi-2 complexes have been found to contan

histone deacetylase (HDAC) subunits (Kehle et al., 1998; Tong et al., 1998; Wade et al.,

1998; Wade, 1998). Along with HDACs, methyl-CpG binding proteins have also been

found to be par of the Xenopus Mi-2 complex (Wade et al. , 1999). The discovery of

methylated-DNA binding proteins as par of a chromatin remodeling complex suggests

that Mi-2 functions to coordinate histone deacetylation with DNA methylation in order to

silence chromatin (Wade et al., 1999).

As with other chromatin remodeling complexes, Mi-2 complexes have been found

to play important roles in development. In 
Arabidopsis thaliana the gene PICKLE (PKL)

encodes a Mi2 famly ATPase necessar for the transition from seed to seedling (Ogas et

al., 1999). In pkl mutants the silencing of a number of embryonic genes is lost and these

genes are then expressed post germnation (Ogas et al., 1997; Rider et al., 2004).

Mutations in Drosophila Mi-2 (dMi-2) are embryonic lethal, and in C. 
elegans LET-



418/Mi-2 is required for the maintenance of somatic cell differentiation, a crucial event in

early embryonic development (Khattak et al., 2002; 
Unhavaithaya et al., 2002). Mi-

complexes have also been found to playa role in lymphocyte cell differentiation. A class

of Zn2+ -finger DNA-binding proteins in the Ikaros gene famly interact directly with the

Mi-2 complex NUR (ortologous to dMi-2), and in murie T cells a fraction of Ikaros

and Aiolos (another member of the Ikaros gene famly) were found to be stably

associated with the NU complex (Kim et al., 1999). Upon T cell activation a fraction

of Ikaros, Aiolos and NU all become associated with heterochromatin with similar

kinetics (Kim et al., 1999). Ikaros also appears to interact with 
SWI/SNF in T cells, and

this interaction appears to be exclusive of the Ikaros-
NURD complex. This lin between

Ikaros, Mi-2, and SWI2/SNF famly chromatin remodeling complexes has also been

observed in adult erythoid cells (O'Neil et aI., 2000). Overall, it was suggested that the

interplay between Ikaros-like DNA binding proteins and chromatin remodeling

complexes is responsible for the silencing of the y-
globin locus and y- to p-globin locus

switching. Consistent with this proposal, evidence supports a role for 
Ikaros as a

potentiator of chromatin remodeling at heterochromatic sites but not as a traditional

activator, especially at pericentrc regions of heterochromatin (Koipally et aI., 2002).

Other subfamiies: Repair and establishing chromatin domains

Recently, more proteins have been found to have the 
hallmarks of chromatin

remodeling enzymes, including those involved in the 
repai of DNA damage. Rad54p, a

member of the RA52 epistasis group, plays an essential role in several steps of



homologous recombinational repai of DNA double strand breaks (DSBs) (peterson and

Cote, 2004). Rad54 is a member of the SWI2/SNF2 famly of ATPases, and in the last

few years it has been discovered that the Rad54 ATPase has all the 

in vitro characteristics

of a ATP-dependent chromatin remodeling enzyme (Alexeev et al., 2003; Alexiadis and

Kadonaga, 2002; Jaskelioff et al., 2003). It was proposed that Rad54 functions in

recombinational repai of 
DNA DSBs by altering and/or moving nucleosomes that might

interfere with joint molecule fonnation or migration of heteroduplex DNA (Jaskelioff et

al., 2003; Peterson and Cote, 2004).

Cockayne syndrome (CS) is another human disorder that involves a SWI2/SNF2

famly member. This autosomal recessive disease is associated with mental retardation,

cachectic dwarsm, neural degeneration and hypersensitivity to UV light. 
Two different

genetic complementati groups exist for CS; CSA and CSB. CSB cells have defects in

their abilty to perform transcription-coupled repair. CSB homologs have 
been found in

yeast (RAD26) and humans (ERCC6), both of which have been found to be homologs of

the Swi2/Swi2p ATPase (Licht et al., 2003). 
It has been shown that mutations in the

putative helicase motifs in CSB lead to abrogation of the genetic function of CSB in

RNA synthesis and survival after UV treatment (Muftuoglu et al., 2002). 
CSB has also

been found to exhibit A TP-dependent chromatin remodeling activity as ilustrated 
by the

ability to bind to and alter histone-DNA contacts in mononucleases as assayed by DNase

I accessibilty (Citterio et al., 2000). The precise role of CSB proteins in damage repai is

still under investigation.
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Mutations in another SWI2/SNF2-like ATPase gene, ATRX (alpha-thassemia X-

linked menta retardation) occur in patients with severe X-linked menta retardation

(Gibbons et al., 1995). ATR has been found to be associated with pericentromeric

heterochromatin, PML bodies, and the heterochromatin-associated protein HPI

(McDowell et al., 1999). Recently a trncated isoform of A TR, A TRt, has been

discovered to associate with pericentrc heterochromatin regions, but not with PML

bodies, suggesting a role in regulation of chromatin strcture at specific chromatin

regions (Garck et al. , 2004).

Understanding the Molecular Mechanism A TP-dependent

Chromatin Remodeling.

One of the major avenues of research centers on determining how chromatin

becomes remodeled by these ATP-dependent chromatin remodeling enzymes. What

exactly is the process by which nucleosomes are disrupted? Do all of these complexes

use the same basic mechanism to alter nucleosomes? In ths section I outline what is

known about these enzymes and their actions on nucleosomes.

The SWI2/SNF2-1ike ATPase subunit is the master switch.

It is increasingly obvious that these large multi-subunit complexes playa number

of diverse roles in the nucleus. Do all of these ATP-dependent chromatin remodeling

enzymes share the e basic mechanism or do they each act in subtle yet different
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ways? The one thing al these enzymes share is a highly conserved helicase-like ATPase

domain similar to yeast SWI2/SNF2.

The ATPase subunit of the VarOUS ATP-dependent remodeling enzymes al

contain a domain with homology to helicase-lie proteins of the SFI and SF2

superfamles. This ATPase domain contans all of the seven common helicase motifs of

the SF2 superfamily (numbered Motif I, la, and ll- VI). In helicases these motifs function

together to convert A TP hydrolysis to the strand separation activities of the enzyme

(Carthers and McKay, 2002). The SWI/SNF2-like A TPases contain most of the

consensus residues of these motifs. The canonical helicase domain is a biparte strctue

with Motifs I-Ill on one side (subdomain I) and Motifs IV-VI to the other side

(subdomain II of the ATP-binding cleft (Carthers and McKay, 2002).

The ATPase domai of remodeling enzymes is required for remodeling activity.

Single point mutations in the highly conserved A TPase/helicase motifs cause loss of

function for these enzymes in vitro and in vivo (Cote et al., 1994; Khavari et al., 1993;

Peterson et al., 1994; Richmond and Peterson, 1996). Simlar to traditional helicases, all

A TP-dependent chromati remodeling enzymes have been found to have DNA and/or

nucleosome-stimulated ATPase activity, although the preferred cofactor differs between

the different classes. The SWI2/SNF2 famly of enzymes have similar ATPase activity in

the presence of either DNA or nucleosomes, while the ISWI and Mi-2 class of enzymes

display a higher ATPase activity with a nucleosomal template (Brehm et al., 2000; Cais

et al., 1994; Cais et aI. , 1996c; Corona et al., 1999; Cote et al., 1994; Guschin et al.,



2000a). These differences may result from subtle differences in mechanism or in how

each enzyme binds its substrate.

A key difference between canonical helicases and ATP-dependent chromatin

remodeling enzymes is the lack of actual DNA duplex strand separation. After the

identication of the helicase-related motifs in Swi2/Snf2 protein, the yeast SWISNF

complex was tested for the abilty to act as a DNA helicase, but it failed to induce duplex

unwinding with a varety of substrates (Cote et aI., 1994). Furthermore, SWI/SNF action

does not lead to enhanced sensitivity of nucleosomal DNA to potassium permanganate

indicating a lack of transient duplex unwinding (Cote et al., 1998). Simlarly, all other

chromatin remodeling enzymes tested have yet to produce any evidence of helicase-like

duplex unwinding. It should be noted that the SWI2/SNF famly of A TPases differs

from canonical helicase domains with the addition of a large - 100 ano acid inserton

between helicase sub domains I and II (Eisen et al., 1995). This inserton might be

responsible for the lack of DNA duplex unwinding and it may playa role in the

mechanism of chromatin remodeling.

Since, these enzymes don t catayze strand separation, it had been thought that

maybe the SWI2/SNF2-like subunit catalyzes the translocation of the complex along

DNA. Indeed a number of these enzymes, including SWISNF, RSC , and ISWI can track

along DNA as revealed by their abilty to remove a short oligonucleotide incorporated

into a trple helix (Jaskelioff et al., 2003; Saba et al., 2002; Whtehouse et al., 2003).

This assay was fIrst used to look at and measure the rates at which type I restriction

enzymes track along DNA (Firman and Szczelkn, 2000). Although this activity might
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suggest movement of the enzyme along DNA, it seems more likely that the enzyme wil

remai anchored to the histone octamer and DNA wil be moved relative to the enzyme.

In this case A TP hydrolysis might catalyze the twisting or pushing of DNA across the

surface of the histone octamer. The movement of the DNA then could yield a remodeled

state where the octaer has moved relative to its initial position on the DNA. This model

wil be addressed in more detail in the following sections.

Chromatin remodeling enzymes are able to introduce helical torsion into DNA and

nucleosomal substrates.

Other evidence of helicase-like behavior is seen in ATP-dependent chromatin

remodeling enzymes. Havas and colleagues have tested varous chromatin remodeling

enzymes for the abilty ' to introduce superhelical torsion into DNA and chromatin

substrates (Havas et al., 2000). In these studies an assay measures extrsion of a

cruciform from a DNA constrct containing an inverted (ATh4 repeat (McClellan et al.,

1990). If an enzyme creates superhelical torsion on DNA the (ATh4 repeat forms a

cruciform that is cleaved by the junction resolving enzyme, T4 Endonuclease vn (Liley

and Kemper, 1984; Mizuuchi et al., 1982). Results showed that ySWISNF Xenopus Mi-

2 complex, recombinant ISWI, and recombinant BRG 1 were all able to generate

superhelical torsion in an ATP-dependent manner (Havas et al., 2000). Both BRGI and

SWI/SNF were able to generate torsion on both DNA or chromati templates while Mi-

and ISWI only functioned on nucleosomal templates (Havas et al. , 2000). These results

showed a similarty to the before mentioned DNAlnucleosome stimulated ATPase



activities of these enzymes; enzymes that are more 
stimulated by nucleosomes for

ATPase activity also showed a need for nucleosomal substrates in the cruciform extrusion

assay. The generation of torsion on the DNA duplex could either be a 
consequence of

remodeling or it might be how DNA-histone contacts are disrupted.

The chromatin remodeling enzyme-nucleosome interface

Understanding how chromatin remodeling enzymes interact with the nucleosome

has been a major goal in the chromatin field for some time. 
A few groups are starg 

use single molecule methods to look at the strctures of these 
complexes as well as the

forces and dynamcs involved in chromatin remodeling.
Atomic force microscopy

(AF) and electron microscopy (EM) studies have shown that the interaction of

SWI/SNF with nucleosomal arays leads to formation of large DNA loops (Bazett-
Jones

et aI., 1999; Schnitzler et al., 2001). The AFM studies also showed that clusterig of

nucleosomes occurs on short (dodecameric) nucleosomal arays, 
leaving long stretches of

unoccupied DNA, thus again confIrmng the mobilzation 
of nucleosomes, in vitro.

Furtermore, both studies showed a potential loss of DNA constrained by nucleosomes

remodeled by SWI/SNF, most likely at the entry/exit positions.

Recently, the S. cerevisiae RSC and SWI/SNF complexes were imaged using 3D

electron microscopy reconstrctions (Asturias et al., 2002; Smith et al., 2003). Both

enzymes show central cavities approximately the same size and dimensions of a single

nucleosome. The yeast SWI/SNF strcture was also of the same approximate dimensions



as that imaged by both Bazett-Jones and Schntzler (Bazett-Jones et aI., 1999; Schntzler

et al., 2001; Smith et al. , 2003).

How do these large megadalton complexes bind to nucleosomes? One of the

earliest observations for SWI/SNF interaction with DNA showed a high affinity for four-

way junction (4WJ) DNA simlar to that displayed by HMG-box domain proteins (Quinn

et al., 1996). This 4WJ binding affinity suggests that SWISNF and related complexes

may bind to the entry and exit segments of the nucleosome. Site-specific DNA

photo affinity labeling has also been used to look at the interactions between both the

ySWI/SNF and RSC complexes with nucleosome (Sengupta et al., 1999; Sengupta et al.,

2001). These studies show that multiple subunits are in close contact with nucleosomal

DNA, and that there does not appear to be a preferential binding site at the nucleosomal

edge.

In the ISWI complexes, binding to substrate seems to be mediated by the interface

between liner DNA regions and the actual nucleosome core, since ISWI containing

complexes only act on substrates that have at least 20 bp of DNA adjacent to the

nucleosome (Kagalwala et al., 2004). Ths binding requires other subunit(s) in the ISWI

complex, for instance, Acfl p is necessar for high affmity nucleosome sliding by ISWI

in both ACF and CHRC complexes (Eberharer et al., 2001).

How is A TP hydrolysis coupled to the generation of remodeled chromatin?

Once a remodeling enzyme has bound to a nucleosomal substrate, what does

DNA translocation and/or torsion generation do? Two major models have been debated



for the last couple of years. The fIrst model was the "
twist diffusion" model discussed by

van Holde and Yager in 1985 and readdressed recently (van Holde and Yager, 2003).

The twist diffusion model theorizes that migration of DNA around the nucleosome is

propagated by the introduction of small twist defects that cause under-winding of the

DNA helix which are then diffused around the nucleosome (see Figure 4). 
If the defect

collapses back on itself the result would be no movement. On the other hand if it is

propagated forward this model allows for small slipping steps to occur where the DNA

strand is continuously pumped across the face of the nucleosome (van Holde and Yager

2003). This model is consistent with the ability of chromatin remodeling enzymes to

generate superhelical torsion (Gavin et al., 2001; Havas et al.
, 2000).

Recent evidence puts this model into question, however, as ISWI- and

SWI2/SNF2- contaning complexes can stil mobilze nucleosomes on DNA substrates

containing nicks, hairins, or gaps 
(Aoyagi and Hayes, 2002; Langst and Becker, 2001a;

Saha et aI., 2002). These experiments argue against a simple twist diffusion 
model since

introduction of single base pai nicks and/or addition of bulky DNA branches could

prevent the propagatio of twist that initiates outside the nucleosome. Nicks in the DNA

might dissipate the accumulation of torsional stress while the branched DNA might

interfere with the actual rotation of the DNA relative to the nucleosome.

The second, related model is the reptation or bulge migration model. This model

suggests that a wave of DNA is released from the histone octamer and is propagated

along the surface of the nucleosome allowing accessibilty to DNA binding factors with

or without generating movement. The best evidence for the creation of loops durng



remodeling comes from experiments conducted using cross-linked nucleosomes (Aoyagi

et aI., 2002). In these studies the H2B histone was fust cross-linked to DNA, and the

abilty of these mononucleosomes to be remodeled was scored by nuclease accessibilty.

Interestingly, hSWI/SNF could still enhance DNase I accessibilty of nucleosomal DNA

even in the absence of nucleosome movement. However
, increased accessibilty to

restrction enzymes was lost. Thus, in the context of the bulge migration 
model it

appears that hSWI/SNF creates loops accessible to some factors (DNase), but other

factors require actual movement of the octaer. Alternatively, this data might also be

consistent simply with changes in rotational positioning of the DNA helix that would

result in changes in the DNase I cleavage pattern of DNA. Surprisingly, remodeling with

recombinant ISWI actually seems to be stimulated by nicks in the DNA at the 
entr/exit

sites (Langst and Becker, 20Dla). Furthermore another study by the Kingston group has

shown differences between the remodeling intermediates for ISWI famly members

(SNF2h) and SWI2/SNF2 (BRG 1 and human SWI/SNF) family members (Fan et al.,

2003). From these experiments it has been suggested that BRG 1 and hSWI/SNF may

allow access to DNA occluded in the nucleosome without drastically mobilizing the

nucleosome, while SNF2h seems to preferentially move nucleosomes without creation of

stable remodeling intermediates.

Recently van Holde and Yager have argued that the both the reptation model and

the results of remodeling on nicked substrates can be explained in the context of the twist

defect model (van Holde and Yager, 2003). They argue that DNA writhing and bulging



III

Slippage

Writhe

Figure 4. Torsional model for nucleosome DNA-histone contact disruption.

Generation of helical torsion on nucleosomal DNA either by twisting or pushing the
DNA by a chromati remodeling enzyme results in the generatio

of a twist defect.

This twist defect is propagated along the heteroduplex which could result in either a
wave or smaller slippage of DNA moving along the surface of the histone 

octaer.

Relief of the twist defect in the forward direction could result in the movement of the
DNA relative to the octamer. 

(0) In a simple slipping model the DNA would appear to

only twist along the surface of the nucleosome resulting in conversion of nucleosome I
to nucleosome 

III with a detectable bulge being detected. A writhing mechansm

would result in conversion of nucleosome I fIrst to II then to 
III. A writhing

mechansm also coulclesult in intermediates being trapped at the nucleosome II stage.

(b) Top down view to ilustrate differences between slippage and 
writhng models.



could be the summation of a number of twist defects in a constrained system. That is, an

accumulation of twist defects could lead to the generation of a whole writhe of DNA

becoming dissociated from the nucleosome if the duplex is not allowed to freely

translocate relative to the histone octamer. They also argue that the nicked DNA

substrate experients do not rule out the possibilty of the accumulation of twist defects.

Base-stacking of the DNA could be maintained in the context of the nucleosome since the

histone octamer could stabilize the DNA duplex and any incorporated nicks. Van Holde

and Yager argue that nicks might even aid the torsional process thus leading to the

increased rate of remodeling seen in the nicked substrate experiments (Langst and

Becker, 2001 a). Branches and haiins in the DNA duplex might also be remodeled by a

twist diffusion mechanism if accumulation of twist defects leads to a writhe of DNA

becoming disassociated fiom the nucleosome surface, accommodating the bulk DNA

formation (van Holde and Yager , 2003). Alternatively, if the step-size of the remodeling

reaction is small enough, nicks and bulky DNA formations might not even be a factor.

That is, if twist defects were rapidly created and diffused, resulting in slippage of the

DNA duplex rather then permanent rotation of the helix, it could be possible that these

DNA defects might not affect the abilty to translocate DNA.

Nucleosome accessibilty and mobilzation by chromatin remodeling enzymes

One common featue of all A TP-dependent chromatin remodeling enzymes is the

abilty to enhance the accessibility of nucleosomal DNA to nucleases and/or transcription

factors. In most cases this activity of remodeling enzymes can be explained by the A TP-



dependent movement of nucleosomes in cis along a DNA fragment (Fan et al., 2003;

Langst and Becker, 2001b; Langst et al. , 1999; Logie and Peterson, 1997; Schnitzler et

al., 1998; Varga-Weisz et aI., 1997; Whtehouse et al. , 1999).

Varous chromatin remodeling enzymes, from different subfamlies, can mobilize

mononucleosomes on short stretches of DNA (146-208bp) either to the end (SWI2/SNF2

famly and recombinant ISWI) or to the center (CHRAC and dMi-2) of a DNA template

(Brehm et al., 2000; Flaus and Owen-Hughes, 2003; Guschin et aI., 2000b; Kassabov et

al., 2002; Kassabov et aI. , 2003; Whtehouse et al., 1999). Some of the ISWI famly of

remodeling enzyme seem to have a preference for shifting mononucleosomes to a central

position on the DNA template while others seem to randomize nucleosome positioning

(Fan et al., 2003; Hamche et al., 2001; Langst and Becker, 200lb). The mechanistic

reason for the different diiectionality of nucleosome movements is still unkown. Flaus

and Owen-Hughes used mononucleosome constrcts containing additional DNA

extensions flanng the nucleosome to investigate the ability of recombinant ISWI and

SWI/SNF class chromatin remodeling enzymes (ySWISNF and RSC) to mobilze

nucleosomes. They showed that mobilzation by ISWI correlated with the thermally

preferred positioning of nucleosomes on the DNA template. In contrast, the SWI/SNF

and RSC complexes were shown to move nucleosomes to the ends of the DNA fragment,

away from the thermally preferred position (Flaus and Owen-Hughes, 2003). In fact the

SWI2/SNF2 famly of complexes could shift the nucleosome off the end of the DNA

fragment leaving the dyad axis of the nucleosome only 22 base pais from one end. The

ability of SWISNF to mobilize octamers off the ends of DNA fragments may explain
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several novel featues of SWI/SNF remodeled nucleosomes. First, SWI2/SNF2

complexes have been found to generate dinucleosome strctures during remodeling of

mononucleosomes (Lorch et aI., 1998; Lorch et al., 2001; Phelan et al., 2000; Schntzler

et al., 1998). In addition a few studies have shown that chromatin remodeling enzymes

can shift nucleosomes in trans from one template to another (Lorch et al. , 1999; Phelan et

al., 2000). One possibility is that as the nucleosome is pushed off the end of a fragment

of DNA it is then able to be captured or "transferred" to either another fragment of DNA

or by another remodeled nucleosome. Figure 5 ilustrates a number of possible outcomes

for remodeling on mononucleosome templates.

