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Abstract 
 

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by 

loss of motor neurons, resulting in progressive muscle weakness, atrophy, paralysis and death 

within five years of diagnosis. About ten percent of cases are inherited, of which twenty percent 

are due to mutations in the superoxide dismutase 1 (SOD1) gene. Since the only FDA approved 

ALS drug prolongs survival by just a few months, new therapies for this disease are needed. 

Experiments in transgenic ALS mouse models have shown that decreasing levels of mutant 

SOD1 protein alters and in some cases entirely prevents disease progression. We explored this 

potential therapeutic approach by using a single stranded AAV9 vector encoding an artificial 

microRNA against human SOD1 injected bilaterally into the cerebral lateral ventricles of 

neonatal SOD1G93A mice.  This therapy extended median survival from 135 to 206 days (a 50% 

increase) and delayed hind limb paralysis. Animals remained ambulatory until endpoint, as 

defined by a sharp drop in body weight. Treated animals had a reduction of mutant human SOD1 

mRNA levels in upper and lower motor neurons. As compared to untreated SOD1G93A mice, the 

AAV9 treated mice also had significant improvements in multiple parameters including the 

number of motor neurons, diameter of ventral root axons, and degree of neuroinflammation in the 

spinal cord.  These studies clearly show that an AAV9-delivered artificial microRNA is a 

translatable therapeutic approach for ALS.  
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CHAPTER I – INTRODUCTION 

 

AMYOTROPHIC LATERAL SCLEROSIS  

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease of 

upper and lower motor neurons 1. Patients develop focal weakness, usually in the limbs or 

bulbar muscles. Disease progresses to the diaphragm and intercostal muscles, leading to 

breathing impairment and restrictive lung disease. The average age of onset is 55, and 

death occurs within three to five years of diagnosis, usually due to respiratory failure 2,3. 

There is currently no effective cure, with Riluzole being the only approved treatment, 

extending life by only a few months 4. 

ALS is a heterogeneous disease, with over 40 causal genes identified to date.  

Ninety percent of cases are sporadic in nature, while ten percent are familial, with a 

Mendelian inheritance pattern. A genetic cause has been identified for 68% of familial 

ALS (fALS) cases, and only 11% of sporadic ALS (sALS) cases. Some of the most 

commonly mutated genes are superoxide dismutase 1 (SOD1), fused in 

sarcoma/translocatd in liposarcoma (FUS/TLS), trans-active response (TAR) DNA 

binding protein (TARDBP), and C9orf72. SOD1 was the first gene discovered to cause 

ALS 5, and is responsible for approximately 20% of familial cases and 1% of sporadic 

cases. Over a hundred mutations of SOD1 have been identified to date, and most are 

inherited in an autosomal dominant manner 6,7.  

 

 



2

Mechanism of SOD1 toxicity in ALS 

SOD1 is an ubiquitously expressed soluble antioxidant enzyme that protects 

against reactive oxygen species through its conversion of superoxide radicals (O2
-) to the 

less oxidizing H2O2 and molecular oxygen. In its native conformation, it is a beta barrel 

homodimer, stabilized by disulfide bonds, and contains a catalytic copper ion and 

structural zinc ion. The copper chaperone for SOD1 (CCS) facilitates copper insertion 

and disulfide bond formation, required for SOD1 maturation and enzymatic function. 

SOD1 is primarily localized in the cytosol, but it can also be found in the mitochondria 8.  

Most cases of SOD1 fALS exhibit an autosomal dominant inheritance pattern. 

The exact molecular pathways by which SOD1 mutations lead to neuronal degeneration 

are unknown. Multiple mechanisms have been proposed, including 1) toxic protein 

aggregation, 2) loss of proteostasis, 3) mitochondrial dysfunction, 4) oxidative stress, 5) 

axonal structure and transport deficits, 6) excitotoxicity and 7) non-cell autonomous 

effects. It is likely that disease results from a complex interplay between these multiple, 

non-mutually exclusive cellular events, but the exact relationships still need to be 

elucidated.  

It is widely accepted that SOD1 misfolding and aggregation plays a key role in 

disease. SOD1 positive protein aggregates are observed in spinal cord post-mortem fALS 

and sALS patient tissue, as well as in SOD1 mouse and cell models 9,10. Most SOD1 

mutations do not cause a loss of enzymatic activity, but instead destabilize the native 

conformation of the homodimer 10-12. This leads to dimer dissociation and the formation 

of monomeric SOD1. Monomeric SOD1 is susceptible to losing the stabilizing zinc ion 



3

and disulfide bridges, and subsequently refolding into non-native oligomers that 

accumulate in the cell 13. These small, misfolded species are selectively enriched in motor 

neurons, and become insoluble aggregates as disease symptoms develop. The aggregates 

associate with soluble oligomers at disease endpoint, as observed in a SOD1G85R mouse 

model 14. It has been postulated that misfolded SOD1 acts in a prion like manner – 

capable of cell-to-cell transmission, and initiation of aggregation of normal cellular 

counterparts. In vitro, misfolded SOD1 proteins are able to propagate from cell to cell, 

and induce aggregation of native SOD1. In vivo, transgenic hSOD1G93A/WT mice develop 

hSOD1 aggregates containing both the mutant and wild type forms of the protein 14-17. 

Additionally, non-genetic perturbations to the structure of wild type SOD1, such as 

oxidation and metal depletion, lead to aberrant conformations and misfolding, and can 

induce aggregation in a manner similar to mutant SOD1. Indeed, wild type SOD1 

aggregates have been found in a subset of SALS patients 9,18. Since specific mutations in 

SOD1 have distinct survival times (SOD1A4V 1 year average; SOD1H46R 18 years 

average), it was postulated that aggregation propensity could be correlated with disease 

duration. However more recent studies suggest this not to be true 19,20. It has also been 

postulated that while the unfolded SOD1 monomers are the toxic species, the aggregates 

have a protective role - sequestering free unfolded SOD1 monomers and reducing their 

concentration in the cell 15. Thus, while protein aggregates are a pathological hallmark of 

SOD1 ALS, it is still unclear if they are disease causing, harmless byproducts, or a 

protective response.  
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Accumulation of SOD1 aggregates in ALS suggests a potential saturation of 

cellular mechanisms responsible for clearing misfolded proteins. Two such responses that 

have been implicated in ALS are proteasomal degradation through the ubiquitin-

proteasome system (UPS) and endoplasmic reticulum (ER) stress activation of the 

unfolded protein response (UPR). Excess misfolded mutant SOD1 overloads the 

proteasome and inhibits its function 21. Similarly, the UPR is normally protective, 

suppressing translation while promoting misfolded ER protein degradation, but its 

prolonged activation leads to apoptotic signaling 22. Transgenic SOD1 mice have 

increased levels of ER stress sensors and chaperones confirming activation of the protein 

degradation mechanisms 23-27. Additionally, mutant SOD1 binds proteins involved in both 

proteasomal 28,29 and ER associated degradation 30, directly impeding their function. In an 

attempt to reduce the protein burden in the cell, the levels of autophagy were increase in 

transgenic SOD1 mice. This led to clearance of the mutant protein and an extension in 

lifespan 31. Interestingly, mutations in proteosome degradation protein UBQLN2 and 

UPR protein VAPB (vesicle-associated membrane protein-associated protein B) have 

also been linked to ALS 32,33, suggesting protein degradation dysfunction as a common 

mechanism of cell death in multiple types of ALS. 

Axonal structure and transport are important for proper motor neuron function. 

Neurofilament is a component of the axonal cytoskeletal, and maintains axon structural 

integrity. Large caliber motor axons in ALS are selectively vulnerable in ALS, potentially 

due to changes in cytoskeletal organization and neurofilament assembly. Studies using 

induced pluripotent cells (iPSCs) from SOD1 patients show that motor neurons 
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selectively exhibit neurofilament aggregation. This is due to mutant SOD1 binding of the 

3’UTR of NF-L mRNA, leading to a decrease in its stability, and thus altered proportions 

of NF subunits 34. A re-establishment of proper neurofilament levels was shown to extend 

the lifespan of ALS mice 35. Mutant SOD1 also binds motor complexes required for 

axonal transport. Subsequently, SOD1 mice have slowed axonal anterograde and 

retrograde transport, and impaired trafficking of mitochondria and cytoskeletal 

components 36,37. This can potentially lead to cell death through energy deficiencies due 

to a lack of mitochondria at the distal synapses, or impaired neuromuscular 

communication. However, ALS mice with intact axonal transport still display motor 

neuron degeneration 38. Mutation in genes leading to neurofilament disruption and 

transport have also been linked to ALS, further supporting this mechanism as a common 

pathway for disease progression39. Axonal transport and cytoskeletal pathology 

contribute to disease progression, but are unlikely primary causes of disease for SOD1-

ALS.  

Mitochondrial swelling and vacuolization has been found in the spinal cord of 

ALS patients and SOD1 mouse models, although it is unclear if changes in this organelle 

are a cause or consequence of neurodegeneration 40,41. Wild type SOD1 is predominantly 

localized to the cytoplasm, but can be imported into the mitochondria 42,43. Due to its 

misfolded shape, mutant SOD1 can become trapped in the mitochondria, and accumulate 

in the intermembrane space and on the outer membrane, altering mitochondrial shape and 

distribution 44,45, impairing its function, and leading to cell death 46. Additionally, 

accumulation in the intermembrane space blocks mitochondrial protein import 47. 
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Mitochondria are responsible for ATP production and calcium homeostasis, and 

dysregulation of both of these processes has been implicated in ALS 47. Specifically, 

SOD1G93A mice display defects in ATP synthesis 48 and lower levels of ATP 49 as well as 

lowered calcium buffering capacity 50. Additionally, ALS patients have excess 

intracellular calcium levels at motor nerve terminals 51. Motor neurons might be 

particularly sensitive to changes in calcium levels due to their need for calcium in action 

potential generation. An increase in mitochondrial calcium buffering in SOD1G93A mice 

led to maintenance of motor neurons, although disease progression was not affected 52. 

Lastly, misfolded SOD1 oligomers could trigger apoptosis through their binding of 

mitochondrial anti-apoptotic proteins such as Bcl-2, causing conformational changes and 

subsequent conversion to a toxic species 53. Given the selective damage and accumulation 

of mutant SOD1 in mitochondria of cells specifically affected in ALS, as well as the 

functional impairments seen in this organelle in both ALS models and patients, it is likely 

that mitochondria play a crucial role in disease pathogenesis.  