Recently, a study of the Saccharomyces cerevisiae Isw2 complex has provided

evidence that nucleosome mobilzation in vivo. In this study the researchers used 

galactose inducible allele of ISW2 to study changes in chromatin strcture at the

promoters of a pair of test genes. The data suggested that the changes were unidirectional

and localized to only a few nucleosomes (Fazzio and Tsukiyama, 2003). However, since

transcriptional repression was not measured in ths study, it is stil not clear if

nucleosome mobilization directly correlates with the biological function of Isw2.

Disruption of nucleosome structure: Moving dimers around

An important and debated question in the field of chromatin remodeling is

whether the histone octaer is disrupted during chromati remodeling. Ten years ago it

was put fort that remodeling by SWI/SNF and other chromati remodeling enzymes

might involve dissociation of the H2A-H2B dimers and/or alteration of the core histone



folds (Cote et al., 1994; Peterson and Tamn, 1995). Histone-histone cross-linkng

studies have since shown that it is not absolutely necessar to disrupt nucleosome

strctue in order to allow restrction enzyme access and nucleosome mobilty (Bazett-

Jones et aI., 1999; Boyer et aI., 2000b). However, several recent results suggest that

disruption of the H2A-H2B dimer can be catalyzed by some chromatin remodeling

enzymes. Bruno and colleagues tested a number of A TP-dependent chromatin

remodeling enzymes (ySWI/SNF, RSC, dISWI, ISwla, and ISwlb) for the abilty to

exchange H2A-H2B dimers in vitro. Using fluorescently labeled histones they measured

the abilty of varous remodeling enzymes to catalyze the exchange of histones from one

chromati substrate to another in an ATP-dependent fashion. SWI/SNF, RSC and ISwlb

were able, to some degree, to transfer H2A-H2B dimers from a mononucleosome

substrate toH3-H4 tetramers (Bruno et al., 2003). Dimers could also be exchanged from

a circular nucleosomal aray, but ths reaction seems less efficient

Although it is not yet clear whether dimer exchange is relevant to the in vivo

function of most remodeling enzymes , recent studies indicate that members of the IN080

famly do indeed catalyze dimer exchange in vivo. Yeast contain two members of the

IN080 famy, In080 and SWRl. Each of these ATPases are subunits of large multi-

subunit complexes. Unlike SWISNF and ISWI complexes, both In080 and SWRI

complexes contain histones as stoichiometrc subunits (Mizuguchi et al. , 2004). Thee

groups have recently published findings that the H2AZ varant histone copurifies with

SWRI complex and that this complex is required for the proper recruitment of Htzl

(yeast H2AZ) into chromatin in vivo (Kobor et aI. , 2004; Krogan et al., 2003; Mizuguchi
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et al., 2004). Remarkably the SWRI complex is able to swap H2AZ-H2B dimers for

H2A-H2B dimers incorporated into in vitro nucleosomal arays (Mizuguchi et al., 2004).

In vivo deposition of Htzl is also SWRI complex-dependent at specific heterochromatic

regions. It has been proposed that these remodeling complexes playa role in establishing

boundares for the spreading of heterochromatin (Owen-Hughes and Bruno, 2004). In

this case the incorporation of H2AZ-H2B dimers might prevent the binding of SIR

proteins at the boundar of heterochromatin, which are involved in the maintenance of

silencing at telomeres. It is not yet clear how dimer-exchange relates to the other

outcomes of chromatin remodeling (i.e. generation of torsion, DNA translocation, etc...
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Figure 5. Generation of novel nucleosomal structures during octaer
mobilzation. This figure ilustrates some of the phenotyes of cis and trans octaer
mobilzation seen in vitro in varous chromatin remodeling assays. Nucleosomes (a)

can move on stretches on DNA resulting in translocation 
(b), which in turn can result in

the exposed end of the DNA fragment makng novel contacts with the same nucleosome
(c) or another remodeled nucleosome creatig a dinucleosome (d). Nucleosomes can

also move via octamer transfer in 
trans. The histone octamer can become disassociated

from the fIrst template and then become incorporated into a second nucleosomal 
aray

(e). 



Using structural and mutational analysis to understand the mechanism of ATP.

dependent chromatin remodeling.

As described in this chapter, the exact mechanisms of ATP-dependent chromatin

remodeling are still not well understood. The research described in the next few chapters

investigates how the S. 
cerevisiae SWISNF complex functions in chromatin remodeling

by looking at strctural and functional characteristics of the complex. This was done 

two pars: fIrst looking at the physical makeup of the complex and 
second by

investigating the role of the Swi2p ATPase domai 
in the mechanism of chromatin

remodeling.

In Chapter II the subunit stoichiometr and 
physical strcture of the yeast

SWISNF complex wil be described. Determining the strctue of these enzymes should

yield importnt information about the physical interactions between the enzyme and its

chromati substrate. In Chapter III a mutational analysis of the Swi2p ATPase domain

wil be presented. The analysis in ths chapter focuses on how A TP hydrolysis is linked

to the mechansm of remodeling. Specific mutations were used to look at how the

helicasel ATPase domain of SWIp functions in the mechanism of chromati remodeling.

In Chapter IV the role of a specific ATPase motif is fuer characterized. Motif V

appears to specifically couple ATP hydrolysis to 
chromati remodeling. In Chapter V I

wil present a model that could explain how the SWISNF complex specifically interacts

with nucleosomes to faciltate remodeling based on the research described in the previous

chapters.



CHAPTER II

STRUCTURAL ANALYSIS OF THE YEAST SWIISNF CHROMATIN

REMODELING COMPLEX

Summary

Elucidating the mechanism of A TP-
dependent chromatin remodeling is one of the

largest challenges in the 
field of gene regulatio One of the missing pieces in

understanding this process is detailed 
strctural information on the 

enzymes that catalyze

the remodeling reaction. Here, in Chapter n, 
we use a combination of subunit radio-

iodination and scanning transmission electron microscopy (STEM) to determne 
the

subunit stoichiometry and native molecular weight of yeast 
SWISNF complex. We also

solved a 3-dimensional (3D) reconstruction of yeast SWI/SNF 
derived from electron

micrographs.

This chapter was made possible due to a very 
fruitfl collaboration 

between the

Peterson lab and the Woodcock 
lab. Joan Flanagan performed the Swi2p

imunoprecipitati experiments in Figure 6 and Rachel Horowitz-
Scherer (Woodcock

Lab) was responsible for the 3D reconstrctions of SWI/SNF ilustrated in 
Figures 11-14.

The STEM mass analysis was performed at the Brookhaven National Laboratory STEM

Facility for mass determination.



The data and the methods presented in this chapter were published in both 
Nature

Structural Biology, Volume 10, no. 2 (Februar 2003) and 
Methods, volume 31, no. 

(September 2003).



Introduction

Although it is clear that SWI/SNF plays key roles in the regulation of 
eukarotic

gene expression, the mechanistic basis for how SWI/SNF uses the energy of A 

hydrolysis to alter nucleosome strctue stil remains a major unsolved mystery. In

addition little is known about the physical organization and actual interactions between

SWI/SNF and nucleosomes. Bazett-Jones and colleagues used electron microscopy (EM)

to look at SWISNF coupled to nucleosome arays. In this study SWISNF was shown to

bind to arays and release DNA loops and create multiple nucleosome disruptions on the

aray (Bazett-Jones et al., 1999). This study fuer showed that DNA associated with

individual remodeled nucleosomes decreases after A TP-dependent remodeling. Another

group has used Atomic Force Microscopy (AFM) to image SWI/SNF remodeling on

nucleosomal arays with similar results (Schnitzler et aI., 2001). Both of these studies

showed that the SWISNF complex had a much larger discernable mass than a

nucleosome core parcle.

Little likewise is known about how the eleven subunits of SWISNF (Snf2p,

Swilp, Snf5p, Swi3p, Swp82p, Swp73p, Ar7p, Ar9p, Snf6p, Swp29, and Snf11p)

interact to form this chromatin remodeling complex or how these individual subunits

contrbute to nucleosome recognition and remodeling. In ths study we were interested in

determning the physical organzation of the S. cerevisiae SWI/SNF chromatin

remodeling complex. To ths end we used tyrosine iodination of purified 
SWI/SNF

complex to determine the subunit stoichiometr. In addition we used scanning



transmission electron microscopy (STEM) and EM to obtai a 3D reconstrction of the

SWI/SNF complex. The ultimate goal of this ongoing work is to understand how the

SWISNF remodeling complex interacts with an individual nucleosome and nucleosomal

arays to faciltate remodeling.



Results

Subunit stoichiometry of yeast SWI/SNF.

It was fIrst importnt to establish the relative stoichiometry of the eleven different

SWI/SNF polypeptid Previous gel fItration analyses have estimated the native

molecular weight of both the yeast and human SWI/SNF complexes to be approximately

2 MDa (Cote et aI., 1994; Kwon et aI., 1994). These previous 
studies, however, only

yielded a rough estiate for the native molecular weight of SWI/SNF since no protein

stadards larger than 660kDa were used in the analysis. Analysis of purified yeast

SWISNF by SDS-PAGE suggests that each subunit is present at 1:1 stoichiometry, with

the exception of the Swi3p subunit which stains more intensely with both silver and

Coomassie blue: However, the summed molecular 
weights of the individual subunits of

the SWI/SNF complex amount to a little over 1 MDa, 
suggestig the possibilty that the

SWI/SNF complex contains two copies of each subunit.

As a fIrst step towards determning the stoichiometry of SWISNF subunits, we

sought to determne the copy number of the Swi2p/Snf2p ATPase 
subunit. To ths end,

we used two different epitope-tagged alleles of Swi2p to create thee different haploid

yeast strains. Two control strains contained either 
a trple HA-tagged allele (SWI2-3HA)

integrated at the 
URA3 locus, or an eighteen Myc-tagged allele (SWI2-18MYC)

integrated at the chromosomal SWI2locus. 
The test strain contained both epitope-tagged

alleles. Importantly, each epitope-
tagged allele was expressed from the normal 

SWI2



upstream regulatory region, and each epitope-tagged allele was able to complement the

phenotypes of a swi2 deletion allele, indicating that they are fully functional 
in vivo.

Whole cell extracts were prepared from each strain, and SWI/SNF was

immunoprecipitated using antibodies specific to either the MYC or HA epitopes (Figure

6). In the case of the control strains, each antibody immunoprecipitated only the

expected epitope-tagged Swi2p, confIrmg the specificity of these sera. In the test strain

that contains both tagged alleles, imunoprecipitations with the a-HA serum precipitated

only SWI/SNF complexes harboring the HA-tagged Swi2p. Likewise, the a-MYC sera

immunoprecipitated the MYC-tagged allele of Swi2p, but not the HA-tagged allele of

Swi2p. Thus, these results indicate that yeast SWISNF contains only one copy of the

Swi2p ATPase subunit.

To determe the stoichiometr of the remammg SWISNF subunits, we

performed quantitative tyrosine iodination (Kelleher and Gilmore, 1997). In this method,

pured SWISNF is denatured in SDS, and tyrosines are labeled with 
125

1 in a

chloramne T oxidation procedure.
125 Iabelled SWI/SNF complex was then

electrophoresed on SDS-P AGE, and iodine incorporation was quantified using a

PhosphorImager. Since the number of tyrosine residues is known for each SWI/SNF

subunit, ths method alows determnation of the number of copies of each SWI/SNF

subunit relative to the known, single subunit of Swi2p. In preliminary experiments,

however, we found that 
125

Iabeling of mior contamnating polypeptides in

conventionaly prepared SWI/SNF preparations occluded quantification of several

SWISNF subunits.
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Figure 6. Swi2p is present in only one copy in yeast SWI/SNF. Swi2p was

imunoprecipitated from whole cell extracts made from yeast strains CY831

(SWI2-HA3), CY832 (SWI2-MYClS) and CY889 (SWI2-Myc1 slSWI2-HA3).

Lanes are labeled I, U, and B for input (2.5%), unbound (2.5%), or bound (100%),

respectively. Imunoprecipitation experients were perfonned with either

monoclonal anti-HA or anti-Myc immune sera. The presence of Swi2p was

detected with either anti-HA or anti-Myc western blot analysis.



Design of yeast strains for high-purity SWIISNF purificatio

In order to improve the purity of SWISNF preparations, we used a tandem

--i

affinity purification (TAP) scheme (Rigaut et aI., 1999; Tasto et al., 2001). The TAP

cassette was designed easily create purifcation constrcts for both

Schizosaccharomyces pombe 
and S. cerevisiae (Longtine et aI. , 1998; Tasto et al., 2001).

The TAP-tag used in this case contains a Calodulin Binding Domain (CBD) and four

tandem copies of a Protein-A repeat separated by a TEV protease site (Figure 
7a). 

created a yeast strain harboring a 
SWI2 gene with a TAP module inserted at the C-

termnus. The SWI2- TAP allele is expressed under its endogenous promoter and this

allele fully complements the phenotyes of a swi2 deletion alele (Strain CY944, see

Appendix Table Al for genotype).

Purication of T AP-SWISNF and characterization of the complex.

Whole cell extracts were prepared from strain CY994, and SWI/SNF complex

was puried by sequential affinity purifcation on IgG-agarose and calmodulin-agarose

resins (Figue 7b). SWI/SNF purfied by the TAP protocol was 90% pure by SDS

:1-

PAGE analysis, and contained the diagnostic 11 polypeptides detectable by silver

staning (Figure 7c). The affinity purified SWI/SNF elutes from a Superose 6 gel

fitration column with an apparent molecular weight of 2 MDa (fraction 19, Figure 8) and

the ATPase and nucleosomal aray remodeling activities of this complex were also

identical to that of SWISNF purified by standard chromatography (Cote et al., 
1994).
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Figure 7. Tagging and purifcation scheme for ySWI/SNF stoichiometry
determination. (a) The TAP tag used for SWI/SNF purification consists of a C-terminal

cassette with a calmodulin binding domai and four tandem protein A repeats separated
by a TEV protease site. (b) TAP purfication scheme for ySWI/SNF. (c) Silver stan of
T AP-SWI/SNF compared with HA6HIS-SWI/SNF



Void

13 15 17

669 kOa 44 kDa

19 21 23 25 27 29

SWI2 

ARP9 '

Figure 8. Gel fItration analysis of TAP- tagged SWISNF. A 100 l sample

of SWISNF purified by the TAP protocol was fractionated on a Superose 6
HRlO120 gel filtration colum (Amersham) as described (Cote et aI. , 1994).

The elution positions of protein standards are indicated at the top of the panel.
Fractions were assayed for the presence of SWISNF using western blot

analysis and polyclonal antibodies (Santa Cruz) to the Ar9p subunit, which

also cross reacts with Swi2p.
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Theory behind direct tyrosine iodination and its use for stoichiometry determination

To determne the stoichiometry of SWI/SNF we decided to use the technique of

tyrosine iodination. Radio-labeling proteins with 
125

1 in the presence of the oxidizing

compound Chloramne-Tis a classic technique that has the advantages of being rapid,

efficient and reproducible (Hunter and Greenwood, 1962). The Chloramne- T labeling

method results in the majority of the radioisotope being incorporated into tyrosyl residues

(see Figure 9). However, minor incorporation into histidyl and sulfhydral residues can

occur (parker, 1990). Altering the amount of time and the concentration of CWoramne- T

can prevent non-specific labeling of the target proteins. For a more in depth discussion of

radio labeling of proteins see (Parker, 1990).

In the application described here , labeling of tyosine residues withn each protein

subunit provides a quantitative measurement of subunit stoichiometry (Kelleher and

Gilmore, 1997). This technique assumes that the gene sequence is available for each

subunit so that the number of tyrosines is known (and of course a subunit must contain at

least one tyrosine in order to be analyzed by this method). In order for the stoichiometry

to be accurate, the copy number of at least one subunit must also be known or else this

method only yields the relative ratios among subunits. For example in the experiments

described here, Swi2p was determned to be present in only one copy per yeast SWI/SNF

(see Figure 6).



Denature

Protein
Complex

+Na 1 1 Chloramine- T

125

COOHCOOH

Quench with Precipitate
with KAc

Figure 9. Schematic for Chloramine- T based iodination. The protein

complex of interest is denatured by heating in the presence of 0.5% SDS at
50 oc. Incubation with Chloramne- T and 

12S
I is performed at room

temperatue for one minute and quenched 
with sodium metabisulfite

(Na 0s). The reaction is then precipitated with potassium acetate (KAc),
dissolved in SDS loading buffer and subjected to SDS-P AGE gel

electrophoresis. Relative stoichiometres are determned by signal 
strength

quantificatio and calculations based on the number of tyrosines in each

polypeptide.
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Subunit stoichiometry determination of SWISNF by 

125Iodination

TAP-purified SWI/SNF was denatured in SDS and quantitatively radio-iodinated

on tyrosine residues. Labeled SWI/SNF subunits were separated by SDS-P AGE, and

iodine incorporation was quantified using a PhosphorImager and analysis performed with

compared to the Swi2p signal to determine relative stoichiometry (Figure lOb). The

Imagequant v1.2 (Figure lOa). Signal strength per tyrosine residue was determned and

results of the tyrosine iodination indicate that six of the eleven subunits are present in

single copy (Swi2p, Swilp, Snf5p, Swp73p, Ar7p, and Ar9p). The other five are

present in multiple copies (2 copies of Swi3p, Swp82p, Snf6p, and Snf11 p; 3 copies of

Swp29p). Based on this stoichiometry, SWISNF is predicted to have a calculated

molecular mass of only 1.15 MDa.

_._ -------_ ------
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Figure 10. Stoichiometry of the yeast SWI/SNF complex. 
Denatured SWI/SNF (5

pmols) was tyrosine-labeled with e I)NaI in the presence of chloramne T. 
Labeled

complex was electrophoresed on SDS-PAGE gels (10-20%) and (8%) and subjected to

analysis by densitometry using a PhosphorImager (Molecular Dynamcs, Amersham).
Signal intensity was determined per tyrosine in each 

subunit. Stoichiometr was

determned by comparng the tyrosine signal strength of each subunit to that of Swi2p,

which was determned to be present in just one copy in the complex. 

(a) 
12s labeled

SWI/SNF run on either 10-20% gradient or 8% SDS-P AGE gels compared with silver

stain of same preparation. 
(b) PhosphorImager quantificati of data shown in 

(a).

Relative signal strength reflects the raw PhosphorImager signal normalized to tyrosine
number. Copy number shown is relative to Swi2p. 

Similar results were obtained from

several independent labelings and several different gel separations.
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STEM Mass Analysis

As an independent method to determne the native molecular weight of

ySWI/SNF, we used STEM, in which the linear relationship between electron scattering

and sample mass provides accurate determnations up to 10 GDa (Wal et al., 1998).

TAP-purfied SWI/SNF was crosslined with 0. 1 % glutaaldehyde (v/v) for 16 hrs in

high salt buffer, freeze-dried on carbon films, and scattering data recorded (see Materials

and Methods for details). SWISNF complexes, which appeared as roughly circular

parcles, were selected and the mass determined after correctig for the carbon film

background. The histogram in Figure 11, which includes all parcles (N=416) from

several images, shows a unimodal distrbution with a mean of 1.14 MDa (standard error

- 20 kDa), in excellent agreement with the stoichiometric data.

l1SO

.. 100

N=416
Men 1.4 Wa

d, = 130lda
E.M. = 20 lda

50 1.(0 (0 250 3,
MasofSW NF complexes by STEM (kOa)

Figure 11. STEM mass analysis. STEM
mass analysis of individual SWISNF
complexes reveals a unimodal distrbution
with a mean of 1.14 MDa. TAP-purfied
SWISNF was crosslinked, applied to
carbon films freeze dried and imaged by
STEM. Scattering from individual
parcles were recorded, and converted to
absolute mass. (s.d. = standard deviation,
and SEM = standard error of the mean.
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3D structure of SWI-SNF in negative stain

Although STEM provides accurate mass values, the images are generally less

informative about strctue, probably because of interactions with the carbon substrate

and collapse during freeze-drying (Wall et al., 1998). To determne the 3D strcture of

the complex, we imaged TAP-puried SWISNF in neutral sodium phosphotungstate.

The raw images indicated an oblate shape -25 nm by -12 nm, with several prominent

lobes (Figure 12a). This is quite similar to the multi-lobed appearance of human

SWI/SNF imaged by atomic force microscopy (Schnitzler et aI., 2001). Single parcle

reconstrction (Ludtke et aI., 1999) with thee separate input data sets of - 000 to

10,000 images, resulted in 3D reconstrctions with excellent agreement between class

averages and their corresponding angular projections from the final reconstrction

(Figure 12b, c, d). The thee independent reconstrctions were calculated with data from

different isolations of SWISNF, each separately prepared for EM. The starng models

were generated by reference-free classification, thereby avoiding the types of bias that

can result from selection of external staring models. Very similar 3D shapes and

volumes were derived from all thee data sets; pai-wise comparsons indicating

congruent strctues to resolution ranging from 3.5 nm to 0.5 nm (see Materials and

Methods section). A view of one reconstrcted volume is shown in Figure 12e. The data

have been low-pass fItered to a resolution of 3.0nm, and the surface is rendered to

enclose a volume corresponding to a 1. 14 MDa protein. For comparison, a representation

of the nucleosome core paricle (Luger et al., 1997) at the same magnification and

resolution is shown (Figure 12.1. Analysis of the 3D reconstrctions revealed distinct



mass centers which may provide clues to the locations of the SWI/SNF polypeptides.