Blood and CSF samples, as well as biochemical analysis of post mortem tissue 

samples from SOD1 fALS and sALS patients has revealed signs of oxidative damage 

54,55. It is unlikely that the reactive oxygen species are produced by a lack of dismutase 

activity or an aberrant enzymatic function of mutant SOD1 since a complete lack of 

SOD1 does not cause motor neuron degeneration, and an enzymatically inactive mutant 

SOD1 still causes motor neuron disease 56. However, mutant SOD1 has been shown to 

disrupt regulation of NADPH Oxidase (Nox), and cause its over-activation, leading to a 

persistent production of extracellular superoxide 57. The reactive oxygen species are toxic 
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to cells, and cause microglia activation, which leads to further neuroinflammation 58. In 

fact, activated microglia are found in ALS rodent models before symptom onset 59,60. 

Additionally, mRNA oxidation is commonly seen in ALS patients. SOD1 mice show 

mRNA oxidation primarily in motor neurons and spinal cord oligodendrocytes, and 

decreased translation of these molecules. Interestingly, certain mRNA species are more 

vulnerable to oxidation, including those involves in mitochondrial electron transport 

chain, folding and degradation pathways, and cytoskeleton structure 61. Additionally, 

oxidized wild type SOD1 found in sALS patients displays axonal transport deficits 

similar to those observed in SOD1 ALS 62. Thus, aberrant oxidative damage could be 

affecting other cellular processes, and accumulation of reactive oxygen species could be 

directly contributing to cellular stress, causing the premature neuronal degeneration.  

Another possible mechanism by which SOD1 causes disease pathology is 

thorough glutamate excitotoxicity, a process of neuronal cell death caused by excess 

cellular calcium influx, due to excessive stimulation of glutamate receptors. Some ALS 

patients have raised levels of CSF glutamate, and concentrations correlate with faster 

disease progression 63. Additionally, astrocytes of both ALS patients and mouse models 

show a decrease in the expression and activity of glutamate transporter EAAT2, 

especially in areas affected by neurodegeneration 64-66. The strongest evidence for this 

hypothesis comes from Riluzole, the only approved therapeutic for ALS, which acts by 

inhibiting glutamate release and increasing its uptake 67-69. However, patient survival is 

only increased by a few months, thus deficient glutamate reuptake is likely only one of 

the mechanisms involved in disease progression.  
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Loss of motor neurons is the major driver of disease phenotype although there is 

significant involvement of non-neuronal cells, including astrocytes, oligodendrocytes, 

and microglia 70. Thus, it has been questioned whether motor neuron death is cell 

autonomous – caused by the intrinsic toxicity in neurons themselves; or if it is non-cell 

autonomous – triggered by disease progression in other cell types. Several mouse models 

of SOD1 ALS, as well as multiple in vitro studies have contributed to the understanding 

of mechanism of disease and contribution of different cell types 71-74. Restricting 

expression of mutant SOD1 to specific cell populations has shown that non-cell 

autonomous mechanisms are required for disease progression. Motor neuron restricted 

expression of mutant SOD1 does not cause paralysis 75,76, although there is some 

neurodegeneration when expressed at supraphysiological levels 77. Expression of mutant 

SOD1 in astrocytes (murine SOD1G86R) 78, microglia (hSOD1G93A) 79, or Schwann cells 

(hSOD1G93A) 80 alone does not cause an ALS phenotype. However, delivery of 

hSOD1G93A-derived astrocytes into the cervical spinal cord induces death in neighboring 

motor neurons 81. Skeletal muscle restricted expression of mutant hSOD1G93A also leads 

to motor deficits 82. Thus accumulation of human SOD1 in certain non-neuronal cells, 

such as astrocytes and skeletal muscle, can initiate non-autonomous degeneration of 

motor neurons.  

Studies have also been done to determine the effect of cell specific SOD1 

reduction. Decreasing mutant SOD1 in astrocytes 83, microglia 84, and oligodendrocytes 85 

increases survival, while decreasing mutant SOD1 in Schwann cells decreases survival 86 

of the SOD1 mouse. Decreasing hSOD1 in the hindlimb muscle does not affect disease 
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progression 87. Furthermore, survival is increased when hSOD1G93A motor neurons are 

surrounded by wild types cells, as seen in a chimeric mouse, or after spinal cord 

transplantation of wild type glial cells 88,89. Taken together, these experiments use 

transgenic mice to demonstrate the interdependence of different cell types in disease 

progression.  

The mechanisms of non-cell autonomous motor neuron degeneration are still 

being investigated, and it remains unclear if the primary site of dysfunction is the motor 

neuron itself. Motor neuron death promotes neuroinflammation, causing the recruitment 

and activation of astrocytes and microglia. While this is initially a protective mechanism, 

continuous microglia activation in ALS causes a switch to an inflammatory neurotoxic 

phenotype, potentially through NF-kB activation 90-92. Oligodendrocytes degenerate and 

die early on in ALS progression, and new ones are generated by differentiation of 

oligodendrocyte precursors. However, these newly differentiated cells have compromised 

myelination abilities and are unable to provide metabolic support to motor neurons 93,94. 

Lastly, mutant SOD1 astrocytes have also been shown to be toxic to motor neurons, 

either through the secretion of a soluble toxic factor 95, or through changes in glutamate 

handling, leading to glutamate excitotoxicity 96. In vitro, astrocytes from the SOD1 

mouse or sALS patients are toxic to co-cultured motor neurons 97,98, while iPSC 

SOD1G93A astrocytes induce motor neuron death in wild type rats 81. However, reducing 

mutant SOD1 levels in these cells abrogates the toxicity. Additionally, co-culture studies 

have shown motor neuron death is triggered by fALS or sALS astrocytes through 
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necroptosis 99. Taken together, these studies prove that neighboring cells have a crucial 

role in motor neuron degeneration.  

Although the exact mechanism by which SOD1 causes motor neuron 

degeneration remains uncertain, both cell autonomous and non-cell autonomous 

mechanisms are implicated, and accumulation of misfolded SOD1 has a crucial role. 

 

Mouse model of SOD1 ALS 

Since its discovery in 1993 as the first ALS causative gene 5, SOD1 has been 

studied in multiple in vitro and in vivo models. The SOD1G93A mouse is one of the most 

commonly used models of ALS, due to its reproduction of ALS pathophysiology and 

phenotype. Specifically, the SOD1G93A mouse develops progressive hind limb weakness, 

leading to paralysis and death 100. Histologically, the mouse has ubiquinated aggregations 

of SOD1, inflammation in the spinal cord, denervation of neuromuscular junctions, and 

loss of both upper and lower motor neurons, of the layer V of the motor cortex and spinal 

cord, respectively 100-102. This phenotype is due to the expression of multiple copies of the 

full human SOD1 (hSOD1) gene, containing the G93A mutation 100. The level of 

hSOD1G93A gene expression is directly correlated with disease severity - mice with fewer 

hSOD1G93A transgene copies have a milder phenotype and delayed disease development 

103,104. The observed phenotype is thought to be caused by a gain of function mechanism 

and accumulation of mutated hSOD1 protein, consistent with the autosomal dominance 

inheritance patterns seen in patients. Transgenic mice expressing wild type hSOD1 have 

mitochondrial dysfunction but no paralysis 41. However, transgenic mice expressing 
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higher levels of wild type hSOD1 do develop late onset paralysis and have aggregates of 

the wild type protein 105. This further supports the notion that wild type SOD1 may 

indeed play a role in disease progression, since some sALS patients have SOD1 

aggregates but no SOD1 mutation 9. Furthermore, SOD1-fALS is through to be a gain of 

function mechanism, since hSOD1G93A is enzymatically active, and endogenous mouse 

Sod1 levels are unchanged 106. Additionally, sod1 knock out mice do not have motor 

dysfunction 107. Due to its extensive characterization and reproduction of multiple aspects 

of human disease the SOD1G93A mouse is still one of the best models for testing potential 

therapeutics, especially those aimed at treating SOD1 ALS.  

 

REDUCTION OF GENE EXPRESSION FOR NEUROLOGICAL DISORDERS 

 Dominantly inherited diseases caused by a gain of toxic protein function can be 

treated by reducing the toxic protein levels. This can be done at the protein level itself, by 

using antibodies to bind and remove the protein, or at the mRNA level by utilizing 

antisense oligonucleotides (ASO) and RNA interference (RNAi) to silence gene 

expression 108-110. While each of these methods is effective at reducing protein 

expression, they work through distinct mechanisms, with different advantages and 

disadvantages.  

Monoclonal antibodies have been developed to recognize toxic species in 

neurological diseases, especially misfolded protein that have an aberrant conformation. 

This approach takes advantage of passive immunization, and uses the body’s immune 

system to clear the misfolded proteins. An advantage is that antibodies can be specifically 
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developed against the misfolded conformation, leaving the wild type protein intact 109-111. 

These engineered antibodies can be directly infused into the central nervous system 

(CNS) at multiple times points, or they can be expressed from a viral vector for sustained 

long-term expression110. ASOs are single stranded nucleic acids that bind to a target 

sequence of mRNA. The oligonucleotide-mRNA duplex is recognized and degraded by 

ribonuclease H (RNAse H) 112. Neither monoclonal antibodies nor ASOs can cross the 

blood brain barrier (BBB) without the aid of chemical modification. However, direct 

delivery into the CSF, such as through intrathecal infusion, has been used successfully to 

treat neurological disease in pre-clinical studies 113,114. RNAi uses the endogenous cell 

machinery of post-transcriptional gene silencing to reduce the expression of target 

mRNAs (Figure 1). All of these approaches are effective at silencing gene expression and 

choosing which to use depends on the specific needs of each therapeutic approach.  
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Figure 1. MicroRNA biogenesis and processing of RNAi molecules. The primary 
microRNA (pri-miRNA) is transcribed from the genome and forms a stem-loop structure. 
It next cleaved by Drosha into a pre-microRNA (pre-miRNA) hairpin structure. Exportin 
5 shuttles the pre-miRNA out of the nucleus through the nuclear pore. The pre-miRNA is 
further cleaved by Dicer into the microRNA (miRNA) duplex. One strand of the miRNA 
duplex is preferentially loaded into RISC (guide strand, blue). The activated RISC binds 
complementary mRNAs. Catalytically active Ago2 degrades mRNAs that are perfectly 
complementary to the miRNA seed sequence. The endogenous microRNA pathway can 
be used for therapeutic gene silencing. The different RNAi species (amiRNANA, 
shRNA, and siRNA) mimic endogenous molecules (pri-miRNA, pre-miRNA, miRNA, 
respectively), and are processed in a similar manner at the respective steps of the 
pathway. AAVs can be used to deliver amiRNAs and shRNAs into the nucleus, while 
siRNAs directly enter the cell and are processed in the cytoplasm.  
 