-- -

Figure 13d shows their positions within the complex, and Figue l3c is an identical

front' view in which surface lobes originatig from individual centers are labeled.

Centers 1-6 form a ring of lobes that create the ri of a large conical depression or
pocket -15 nm in diameter, and -5 nm in depth. Other lobes appear to originate from

centers 7 and 9-12 and are more clearly seen from other views of the complex (Figure

13a, b, e, and j). Mass center 8, which is located beneath the depression is unique in

having no associated surface lobe. A prelinary analysis of SWI-SNF complexed with

200 bp of DNA did not reveal a unique DNA binding site (not shown), suggesting that a

single SWI-SNF parcle can bind DNA on multiple sites (Bazett-Jones et aI., 1999).

However, the distrbution of additional mass in the same region as the ring of lobes

labeled 1-6 in the DNA-containing reconstrctions did suggest that the depression may be

a possible DNA binding area.



Figure 12. Three dimensional structure of the yeast SWISNF complex. (a)

Raw images. (b) Examples of class averages identified by EMAN (Ludtke et aI.
1999). (c) Projections of the fmal 3D strctue at the same angles as the class
averages show an excellent match between the two. (d) Rendered surface of 3D
strcture with the cone-shaped depression at top, fitered to 3.0 nm resolution. (e)

Projection of SWISNF to compare to the rendered surace of the nucleosome core
parcle if 

(Luger et al., 1997), the SWI/SNF substrate, fitered to the same
resolution. The scale bars in (d) and if represent 10 nm.
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Figure 13. Principal features of the SWISNF 3D 
reconstruction. 

The views of

the SWI/SNF complexe shown in 
(a) and (b) are 90 rotations about the horizontal

plane of (c) and (d), the ' front' views, with the surface lobes origination from the

individual centers labeled. In 
(d), the semi-transparent areas show the 12 centers of

mass (numbered arbitrarly). Note that there is no corresponding lobe in 
(c) for mass

center 8. In the other views, the surface 
lobes arsing from each mass center are

labeled. (e) and if 
are 90 rotations about the vertcal plane of 

(c) and (d). The rim

of the cone-shaped depression is fonned from masses 1-
6, with 8 near the base of the

depressio . The scale bar represents 10 
nm.
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Discussion

This work provides the fIrst comprehensive characterization of the mass,

polypeptide stoichiometry, and 3D strcture of a low abundance, large multi-subunit

chromati remodeling complex, opening the way to identifying the active site of the

SWI/SNF ATPase, the locations of the different polypeptides withn the 3D volume, and

the nucleosome interaction site(s).

The Swi2p immunoprecipitations and tyrosine iodination presented here show the

fIrst characterization of the subunit stoichiometr of a large chromatin remodeling

enzyme. Half of the subunits in the complex exist in only a single copy including the

cataytc subunit Swi2p, Swil p, Swp73p, the Actin related subunits (Ar7p and Ar9p)

and Snf5p. The other five subunits (Swi3p, Swp82p, Snf6p, Swp29p, and Snf11 p) appear

to be represented in multiple copies.

What does the stoichiometry results reveal about SWI/SNF function? There is

only limited information available regarding the function of most of the subunits in

ySWI/SNF, with the exception of Swi2p. We expect that a few of the subunits play

specific roles in remodeling outside of the actual disruption of DNA-histone interactions.

Other work has shown that the Ar7p and Ar9p subunits of both ySWI/SNF and RSC

complex form a heterodimer in both of the complexes and that whie ths heterodimer 

not necessar for the mechanism of chromatin remodeling it might playa possible role in

contacting DNA-bending proteins (Szerlong et al., 2003). The stoichiometry of the
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Ar7p and Ar9p confIrms stoichiometry of the heterodimer and suggests that only one

- -

heterodimer is present in ySWI/SNF.

Two of the subunits of SWI/SNF (Snf5p and Swil p) have been shown to interact

with transcription activators in S. cerevisiae (Neely et al., 2002; Prochasson et al. , 2003).

It was also shown that while deletion of either of these subunits shows minor in vivo

phenotye, deletion of both together results in a strong SWI/SNF phenotype (Prochasson

et al. , 2003). SNF5, as mentioned in Chapter has also been linked to cancer and plays

an important par in early development in mammals (Roberts and Orki, 2004). In our

study Snf5p and Swil p are each present in one copy suggesting that SWI/SNF has an

asymmetrc interaction with the nucleosomal substrate when targeted by transcriptional

activators.

Swi3p is believed to playa role as a protein scaffold for the rest of the complex.

In previous unpublished work by Joan Flanagan it was shown that Swi3p appears to bind

numerous SWI/SNF subunits and that disruption of Swi3p affects SWISNF integrity

(unpublished results). The stoichiometr data for Swi3p shows it to be present in two

copies in SWI/SNF. Swi3p also contains SANT domains which suggest a possible role

for SWI3 in stabilzing SWI/SNF-nucleosome interactions. This point wil be expanded

on furter below.

Determning how A TP-dependent chromatin remodeling complexes interact with

nucleosome(s) is an important part of understanding how chromati remodeling occurs.

Recently another group has solved a negative-stain based 3D EM-reconstrction of RSC

complex, a SWISNF related ATP-dependent chromatin remodeling complex. This
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complex, like SWI/SNF, appears to have a cavity of the right dimensions to

accommodate a nucleosome core paricle (Asturias et al. , 2002). The RSC complex EM-

reconstrction appears much flatter then the SWI/SNF strctue. The actual shape of the

strcture is more ak to a C-clamp with a potential nucleosome binding site in the

middle. The RSC complex appears to have a simlar surace to the projections of our

SWI/SNF reconstrction displayed in Figure 13 c and d. One of the major differences

between these two complexes is that the RSC complex is smaller relative to a nucleosome

than is the SWI/SNF complex. This is interesting due to the fact that the two complexes

are of similar molecular mass (1.2 MDa for RSC and 1.14 MDa for SWISNF. Ths

discrepancy might be explained by the fact that the SWISNF reconstrction is modeled

to have a volume of 1.14 MDa calculated from the STEM results. The RSC 3D-

reconstrction, on the other hand, didn t use a STEM-determned mass in order to correct

for the strctue volume. As we showed in this study, gel filtration has caveats for the

determnation of accurate masses for large flattened complexes.

Since our initial 3D-EM characterization of ySWI/SNF we have contiued to

refine our strcture. Using cryo-EM reconstrctions we have refined the reconstruction

to a point where we can discern a more defined cavity in the complex (Figure 14). This

cavity has the correct dimensions to accommodate a nucleosome core parcle and

mathematical modeling performed by Rachel Horowitz-Scherer suggests that there is

only a 30 of freedom of rotation for the nucleosome in this pocket (see upper right panel

\ )

in Figure 14). The histone H3 tail from the nucleosome core parcle protrdes from the

cavity. It is also interesting to note that there are projections to each side of the major



cavity that might correspond to specific subunits of SWI/SNF which could stabilze the

nucleosome to allow remodeling to occur. These 
projections could make attractive

candidates for the location of the Swi3p subunit as the SAN domains would be

positioned to interact with the histone termnal tails. 
I wil readdress ths model and its

implications in the Perspectives chapter, Chapter V.

Ongoing studies with the Woodcock lab are also underway to map specific

subunits withn the complex. Weare curently tring to map the Swi2p subunit using a

gold bead coupled to calodulin. The Swi2p subunit contains a small calodulin

binding cassette (from the TAP tagging cassette) which 
wil bind a gold bead-calodulin

conjugate, alowing us to localize Swi2p within the complex. Ultimately, we would lie

to visualize SWI/SNF bound to nucleosomal substrates. These studies are also currently

underway. It wil be interesting to see how SWISNF interacts with the nucleosome.

Interactions between the SWISNF complex and the nucleosome core particle might give

evidence for how histone tail domains interact with the enzyme complex and might

indicate the possible location of subunits that interact with histone components (i.e.

Swi3p ).

""i
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Figure 14. Cryo-EM structure of the TAP tagged yeast SWI/SNF complex. A
preliminary -25 A reconstrction of cryogenically prepared SWI/SNF. A more
promient cleft exists in this strctue than in the negatively stained reconstrction
(see Figures 12 and 13). The nucleosome core parcle (Luger et al. , 1997) is
rendered to the same resolution as the SWI/SNF reconstrction. The nucleosome
core parcle can only rotate 30 within ths cleft as ilustrated in the upper right
panel. There are also two lobes which appear to either side of the large cleft which
could interact with the flat sides of the nucleosome. The location of the histone
H3 N-terminus , dyad and DNA entr/exit sites on the nucleosome are labeled.



Materials and Methods

Tagged SWI2 strains and immunoprecipitations. Whole cell extracts were made from

isogenic W303 yeast strains contaning either an HA-tagged SWI2 at the URA3 locus

(CY831), an 18-Myc tagged SWI2 at the endogenous locus (CY832) or by combining

both the HA and 18-Myc tagged SWI2 epitopes (CY889). Imunoprecipitations were

conducted as previously reported (Cote et al., 1994) and binding was analyzed by SDS-

PAGE and Western analysis with anti-HA (HA.l1; Babco) or anti-Myc (9ElO; Santa

Cruz) antisera. Western plots were visualized using ECL reagents (Lumiglo; KPL).

SWI/SNF purification. SWI was C-terminally tagged in frame at the endogenous locus

with a CBD-proteinA TAP tag as previously described (Tasto et al. , 2001). The priers

used for tagging are as follows: SWI2F2a (CACAGATGAAGCGGACTCGAGCA

TGACAGAAGCGAGTGTACG) and SWIRla (CGTATAAACGAATAAGTACTTA

TATTGCTTTAGGAAGGTAGA). Cultures were grown in YEP with 2% (w/v) glucose

until OD6oo of 2.0. Cells were harvested and lysed by mechanical bead lysis in E buffer

(20mM Hepes pH 7.4, 350mM NaCI, 10% glycerol (v/v), and 0. 1 % (v/v) Tween and

protease inhbitors). Lysates were clarfied at 40,000 rpm at 4 oC for 60 minutes (Ti45

Beckman rotor). Cleared lysates were incubated with IgG-Agarose (Sigma) eluted by

TEV protease (Invitrogen) cleavage and incubated with Calmodulin Resin (Stratagene) in

E buffer plus 2 mM CaCh, Purified complex was eluted from Calmodulin Resin in E
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.i\ buffer plus 10 ro EGT A. Samples were then concentrated and dialyzed against E

buffer with 50 J.M ZnCh. Purity was verified by silver-staining.

Stoichiometr determination of SWI/SNF. Purified TAP-SWI/SNF was denatured by

the addition of SDS and labeled with 
1ZsI in the presence of chloramne T for 2

minutes (Kelleher and Gilmore, 1997). Labeling was quenched by the addition of

Naz Os. Labeled material was precipitated with potassium acetate on ice for 30 minutes

and diluted in protein sample buffer (See Figure 9). 
Labeled SWISNF was loaded on

SDS-P AGE gels and ran at constat voltage. After electrophoresis, gels were fixed, and

washed against 10% acetic acid (v/v) and 40% methanol (v/v) multiple times over 20

hours. Gels were dried, then imaged and densitometr performed using a

PhosphorImager (Molecular Dynamcs).

Gel filtration of SWI/SNF. 
One hundred microliters of T AP-SWI/SNF was fractionated

over a Superose 6 HRlO120 gel filtration column (Arersham) as previously described

(Cote et al. , 1994). E buffer was run over the column at a rate 0. 1 rnmin and 0.5 rn

fractions were collected. Fractions were precipitated with TCA and dissolved in 2x

sample buffer. Western blot analysis was used to identify fractions containing SWI/SNF

subunits.

Scanning Transmission Electron Microscopy (STEM). For accurate STEM mass

measurements, samples must be freed of salts and other buffer components. This was
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achieved by crosslinkng TAP purified SWISNF at -100 nM in buffer E by direct

addition of 0. 1 % (v/v) glutaraldehyde for 4h followed by dialysis agaist 50 mM NaCl,

10 mM HEPES pH 7.4, 0.2 mM EDTA, or by dialyzing overnght against E buffer

containing 0. 1 % (v/v) glutaraldehyde without glycerol, zinc or Tween, then against the

lower salt 50 mM NaCI buffer. Both methods resulted in stable SWISNF complexes

with no significant difference in mean mass. Freeze dried specimens were prepared by

the wet fim method (Wall and Hainfeld, 1986; Wall et aI. , 1998) and imaged at the

Brookhaven National Laboratory STEM Facility. Two!!l of 100 !!g/ml tobacco mosaic

virs (TMV), an internal mass stadard, were absorbed for 1 minute onto freshly

prepared carbon fims supported by a holey fim on a titanum grd. After washing the

grd four times, 3 !!l of fixed SWI/SNF solution was applied by injection into the droplet

on the grid. The grd was allowed to adsorb for 1 minute, then rinsed 4 times with

sample buffer, followed by 100 mM amonium acetate (-5 ties) and 20 

amonium acetate (-5 times) to remove non-volatile salts. After the final wash, the grd

was blotted between two pieces of fiter paper, leaving a retained layer less than 1 !!m

thick, and immediately plunged into liquid nitrogen slush. The frozen samples were

transferred to an ion-pumped chamber and freeze dried overnight by gradually warming

to - C. They were then transferred under vacuum to the STEM. Specimens were

imaged in the STEM at 40 kV with a probe focused to 0.25 nm. Focusing was at a high

magnification near the area of interest and the data acquired on the fIrst scan. The

average dose of electrons for the single scan to record the data was less than 1000 e /nm

assuring that the mass loss from radiation damage was no more than 2% at the -150



specimen temperature (Wall et al., 1998). Digita images were recorded from large and

small angle detectors for unstained specimens. In images used for mass measurements,

the pixels were separated by 1 nm giving a scan width of 0.512 !lm. The masses of

selected parcles were determned using the program PCMass23 (Hainfeld et al., 1982)

(written by J. Wall for PCs). This program sums the number of scattered electrons over a

defined area bounding the parcle, subtracts a background obtained from areas not

containing parcles, and multiplies the result by a standard STEM calibration constat

(115 Da/electron with Inm pixels) to determine the mass. Furter data analysis and

histogram generation employed PSI Plot (polysoftware International, Pearl River, NY).

Electron Microscopy and 3D image reconstruction. Crosslinked SWISNF was

adsorbed to glow-discharge carbon films, negatively stained with 1.5% sodium

phosphotungstate (w/v) pH 7.2 containing 0.015% glucose (w/v) (Woodcock et al.,

1991), and observed with a Tecnai 12 electron microscope (PEl Inc) at 80 kV. Digital

images were recorded at 800 nm defocus with a cooled 2048x2048 CCD camera (TVIPS

GMBH, Munich, Germany) and a pixel size of 6.32A. Data sets for reconstrction

contained 5,000 to 10,000 images free of astigmatism and drift. Examnation of the data

sets showed that there was no preferential orientation of SWI/SNF on the carbon fIm.

Single parcle reconstrction was cared out with the EMAN program (Ludtke et

aI., 1999) (ncmi.bcm.tmc.edu/-steve/EMAN). First, an initial model was generated by

reference -free classification. This staing model was then utilzed to begin an iterative

refinement of the classification. Convergence was judged by the absence of change in
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the Fourier Shell Correlation (FSC) of subsequent iterations (Ludtke et aI. , 1999). The

resolution of each reconstrction was estimated using the FSC of two semi-independent

reconstrctions derived by dividing the data in the final class averages in half (Ludtke et

al., 1999). FSC was also used to evaluate the similarty of the thee different

reconstrctions, using the 0.5 value as the limit of congruence. Volumes were

constrained to a mass of 1. 14 MDa, assuming a protein density of 1.35 g/ml (0.81 Da/ A 3

and Gaussian low-pass fitered to the 0.5 FSC theshold. Data processing and

visualization with A VS (A VS Inc, Waltham, MA) and VIS5D (vis5d.sourceforge.net)

was performed on a multiprocessor Silcon Graphics Octane (SGI Inc. , Mountain View,

CA).
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CHAPTER III

CHARACTERIZING HOW A TP HYROLYSIS LEADS TO

CHROMATIN REMODELING BY SWIISNF

Summary

In this chapter I wil show the kinetic characterization of a number of SWI/SNF'

ATPase defective complexes using a varety of ATPase and chromatin remodeling

assays. I propose that motif V of the ATPase domain of SWISNF might be involved

mechanism of A TP-dependent chromatin remodeling. Little is known about the role 

specific motifs in Domain II of the SF2 ATPase domains especially for proteins like

Swi2p that share homology to helicases but do not display the typical unwinding

activities of these enzymes. In this study I use a number of mutations, with known 

vivo phenotypes, to elucidate the role of specific motis in the Swi2p ATPase domain.

Interestingly, the data shown here suggest an abilty of motif V amno acid substitutions

to uncouple ATPase activity from the generation of superhelical torsion. Further

characterization of this motif and its role in chromatin remodeling wil be presented in

Chapter IV.

Ths work was aided by initial characterizations of swi2 mutants performed in vivo

by Emily Richmond, a former student in the Peterson lab. Endonuclease VII used in the

cruciform extrsion experiments was provided as a 
gift by Tom Owen-Hughes of the



University of Dundee in Dundee, Scotland. Eric Merithew rendered the PcrA strcture in

Figure 25b using PyMOL based on the PDB coordinates.
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Introduction

A major goal of the chromatin remodeling field is to understand the mechanism of

coupling A TP hydrolysis to nucleosome disruption. In this chapter I wil present a study

of specific mutations in the ATPase domain of yeast SWI2/SNF2 and how these

mutations affect the process of chromatin remodeling. The data shown here also suggests

that specific mutations within a highly conserved motif of the SWI2/SNF2 famly of

ATPase domains uncouple ATPase activity from the process of chromatin remodeling.

The hallmark of the Swi2p famly of chromatin remodeling enzymes is that they

all contain a highly conserved ATPase domain related to the SF2 family of DNA and

RNA helicases (Eisen et al. , 1995). These ATPases can act as a single subunit (hBrgl for

example) or in concert with a varable number of other subunits to remodel chromatin.

The yeast SWISNF complex is one of the better understood of the large ( 1 MDa) multi-

subunit remodeling complexes. It contains 11 subunits, and genetic studies have shown

that it is required for expression of a subset of inducible genes in S. cerevisiae as well as

gene expression in mitosis (Fry and Peterson, 2001). Numerous studies have been

conducted to understand the mechanisms by which SWISNF and its homologs remodel

chromatin. As was described in Chapter I, ySWI/SNF and homologs have been found to

affect chromatin in numerous ways. These enzymes are able to mobilize nucleosomes,

promote accessibility to restrction enzyme sites occluded by nucleosomes, transfer

histone octamers from one chromatin aray to another aray, and create superhelical

torsion on DNA , either alone or in the context of chromatin (Peterson, 2002a). While
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the exact mechansm(s) that underlie theses activities are not well understood
, it is

believed that these activities are all linked in the process of chromatin remodeling.

The 1708 amno acid yeast SWI2 protein contains a highly conserved ATPase

domain fold similar to known helicases in SFI and SF2 famlies (Figure 15), 
as well as

two AT hook motifs and a C-terminal bromo domai (Figure 16). The ATPase domain

of Swi2p contains a large inserton between the conserved N-terminal subdomain I

(motifs I-il) and C-terminal subdomain n (motifs IV-VI) of the SF2 famly helicase

domain (Figure 16). This inserton is specific to the SWI2/SNF2 famy of ATPases and
is highly conserved. I wil refer to this as the Swi2p subdomain in the remainder of ths
text.

More biochemical information exists for the N-terminal subdomain motifs (ATP

binding and hydrolysis, motifs I-il) of helicases and ATPases than does for the C-

terminal subdomain motifs (possible role in energy transduction
, motis IV-VI). Ths is

due in par to the highly conserved nature of the N-terminal subdomain for it is found in

other ATPases that are not helicases such as the recombination protein RecA 
(Carthers

and McKay, 2002). Both subdomais I and n contan a 
repetitive alpha-beta fold that is

tightly conserved in all helicases with solved strctures to date. Crystal strctures of SF2

helicases like PcrA , NS3 and eIF4a (for schematics of these enzymes see Figure 15) have

revealed some possible insight on the function of individual motifs (Carthers and

McKay, 2002).

How is A TP used by chromatin remodeling enzymes to generate nucleosome

disruption and mobility? Mutational analyses of helicases and other A TPases show that
;4',
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certain residues, mostly in subdomain I, are critical for A TP hydrolysis. A highly

conserved lysine (K798, in Swi2p) in the P-Ioop (motif I) is critical for A TP y-phosphate

binding. Disruption of ths lysine always results in a catalytcally dead enzyme.

Furtermore, strctural information from a number of SFI and SF2 helicases has shown a

strong conservation of the roles for most of the motifs in subdomain I (motis I, la, and II

where motif III is an exception) which all play roles in the A TP hydrolysis cycle

(Carthers and McKay, 2002). The strctural information for the motifs in subdomain II

(motifs IV -VI) shows less conservation and it has been proposed that these motifs might

play specifc roles for each individual subfamly of enzymes.