RNA interference is an inherent cellular mechanism used to regulate gene 

expression 115. It uses short double stranded RNA strands processed from endogenously 

expressed transcripts to target complementary cellular mRNA for translational repression 

or degradation 116-119. The double stranded RNA molecules can be transcribed by either 

polII or polIII promoters from independent genomic transcription units, or from the 

introns of protein-coding genes into long stem-loop primary-microRNA transcripts (pri-
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miRNAs) 120-123. These pri-miRNAs are cleaved in the nucleus by the microprocessor 

complex composed of Drosha, an RNAse III enzyme, and DGCR8, a double stranded 

RNA binding protein. This results in a ~60-80nt hairpin structured precursor-miRNA 

(pre-miRNAs), with a two nucleotide 3’ overhang and stem loop 124-126. The pre-miRNA 

is then transported to the cytoplasm though the nuclear pore complex by the nuclear 

export machinery, composed of Exportin-5 and Ran guanosine triphosphate (Ran-GTP) 

123,127,128. Once in the cytoplasm, pre-miRNAs are recognized by another RNAse III 

enzyme, Dicer. Dicer, in cooperation with its partners, transactivation-response RNA-

binding protein (TRBP) and protein kinase R-activating protein (PACT), binds the base 

of the hairpin and cleaves the loop 129-131. The resulting ~22nt RNA duplex consists of the 

antisense guide strand and the sense passenger strand. The guide strand is preferentially 

loaded into the RNA Induced Silencing Complex (RISC) based on 5’ end base pairing 

thermostabilty 118,132,133.   

RISC is a multiprotein complex; key components are the RNA guide strand and a 

catalytically active argonaute protein such as Ago2 134. The RNA guide strand has a 

“seed” sequence at nucleotides 2-8 of its 5’ end, which binds to mRNAs by sequence 

complementarity 135,136. This can be anywhere in the mRNA, but it is usually in the 

3’UTR 137. RISC cleaves perfectly complementary mRNA through the RNAse H like 

PIWI domain of Ago2, or represses translation of imperfectly complementary mRNAs 

primarily through inhibition of translation initiation. 116,138-140. After binding and 

cleavage, the miRNAs are either degraded or recycled 141. This mechanism is commonly 
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used for cellular gene regulation as well as for host defense by degradation of viral 

RNAs117.  

For therapeutic purposes, there are three different species of small RNA targeting 

molecules – short interfering RNAs (siRNAs), short hairpin RNAs (shRNAs) or artificial 

microRNAs (amiRNAs), and each enters the RNAi pathway at different steps 142 (Figure 

1). siRNAs, usually double stranded duplexes or single stranded nucleotides, are 

delivered to the cytoplasm, and processed by Dicer or loaded directly into RISC, 

respectively 143,144. shRNAs and artificial microRNAs can be delivered into the nucleus 

as vector encoded transgenes 145,146. shRNAs have a hairpin structure that is similar to 

pre-miRNA. They do not undergo any processing in the nucleus and are exported out into 

the cytoplasm for cleavage by Dicer and loading into RISC 147. amiRNAs, as the name 

implies, use the backbone of endogenous microRNAs and an artificially designed guide 

strand that is complementary to the gene of interest 148. Thus, amiRNA are processed 

through all the steps of the miRNA pathway 126,149,150. All RNAi species have been 

successfully used for gene silencing in vitro and in vivo 151.   

One of the concerns with using RNAi for gene silencing is toxicity due to 

overexpression of the therapeutic molecule. High levels of expression have lead to 

reports of dose dependent toxicity with the use of U6 promoter expressed shRNAs; the 

toxicity is not specific to the targeting sequence or the tissue types. Both targeting and 

control shRNAs proved toxic when expressed at high levels, both in the liver and the 

brain, in multiple species 152-156. It was hypothesized that high expression levels of RNAi 

molecules lead to saturation of the endogenous RNAi machinery due to competition with 
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endogenous miRNA, as well as subsequent dysregulation of endogenous miRNA 

expression. The rate-limiting factors could be Exportin 5 and Ago2, as their increased 

expression led to an attenuation of the toxicity 152,157. Additionally, even when delivering 

the same amounts of shRNAs, toxicity was directly correlated with guide strand RNA 

levels 154. Multiple studies have shown that reducing guide strand expression reduces 

toxicity.  This has been achieved through the use of weaker promoters, such as Pol III H1 

and Pol II cellular promoters, amiRNA instead of an shRNA, and less effective means of 

gene delivery 146,157-159. In a direct comparison of U6 expressing shRNA and miRNAs, 

the shRNA proved to be toxic and to be disrupting endogenous miRNA biogenesis 146. 

Additionally, even when optimized for identical strand processing, the guide strands of 

shRNA were expressed at higher quantities and were more effective at decreasing target 

mRNA levels 160. Artificial miRNA, which tend to be expressed from cellular pol-II 

promoters, have been used with no reportable toxicity. Thus artificial miRNAs have 

proven to be safe and effective as gene silencing molecules. 

Many Phase I and Phase II clinical trial are ongoing for RNAi therapeutics. 

siRNAs are the most advanced in the clinic, with two ongoing Phase III trials aimed at 

reducing TTR for the treatment of TTR mediated amyloidosis 161. For neurological 

diseases, RNAi molecules are either delivered directly to the CNS by a direct infusion, or 

use a delivery vehicle that can cross the blood brain barrier 162. Although ASOs are not 

RNAi molecules, they also act by targeting mRNA, and have similar delivery 

requirements as siRNAs. ASOs are currently being used in the clinic for neurological 

diseases such as ALS, to decrease expression of SOD1 163. However, both species are 
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transient in nature, and require re-administration for maintenance of therapeutic effect. 

Thus attention has been turned to viral vector delivered RNAi to achieve sustained 

expression of the therapeutic molecules.  

 

AAV GENE THERAPY FOR GENETIC DISEASES 

Gene therapy is a promising option for treatment of diseases driven by gene 

mutations, where the cause is a missing, dysfunctional, or toxic gene product. Viral 

vectors can be used to deliver therapeutic molecules aimed at restoring functional protein 

levels or decreasing the amount of toxic protein. Additionally, a single administration of 

the therapeutic molecule is often sufficient for sustained gene expression. Adeno 

associated virus (AAV) is a commonly used viral delivery vehicle for gene therapy.  

AAV is a small (~22nm), nonpathogenic, nonenveloped, single stranded DNA 

virus. Wild type AAV has a single stranded 4.7kb genome flanked by two hairpin shaped 

inverted terminal repeats (ITRs). Its genome codes for proteins required for replication, 

viral packaging, and capsid assembly 164,165. However, it is replication deficient and it 

depends on either adenovirus or herpes simplex virus for replication 166. The capsid is 

responsible for the tissue tropism of the virus – the residues on the capsid surface bind 

cell surface receptors and co-receptors, leading to internalization into the cell. Thus 

capsid variants can display different tissue tropisms, and retrograde or anterograde 

transport abilities, depending on variations in capsid structure and affinity for specific 

cellular receptors 167-172. Once inside the cell, AAV enters the nucleus, the capsid is 

uncoated and the genome is released 173. Since AAV is a single stranded DNA virus, 
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second strand synthesis takes place, followed by transcription. This is one of the rate 

limiting steps for AAV transduction, and only a small percentage of AAV vector 

genomes become transcriptionally functional 174. Wild type AAV integrates into the host 

genome at a high frequency, with a preference for the AAVS1 site on human 

chromosome 19, although it can also have an episomal persistence 175-177. To date, over 

12 AAV serotypes have been identified from human and nonhuman primate origins, as 

well as over 100 additional genomovars 178,179.  

Due to the non-pathogenic nature and long terms gene expression of wild type 

AAV, recombinant AAV (referred to as AAV throught this manuscript) was developed as 

a gene transfer vector. The wild type AAV genome contains two ITRs flanking genes 

encoding regulatory (Rep) and capids (Cap) proteins, and needs adenoviral helper 

elements to replicate 180. In the recombinant AAV genome, the viral genes are removed, 

and the two ITRs are kept, the only cis elements, required for replication and packaging 

into the capsid 181,182. During packaging, the rep and cap genes, along with the 

adenovirus helper genes, are delivered in trans 183,184. This ensures that no wild type viral 

proteins are packaged into the recombinant AAV. To be used as a gene transfer vector, a 

transgene cassette is inserted between the two ITRs. In single stranded AAVs, the size of 

the transgene cassette is limited to 4.5kb 185. Self-complementary AAVs (scAAV) were 

also developed, to bypass the rate-limiting step of second strand synthesis after nuclear 

localization. This was accomplished by a mutation in the right ITR. Replication continues 

through the mutated ITR generating a dimeric DNA genome. This leads to scAAVs 

having transcriptionally competent dimeric DNA genomes that become active 
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immediately after decapsidation in the nucleus 186. These vectors have more rapid 

transgene expression, but also half the packaging capacity, of 2.3-2.4kb. Unlike wild type 

AAV, recombinant AAV very rarely integrates, instead having a mostly episomal 

persistence in various forms, including circular, linear, and large concatemers 175. Much 

work has been dedicated to vector development since the discovery of AAVs, and 

multiple capsid variants have been developed in the lab, leading to improved transduction 

efficiencies and modulation of tissue tropism profiles 168,187.  

One concern with AAV therapy is the pre-existence or generation of neutralizing 

antibodies. Neutralizing antibodies against wild type AAV naturally exist in humans and 

other large mammals 188. Additionally, recombinant AAVs cause a strong humoral 

immune response, leading to the development of neutralizing antibodies against the 

injected capsid 189. Neutralizing antibodies against the capsid being infused remove the 

AAVs from circulation 190. Studies have shown that administration of the same virus in a 

previously injected animal leads to significantly reduced gene transfer 191. Thus, if re-

administration is necessary, a different serotype must be used. Lastly, an immune 

response to the transgene itself, rather than just the AAV capsid protein, has also been 

observed. Neuronal loss of transduced cells was reported after expression of GFP and a 

therapeutic transgene, when both proteins were novel to the host immune system 192. 

Recent clinical trials with scAAV8 for Hemophilia B have shown that a tapered course of 

prednisolone is sufficient to blunt the immune response to the capsid and allow for long-

term stable gene expression 193. Thus, when considering translation to larger animal 
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models and clinical trials, the effect of the immune response to both the capsid and the 

transgene must be monitored.  

It has been postulated that AAV2 insertional mutagenesis could cause 

hepatocellular carcinoma (HCC). A recent publication discovered the presence of wild 

type AAV2 sequences in several tumor driver genes, in 6% of examined HCCs194. 