In ths chapter I wil show the results of biochemical characterizations of varous

amno acid substitutions within the Swi2p ATPase domain as well as how these

mutations affect aspects of. chromatin remodeling. I also show evidence that motif V

within the ATPase domain plays a critical role in the generation of DNA superhelical

torsion, which wil be the focus of Chapter IV.
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Figure 15. Schematic of helicases with known crystal structures. 
This figure

ilustrates the similarty between helicases in the SFI and SF2 superfamlies. The

top right panel contains a generalized schematic of a helicase with the conserved

motifs labeled. Alpha helices and beta sheets are numbered from the N-terminus to

terminus. The canonical alpha-beta fold is ilustrated in yellow. Enzyme specific

insertons withn subdomains I and II are colored red. Blue and green secondar

strctures represent alpha helices and beta sheets that fold into enzyme specific sub-
domains (Carthers and McKay, 2002)
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Figure 16. Schematic of the Swi2p protein from S. cerevisiae. This caroon

depicts the key featues of yeast Swi2p. The ATPase domain (orange with the
conserved ATPase/helicase domains in black) of Swi2p is enlarged to ilustrate
the location of the amno acid alterations used to study the function of ths
ATPase in this chapter. Roman numerals correspond to the ATPase motis and
Domais I and II represent the conserved alpha-beta repeat domains ilustrated
in Figure 15. The Swi2p-specific region of the ATPase domain is depicted in
dark orange to distinguish it from subdomains I and II. Along with the ATPase
domain Swi2p also contains two AT-hook regions (dark blue) and a Bromo
domain (red) in the C-terminus of the protein. The N-termnus of the protein
contains numerous regions of low complexity (grey) and two predicted coiled-
coil domains (green).
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Results

Swi2p amino acid alteration containing SWISNF complex constructs and

purification.

Swi2p is the founding member of a subfamly of enzymes within the SF2

helicase-like famly based on the high homology shared within the ATPase domain (See

Chapter I: Introduction and Figure 17). Previously, a mutational analysis of the ATPase

domain had been performed to investigate the 
in vivo phenotypes of a number of these

highly conserved residues (Richmond and Peterson, 1996). Point mutation were made

that altered highly conserved residues in specific positions in a number of these ATPase

domains as well as other residues in the SWI2/SNF-specific sub-domain, and the affect

on expression of a number of SWISNF-dependent genes was investigated. A summar

of the in vivo phenotypes of these mutants from this study can be found in Table 1. 

this study I used a number of these point mutations to investigate the role of specific

ATPase motifs in the mechanism of chromatin remodeling 
in vitro (See Figures 16, 17

and Table 1).

The TAP tagging cassette (see Chapter II) was used for the purification of the

individual complexes. Because several mutant strais were genetically impaied, the

scheme used to purfy these complexes was slightly different than the procedure used to

purify the wild-tye SWI/SNF complexes described previously (Smith et al. , 2003; Smith

and Peterson, 2003). Previously constrcted ATPase mutant-HA6HIS strains were used

to generate the swi TAP constrcts (Richmond and Peterson, 1996). These mutant



MATa strains were crossed with a MATa strain contaiing a wild type copy of SWI2 to

=-i

create diploids (see Yeast Strain list, Table Al in appendix for genotype of yeast strains).

A TAP tag constrct was inserted to replace the HA6HIS tag on the mutant alele 

SWI2 in these diploids (Figure 18). The WT copy of SWI2 in these diploid strains

allowed easier purfication from mutant strains by rescuing the slow growth phenotype of

these mutats. Complexes were purfied using the same TAP strategy as previously

reported (Smith et al., 2003; Smith and Peterson, 2003). Previously, SWI/SNF

complexes (SWI2-HA6HIS) harboring amno acid alterations were tested for complex

integrty by subjecting whole celllysates to gel filtration chromatography and analyzing

subunit composition by western blot analysis (Richmond and Peterson, 1996). Complex

integrty of the TAP-tagged complexes was confired by both western blot analysis and

silver staining (Figure 19). The results conflfed that the purfied complexes were

intact, including the i\STRGGLG motif V deleted Swi2p variant.
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Figure 17. Sequence alignent of chromatin remodeling A TPases. The
strong conservation of the ATPase domains of a number of catalytic subunits

from different chromatin remodeling complexes are shown here. The black bars

represent the regions containng the SF2 helicase motifs. The predicted
secondar strcture is represented above the sequence. Residues outlined in
green (or red in case of 8STRGGLG) are the residues that are mutated and
used in ths study. (Sc) Saccharomyces cerevisiae, (Hs) Homo sapiens, (Dm)

Drosophila melanogaster, (Mm) Mus Musculus. SPCC830.01c is the Swi2p

homolog from Schizosaccharomyces pombe.
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Figure 18. Strategy for the purication of ATPase-defective SWISNF
complexes. Diploid strains were created to aid expression and purification of the
SWI/SNF complexes containing amno acid substitutions in the Swi2p ATPase
domain. Homologous recombination was used to specifically TAP-tag the mutant
swi2 allele in the diploids (see Materials and Methods). This strategy was used to
purify all of the amno acid substitution containing complexes.
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Figure 19. Silver Stain of SWISNF complexes containing Swi2p amio
acid substitutions. Ths panel represents the results of a selection of the
complexes that were subjected to silver stan. The individual complexes were
subjected to SDS-P AGE on 10% polyacrylamde gels. The gels were then

silver stained using stadard protocols. This panel is representative of repeated

results seen from separate preparations of the individual complexes.
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ATPase activity of the various Swi2p amino acid substitution-containing complexes.

I first investigated the effect of substitutions withn ATPase motifs on ATPase

activity and kinetics of pured SWISNF complexes. Swi2p, as mentioned in the

Introduction chapter, is a DNA-stimulated ATPase. The dsDNA-stimulated ATPase

activity of the varous altered SWI/SNF complexes is ilustrated in Figure 20. The

substitution , K798A is in motif the Walker A motif (or P-Ioop), which is the y-

phosphate binding loop of the A TP binding pocket. As expected, a K798A substitution

within motif I that houses a highly conserved P-Ioop lysine ablates ATPase activity

altogether. Alterations in motif Ia (P824A) and VI (R1986K) also have very severe

effects on ATPase activity (13% and -3% of WT, respectively). Both of these residues

appear to be crucial for the formation of the A TP binding pocket. These results are

consistent with studies of other helicases and A TPases as predicted by crystal strctures

contacts between ATP and these motifs (Carthers and McKay, 2002).

Motif il is the only major motif found in the ATPase hydrolysis subdomain

(subdomain I) of the helicase region that does not have a well defined role in general

other than being involved in the ATPase reaction (Hall and Matson, 1999). Both motif

il substitutions (P932A and W935A) have an intermediate effect on the ATPase activity

60% and -80% of WT respectively, Figure 20) of the varant SWI/SNF complexes.

The substitutions H1061A and K1088A are located in the SWI2-famly specific

sub-domai of SWI2/SNF2 ATPases (see Figure 16) and both of these mutations have

very severe effects on ATPase activity (12% ofWT activity in H1061A and no detectable



activity in the case of KI088A, see Figure 20). Ths region of Swi2p might be importat

for nucleosome and/or DNA substrate binding. Insertions of enzyme-specific

subdomains into the canonical beta-alpha repeat pattern of helicases has been noted for a

number of different enzymes including PcrA and HCV (see Figure 15) These non-

conserved regions are hypothesized to confer distinct substrate specificity to SF2

members (Carthers and McKay, 2002).

The remainder of the examned amno acid substitutions occurs in the less well

characterized subdomai II of SF2 enzymes. A motif VI alteration, Rl196K, has an

extreme effect on ATPase activity resulting in only -3% ATPase activity as compared to

WT enzyme (See Figure 20). Substitutions withn moti VI (especially for the conserved

arginines) have been found to have ATP binding defects in other helicases, and these

residues are believed to be involved in receiving the phosphate group during the helicase

domain conformation change during ATPase hydrolysis reaction. The reception of the

phosphate is believed to be parally responsible for the transduction of A TP hydrolysis

information in SF2 helicases (Carthers and McKay, 2002; Hall and Matson, 1999).

Motif V (R1164A and i1STRAGGLG) alterations have either intermediate

(R1164A -60% ofWT) or no effect on DNA-stimulated ATPase activity (i1STRAGGLG

100% WT) respectively (Figure 20). Of all the motifs found in SF2 helicase/ATPases,

motif V is the least understood. It appears from the little data gleaned from mutational

studies and crystal data that the role of this motif is not well conserved between enzymes;

it may be that this motis function is specific to individual classes of SF2 enzymes. 

f'::-
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SWI/SNF this motif might be involved in transducing A TP hydrolysis into the

mechanism of chromatin remodeling

110

100 --,

70 - --

60 ,

-,--

30 - ---

20 

-------- --.----- --------.----.-- --.- --,--,----,--,

Figure 20. Relative ATPase activity of Swi2p amino acid substitution
containing' SWISNF complexes. N anomolar quantities of mutant
complexes were tested for ATPase activity and compared to WT SWI/SNF to
determe relative ATPase activity. This graph represents numerous trals
from 2-4 preparations of each of the varous SWISNF complexes. All
experients were conducted in the presence of dsDNA and A TP in excess to
enzyme. The only exception was the WT(-) DNA sample, which was
performed in the absence of DNA, to ilustrate the DNA stimulation of WT
SWI/SNF. Error bars represent the standard deviation for the total trals for
each individual complex.



Kinetic analysis of SWI/SNF complexes containing ATPase domain amino acid

substitutions.

Following initial ATPase characterization, I conducted a more thorough

kinetic analysis of each SWISNF varant. The kinetic parameters for A TP hydrolysis,

Km and Kcat, were determined by non-linear fittig to the Michaelis-Menten equation for a

range of ATP concentrations (2 !-M - 750 !-M) in the presence of DNA cofactor (Figure

21). These results are summarzed in Table 1. The two substitutions, K798A (Motif I)

and K1088A (SWI2 specific region) were not analyzed since they do not hydrolyze ATP.

Interestingly, most of the mutations result in kinetic defects that correspond well with

their in vivo phenotypes (see Table 1). Two exceptions are i\STRGGLG and R1164A

which do not seem to have as severe a kinetic defect as would be expected from previous

in vivo results (Richmond and Peterson, 1996). These two alterations display wild type

ATPase activity, but fai to remodel in vivo.

Effects on both A TP binding and hydrolysis were observed in this analysis:

P824A, H1061A, Rl164A , and Rl196K substitutions have moderate effects on Km (up to

5 - 2.5 fold higher). The turnover rate (Kcat) effects were a little more severe especially

in P824A (4x lower), HI061A (- lOx lower) and Rl196K (300-400x lower).
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Figure 21. A TPase kietics for Swi2p ATPase-defective complexes. Kietic
parameters were determined for TAP tagged WT SWI/SNF and the varous
SWISNF complexes harboring Swi2p ATPase amno acid substitutions. Intial
velocities were determined from multiple time courses over time ranges giving
linear hydrolysis of A TP at each individual A TP concentration. Velocities were
plotted as a factor of ATP concentration and fitted to the Michaelis-Menten
equation (see Equation 1 in Materials and Methods). The error bars represent the
standard deviation of at least 3 separate trals for each A TP concentration.
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Table 1: SWISNF com lex kietic arameters
P824A P932A W935A

152:t 18 406:t 76 113:t13 172:t 20

Vrn M/min) 1.90:t . 0.46:t . 1.18 :t . 1.41 :t .

kcat (min 632 :t 23 154:t 14 394 :t 13 471 :t 17

kcat/Km (M- S - 8x10 3x10 8x10 5 x10

r value 996 994 996 996

In vivo heno

+++ +++

HI061A R1164A i1STRAGGLG R1196K
262 :t 46 332 :t 35 125 :t 6 234 :t 45

Vrn M/min) 0.24 :t . 00 :t . 1.81 :t . 01 :t .001

kcat (min 79 :t 5 669 :t 27 604 :t 8 2 :t 0.5

kcat/Km (M- S - OEx103 1.7xl0 1x10 1.4x10

r value 993 999 998 992

In vivo heno
in vivo phenotye adapted and representative of data from (Richmond and Peterson, 1996)

Neither K798A or K1088A contaning complexes hydrolyze A TP and were no scored for ATPase

kietic arameters

Characterization of chromatin remodeling activities of ATPase variant SWISNF

complexes in the Sal I-coupled remodeling assay.

In light of the ATPase results, chromatin remodeling was assayed using a Sal I

chromati remodeling assay previously developed in our laboratory (Logie and Peterson,

1997). A 2.3 kb fragment of DNA contaning 11 tandem 208bp 5S rDNA repeats (208-

11) was used to create in vitro assembled nucleosomal arays with purified chicken

histones by salt dialyses. These templates can be used to generate rotationally positioned

nucleosomal arays (Caruthers et al., 1999).. The central nucleosome of the l1mer aray

contams a unique Sal I restrction site that in the absence of chromatin remodeling is

inaccessible to the restrction enzyme. When these arays are incubated with both

SWI/SNF and A TP, th central nucleosome is remodeled allowing accessibility to the Sal

. \,

:i;
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I restrction site (See Figure 22a). The kinetics of remodeling was measured by the rate of

Sal I digestion.

The varous SWI/SNF complexes were incubated with equimolar concentrations

of nucleosomal aray to test for their abilty to remodel chromatin (See Figure 22b, c).

Three substitutions, K798A, HI061A, and KI088A, resulted in loss of remodeling. The

Rl196K complex has very little remodeling activity as compared to WT SWISNF (-

4%); although this residual activity is reproducible. The P824A, P932A and W935A

complexes all had intermediate activities that correlate well with their ATPase activity.

Interestingly, the llSTRAGGLG complex had approximately a two fold decrease in

remodeling as compared to WT, despite its near wild-type hydrolysis of A TP (Figure

22c). This paral uncoupling of ATP hydrolysis and chromatin remodeling suggested a

more thorough characterization of the llSTRGGLG complex could be informative.

The llSTRGGLG complex was subjected to a multiple round Sal I chromatin

remodeling assay to determine if the amino acid substitution impaired new substrate

recognition (Lgie and Peterson, 1997). Every hour fresh 208-11 template was added to

the standard Sal I remodeling reaction to see if llSTRAGGLG complex had a defect in

the abilty to engage fresh substrate (Figure 23). The rate of Sal I cleavage remained

constat after each addition of substrate indicating no change in the enzyme s ability to

recognize new substrate. Takg into account the llSTRAGGLG complex s decrease in

Sal I accessibilty, there appears to be no additional defect in the abilty of the

llSTRGGLG complex to accept new substrate or release from previously remodeled

chromati.
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, I Figure 22. Sal I coupled chromatin remodeling results for Swi2p ATPase
defective SWI/SNF complexes. The ability of SWI/SNF complexes containing
Swi2p ATPase amino acid substitutions to remodel nucleosomal arays was assayed
by Sal I accessibilty. (a) The chromatin substrate used in these experients consists
of a linear aray of 11 tandem 208 bp 5S rDNA sequences from sea urchin which are
radiolabeled on one end. The central repeat contains a Sal I restrction enzyme site
which is inaccessible when incorporated into a nucleosome. In the presence of a
remodeling enzyme and A TP this unique site becomes accessible and chromatin
remodeling is scored by measurng the percentage of Sal I restrction fragments
generated. Deproteinated samples were electrophoresis on 1 % agarose gels and
quantified for digestion. c) Remodeling results of various ATPase-altered
SWI/SNF complexes compared to WT SWISNF and no enzyme contaning reactions.
(b) 2 nM SWISNF complex (WT or varant complex) was incubated with 1 nM 208-
11 aray (a P-end labeled), 1 mM ATP, and 150 U Sal I restrction enzyme. (c) InM
SWISNF complex (WT or varant complex) was incubated with 1 nM 208-11 aray

P-end labeled), 1 mM ATP, 150 U Sal I restrction enzyme in these reactions.
Note: 100% denotes substrate uncleaved durng SalI preincubation (see Materials and
Methods). Timepoints were taken over a 120-minute period. These data are
representative of at least thee trals.
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Figure 23. The ASTRAGGLG complex functions catalytically to remodel
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reaction without enzyme was run as a baseline (0).

I .



1( ,

Amino acid substitutions in ATPase domain motif V affect the abilty of the

SWISNF enzyme to generate superhelical torsion on DNA substrates.

Another hallmark of the Swip2 subfamly of A TPases is the abilty to generate

superhelical torsion in DNA (Havas et al., 2000; Jaskelioff et al. , 2003). One curent

model for how SWISNF remodels chromatin involves the creation of torsion as a

potential mechanism to elicit movement of DNA relative to histones on the surface of the

nucleosome. I was therefore interested in investigating the effects the varous AtPase

j I

domain alterations would have in the generation of torsion. In order to measure torsion

generation, a cruciform extrusion assay was employed (Havas et al., 2000). For these

experiments, a linear 3.8 kb piece of DNA contaiing an inverted (ATb4 was used as a

remodeling template. When this fragment of DNA is subjected to a reduction of

superhelicity the (ATb4 repeat is extrded as a cruciform. In the assay the DNA fragment

is incubated with chromatin remodeling enzyme and T4 Endonuclease VII. If the

complex creates a reduction in superhelicity a cruciform wil be extrded and cleaved 

Endonuclease vn into two smaller DNA fragments (See Figure 24a). As expected,

complexes crippled for ATPase activity have no ability to create torsion in DNA (Figure

24b). Likewise, complexes that have intermediate ATPase defects also have

corresponding defects in torsion generation (Figure 24b). Surprisingly both Rl164A and

STRGGLG (in motif V) complexes are completely defective in their ability to

generate torsion on DNA templates.
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Figure 24. Torsion generation by motif III and motif V alterations. (a) The
ability to generate DNA superhelical torsion was tested on a linearzed (A val digested)
pXG540 template which contains an inverted (ATh4 repeat. In the presence of an
enzyme (SWISNF) that can create superhelical torsion the cruciform resolving
nuclease T4 Endonuclease VII wil cleave the cruciform created by extrsion of the
(ATh4 repeat. (b) Reactions containing 8 ng of Aval-linearzed pXG540, 1.5 nM
SWISNF (WT or varant), 3 ro ATP, and 0. 15 ug/mL Endo VII were incubated for
4 hours. Samples were taen at the denoted ties, quenched, deproteinated and run on
4% native PAGE gels. 



Discussion

In this chapter I examined how Swi2p ATPase domain amno acid substitutions

disrupt ATPase and chromatin remodeling activities. Swi2p substitutions were identiied

that disrupt A TP binding, cataysis and generation of superhelical torsion on DNA.

Effects of Swi2p ATPase substitutions on the activity of SWI/SNF.

Substitutions in sub domain I of the ATPase domain of Swi2p yielded results

comparable to those seen in other SF2 A TPases/helicases. The best characterized motif

in al ATPases (as well as GTPases) is motif I (P-Ioop or Waler A box), which contans

an invarant lysine residue critical for proper ATP y-phosphate binding. Substitution of

this conserved lysine with an alanine results in the predicted loss of A TP hydrolysis.

This mutation has been used to show that chromatin remodeling of SWISNF is A TP

dependent (Cote et al., 1994). Simiarly, substitutions in both motifs Ia (P824A) and III

(P932A and W935A) appear to agree with established or theorized roles for these motifs.

Motif Ia has been implicated in interacting with oligonucleotide substrate as seen

in the crystal strctues of the helicases HCV and PcrA (Carthers and McKay, 2002).

Disruption of motif Ia in Swi2p leads to a 3-4 fold decrease in both the affinity of

SWI/SNF for ATP (Km increased) and the turnover rate (Kcat decreased). This phenotype

is consistent with an alteration that would affect DNA binding in a DNA-stimulated

enzyme. Yeast SWI/SNF ATPase activity in the absence of DNA has a 30 fold reduction

to that of DNA stiulated, (Figure 20) and (Cote et aI., 1994). Thus, a defect in



interaction with DNA could lead to the decreased activity seen with the motif Ia

alteration

Motif il shows significant divergence in both length and amno acid sequence

among helicase subfamlies. This motif is involved in a number of different specific

interactions among SF2 member enzymes. Crysta strctues of PcrA and Rep bound to

varous nucleotide analogs and oligonucleotide substrates point to a role for this motif in

recognition of the gama phosphate of A TP in the binding cleft. In PcrA a glutamne

residue in motif III has been proposed to act as a sensor for the presence of the y-

phosphate of ATP (Carthers and McKay, 2002). This sensor motif might trgger

allosteric changes in the enzyme depending on the state of the bound nucleotide. 
In this

study, both of the motif 
III alterations (P932A and W935A) have a 25-33% decrease in

ATP tuover without a significant effect on ATP affinity. These results from Swi2p

appear to correlate with the sensor model derived from PcrA and Rep.

The sub domain I amno acid substitutions have defects in chromatin remodeling

that correlate with their defects in A TP binding and hydrolysis. 
The accumulated data on

subdomai I of SFI and SF2 helicases points to a major function in the A TP hydrolysis

cycle (Carthers and McKay, 2002). The data from ths study reinforces this role.

The Swip specifc spacer domain plays an important role in the ATPase activity of

the enzyme.

In all SFI and SF2 enzymes except chromatin remodeling members, the

subdomains I and II are only separated by a short flexible loop that keep the two



subdomains in close proximty to each other (see schematic in Figure 15). The yeast

initiation factor eIF4a, for example, has only 11 residues between the two subdomains

(Figure 25a) and (Carthers et al. , 2000). In contrast, the ATPase subdomains I and II in

Swi2p are separated by a significant (:;100 amno acid) spacer region containing

numerous potential alpha helices (see Figure 25c). This region is highly conserved in the

SWI2/SNF2 family of chromati remodeling enzymes suggesting that it could be a

chromati remodeling enzyme specific subdomain within the ATPase domain.