Although this study raised potential concerns regarding the pathogenicity of AAV, 

further studies need to be performed in order to definitively establish a causal link 

between AAV2 integration and development of HCC. As mentioned by Berns et al.195, it 

would be informative to know the level of AAV2 antibody in control and case subjects. 

The potential for co-infection with adenovirus or HSV should also be determined, since 

these viruses are known provide helper virus functions for AAV replication166.  

Additionally, the analysis was done for the integration of wild type AAV2. However, 

recombinant AAV, the clinically used therapeutic molecule, has different properties than 

the wild type species. Recombinant AAV has a mostly episomal persistence, with much 

lower integration incidence than wild type AAV177. Additionally, previous animal studies 

using recombinant AAVs have shown the likelihood of integration to be correlated with 

vector dose, and promoter strength, and integration to be preferential to transcriptionally 

active genes196. For this reason, recombinant AAV associated HCCs have only been seen 

after vector delivery to neonatal mice, and has not been reported in adult rodents, dogs, or 

nonhuman primates 197-199. Furthermore, none of the almost 100 clinical trials using 

recombinant AAV have reported development of HCCs 195,200. Nevertheless, the long-

term effects of recombinant AAV administration still need to be monitored.  
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AAV delivery to the CNS 

Initial studies for neurological disorders were performed using intracranial 

injection of AAV into the brain region of interest. Most serotypes will transduce neurons 

at the site of injection, as well as microglia, astrocytes, and oligodendrocytes. However, 

the transduction profiles show differences in cell type preference and expression levels. 

Comparison studies using direct intracranial injections in adult mice have determined that 

AAV5, AAV7, AAV8, AAV9, AAVrh10 are particularly efficient in neurons, while 

AAV5, AAV8, and AAVrh8 are also efficient in astrocytes. Additionally, AAV4 and 

AAVrh8 transduce ependymal cells, while AAVrh8 also transduces oligodendrocytes. 

AAV9 and AAVrh10 also had the largest vector spread from the injection site. 201-205. 

However, direct intracranial injections have limited vector spread beyond the injection 

site, and thus are most effective for diseases where benefit can be achieved when treating 

a specific region.  

The first gene therapy trial for a neurological disease was done for Canavan’s 

disease, a childhood leukodystophy, using AAV2. The missing enzyme, aspartoacylase 

(ASPA), was delivered by six direct intracranial injections, bilaterally in the frontal, 

parietal, and occipital regions of the brain. This trial proved AAV2 to be safe for use in 

humans as a therapeutic vector, but the patients showed only modest phenotypic 

improvement 206,207. All subsequent trials confirmed AAV to be a safe vector, and several 

phase II trials are underway or have been completed with several different serotypes 

(AAV2, AAV5, AAVrh10), for diseases such as Parkinson’s, Alzheimer’s, AADC and 

lysosomal storage disorders 187. However, only mild symptom improvements have been 
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reported in any of these trials, and a full Phase III efficacy evaluation has yet to be 

performed 208. Since almost all of these trials for neurological diseases used direct 

intraparenchymal injections, it is likely necessary to target a larger brain area, rather than 

just the most affected regions for significant phenotypic improvement. Despite recent 

advanced infusion modalities, such as convection-enhanced delivery and microbubble 

facilitated focused ultrasound, widespread CNS distribution has not been achieved 209,210. 

A better approach is needed, especially since most neurodegenerative diseases are 

multifocal, affecting multiple brain regions. 

The discovery of AAV9’s ability to cross the blood brain barrier raised the 

possibility that an intravenous infusion (IV) could achieve global CNS gene transfer 211. 

However, AAV9 transduction patterns are dependent on the age of the animal model and 

the route of delivery. In the initial study by Foust et al. 211,212, intravenous injections of a 

AAV9 in neonate mice resulted in transduction of all CNS cell types, including neurons 

of the spinal cord, neocortex, hippocampus and cerebellum. The same vector injected in 

adult mice had a transduction pattern that was almost exclusively glia and endothelium. 

However, other studies using IV injections in adult mice have observed neuronal 

transduction in the brain and spinal cord 213,214. Systemic administration of AAV9 to adult 

non-human primates resulted in mostly astrocytes transduction, with scattered neuronal 

transduction throughout the brain and spinal cord 214-216, while fetal or neonate injections 

had a neuronal transduction profile 217,218. Thus, systemic AAV delivery is more 

clinically relevant for early childhood neuronal disorders, when a larger number of 
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neuronal populations can be targeted. Direct CSF infusion deliveries have been explored 

to target neuronal populations in adult animal models.   

Intrathecal (IT) injections into the subarachnoid space of the spinal canal are used 

to deliver AAV vectors into the CSF. This method led to successful gene transfer to 

spinal cord motor neurons in both rodent and large animal models 215,216,219,220. However 

widespread gene transfer to the brain was only seen with non-human primates 221. 

Recently, analysis of gene expression from NHPs that had been placed in the 

Trendelenburg position after an IT AAV9 injection revealed transduction of more than 

50% of spinal cord motor neurons throughout the entire spinal cord, as well upper motor 

neurons in layer V of the cortex 222. IT injections are challenging in mice, and do not 

achieve widespread brain transduction. Gene transfer is mostly localized to the injection 

site, with limited vector spread to distal spinal cord regions and the brain 219,221,223 

However, neonate injections into the lateral ventricles result in transduction of motor 

neurons in the spinal cord as well as neurons in the motor cortex 224. Taken together, 

these studies prove the feasibility of widespread AAV transduction of the CNS. 