The alterations in ths Swi2p spacer region , HI061A and K1088A , were found to

have severe effects in their abilty to hydrolyze ATP. The KI088A substitution results in

no discernable ATP hydrolysis while H1061A had a lOx lower ATP turover rate and a

1.5x fold decrease in ATP affinity. In addition, both of these substitutions led to

SWI/SNF complexes that were' inactive in chromatin remodeling as well.

Without strctural information on ths region of Swi2p, it is impossible to know

what role these residues play in chromatin remodeling. This domain might playa similar

role in Swi2p that the two extension domains Ib and lI play in PcrA (see Figure 15, blue

and green domains in PcrA strcture). In PcrA two sub domains (Ib and lI) that loop out

of sub domains I and II appear to coordinate the oligonucleotide substrate (see Figure

25b) and mutations in these PcrA specific sub domains have significant effects on PcrA

helicase activity (Soultanas et al., 2000). Both of the Swi2p mutations in the Swi2-

specific subdomain had severe effects on ATPase activity and thus chromatin

remodeling. Thus, it could be possible that this spacer region in Swi2p acts to coordinate



! I substrate (DNA or chromati) into a specific position in order to facilitate chromatin

remodeling. This hypothesis wil be expanded upon in Chapter V , perspectives.

Further evidence for a role of motif VI in coordinating the y.phosphate of A TP

In some helicases, motif VI appears to playa role in interactig with the 

"/-

phosphate of ATP. In the crystal strctures of a number ofhelicases (including PcrA and

NS3), motif VI is located down near the ATP binding cleft (see Figure 
37c in chapter

VI). The key residues in this motif are a trplet of highly conserved arginine residues.

Substitution of one of these residues in Swi2p, Rl196K, results in severe defects in A TP

hydrolysis and chromatin remodeling. While A TP hydrolysis is very low in ths

substitution it does display limited chromatin remodeling activity (- 3% of WT). Motif

VI appears to play' ail importnt role in connecting sub domain I to subdomain II though

the A TP binding pocket. This connection could behave as a pivot, allowing large

conformational changes in the enzyme. This model is supported by the differences in the

conformation of PcrA crystal strctures solved with Adenosine 5' (P,

,,-

imido )trphosphate

(AMPPNP) versus a sulfate ion (mimicking a free phosphate) (Velanar et al. , 1999).

This complex containing the R1196K substitution might be very useful in the futue to

slow chromatin remodeling and more closely examne the mechanics of this rather rapid

enzymatic event since there is a hundred fold reduction in A TP utilization.

;*/'



951

.. 

V'"""u " V'''''''''

-. -............... - ...............

1I- fJCJ:JJ.. :rM,
KSFDEWFNTPFANTGGQDKIELSEEETLLVI RRLHKVLRPFLLRRLKKDVEKELPD 1005

r.. 1f.:A"

:..

-r..V.. tJl 'lIL :'I'

100 6 KVEKVVCKMSALQQ IMY QQMLKYRRLFI GDQNNKKMGLRG FNNQ IMQLKK I CNH 1061
rttt- J..

Figure 25. Swi2p specifc ATPase linker region. The linker region of Swi2p
is significantly larger than those found in SFI and SF2 helicases. (a) Crysta
strctue of yeast intitation factor eIF4a. The linker region between subdomain I
and II of the ATPase is only 11 residues long (figure adapted from
(Khorasanizadeh, 2004). (b) Strctue of PcrA coupled to dsDNA oligo and
AMPNP. PcrA contans two specifc subdomains Ib and lI which loop out 
subdomain I and II respectively. These alpha helical regions fold together to
form a scaffold for dsDNA contacts leading outside of the canonical ATPase
domain pocket. (c) The linker region between subdomain I and II in Swi2p is
over 100 amno acids in length. This region contains six predicted alpha helices
and two predicted beta sheets. Residue H1061 is one of the residues investigated
in this study. Panel was rendered by Eric Merithew using PyMOL.



Motif V couples ATPase activity to chromatin remodeling activity.

In contrast to other motifs in SFI and SF2 helicases, the role of motif V is not

well understood. Like motif this motif shows considerable varabilty in length and

composition as well as a hypothesized role in different helicase-like proteins. This

domain in Swi2p is predicted to be in a large loop which contains the amo acid

sequence STRAGGLG (see Figure 16). So far, no general role has been attrbuted to this

motif in helicases (Carthers and McKay, 2002). One featue of note for ths motif is that

in a number of helicases this loop makes contacts with both A TP and the oligonucleotide.

In this study I showed that while A TP binding and turnover remains mostly

unaffected by amno acid substitutions in this motif, generation of torsion is severely

affected and generation of enzyme accessibility on nucleosomal arays is parially

impaied. Both the il vivo phenotype and torsion generation effects suggest that motif V

might play an importnt role in the process of ATP-dependent chromati remodeling. In

the next chapter I wil present a more thorough study that suggests a mechanistic role for

motif V in chromatin remodeling.
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Materials and Methods

Purification of SWIISNF complexes. Diploid S. cerevisiae strains containing both wild

type and various SWI2/SNF2- T AP alleles were generated for expression and purification

of SWI/SNF complexes. WT SWI2- T AP generation and purfication was performed as

previously described (Smith et al. , 2003; Smith and Peterson, 2003). Mutant SWI2/SNF2

genes were tagged in diploids cells to ease generation of constrcts and purfication of

protein. Haploid strains (see yeast strain list, Table Al in Appendix) containing varous

swi2-HA6HIS alleles (MATa swi2) were crossed with strain CY297 (MATa SWI2) to

create diploids. Primer sets were generated to replace the C-terminal swi2-HA6His tag

with a Tandem 4xProteinA-CBD tag (puig et al., 2001). Primers used to produce these

mutat tagged alleles were: tF-swi2XHO (ACTTCAAGCGTGGCTGAATCTTTCAC

AGATGAAGCGGACCGGATCCCCGGGTTAATTAAJ and tR-SWI2H6H (GTGATG

A TGGCTCGAAGCGT AA TCTGGAACA TCA T A TGGGT AGCTCGAGAATTCGAG C

GTTAAACJ. Purification of TAP tagged SWI/SNF strains were purfied using

established protocols (Smith et aI. , 2003; Smith and Peterson, 2003). Concentrations of

SWI/SNF complexes were determned by comparative western blots to WT SWI/SNF

using antibodies (Santa Cruz) to varous SWI/SNF subunits and by silver staining.

ATPase assay and ATP hydrolysis kinetics. All ATPase assays were performed using

standard conditions as previously described (20 mM Tris pH 8. , 5 mM MgCh, 0.

mg/ml BSA, 5% glycerol, and 0.2 mM DTT) (Logie and Peterson, 1999). DNA (208-
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template containing plasmid) or nucleosomal arays, was added to a fmal concentration

of 13nM. Reactions were conducted at 30 oc. Rates of hydrolysis were measured by

spotting tie points on PEl-cellulose and resolving released y-Iabeled phosphate from

ATP in 750 ro potassium phosphate pH 3. Analysis of hydrolysis rates was

performed using a Molecular Dynamcs PhosphorImager and Imagequant v1.2

(Amersham). For kinetic experients, velocities were determned over time ranges that

gave linear ATP hydrolysis rates for ATP concentrations ((S) 2 I-M - 1 ro) for the

varous complexes. Kinetic parameters Km, V ma, and Kcat were determined from non-

linear fitting to the Michaelis-Menten equation (Equation 1) using KaleidaGraph v3.

(Synergy Software), where v is velocity, Km is the Michaelis constant, (SJ is substrate

concentration, and Vma is maximum reaction velocity.

(S) 
v = (Equatwn 

(S)

Sal I coupled chromatin remodeling assays. Sal I-coupled chromatin remodeling assays

were performed in Ix 5-50 buffer (10 ro Tris pH 8.0, 50 ro NaCI, 5 ro MgCh, 

ro DTT, and 0. 1 mg/ml BSA) as previously described (Logie and Peterson, 1999).

Reactions containing reaction buffer, 1 ro ATP, and 1 nM a P-end labeled 208-

aray, and 150 U of Sal I restrction enzyme were pre-incubated at 30 oC for 20 minutes

prior to addition of SWI/SNF enzymes in order to cleave substrate with an accessible Sal

I restrction site. The remodeling reactions were started by the addition of the SWI/SNF

Jl,
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enzyme and the incubation continued at 30 oc. Time points were taken at varous

intervals, quenched and deproteinated by vortexing briefly in 10 !!L of TE pH 8.0 and 20

!!L of phenol/chloroform. For multiple round experiments additional 208-11 aray was

added to a final concentration of 2 nM at each hour, and time courses were allowed to

proceed for four hours.

Cruciform formation assays. DNA cruciform formation assays were performed in 30 !!L

reactions contaiing Ix 5-50 remodeling buffer, 3 mM ATP, 0. 15 Ilg/ml Endonuclease

VII, 8 ng AvaI-linearzed (l dCTP end labeled pXG540 DNA (CP894), and 1.5 nM

SWI/SNF complex. Rates of cruciform extrsion were measured over 240 minutes at 25

c. 3!!L aliquots, at the indicated times, were taken and quenched by the addition of 2x

Stop buffer (10 mM Tris pH 8.0, 0.6% SDS, 40 mM EDT A, 5% glycerol, and 0. 1 mg/ml

Proteinase K). Quenched reactions were incubated at 50 o for 20 minutes to

deproteinate samples. Samples were then resolved on 4% lxTBE native acrylamde gels

and imaged using a Molecular Dynamcs PhosphorImager. Percentage of pXG540

fragment cut was determned by using Imagequant vl.2 (Amersham).
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CHAPTER IV

A MOTIF WITHIN THE SWI2P ATPASE DOMAIN CRITICAL FOR

COUPLING ATP HYROLYSIS TO CHROMATIN REMODELING

Summary

Determing how ATP hydrolysis is coupled to the mechanism of ATP-dependent

chromatin remodeling is an important par of determining how chromatin remodeling

works. In this chapter I wil present evidence suggesting that motif V of the Swi2p

ATPase domain plays a critical role in the chromatin remodeling reaction. Amino acid

substitutions in motif V lead to defects in the generation of superhelical torsion. The data

also suggests that these same motif V defects have adverse effects on chromatin

remodeling as ilustrated by the inabilty of motif V substitutions R1164A and

STRGGLG to generate nucleosome mobility and accessibilty to restriction enzyme

sites within a nucleosome. This suggests that proper generation of torsion is importt

for chromatin remodeling. Interestingly, mutations withn motif V of human BRGl, a

SWI2 homolog is commonly found in human cancer cell lines and carcinomas. The 

vitro effects of amo acid substitutions described here could also explain why mutations

in and around motif V have been found in both colon cancer cell lines and lung

carcmomas.

The data presented in this chapter are being prepared for publication. The plasmid

pGEMZ-Iowerstra'fd- 601 (CPI024) was received from Blaine Barolomew. I would
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like to acknowledge Pedro Medina for sharng unpublished data on the Brgl mutations

found in patient lung carcinomas. I also would like to than Eric Merithew for

generating the PyMOL strctures in Figure 37.
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Introduction

In the last chapter (Chapter III), I investigated how specific alterations in Swi2p

ATPase domain affected ATPase and chromati remodeling activities. Of parcular

significant were alterations in motif V that did not alter ATPase kietics but did lead to

defects in nucleosomal aray remodeling and the generation of superhelical torsion. In

ths chapter I explore in more detal how alterations in motif V disrupt chromatin

remodeling.

Motif V is the least understood of the helicase motifs in the SFI or SF2 famlies.

Both of these subfamies contan significantly different consensus sequences and varing

lengths in this specific motif (Carthers and McKay, 2002; Hall and Matson, 1999). In

Swi2p-like enzymes the amo acid sequence STRGGLG appears to exist in a loop

between two alpha helices by secondar strctue prediction (see Figure 17 in chapter

III).

From the strctures of the varous helicases solved to date the relative position of

motif V appears to be highly conserved yet the biochemical role(s) of this motif appears

be varable in different helicase enzymes (Hall and Matson, 1999). In NS3 and UvrB,

residues of motif V interact with ssDNA (Hsu et al., 1995; Moolenaar et al., 1994; Yao et

aI., 1997). In contrast, alterations within motif V of the CI RNA helicase exhibit no

oligonucleotide binding defect but have reduced ATPase and helicase activities

(Fernandez et al., 1997). PcrA motif V, is an example of a thd case in which contacts

between AMPNP mediated though the motif V residue E571 and the residue H565
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interacts with DNA (Velanar et al., 1999). The differences between the enzymes have

led to the hypothesis that motif V might be involved in coupling ATPase activity to the

specific function of the individual enzyme.

A popular current model for the mechanism of SWI/SNF on chromatin involves

the generation of torsion to produce twist defects in DNA with the alleviation of these

twist defects resulting in either slippage of DNA around the histone octaer or formation

of transient bulges of DNA writhing around the nucleosome (see Figure 5 in

Introduction). In the past it has been shown that the SWISNF complex generates

superhelical torsion on both naked DNA and chromatin substrates (Havas et al., 2000).

SWISNF, unlike ISWI and Mi-2 family chromatin remodeling enzymes, needs only

DNA in order to have robust ATPase activity and torsion generation. This has led to the

possibilty that the SWISNF complex may not sense chromatin strcture though Swi2p,

but rather acts directly on DNA in the context of nucleosomes.

In this chapter I wil expand on the phenotypes seen for the motif V altered

f -

complexes characterized in Chapter m. The data presented here suggests that motif V

plays an important par in coupling the hydrolysis of A TP to the mechanism of chromatin

remodeling. The evidence also suggests a model where residues in ths loop are

responsible for recognizing intact nucleosome core paricles in chromatin and that it is

this substrate and not DNA alone that is the proper template for SWISNF in vivo.
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Results

The swi2 STRAGGLG mutant results in severe growth phenotypes on carbon

sources.

Prior to beginnig mechanstic studies of motif V, I decided to COnflf the

severity of the swi2 STRAGGLG mutant in vivo. Initially our laboratory had

characterized the phenotype of swi2 ATPase mutants at a number of inducible genes. I

was interested in determiing if the motif V mutants had a traditional swt phenotype.

One of the halmarks of snf mutants is a defect in growt on varous alternative carbon

sources (see Introduction, Chapter I). Strais harboring the mutations swi2 STRAGGLG

(CY519) and swi2R1164A (CY458) were tested for the ability to grow on different

carbon sources (Figure 26). The carbon source growth phenotyes of the motif V

mutants were compared to those of isogenic strains containing either a WT copy of SWI2

(CY396), a deletion of the SWI2 gene (CY120) and the catalytically dead mutant

swi2K798A (CY397). The swi2 STRAGGLG mutant had a severe growth phenotype at

least as strong as or stronger than swi2K798A as seen on al tested carbon sources. On

normal YEPD (glucose) plates the swi2 STRAGGLG mutat had a more severe

phenotye than the swi2K798A strain. The swi2Rl164A mutant only displayed a minor

growth phenotype on ethanol/glycerol media. The growth phenotype for the

swi2 STRAGGLG mutant further ilustrates the severity of this defect for SWI/SNF

function in vivo as the mutant displays a null phenotype on all alternative carbon sources



107

YEP + Glucose
YEP + Galactose

Swi2b Swi2!i

Swi2K798A
Swi2K798A

Swi2!iSTRAGGLG
Swi2!iSTRAGGLG

Swi2R1164A
Swi2R1164A

Ethanol/glycerol
YEP + Raffnose

Swi2!i
Swi2!i

Swi2K798A
Swi2K798A

Swi2!iSTRAGGLG
Swi2!iSTRAGGLG

Swi2R1164A
Swi2R1164A

Figure 26. Carbon source growth phenotypes of SWI2-
ATPase motif V mutants.

Strains contaning WT SWI2 (CY396), swi2 (CY120), swi2K798A (CY397),

swi2R1164A (CY458), and swi2 STRAGGLG (CY519) were plated on varous carbon

sources and tested for the ability to grow. Each spot represents a 5 fold serial dilution
starng with -5000 cells.

L- .

11/
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Generation of superhelical torsion on chromatin substrates by Swi2p-motif V

alterations indicate direct interactions between the Swi2p ATPase domain and

chromatin.

To furter analyze the role of motif V in the activity of A TP-dependent chromatin

remodeling, nucleosomal arays were constrcted with the cruciform extrsion template

in order to measure the ability of the motif V altered complexes to generate torsion on

chromatin. In the data presented in the previous chapter, I showed that alterations in motif

V elimnate torsion generation on naked DNA. Comparsons between naked DNA and

chromatin templates have performed in the past and it was found that ISWI and Mi-

famly members need the presence of nucleosomes on DNA template in order to produce

superhelical torsion (Havas et al., 2000). In contrast SWISNF generated superhelical

torsion of either nucleosomes or naked DNA. To study the effect moti V alterations had

on torsion generation, templates were generated to make both saturated (1 nucleosome

per 200 bp DNA) and partially satuated (1 nucleosome per 400 bp DNA) nucleosome

- '

templates.

When cruciform extrsion experients were conducted with the

chromatin templates several strng results were seen (Figure 27). First, WT SWI/SNF

displayed an increase in the abilty to generate superhelical torsion on chromati (3-4 fold

increase) as compared to torsion generation on the DNA template alone. Second, on the

chromatin substrate the R1164A complex only exhibited a two fold reduction in the

abilty to generate superhelical torsion as compared to WT SWI/SNF complex (see

Figure 27a and b). Firially, the STRAGGLG complex showed a greater than ten fold
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defect in its ability to create torsion as compared to the WT SWI/SNF 
complex (Figure

27b). Thus assembly of DNA into chromatin creates a better substrate for SWI/SNF, and

furermore chromatin parialy suppresses the defects due to alterations in motif V.

Notably, the STRAGGLG complex remains highly defective for torsion generation,

consistent with the strong 
swt phenotye of the mutat in vivo (Table 1). The

comparable torsion generation between sub-saturated and saturated arays 
suggests that

high order chromatin strcture is not playing a role in generation of superhelical torsion

in this assay (compare black symbols with grey symbols in Figure 

27b).

I also tested whether nucleosome assembly might suppress the defective ATPase

activity of the Rl164A complex. As mentioned earlier, in the presence of DNA, Rl164A

has an ATPase activity -60% of that of WT. In the presence of nucleosomal DNA, the

ATPase activity of the Rl164A complex is increased such that it is more comparable to

the ATPase activity of the WT SWI/SNF complex (Figure 28). Ths is the fIrst tie that

significant nucleosomal stimulation has been seen in the case of ySWI/SNF. 
These data,

in combination with the superhelical torsion assays suggests that the residues 
withn

motif V of the ATPase domain might playa role in orienting the moti V loop to allow

proper oligonucleotide contacts in the context of nucleosomes.

;06'./'

'ii
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Figure 27. Motif V alterations affect torsion generatio on chromatin substrates.

SWISNF complexes were assayed for their ability to create torsion on cruciform

templates. The AvaI-pXG540 linear dsDNA fragment was used as a template to

generate nucleosomal arays by salt dialysis. R1164A (circles), STRAGGLG

(trangles), and WT SWI/SNF (squares) were tested on saturated (R1.0, 1 nucleosome

per 200 bp of DNA) and half satuated templates (RO.5, 1 nucleosome per 400 bp of

DNA). 1.5 nM SWI/SNF was incubated with 8 ng chromatin crucifonn template or 8
ng DNA template, 0. 15 ug/ml Endonuclease vn and 3 mM ATP. Time course was

run for 2 hrs with samples taken as indicated, quenched, deproteinated and run on 4%
native TBE PAGE gels. 

(a) Raw data. (b) Graphical representatio of data from

previous panel showing percentage template uncut. Black filled symbols are the

results for satuated templates and grey symbols represent half-saturated templates.
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Figure 28. Nucleosomal substrates rescue the R1164A ATPase defect.
ATPase activity of 4 nM WT or Swi2Rl164A SWI/SNF complexes tested with
13 nM dsDNA or 13 nM nucleosomal DNA and 100 uM ATP in a standard
ATPase reaction buffer. Hydrolysis rates were determined over a 15 minute
time period.

Generation of torsion by SWI/SNF is sensitive to the presence of histone N-terminal

tails.

The data shows that nucleosome assembly suppresses the defects in ATPase and

torsion generation by the R1164A complex, suggesting that motif V may sense

nucleosome strctu . I decided to investigate which features of the nucleosome are

important. Next, I tested whether the histone N-terminal tails functionally interact with
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motif V. In order to look at tail-dependent effects on ATPase motif, torsion assay

templates were generated with naked DNA, WT recombinant 
(Xenopus laevis) octamers,

tailess recombinant octamers (lacking all histone N-termal domains), or recombinant

(H3-H4)2 tetramers (see Materials and Methods for substrate assembly and evaluation).

These alternate chromatin substrates were then used to look at the generation of

torsion with both WT SWISNF and the R1164A complexes (Figure 29). WT SWI/SNF

was able to create superhelical torsion on al substrates (Figure 29b), although the

generation of torsion was much lower on both the tailless and tetramer templates (Figure

29c dark grey squares and grey squares with dashed lines respectively) compared to

intact octamer templates (Figure 29c black squares). Interestingly, the results of torsion

generation by the WT SWISNF on tailless octamers and tetramers were very similar to

levels of torsion generatioh on naked DNA.

The R1164A complex was able to generate little superhelical torsion on the

tailless template (dark grey circles) as compare to intact octamers (black circles). 

contrast to WT SWI/SNF, the R1164A complex was very ineffective at generation of

torsion on the tetramer substrate (circles with dashed line), and this defect was simlar to

that seen with naked DNA. These data suggest that the histone tails and/or proper

nucleosome strcture might playa role in coordinating motif V action on the chromatin

substrate.

...
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Figure 29. Defections in the generation of torsion by disruption of motif V is
further exacerbated on nucleosomal arrays lacking histone N termini. The rates

of torsion generation by WT and R1164A complexes were assayed on chromatin
templates containing intact octamers (black symbols), tailless octamers (dark grey

symbols), 
or (H3-H4)2 tetramers (light gray symbols). 

5 nM SWISNF was

incubated with 8 ng chromatin cruciform template or 8 ng DNA template, 0. 15 ug/ml

Endonuclease VII and 3 mM ATP. (a) Schematic of torsion assay. (b) Raw data from

talless octamer and tetramer torsion assay experiments. (c) Graphical representation

of data from previous panel. WT SWI/SNF data is represented as squares and
Rll64A is represented by circles.
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Mobilzation of nucleosomes requires an intact moti 

Since disrupting motif V has a major effect on the generation of torsion, I wanted

to next see if this translated into a defect in mobilzation of nucleosomes on DNA. To

test ths hypothesis, I decided to use a mononucleosome template contaiing a very

strong nucleosome positioning sequence to create a centrally positioned nucleosome.

The mononucleosome used contans a 340 bp fragment of DNA with a "601" positioning

element located in the center of the DNA fragment with nearly 100 bp of DNA to either

side (Figure 30a). The 601 element was originally isolated in a screen to select for DNA

sequences that bind nucleosomes very tightly (Lowar and Widom, 1998). As a result

ths sequence has much higher affinity for nucleosomes than the 5S rDNA sequences

(Anderson and Widom, 2000). This positioning element also differs from the 5S repeat

used in the Sal I assay-in that the 601 element has only one major nucleosome

translational positioning frame (Lowar and Widom, 1998). The 5S repeat has one

translational position that is occupied 60% of the time as well as two other translational

positioning sequences that are occupied the remaining 40% (Dong et al., 1990). Simlar

highly positioned nucleosomes have been used for mobilty shift experiments by other

groups (Flaus and Owen-Hughes, 2003).

Motif V altered SWI/SNF complexes were tested for mobility defects on centrally

positioned mononucleosomes on native PAGE gels. Mononucleosomes for mobilty

studies were generated using the chicken oligonucleosome transfer method (Owen-

Hughes et al., 1999). Prior to incubation with SWI/SNF, :;95% of the mononucleosomes

migrate as a single species on native PAGE gels (Figure 
30b, zero minute time point).

(,;.
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WT SWI/SNF complex is able to shift ths positioned nucleosome to a set of faster

migrating species and after 90 minutes some DNA that co-migrates with free DNA is

generated (see the key in Figure 30b for theoretical nucleosome positions). The

STRGGLG complex, in stak contrast, is almost completely defective for mobilization

on the nucleosome, simlar to its torsion phenotype (Figure 30b). The Rl164A complex

has similar activity to WT SWISNF for the mobilzation of mononucleosomes on ths

template except for the generation of the fastest migrating species and an accumulation of

species of nucleosomes that migrates slightly slower then the initial positioned

nucleosome. This defect by motif V altered complexes in the mobilization of

mononucleosomes correlates well with their defects in generating torsion.

Next mobilty was confIrmed by Exonuclease III mapping of nucleosome

positions on the mononucleosome. There is a possibilty that the apparent mobility on

the native PAGE gels reflects mononucleosomes that have created stable remodeled

products containig small bulges or loops of DNA. These products would migrate fastest

then the initial mononucleosome as the linker DNA would be spooled into the

nucleosome at the entry/exit sites. To confIrm whether the remodeled mononucleosomes

were sliding or generating alterative nucleosomes I created mononucleosomes that could

only be digested with Exo il from the Eco RI end of the mononucleosome. Exo III

digestion can be used map the boundares of nucleosomes on a fragment of DNA with 5'

overhang (Hamche et al., 1999; Li and Wrange, 1993; Li and Wrange, 1995; Li and

Wrange, 1997). I used Exo-III to map the nucleosome boundar relative to the Eco RI

restrction site on the DNA template (see Figure 31a). As the Rl164A defect is more

, ., .

1:"-
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subtle compared to WT SWISNF, only the STRGGLG complex was used in this

assay. After incubation of the mononucleosomes with the different SWISNF complexes

the reactions were treated with Exo ill for 10 miutes (times in figure reflect total

remodeling time plus Exo ill treatment). In the absence of chromatin remodeling (no

enzyme, lane 3 Figure 31 b) a clear Exo ill stop can be seen representing a nucleosome

with a boundar near the N sp I site. Wild-tye SWI/SNF is able to disrupt this

nucleosome boundar in less then 10 miutes (lane 4). The WT SWISNF complex also

generates a repetitive digestion pattern different from the DNA digest or the no enzyme

reaction. Disruption of the nucleosome boundar is not seen with STRAGGLG

SWISNF complex until 100 minutes (lane 18, Figure 31b). These data suggest that the

nucleosomes are sliding on the 601 DNA fragment as the nucleosome boundar 

disrupted upon remodeling by WT SWI/SNF. If novel bulge containg nucleosomes

were generated by SWISNF then the doublet corresponding to the nucleosome boundary

would migrate at a higher base pai position and the repetitive digestion pattern in the

WT reactions would not be seen. Thus, it appears that SWI/SNF is disrupting

nucleosomes by-a sliding mechanism.

;I.-
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Figure 31. Exo III mapping of nucleosome positions after SWISNF remodeling.
Nucleosome boundary positions were mapped with Exonuclease il to confIrm
mobilty of the nucleosomes on the 601 substrate. (a) Schematic of the 601 sequence
used for Exo III mapping. (b) 3 nM Eco RI fragments labeled at the Pst I site were
incubated with 3 nM SWI/SNF complex (WT or STRGGLG), and 3 mM ATP in
Ix 5-50 buffer. At (t- lO) minutes, 5 U of Exo il was added to the reaction and
digestion was allowed to occur for 10 minutes. Exo III digestion was stopped by the
addition of 2x Stop buffer. After a 20 minute deproteination, samples were boiled in
fOffamde loading buffer and loaded onto DNA sequencing gels. Lanes marked

(WT) correspond to WT SWISNF, (-) represent reactions without remodeling enzyme
and ( ) denotes S1RAGGLG complex. Ten and 100 bp ladders are indicated on the
gel.

, '
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SWISNF is not able to create restriction enzyme accessibilty on mononucleosomes

in the absence of torsion generation.

One hallmark of SWI/SNF action is the A TP-dependent increase in restrction

enzyme accessibility of mononucleosomes. In principle, ths accessibilty could result

from either movement of nucleosomes or changes in histone-DNA contacts resulting in

loops or bulges of DNA formng on the surface of the nucleosome. In the latter model,

SWI/SNF may facilitate restrction enzyme accessibility movement of the nucleosome

(Peterson, 2002b). As the small deletion (L)STRAGGLG) within motif V cripples

nucleosome mobilization, I sought to test whether there was also a defect in remodeling

assayed by restrction enzyme accessibility. The "601" DNA positioning fragment used

for the mobilty experiments was used for these assays as well since it has a number of

convenient .restrction enzyme sites that are useful for monitoring chromatin remodeling

in a similar manner as the Sal I remodeling assay (see Figure 32a). Accessibility was

monitored with two diferent restrction enzymes , Pml I and Hha I. On the 340 bp

centrally positioned mononucleosome, the Pml I restriction site is located 25 bp from one

DNA entr/exit ite on the nucleosome, while the Hha I site is near the dyad axis of the

601 nucleosome sequence (see Figure 32a). Remodeling by the WT SWISNF complex

leads to rapid ATP-dependent accessibilty to the Pml I site; where 65% of the Pml I sites

are accessible in 20 minutes (Figure 32b and c). The L)STRAGGLG complex shows

drastically decreased activity. Less than 10% of the template was cleaved in 20 minutes

(Figure 32b and c). Accessibilty at the dyad axis (as ilustrated by Hha I accessibility), is

nearly abolished in the L)STRGGLG complex while accessibility with WT SWI/SNF



123

shows a linear increase that appears to have similar kinetics to the mobilzation results.

Hha I cleavage is nearly 50% in 90 minutes with WT SWISNF while STRAGGLG

complex only allows access to :;5% of the Hha I sites in 90 miutes. Thus, these data

indicate that the decrease in nucleosome mobilzation directly correlates with the

enhancement of restrction enzyme accessibilty.

Next, restrction enzyme accessibility on an end positioned nucleosome was

tested to furter address if mobilization of nucleosomes was separable from restrction

enzyme accessibility (Figure 33a). This substrate was generated using the same "601"

sequence (CP1024), except that the restrction fragment Eco RI - Not I was used to

produce a 240 bp, end positioned mononucleosome with a 100 bp linker on only one side

(Figure 33a). Previous studies have shown that while SWISNF can move nucleosomes

from the middle of DNA fragments to the end, it canot move an end positioned

nucleosome to the center of the DNA (Becker and Horz, 2002). Consistent with these

previous data, I found that remodeling by WT SWI/SNF results in much less accessibilty

on the end-positioned nucleosomes than with centraly positioned mononucleosomes

(compare results from Figure 32c and Figure 33c). The STRGGLG complex resulted

in a -3 fold decrease (compared to WT SWISNF) in accessibility at the entry edge of the

nucleosome as ilustrated by Pml I accessibility (Figure 33c). Also consistent with

previous data, I found that neither WT SWI/SNF nor the 
STRGGLG complex could

gen rate significant Hha I accessibilty on the 240 bp, end-positioned mononucleosome

(Figure 33b). It appears that in the absence of linker DNA on both sides of the

nucleosome core parcle, little accessibilty can occur with STRAGGLG. In contrast to



124

- j

WT enzyme, this phenomenon is observed at both the entry/exit and dyad axis position

within the nucleosome.

The apparent rate of accessibilty appears different on these 601

mononucleosomes as compared to the results with the Sal I assay (Chapter 3, Figure 22).

In the case of the Sal I digestion of nucleosomal arays, disruption of motif V led to only

an approximate two fold decrease in remodeling activity. In order to address the inherent

differences between these assays, 5S rDNA mononucleosomes were constrcted using

the Sal I contaning 5S rDNA repeat from the central nucleosome on the 208-11 template.

When 5S mononucleosomes are treated with Sal I there is much more cleavage in the

absence of remodeling enzyme, compared to similar experiments with "601"

mononucleosomes, reflecting the greater heterogeneity of translational positions of the

DNA template (see Figure 34a). In the presence of WT SWISNF, Sal I accessibilty is

increased, and disruption of motif V leads to a thee fold decrease in Sal I digestion rate

(Figure 34b and c). The WT complex can remodel 60% of the substrate in 20 minutes

while either motif V disrupted complex results in -20% of the substrate being remodeled.

These defects are more in line with the results seen in the Sal I nucleosomal aray assay

from Chapter m. This is easily explaied by the fact that in nearly 40% of the

mononucleosome incorporated in the 5S rDNA sequence the Sal I site is going to be

closer to the entr/exit sites and furter away from the dyad axis of the nucleosome.

,,:



125

Q 0 -- b
t:.

:l tJ CJ 

.. .. ..

'f'f

::= ':=

-c= "40

:-=:' ~~~~~~ :--:._--=:; ;;=--

90 115 169 219 244 326 343

Pmll Hha I

no enzyme STRAGGLG no enzyme STRAGGLG

100

95 '

851
80j
75 

:; 70 

65 

60 j
& 55,

45 -i
401
35 

301
25 -

-----'---- "------- -'-' -'- "----'--- ---

T--'--

,-----,--'----'

-e no enz Pml

-- WT SIS Pmll

-- SlRGGLG S/S Pmll-i no en Hha I
-. WT SIS Hha I

SlRGGLG S/S Hha I

Time (mlno)

Figure 32. Motif V is required for enhanced restriction enzyme accessibilty on
mononuclesosomes. (a) Schematic of the 340 bp 601 DNA fragment. (b) 1.0 nM
WT (black symbols) and STRAGGLG (grey symbols) SWISNF were incubated
will 130 ng tota nucleosomes (0.3 ng 601-mononucleosomes), 3 mM ATP and 40U
of restrction enzyme (Hha I-triangles or Pml I-squares). Reactions containing no
enzyme are represented by open symbols. Samples were removed from the reactions
at given times, quenched and deproteinated. Samples were resolved on 8% TBE
native PAGE gels. Graphical representation of data from panel 



126

Q: ..
o 0

Jl 

.. .. ...... .. 

Q""
:f tf 

Hha I digest

,lSTRAGGLG

Time 0 5 10 20 30 60 90 0 5 10 20 30 60 90

90 115 169 219 244

"'" ::; ::':.-,-" : - : - "- , 

Pmll digest

120

100

l\STRAGGlG

, WT

l\STRAGGlG

lime 0 20 30 40 60 70 90 100 120 100 120

Time (mins)

Figure 33. SWISNF enzyme accessibilty on end-positioned nucleosomes. (a)
601 mononucleosomes were generated with linker DNA on only one end. These
mononucleosomes were used to test restrction enzyme accessibility with both WT and
i1STRGGLG SWI/SNF complexes. (b) Hha I accessibility on end positioned
mononucleosomes. Note that WT SWI/SNF does create -2% Hha I cleavage at 90
minutes while i1STRGGLG SWISNF complex creates less virally no Hha I
cleavage durng ths timecourse. (c) Pml I accessibility on end positioned
nucleosome. Reactions contaned 130 ng nucleosomes (0.5 ng labeled), 1.0 nM
SWISNF, 3 mM A TP and 40 U of restrction enzymes.



127

:: 

..Q2

.. 

!: 0 Sf :: 0 Q 
Jj J: 

.. .. .. , +~~~ ~~~~

"E::-=

~~~~

::=-3=

~~~~~~

1 15 94 116 169 219 244 276 318

No enzyme WT S/S STRAGGLG R1164A

lime --

,,,

c::::,

.:==

J --==--=::c

,:: ==:: ~~~

:::J -= c=::::===,-=I

80 i

60 J
c 50 

40 '

.. 

GI 
Q, 30

20 

"" 

no enzyme

i -eWTSIS
10 l -. STRGGLG SIS

R11 A S
r'-

--' ,------

-r---T'- r---

----

T--

10 15 20 25 30 35 40 45 50 55 60
Time (minutes)

Figure 34. SWI/SNF remodeling of SS rDNA mononucleosomes.
Restrction enzyme accessibility of the Sal1 5S mononucleosome remodeled
with SWI/SNF complexes. (a) Schematic of 5S DNA mononucleosome
ilustrating the major and minor nucleosome positions in this DNA fragment
(thckness of oval represent relative strength of positioning elements. (b) raw
data for Sal I accessibility. (c) Graphical representation of data from panel 

Reactions contained 130 ng nucleosomes (0.5 ng labeled), 1.0 nM SWISNF
3 mM ATP and 150 U of Sal I restriction enzyme.
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Impaired remodeling of chromatin substrates lacking histone N-termini.

U sing the same recombinant octamers generated for the torsion assays,

mononucleosomes were constrcted to test restrction enzyme accessibilty on intact or

tailless nucleosomal substrates. Recombinant mononucleosomes were made by stepwise

salt dialysis with dCTP end-labeled 601 DNA fragments and recombinant histones

(see Materials and Methods for description of reagent generation). Figure 35 shows the

results of the mononucleosome reconstitutions. Intact recombinant octamers assembled

as expected with :;95% of the nucleosomes migrating as a discrete species on native

PAGE. The talless octamers on the other hand generated thee species with discreet

mobilty patterns. None of these species corresponds to free DNA, indicating that

assembly of the labeled 601 fragment into the mononucleosomes was complete (see

Figure 35).

These mononucleosomes were used to examne Hha I accessibility (the restrction

site near the dyad axis, Figure 36a). In the case of the WT SWISNF complex, the

absence of the N-termnal tails leads to a defect in remodeling, reflected by a 3-fold

slower rate of Hha I accessibilty; it takes thee times as long to get to 50% accessibilty

at the dyad axis on talless octamers versus intact octaers (24 minutes versus 8 minutes

Figure 36b, c). In the case of the Rl164A enzyme there is a much greater defect (6 fold

or greater) observed on talless nucleosomes relative to intact nucleosomes. The

STRGGLG complex was not tested since HhaI accessibility is negligible on intact

mononucleosome substrates. The results of the accessibilty experiments correlate very

well with the results seen on the tailless cruciform arays (compare Figures 34 and 36).

;\\
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Since, the absence of the N-terminal histone tals exacerbates the defects seen

with the disruptions of motif V, it appears that the histone tails and/or the presence of an

intact octaer play an important role in interactions with the ATPase domain of Swi2p or

are crucial for proper chromatin remodeling by the SWISNF complex.

Intact Tailess DNA

':-

Figure 35. Generation of recombinant
xenopus mononucleosomes with and
without histone tails. Recombinant
xenopus histones were used to constrct

intact tailless octaers. These octamers
were used to produce mononucleosomes
on 340 bp 601 DNA fragments.
Mononucleosomes were created by salt
dialysis as described in the Materials and
Methods section.
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Figure 36. Restriction enzyme accessibilty on histone tailess octamers. The
abilty of WT and Rl164A SWISNF complexes to create restrction enzyme

accessibility (Hha I) was tested on mononucleosomes with intact and tailless octamers.
(a) Schematic of 601 mononucleosome. (b) Raw data for Hha I accessibilty. 1.0 nM
SWI/SNF (WT or Rl164A) was incubated with 1 nM mononucleosomes, 3 mM ATP
and 40 U Hha I. Samples were removed from the reaction at specific time points over
1 hour and prepared as described in the methods. (c) Graphical representation of data
from accessibility experiment. WT S/S reactions are represented by squares and
Rll64A reactions are represented as circles. Intact octamers are represented as filled
symbols and Tailess octamers are represented as open symbols.
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Discussion

In this chapter I examined the role of motif V within the A TPase/helicase domain

of Swi2p on the ATPase activity and chromatin remodeling capabilties of SWI/SNF

complex. In this study I found that key ATPase residues in motif V playa chromatin-

specific role in the function of SWISNF in vitro on assembled chromatin substrates. The

in vitro data presented here shows strong biochemical significance for the severity ' of

motif V mutations in ySWI/SNF. I wil also discuss recent evidence linkng specific

amno acid substitutions in and around motif V of the Swi2p human homolog Brg 1 that

are found to be specifc mutations in both colon cancer cell lines and lung carcinomas.

Motif V uncouples ATPase activity from chromatin remodeling activity in

SWISNF.

As mentioned earlier, the specifc role of motif V in SF1 and SF2 helicases is not

well understood. Motif V, like motif il discussed in Chapter il, shows considerable

sequence varability in different helicase-like proteins. This domain in Swi2p contans a

large predicted loop that contains the amino acid sequence STRAGGLG (see Figure 17).

One feature of note for ths motif is that this loop in some helicases, like PcrA (Figure

37c), makes contacts with both ATP and the oligonucleotide (Velanar et al., 1999). The

sequence of motif V is highly conserved among ATP-dependent chromatin remodeling

enzymes (Table 2). Among the more closely related Swi2/Snf2 homologs the

conservation of ths ijotif is very high (85% or better). The conservation of ths motif is
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also high in the ISWI and Mi-2 subfamies of ATP-dependent chromatin remodeling

enzymes. The Swi2p-like repai proteins are weaky conserved in ths porton of the

ATPase domain (Table 2: see ATRX , Rad54b, and ERCC, for examples).

In ths study I used a deletion of eight residues ( STRAGGLG) which contains

two invarant motif V consensus residues (outlined in red), as well as a single amno acid

substitution at R 1164 (R1164A). Evidence from the helicases PcrA, NS3, and the repai

protein CSB ilustrates the importance of the terminal glutane residue for biochemical

contacts and for in vivo function (respectively) in this stretch of amino acids (Carthers

and McKay, 2002; Muftuoglu et al., 2002). In vivo, the deletion of STRAGGLG resulted

in a phenotype similar to a complete deletion of SWI2 (Figure 26) and (Richmond and

Peterson, 1996). In yeast, the expression of a number of SWI/SNF specific genes are

reduced either 2 to 3 fold in the case of the R1164A mutat ,or greater than ten fold in the

STRGGLG mutant. The results of the carbon source plate assays also ilustrate the

consequence of the loss of motif V function in yeast (see Figure 26).

Deletion of these eight amno acids in STRGGLG has no effect on the ATPase

kinetics of SWISNF (Figures 20, 21 and Table 1). However, defects are apparent in

varous chromatin remodeling assays. While the defect in nucleosomal aray remodeling

assay (e.g. Sal I accessibility) was only reduced two fold, the severity of the substitution

in the generation of torsion was significantly higher (compare Figures 23 and 24). 

DNA templates, the STRGGLG substitution was not able to generate superhelical

;"'"
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Table 2: Motif V ali nment within the SWI2/SNF2 ATPase amIly

NAME ORGANISM MOTIF SEQUENCE IDENTITY

Snf2p Saccharomyces cerevisiae FI LSTRAGGLGLNLQT ADTVI 100%

Brg1 p Tetrahymena thermophila FILSTRAGGLGLNLQTADTVI 100%

SPCC1620. 14c Schizosaccharomyces pombe FMLSTRAGGLGLNLQTADTVI 95%

Sth1 p Saccharomyces cerevisiae FLLSTRAGGLGLNLQTADTVI 95%

MG06388.4 Magnaporthe grisea 70- FLLSTRAGGLGLNLQTADTVI 95%

PSA-4 Caenorhabditis elegans FMLSTRAGGLGLNLQTADTVI 95%

hypothetical protein Neurospora crassa FLLSTRAGGLGLNLQTADTVI 95%

SPCC830.01c Schizosaccharomyces pombe FMLSTRAGGLGLNLQTADTVI 95%

BRAHMA Caenorhabditis elegans FMLSTRAGGLGLNLQTADTVI 95%

SPAC1250. Schizosaccharomyces pombe FLLSTRAGGLGLNLQTADTVI 95%

BRAHMA Drosophila melanogaster FLLSTRAGGLGLNLQTADTV 90%

ENSANGP Anopheles gambiae FLLSTRAGGLGLNLQTADTV 90%

SNF2-BETA Homo sapiens FLLSTRAGGLGLNLQSADTVI 90%

SMARCA4- Homo sapiens FLLSTRAGGLGLNLQSADTVI 90%

BRG1 Homo sapiens FLLSTRAGGLGLNLQSADTVI 90%

BRG1 Gallus gallus FLLSTRAGGLGLNLQSADTVI 90%

SMARCA4- Homo sapiens FLLSTRAGGLGLNLQSADTVI 90%

SMARCA4- Mus Musculus FLLSTRAGGLGLNLQSADTVI 90%

SMARCA4- Mus Musculus FLLSTRAGGLGLNLQSADTVI 90%

BRM Gallus gallus FLLSTRAGGLGLNLQAATVI 90%

Hrp1 Schizosaccharomyces pombe FLLSTRAGGLGINLNTADTVI 85%

HBRM Homo sapiens FLLSTRAGGLGLNLQAATV 85%

Mi- Mus Musculus FILSTRAGGLGINLATADTVI 85%

IN080 Saccharomyces cerevisiae FILSTRAGGLGINLTAATVI 81%

ISW1 Saccharomyces cerevisiae FLLTTRAGGLGINLTSADVV 71%

ATRX Homo sapiens FIISTKAGSLGINLVAARVI 62%

RAD54b Gallus gallus FLLSSKAGGVGLNLVGASHLI 57%

ERCC-6 (CSB) Homo sapiens FLLTTRVGGLGVNTGANRVV 57%

I CONSENSUS
Key SF2 family residues

FLLSTRAGGLGLNLQTADTVI
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torsion. On a template incorporated into chromatin, the enzyme was able to generate

some torsion, but levels were greater than 10 fold lower than WT SWI/SNF. This led me

to explore the idea that this motif might be responsible for the transduction of A 

hydrolysis into the generation of superhelical torsion and therefore the generation of

mobility and restrction enzyme accessibility of DNA on nucleosomes.

The results of the mobilty assay on the 601 mononucleosome clearly indicate that

the STRGGLG complex has a severe defect in the mobilzation of nucleosomes.

Furtermore, the STRGGLG complex was also severely defective in generating

enhanced enzyme accessibility to restrction enzymes on the 601 mononucleosome

substrate. The rate of WT SWISNF-induced Hha I accessibilty on the 601

mononucleosome (Figure 32c, WT Hha I accessibilty) correlates remarkably well with

the emergence of the fastest migrating species in the mobilty assays (Figure 30 WT

SWI/SNF 60 and 90 minutes). The strong correlation between the mobility results and

the Hha I kinetics suggest that the Hha I site remains occluded until the nucleosome has

slid" past the restriction site. This model explains why incubation with STRGGLG

results in very litte stimulation of Hha I accessibilty, since the enzyme also fails to slide

nucleosomes.

The results of the restrction enzyme experiments on the 240 bp end-positioned

nucleosome also support a defect for STRGGLG in the abilty to generate remodeling

in a mobilty-independent maner. Previously, it was concluded that SWI/SNF can

generate enzyme accessible sites on DNA incorporated into a nucleosome in the absence

.;,

If- of mobility (Fan et al 2003). In the case of the 240 bp 601 mononucleosome used here,
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accessibilty of DNA near the dyad axis remains occluded even in the presence of the WT

enzyme (Hha I site, see Figure 33a and b). These results seem to disagree with

previously published results showing that human SWI/SNF can create restrction enzyme

accessibilty on mononucleosomes (Aoyagi et aI. , 2002). This could be due to the

strength of the positioning element used in ths study compared to the other study. It is

also possible that there is a fundamental difference between yeast and human SWI/SNF

complexes.

In the absence of superhelical torsion generation, both mobility and restrction

enzyme accessibility are severely decreased. This suggests that restrction enzyme

accessibilty may be dependent on the mobilty of mononucleosomes. These results also

support the model that chromatin remodeling results from the generation of an under-

wound twist defect in' the DNA duplex (van Holde and Yager, 2003). This twist defect

could then be propagated along the surace of the nucleosome resultig in small -1 base

pai slippage of DNA per ATPase cycle.

The results of the Exonuclease il mapping of nucleosome position after

remodeling reinforces the model that SWI/SNF primarly slides nucleosomes on strong

DNA positioning sequences. The loss of the strong exonuclease stop in the Exo III

experiments suggests that either nucleosomes are lost or are slide on the DNA sequence.

The change in the Exo III digest pattern after remodeling indicates that nucleosomes are

still present since the pattern is clearly different than Exo III digested naked DNA. The

distract decrease in mobility rate by STRGGLG complex compared to WT SWI/SNF

is mirored in the Exo il mapping.
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Motif V plays an important role in the mechanism of SWI/SNF chromatin

remodeling.

The data presented in ths chapter indicate that motif V within Swi2p couples

A TP hydrolysis to the molecular mechanism of chromatin remodeling. The motif V loop

appears to be crucial for the proper generation of superhelical torsion on a nucleosomal

DNA substrate. It is interesting to note that the ability to generate torsion on DNA is

stimulated by chromatin even for the WT SWI/SNF enzyme. Whle deletion of the

STRAGGLG amno acid results in a severe effect in torsion generation on both DNA and

chromatin, the single amino acid substitution (R1164A) has only a two fold effect on

torsion generation on chromati, yet no abilty to create torsion on DNA. So it appears

that the defect of the R1164A substitution in motif V is parally relieved in the context of

a chromatin substrate. This chromatin stimulation was confIrmed by comparng the A TP

hydrolysis rates of R1164A to WT SWI/SNF in the presence of nucleosomes and DNA.

The Rl164A complex had a 2.5 fold defect when DNA was used as a co-factor, but

incorporation of this DNA into nucleosomes completely alleviates the defect. This

suggests that Rl164A might be involved in orientating the motif V loop in response to

DNA thereby allowing the transduction of the A TP hydrolysis event into remodeling.

How could motif V couple A TP hydrolysis to the mechanism of remodeling?

Sequence theading of Swi2p ATPase motifs onto the crysta strctue of PcrA

ilustrates important cgntacts in the ATPase domain that might explain the role of motif V
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(Figure 37c). The STRGGLG residues of motif V are highlighted in pink in Figure 37c

and ilustrate a potential connection made between A TP and the oligonucleotide

substrate. At the C-termius of the loop (middle of frame), the Gln251 (in PcrA) is seen

to make contacts with the y-phosphate of ATP (Velankar et al. , 1999). At the N-terminus

of the loop (near the beta sheet) PcrA makes contacts with ssDNA (see Figure 37a and

37c). In Swi2p ths loop might playa simlar role coupling changes in hydrolysis state

with generation of torsion and therefore movement of the DNA though the ATPase

domain. From ths theading of Swi2p onto PcrA, R 1164A appears to be at the top of the

motif V loop. This arginine residue might be involved in strcturng the loop to allow

contact between A TP and the glutame residue at the C-termnus of the STRAGGLG

motif (Gln1169), and positionig the N-terminus of the loop to make contacts with

oligonucleotide in a manner similar to other helicases. This model could explain the

phenotyes seen in vivo as well as the results from the in vitro experients presented

here.
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Figure 37. Theoretical modeling of Swi2p ATPase motifs. Swi2p ATPase motifs
were modeled on the crystal strcture of PcrA to ilustrate possible interactions
between oligonucleotide and ATP and the individual ATPase motifs. (a) Crystal
strctue of PcrA. Sub domain I (blue) and Subdomain TI (green) are colored
separately to aid visualization. AMPNP is colored red and the ds/ssDNA
oligonucleotide is colored gold. Numerals Ia and TIa represent the canonical domains
found in SF1 and SF2 helicase. Ib and lI represent folds that are specific to PcrA that
fold out of subdomains Ia and TIa respectively. (b) Rotation of the PcrA strctue in
panel on the Z axis to ilustrate the ATP binding cleft of the enzyme. (c)
Magnifcation of the A TP-binding cleft of PcrA with the Swi2p ATPase motifs
theaded onto the strcture. Motifs are color coded according to the key on the side of
the ilustration. PcrA (pDB code 3PJR) strctue (Velanar et al. , 1999) was rendered
with PyMOL, Delano software (Delano, 2002). Special thans to Eric Merithew for
rendering PcrA.
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The N-terminal histone tails are important for proper remodeling by SWISNF and

disruption of the nucleosome core particle exacerbates the defects of motif V amo
acid substitutions.

As seen in Figures 34 and 36 the SWI/SNF complex appears to have reduced

remodeling activity on tailless octamers as assayed by the ability to generate superhelical

torsion and restrction enzyme accessibility. This defect was even more severe with the

R1l64A complex than with WT (2 fold reduced in WT and 5-8 fold reduced in the

Rl164A complex). The data suggest that the histone tails might interact directly with the

Swi2p ATPase domain or that the tails are responsible for the correct positioning of the

DNA on the octamer face to facilitate Swi2p interaction. The significance of these

results wil be furter addressed in Chapter V.

The results with' tetramer substrates also suggest that nucleosome integrty is

essential for interactions with motif V. In the superhelical torsion assay, wild-type

SWI/SNF exhibits little difference on either tetramer or talless arays. 
In contrast, the

R1164A complex generated less superhelical torsion on tetramer arays than tailless

arays. In either case disruption of the nucleosome results in torsion generation more

akn to that seen on naked DNA.

Specifc amino acid substitutions in motif V ofhBRGl (human Swip) result in both

lung and colon carcinomas in culture and in patients.

One of the human homologs of SWI2 , hBRG 1 , has been the focus of numerous

recent studies due to an apparent connection to cancer in mamals (Roberts and Orkin

,)'



142

2004). Recently, a number of studies have found mutations in the ATPase domai of

hBRG1 that are in a number of different forms of cancers (Table 3). A recent study of 76

different tumor cell lines isolated a colon cancer ceUline HCT-116 with a leucine to

proline substitution in residue L1164 ofhBrg1 (Wong et al., 2000). Another recent study

of lung carcinomas from patients reveals two separate amino acid substitutions G1160R

and S1176C, found in or around motif V, (personal communication and (Medina et al.

2004)). These amno acid substitutions furter ilustrate the importce of motif V in the

function of the SWISNF complex in vivo.

Table 3: Cancer mutations found in the ATPase motif V of hBRG 1

Isoform Motif V Sequence Notes
WT BRG1 FILSTRAGGLGLNLQTADTVIIFDS WT Brg1

Ll164P FILSTRAGGLGPNLQTADTVIIFDS HCT - 116, colon cancer cell line 
(Wong et aI. , 2000)

G1160R FILSTRAGRLGLNLQTADTVIIFDS G 1160R lung carcinoma from patient
(Medina et al., 2004)

S1176C FILSTRAGGLGLNLQTADTVIIFDC S 117 6C lung carcinoma from patient
(Medina et al. , 2004)

Together these data point to an important role for motif V of the SWI2/SNF2

famly of ATPases in the mechansm of ATP-dependent chromatin remodeling. Ths is

the fIrst case for a Swi2p specific role for any ATPase motif in the functionality of

SWI/SNF chromati remodeling. The study also suggests that N-terminal histone tals

playa role in SWISNF chromatin remodeling that is related to motif V function. The

results of the in vitro remodeling assays also suggest why amino acid residues in motif V



143

have been discovered in carcinogenic cells. These results begin to shed light on how

Swi2p uses the hydrolysis of A TP to create nucleosome mobility and enzyme

accessibilty on chromatin.

x/"
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Materials and Methods

Carbon source phenotype growth assay. Strains CY396 (WT), CY120 (swi28) CY397

(swi2K798A), CY458 (swi2Rl164A), and CY519 (swi28STRAGGLG) were used to study

carbon growth phenotyes of motif V mutants. Serial dilutions of each strain (starng

with 5000 cells and dilutig 5x for each sequential spot) were plated on YEP media

supplemented with either 2% glucose, 2% galactose, 2% ethanol and 2% glycerol, or 2%

raffinose. Plates were incubated at 30 oC and photographed after the colonies had grown

to suffcient size.

Generation of nucleosomal cruciform templates. Nucleosome templates for chromatin

torsion assays were generated by miing purified chicken histone octamers with pXG540

dCTP labeled DNA (CP894) as well as 208-11 DNA. Ava! linearzed pXG540 was

treated like 208-11 chromatin arays for the purpose of chromatin assembly and the

protocol for 208-11 template generation was used to generate pXG540-chromatin

substrate. Nucleosome concentrations were used to generate templates containing either

1 nucleosome per 200 bp of DNA (R=1. , satuated) or 1 nucleosome per 400 bp of DNA

(R=0.5, half saturated). Briefly 2 !!g of 208-11 DNA and 0.5 !!g of a dCTP labeled

pXG540 was mixed with either 1 (R 0.5) or 2 !!g (R 1.0) of chicken histones in 2 

NaCI: Chromatin aray template was generated as previously described (Logie and

Peterson, 1999). The addition of the 208-11 template into the reactions made it possible

to analyze chromatin saturation of these reconstituted arays by Eco RI digestion analysis
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(Logie and Peterson, 1999). Eco RI analysis was used to estimate the incorporation of

chromati into pXG540 template. DNA:nucleosome ratios were chosen to give arays

which were not oversaturated.

Torsion assays with DNA versus chromatin substrates. Torsion assays were performed

in the same manner as with naked DNA substrates (See Methods in Chapter III).

Chromatin cruciform formation assays were performed in 30 j.L reactions contaning Ix

50 remodeling buffer, 3 mM ATP, 0. 15 j.g/ml Endonuclease VII, 8 ng (DNA

concentration) of dCTP pXG540 DNA or chromatin assembled pXG540, and 1.5

nM SWI/SNF complex. Rates of cruciform extrsion were measured over 120 minutes at

25 oc. 3 j.l aliquots, at the indicated times, were taen, quenched and deproteinated by

the addition of 2x Stop buffer (10 mM Tris pH 8.0, 0.6% SDS, 40 mM EDTA, 5%

glycerol, and 0. 1 mg/ml Proteinase K). Quenched reactions were incubated at 50 oC for

20 minutes to deproteinate samples. Samples were then resolved on 4% 1xTBE native

acrylamde gels and imaged using a Molecular dynamcs PhosphorImager. Percentage of

pXG540 fragment cut was determned by using Imagequant v1.2 (Amersham).

Generation of "601" mononucleosomes substrates for mobility and restrction enzyme

assays. Mononucleosomes for mobilzation and restrction enzyme accessibility studies

were generated as follows. The 343 or 244 bp mononucleosome DNA fragments were

generated by digesting plasmid CP1024 (pGEMZ-Iowerstrand "601") with either Eco RI

and Hind il (343 bp fragment) or Eco RI and Not I (244 bp fragment). Fragments were

., ,
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gel purfied and labeled with dCTP in a stadard Klenow reaction. Labeled DNA

fragments were used to generate mononucleosomes by oligonucleosome transfer. 

these nucleosome reconstitutions, 2. J.g of chicken oligonucleosomes (Yager et al.,

1989) were mied with 5.0 ng of labeled DNA fragments and reconstituted by stepwise

serial dilution as previously described (Owen-Hughes et al., 1999). Native PAGE gels

were used to determne the integrity of the arays.

Generation of "601" mononucleosomes for Exo 111 mapping. Mononucleosomes for

Exonuclease ill mapping were generated as follows. The 326 bp mononucleosome DNA

fragment was generated by digesting plasmid CP1024 (pGEMZ-Iowerstrand "601 ) with

both Eco RI and Pst I. Fragments were gel purified and labeled with y dATP in a

paral denatung T4-PNK reaction. Pst I end labeled DNA fragments were used to

generate mononucleosomes by salt dialysis. A total 4 J.g chicken octaers were mixed

with 4.9 J.g of unlabeled 208- 11 DNA template (to act as a histone sink) and 90 ng 

dATP labeled 326 bp "601" DNA fragments. Mononucleosome reconstitutions were

assembled by stepwise salt dialysis as previously described for 208-11 chromatin arays

(Logie and Peterson, 1999). Incorporation oflabeled "601" DNA fragment was assayed

by native gel shift on 4% TBE polyacrylamde gels.

Generation of Ss mononucleosomes. Mononucleosomes containing a single Sal I 

rDNA repeat were generated as follows. CP881 (pBluescript-5S Sal I) was digested

sequentially with Kpn I then Not I. Fragments were gel purified and labeled with 
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dCTP in a stadard Klenow reaction. Mononucleosomes were generated in the same

manner as described under "601" mononucleosomes.

Nucleosome mobilization assay. 340 bp mononucleosomes were used to assay

SWI/SNF-induced nucleosome mobilzation. 30 !!l reactions containing 0.3 ng labeled

mononucleosomes (130 ng total oligonucleosomes) were incubated at 30 oc with 3nM

SWI/SNF complex (WT or ), and 3mM A TP, in 5-50 remodeling buffer over 90 minutes.

0 !!l fractions were taen at varous times and quenched with 2xGD buffer (20%

glycerol and 600 ng/!!l plasmid DNA) and place on ice. Fractions were resolved on 4%

native TBE polyacrylamde gels for 90 minutes at 150 volts. Gels were dried and imaged

using a Molecular Dynamcs PhosphorImager.

Exo III mapping of nucleosome boundaries. 30 !!l reactions containig 3 

mononucleosomes or naked DNA were incubated with 3 nM SWISNF, 3 mM ATP, in 5-

50 remodeling buffer at 30 oc. At each tiepoint (t- lO minutes) 5 !!l Time points were

taken and incubated with 5 U of Exo III. After 10 more minutes at 30 oC reactions were

quenched in 2x Stop buffer and incubated at 50 oC for 20 minutes to deproteinate

samples. Deproteinated samples were boiled in an equal volume of formamde buffer

(80% w/v deionized formamide, 10 mM EDTA, 1 mg/ml xylene cyanol FF, and 1 mg/ml

brompphenol blue) resolved on 6% sequencing gels (27. 1: 1 acrylamde: bisacrylamide,

w/w) contaiing 7M urea which were ran in Ix TBE for 55 minutes at 650 volts. Gels

were dried and imaged using a Molecular Dynamcs PhosphorImager (Amersham).
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Mononucleosome restrction enzyme accessibility assays. 30 !AI reactions containing

130 ng (0.3 ng labeled) mononucleosomes (either 240 bp or 340 bp) were incubated with

1.0 nM SWISNF complex (WT or varant), 3 mM ATP, and 40 U of restrction enzyme

(Hha I or Pml I) in 5-50 remodeling buffer at 30 oc. 3-4 !AI Time points were taken as

indicated and quenched in 2x Stop buffer. Reactions were incubated at 50 o for 20

minutes to deproteinate samples. Deproteinated samples were resolved on 8% native

TBE polyacrylamide gels. Gels were dried and imaged using a Molecular Dynamcs

PhosphorImager (Amersham).

Construction of recombinant histone octamer and tetramers. Recombinant histone

octamers were expressed and purified as previously described (Luger et al., 1999).

Briefly WT or talless octamers were generated by miing equimolar amounts of

lyophilized Xenopus laevis recombinant histones H2A, H2B, H3 and H4 (either intact or

lacking N-termini) in unfolding buffer (7 M guanidinium-HCl, 20 mM Tris-HCI, pH 7.

10 mM DTT) for 2-4 hours at room temperature and then subjecting the histone miture

to dialysis into refolding buffer (2 M NaCI, 10 mM Tris-HCI , pH 7.5, 1 mM EDTA, and

5 mM 2-mercaptoethanol) overnight with multiple buffer changes at 4 oc. The refolded

octamers were then separated from unincorporated histones on an S-200HR gel filtration

column. Fractions containing octaers were determined by coomassie staing, pooled

and concentrated. Concentrations were determined using molar extinction coefficients
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and octamers were stored at 4 oC until use (Luger et aI. , 1999). Tetramers were purfied

in the same manner except only histones H3 and H4 were used to generate tetramers.

Generation of tailless and tetramer cruciform templates. Cruciform templates were

generated in the same fashion as chicken histone pXG540-linearzed templates except

recombinant intact octamers, tailess octamers or tetramers were used to constrct the

templates. Cruciform assays were conducted as described above under the torsion assay

heading.

Generation recombinant wild type and tailless mononucleosomes.

Mononucleosomes for tail effect studies were generated in the following manner. A total

6 f.g or 5.2 f.g of recombinant intact or tailless octamers (respectively) were mied with

9 f.g of unlabeled 208-11 DNA template (to act as a histone sink) and 90 ng (l dCTP

labeled 340 bp "601" DNA fragments. Mononucleosome reconstitutions were assembled

by stepwise salt dialysis as previously described for 208-11 chromatin arays (Logie and

Peterson, 1999). Incorporation of labeled "601" DNA fragment was assayed by native

gel shift on 4% TBE polyacrylamide gels.
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CHAPTER V

Perspectives

The SWISNF complex uses the energy derived from A TP hydrolysis to disrupt

histone-DNA contacts and thus "remodel" chromatin. But what is chromatin remodeling

and how do these enzymes facilitate the reaction? Over the last ten years different

observations have been made of the action of these enzymes on different chromatin

substrates (peterson, 2002b). Chromati remodeling enzymes have been shown to

facilitate restrction enzyme accessibilty to sites occluded by nucleosomes. They, also

appear to be able to mobilze nucleosomes either randomly (SWI/SNF or into more

ordered positions (ISWI containing complexes). 
In vitro, these enzymes can catalyze the

transfer of an octamer from one DNA fragment onto another. Recently, these enzymes

have also been found to be able to transfer H2A-H2B dimers from one octamer to another

(Krogan et al., 2003; Mizuguchi et al., 2004). In some cases ths histone transfer involves

the replacement of one histone varant with another (e.g. In080 complex). How do al

these activities fit together and is there a single mechanism to explain how these enzymes

function in remodeling? In ths chapter I wil discuss how A TP-dependent remodeling

might work at the molecular level and how ths relates to the role of these enzymes 

vivo.
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Swi2p: the motor under the hood of SWI/SNF.

The A TP-dependent chromatin remodeling enzymes all share a subunit belonging

to the SF2 famly of helicases, yet none of the A TPases have helicase-like activities.

From the numerous studies of these cataytic subunits it is obvious that they are the motor

behind the complex. How do these enzymes use the energy from A TP hydrolysis to

remodel nucleosomes?

Swi2p and its homologs all share high homology to the SF2 helicases and contain

all the conserved motifs found in these enzymes yet little was known about the specific

roles these domains play in the remodeling reaction. The work presented in Chapter III

and Chapter IV shows that a number of the motifs of subdomain I (I-III) along with motif

VI (in subdomain II) play direct roles in ATP hydrolysis or ATP binding.

Motif V on the other hand seems to have a more specific role in the function of

the S. cerevisiae SWI/SNF complex. As ilustrated in Chapter IV , it appears that motif V

(in sub domain II of the ATPase domain plays a critical role in coupling A TP hydrolysis

to the mechanism of remodeling. Intact SWISNF complexes harboring amno acid

substitutions in this motif were shown to have a drastic defect in the generation of

superhelical torsion and the generation of remodeled products as compared to WT

SWI/SNF complex while stil retaining WT levels of ATPase activity. In Chapter IV the

data suggests that motif V may require canonical nucleosomal strctue. This was

ilustrated by the fact that on naked DNA alone the substitutions in motif V render

SWI/SNF completely defective for the generation of torsion and only a complete

.;Y

1;,
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nucleosome core particle is sufficient for even paral torsion generation by these altered

complexes.

Motif V is highly conserved among canonical chromatin remodeling enzymes as

would be expected for a moti critical for the transduction of the A TP hydrolysis cycle

into the mechanism of remodeling. As seen in Table 2 in Chapter 4 this loop is only

strongly conserved in the thee major chromatin remodeling famlies , SWI2/SNF2 , ISWI

and Mi2/CHD but not in the SWI-like repai proteins (Rad54p ATR , etc). Interestingly

In080, which has been recently shown to perform H2A-H2B dimer exchange, has a

highly conserved motif V (see Figure 17).

The SWI2 famly was the only class of remodeling enzymes that did not display

nucleosome-specific stiulation of ATPase or torsion activities. ISWI and Mi-

complexes show vastly higher ATPase activity in the presence of chromatin versus naked

dsDNA (Becker and Horz, 2002). These complexes also show chromatin dependence in

the generation of superhelical torsion. In Chapter IV, I found evidence that the ability of

ySWI/SNF complex to create torsion is in fact stimulated on chromatin relative to DNA

and that this stimulation is dependent on both an intact nucleosome and motif V of the

ATPase domain of Swi2p. Substrate specificity in helicase-like enzymes has been

documented in the past. Motlp is stimulated by interaction with TBP (Auble et aI. , 1997)

and chromatin specificity of the ATPase subunit has been proposed to be a defming

feature of chromatin remodeling enzymes (Flaus and Owen-Hughes, 2001).

The Swi2p specific subdomain might be vital to the recognition of nucleosomal

DNA versus naked d ,DNA. No known helicase to date has an extended linker between
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subdomais I and II of the helicase fold (compare Figure 15 with Figure 25). Unique

subdomains have been discovered in other helicases and they playa significant role in

orienting the oligonucleotide substrate into the helicase subdomais (see Figure 37a).

The Swi2p-like enzymes might have evolved this specific region to contend with the

nucleosomal DNA strcture that makes up its native substrate. This might be an

interestig avenue to explore in the future.

What is chromatin remodeling?

The ATP-dependent under-winding of DNA leads to the creation of superhelical

torsion in the DNA duplex on the surace of the nucleosome. The result of this under-

winding leads to a twist defect that then must be relieved (see Figure 38). The relief of

this twist defect could result in a number of potential outcomes. In the absence of any

constraint the defect could diffuse back to it original conformation (Nucleosome I

converted to II then rapidly converted back to I, Figure 38a). Two possible models have

been proposed lead to "remodeling ; these are the twisting or writhng models (see

Figure 38b). In the twisting model the duplex is under-wound yet remains in contact with

the histones in the region of the twist defect. This defect is relieved by a slipping event

where the DNA corkscrews along the surface contacts in the nucleosome resulting in

small base pai steps and ultiately movement of the DNA relative to the histone

octamer (Nucleosome I becoming converted finally to nucleosome il, Figure 38a). The

second model involves a writhe of DNA becoming dissociated from the surace of the

octamer and moving in a bulge migration or inchworm fashion. It has been proposed that
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the writhing model could explain the ability of some chromatin remodeling enzymes to

move the histone octaer off the end of a short DNA fragment. Recaptue of a free DNA

end might lead to the generation of a novel mononucleosome as ilustrated in Figure 5c.

It is possible that both models are actually occurrng in vivo. The twist model

might be the result of nucleosomes having sufficient free linker DNA regions to one or

both sides of the nucleosome core parcle that allow the chromatin remodeling enzyme

to mobilze the nucleosome (Nucleosome I remodeled to ID). This has been well

documented in the case of the ISWI complexes. ISWI alone or in complexes remodels

chromati by translocatig nucleosomes relative to DNA (Fan et al., 2003; Langst and

Becker, 2001b).

In a constrained system that does not allow nucleosome sliding, the process of

creating torsion on the DNA duplex might result in a writhe becoming free thus allowing

access to DNA without actual translocation of the nucleosome (remodeling results in

nucleosome II). This has been seen for Brg1 and hSWISNF on nucleosomes when the

histone octaer is cross-linked to DNA, thereby preventing movement (Aoyagi et al.

2002). ISWI, in contrast, needs free ends to mobilize DNA and does not appear to create

writhe on trapped nucleosomes (Fan et al., 2003; Narliar et al. , 2001). Brg1 and human

SWI/SNF are believed to create enzyme accessible remodeling products on

mononucleosomes with little to no liner regions to (nucleosome Figure 38b) and it is

believed that these nucleosomes are not remodel via sliding (nucleosome ID). It is

possible that enzyme accessibility might be generated by pushing a remodeled

nucleosome into the fIrst gyre of a neighborig nucleosome.

, J
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III

Slippage

Writhe

Figure 38. Torsion models for chromatin remodeling. This figure shows a
few potential models for chromatin remodeling via relief of torsional twist
defects. (a) A caroon ilustrating how intermediates (II) might lead 
accessibilty without DNA translocation. (b) Caroon depicting how twist or
writhe could lead to remodeling.
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A model for A TP-dependent chromatin remodeling.

The data presented here ilustrates a possible mechanism for the activity of the 

cerevisiae SWI/SNF complex. Combining the strctual EM data from Chapter II with

the functional analysis in Chapters III and IV we can make some predictions about the

function of SWI/SNF on nucleosomes.

From the 3D-EM reconstrctions of ySWI/SNF, it is clear that SWISNF has a

large depression or cavity approximately the same dimensions as a nucleosome (see

Chapter II and Figure 39). From the initial Cryo-EM strcture it is easy to see that the

nucleosome core parcle would fit nicely into this central cavity. It appears that there are

two projections , one to either side of this cavity, which could playa role in stabilzing the

nucleosome, optimizing Swi2p interactions with nucleosomal DNA. These projections

could represent the Swi3p subunits which were shown to be present in two copies in the

complex (Chapter II). These subunits might interact with histone tails though the SANT

domain, thus stabilzing the nucleosome core parcle in the active cleft (see Figure 39).

I believe that the bottom of this cavity is an attactive site for the location of

Swi2p (see Figure 39). Modeling of the nucleosome core parcle into the 3D-

reconstrction data also suggests the nucleosome core paricle only fits into ths cavity in

specific orientations. The favored orientation of the core parcle has the H3 tail

protrding away from the cavity and into solution. Ths would leave the dyad axis of

symmetr solution exposed. I believe that Swi2p might act on the DNA near the

entr/exit sites. Other subunits (Swi3p) might stabilze the nucleosome allowing optimal
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under-winding of DNA by Swi2p. The relief of the resulting DNA twist defect could

then translate into remodeling.

I believe that the EM data as well as the motif V data from Chapters il and IV

suggest that the primary method of remodeling by the yeast SWI/SNF complex involves

the translocation of the nucleosome relative to the DNA molecule. On end-positioned

nucleosomes yeast SWI/SNF does not appear to create restrction enzyme accessibility at

the dyad axis. It might be that the entry/exit sites were not as accessible to Swi2p or that

they do not form the proper interface on these mobility-constrained nucleosomes. The

Exonuclease il mapping also supports that, at least on strong positioning sequences,

SWI/SNF primarly mobilizes nucleosomes. These data taken together suggests that at

least in the case of yeast SWI/SNF that chromatin remodeling results primarily in

mobilty when no constraint is placed on nucleosome translocation.

How does Swi2p act on the nucleosome? Experients from Chapter IV suggest

that in the absence of histone termnal domains the defect in chromatin remodeling of

motif V altered complexes is furter exacerbated. This data coupled with the hypothesis

that Swi3p is stabilizing the nucleosome suggests that Swi3p might hold the nucleosome

into the "active cleft" allowing Swi2p to act on the DNA gyres on the surface of the

nucleosome (see Figure 39). Furermore, it is possible that the linker region between

subdomai I and II of the ATPase domain in Swi2-like enzymes gives the enzyme it

characteristic DNA torsion abilty. This unique subdomain might explain Swi2p

difference from canonical helicases. Swi2p might then act on one of the entry/exit DNA
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gyres and push and/or twist the DNA toward the dyad axis. Relief of the resulting twist

defect could be relieved by sliding the DNA while holding the nucleosome in place.

This model leaves a number of testable hypotheses. In the future both Swi3p-

SANT (histone tail interaction domain?) and Swi2p-motif V alterations could be used to

look at the histone-tail stability model. If histone tails were responsible for optimal

remodeling, purified SWI/SNF containing both Swi3p-SANT deletions and a Swi2p-

Rll64A substitution might display the same in vitro characteristics that Motif 

alterations coupled with tailess histone octamers. A refined EM strcture of SWISNF

containing the location of varous subunits as well as a bound nucleosome would also

greatly aid our understanding of the enzyme-nucleosome interface and prove that the cleft

seen in the EM strctures is the active site of the enzyme. The work presented in this

thesis establishes a' solid framework to test how SWI/SNF interacts with nucleosomal-

level chromatin strcture.

Determining how remodeli works in vivo

The biggest questions unanswered are still the questions that are the most

interesting: what do chromati remodeling enzymes do in vivo? As discussed above, the

SWR1 complex appears to exchange histone H2AZ-H2B dimers in vivo and this seems to

be functionally important. But what role does A TP-dependent nucleosome mobilzation

or formation of DNA loops play in vivo? Most in vivo studies of chromatin remodeling

have used restrction enzymes or other nucleases like MN ase to probe chromatin

strcture. However, these reagents only show that DNA accessibility has been altered;
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Swi2p
ATPase domain

Nucleosome

Swi3p ??

Figure 39. Model for how SWISNF interacts with nucleosomes. This
caroon depicts a possible model for how Swi2p could interact with the
nucleosome core parcle. The expanded view shows the prospective
catalytc" cleft of SWI/SNF. The blue ovals represent the two sub domais of

the Swi2p ATPase domain. Swi3p (yellow circles to either side of the cleft) is
ilustrated as a possible subunit for SWI/SNF specific interactions with the
histone octamer stabilizing the nucleosome core paricle. The H3 trncated tai
is seen coming straight out of the nucleosome core paricle of the cryo-
constrct.
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the mechanism is not clear. Furtermore, it is importt to note that none of the nuclease

reagents are able to detect changes in higher-order chromatin folding. Thus, a potential

role for remodeling enzymes cannot yet be assayed in vivo. Thus, what seems to be

lackig in the in vivo analysis are actually development of better methodologies for

studying chromati in cells.

Even with the application of nuclease digestion methods, a number of labs have

found that chromatin remodeling appears to be distinct at different gene loci. At some

genes chromatin remodeling appears to involve the mobilization or removal of multiple

nucleosomes near the promoter, as ilustrated earlier by the yeast POTl and RECl04

promoter regions after remodeling by Isw2 (Fazzio and Tsukiyama, 2003). In contrast at

the mouse mamary tumor virs (MTV) promoter, mobilzation or removal of

nucleosomes is not necessar for chromatin remodeling. Indeed, in ths case it appears

that a nuclear hormone receptor (glucocortcoid receptor; GR) recruits SWISNF which

then enhances the accessibilty of a promoter bound nucleosome without induced or

nucleosome loss (Fryer and Archer, 1998; Truss et al., 1995). At the MMTV promoter, a

nucleosome, referred to as nucleosome B, spans an important DNA sequence for

hormone receptor binding sites known as the hormone responsive region (HRR)

(Richard-Foy and Hager, 1987). Changes in DNase I sensitivity at nucleosome B suggest

that chromatin remodeling is necessar for remodeling at this parcular nucleosome to

allow cis-acting elements to occupy the HR (Truss et al. , 1995). The nuclear hormone

receptor GR recruits hSWI/SNF and other co-activators (P300/CBP for example )to the

MMTV promoter facilitating chromatin remodeling and transcriptional activation (Fryer
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and Archer, 1998). More recently a requirement for an ATP-dependent chromatin

remodeling activity has been shown on MMTV promoters in Drosophila extracts (Di

Croce et al., 1999). Whle these and other studies begin to shed light on the differences

in chromatin remodeling at different genomic loci they only begin to address how

chromati remodeling works in vivo. In the case of MMTV , this may be a candidate for

A TP-dependent DNA loop formation or perhaps a role for A TP-dependent dimer loss.

Remodeling at the fiber level

One important point that needs to be addressed is the differences between

mononucleosomes and nucleosomal arays. In vitro the SWISNF complexes are able to

move nucleosomes well off the end of a short fragment of DNA resulting in a stable

remodeled state. Also Brg1 experiments mentioned above show evidence for a stable

remodeled nucleosome with enzyme accessible DNA loops. In contrast on nucleosomal

arays chromatin remodeling appears to be reversible in a short period of time. In vivo

chromati exists as large 100 - 400 nm fibers that are not only highly condensed but

contain many non-histone proteins as well. Indeed, incorporation of a linker histone into

a nucleosomal aray substrate blocks the in vitro remodeling activities of most all A TP-

dependent remodeling enzymes (Hil and Imbalzano, 2000; Horn et aI. , 2002). In vivo

however, HI is present at nearly every nucleosome (Hansen, 2002). How do these

enzymes modulate chromatin at the fiber level? Are loops of DNA removed from the

surace of the nucleosome in vivo? Are minor histone-DNA contact disruptions enough

to faciltate the processivity of large enzymes like holoenzyme?
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Some chromatin remodeling enzymes might be acting at the fiber level as well as

the nucleosomallevel. As mentioned earlier one of the fIrst links between SWI/SNF and

chromati came from the genetic observations that Sin mutants restore transcription in

Swf and Snf mutants. One prediction of these genetic studies was that Sin chromatin

might mimic the SWISNF remodeled state (Wechser et al., 1997). A recent in vitro

study demonstrated that Sin versions of histone H4 eliminate the cation dependent

intramolecular folding of nucleosomal arays (Horn et al., 2002). Thus, these data

suggest that chromatin remodeling may not only act at the nucleosomal aray level but

might also affect chromatin at the fiber level.

, .
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Concluding Remarks

The study of chromatin biology has come a long way but there are still a lot 

unanswered questions. We now have a better feeling for the dynamcs involved at the

simplest levels of chromatin strctue (nucleosomal arays) and how chromatin

remodeling enzymes see and act on these substrates. The work of numerous groups has

attempted to elucidate the function of chromatin modifying enzymes and their affect on

chromatin. In the futue we need to get a better understanding of how these enzymes

behave in vivo. We are starting to get an idea for how ATP-dependent enzymes behave

on short chromatin fragments but chromatids are more complex then those modeled in

the laboratory. We also have a basic understanding of the function of the ATPase

subunits of these enzymes but we are just beginning to scratch the surace of

understanding why some of these complexes have numerous subunits. In the future

experienta approaches wil have to be designed to address how chromatin remodeling

enzymes deal with the higher order strcture of chromatids. It is at the level of the

compact chromatin fiber that we believe that the tre differences between the different

enzymes wil be revealed.
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Appendix

Table AI: Yeast Strains used in Thesis research
Name Relevant genotype
CY 120 MATa swi2d::HIS3 HO-IacZ
CY 296 MATa gaI4d::1eu2 1eu2d1 , his3d200, tr1d99, ura3d99, lys2d99, ade2-

CY 337 MATa GAU ura3-52 trp1-d63Ieu2- his3-d1 prbl- 1122 pep4-3 prc1-407

CY 394 MATaswi2d::HIS3 ura3::swi2(R1196A)-HA-6HIS HO-IacZ

CY 396 MATaswi2d::HIS3 ura3::SWI2-HA-6HIS HO-IacZ

CY 397 MATaswi2d::HIS3 ura3::swi2(K798A)-HA-6HIS HO-IacZ

CY 452 MATaswi2d::HIS3 ura3::swi2(P824A)-HA-6HIS HO-IacZ

CY 453 MATa swi2d::HIS3 ura3::swi2(P932A)-HA-6HIS HO-IacZ

CY 454 MATa swi2d::HIS3 ura3::swi2(W935A)-HA-6HIS HO-IacZ

CY 455 MATaswi2d::HIS3 ura3::swi2(R994A)-HA-6HIS HO-IacZ

CY 456 MATa swi2d::HIS3 ura3::swi2(H1061A)-HA-6HIS HO-IacZ

CY 457 MATa swi2d::HIS3 ura3::swi2(K1088A)-HA-6HIS HO-IacZ

CY 458 MATaswi2d::HIS3 ura3::swi2(Rl164A)-HA-6HIS HO-IacZ

CY 519 MATaswi2d::HIS3 ura3::swi2(dSTRAGGLG)-HA-6HIS HO-IacZ

CY 831 MATa swi2d::HIS3 ura3::SWI2-HA-6HIS created from CY337

CY 832 MATaswi2d::TRPI trpl::SWI2-18myc

CY 889 MATa/a swi2d::TRPI trpl:: SWI2-18myc swi2d::HIS ura3::SWI2-HA-6HIS

created from CY832
CY 943 MATa/a swi2 d::HIS3 ura3::swi2(K798A)-TAP HO- IacZ diploid from

CY397xCY296
CY 944 MATa swi2d::HIS3 ura3::swi2-TAP HO- IacZ created from CY396

CY 1114 MATa/a swi2d::HIS3 ura3::swi2(P824A)-TAP HO- IacZ diploid from

CY 452xCY296
CY 1115 MATa/a swi2d::HIS3 ura3: :swi2(P832A)- T AP HO- IacZ diploid from

CY 453xCY296
CY 1116 MATa/a swi2d::HIS3 ura3: :swi2(W935A)- T AP HO- IacZ diploid from

CY 454xCY296
CY 1117 MATa/a swi2d::HIS3 ura3::swi2(K1088A)-TAP HO- IacZ diploid from

CY 457xCY296
CY 1118 MATa/aswi2d::HIS3 ura3::swi2(Rl164A)-TAP HO-IacZ

diploid from CY 458xCY296
CY 1119 MATa/aswi2d::HIS3 ura3::swi2(R1196A)-TAP HO-IacZ

diploid from CY394xCY296
CY 1120 MATa/a swi2d::HIS3 ura3::swi2(dSTRAGGLG)-TAP HO-IacZ

diploid from CY519xCY296
CY 1121 MATa/aswi2d::HIS3 ura3::swi2(H1061A)-TAP HO-IacZ

diploid from CY 456xCY296
Yeast strais created for thesis project
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