The current status of AAV gene therapy is very encouraging, with one AAV 

product already approved for clinical use (Glybera) in Europe. The most advanced 

clinical trial to date in the United States is a phase III using AAV2 to deliver hRPE65 for 

Leber Congenital Amaurosis. However, many trials are underway using new generation 

of AAV capsids, such as the use of AAV9 in intramuscular injections for Pompe disease 

or AAVrh10 for Batten’s and Sanfillipo disease 225. Two ongoing trials have reported 

encouraging results. The first trial uses AAV2 to deliver AADC to children via direct 
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intracranial injections into the putamen. This group reported with marked improvements 

in motor function, with no vector associated side effect or loss of treatment effect. 

Impressively, without treatment, these children would be unable to stand, while after 

treatment one patient was learning to walk. The second trial uses a double stranded 

AAV9 to deliver SMA to the CNS of infants, via intravenous infusion. Preliminary data 

from this study has shown the approach to be safe and well tolerated, and a CSF delivery 

of the same vector is being planned.   

 

RNAI-GENE THERAPY FOR ALS 

Gene therapy for ALS is not a new concept, but the availability of new tools, such 

as AAV9, and artificial microRNAs has made AAV mediated RNAi a therapeutic 

possibility. These types of approaches have been tested in the SOD1G93A mouse and other 

ALS animal models, with various degrees of success.  

 Two transgenic mouse model studies showed reduction of hSOD1 as a possible 

therapeutic option. The first 226 crossed mice containing an anti-SOD1 siRNA transgene 

with the SOD1G93A mice, and the double transgenic mice did not develop an ALS 

phenotype. In this study, hSOD1 expression was inhibited in all cells, presumably from 

embryonic development, stopping the production and accumulation of the toxic protein. 

A parallel study 84 used transgenic mice with the mutant hSOD1 transgene flanked by 

loxP sites. These mice were crossed with other transgenic mice expressing Cre under a 

neuronal or microglial/macrophage promoter, leading to the excision of the hSOD1 in 

those cell types. While both mouse lines displayed an increase in survival, elimination of 



25

hSOD1 in neurons delayed onset, while elimination of hSOD1 in glia slowed the disease 

progression. These studies showed early on that although motor neurons are selectively 

vulnerable in ALS, it is important to target multiple cell types to treat disease.  

The largest increase in lifespan in a mouse model was observed with a lentivirus 

delivered shRNA against hSOD1. When delivered at postnatal day 7, into multiple 

muscle groups, survival was increased by 77%, due to a delay in onset only. The muscles 

injected included the hindlimb, to target lower motor neurons, and the facial, tongue, and 

intercostal, since ALS has not only mobility, but feeding and respiration components as 

well. Unfortunately, the multitude of injections in this study made clinical translatability 

unfeasible. It is interesting to note that this study chose injections into the muscle to take 

advantage of the retrograde transport capabilities of their (equine infectious anemia virus) 

EIAV psudotyped lentivirus, and target motor neurons. Thus, it is not surprising that 

while disease onset was delayed, disease progression was not changed, as motor neurons 

are mediators of disease onset not progression 227.  Another study used a lentivirus to 

deliver an shRNA, by two bilateral injections on either side of the lumbar spinal cord, in 

40-day-old mice SOD1G93A mice. Although motor neuron survival was increased by 60%, 

lifespan was only mildly increased 228. Together, these studies further highlight the 

importance of targeting multiple cell types, and the potential involvement of motor 

neurons at multiple levels of the spinal cord.  

The most successful AAV mouse study used an intravenous infusion of a H1 

driven shRNA against hSOD1, encoded in a self complementary AAV9 229. With this 

approach median survival was increased by 39% when delivered to SOD1 mice at 
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postnatal day 1, and by 30% when delivered at postnatal day 21. An intravenous infusion 

of AAV9 is neurotropic when delivered to neonates, but more glia-tropic when delivered 

to older mice 211. Thus, P1 injections resulted in transduction of more motor neurons 

(64%) than glia (34%); and P21 injection resulted in transduction of fewer neurons (8%) 

than glia (54%). Consequently, there was a 60% reduction of hSOD1 protein after the P1 

injections, but only a 45% reduction after the P21 injection. Thus, while an intravenous 

infusion is the easiest delivery method, current AAV vectors are not efficient enough at 

crossing the blood brain barrier in adult mice to transduce the majority of neurons in the 

CNS. 

It has been hypothesized that ALS is caused by a “dying back” mechanism, where 

degeneration starts in the muscles, travels up the axons to the spinal cord motor neurons 

and then up to the neurons of the brain. AAV6 has been shown to efficiently transduce 

skeletal muscle as well as undergo retrograde transport to motor neurons after an 

intramuscular injection 230,231.  Thus, several studies used AAV6 to deliver an shRNA 

against hSOD1 in SOD1 mice. In the first study, Towne et al. 232 injected adult mice 

intravenously, and observed a systemic transduction in skeletal muscle, as well a 50% 

reduction in hSOD1 in transduced tissues. However, less than 5% of motor neurons were 

transduced, and there was a lack of significant hSOD1 reduction in the spinal cord. In the 

subsequent study Towne et al.233 injected AAV6-shRNA into multiple muscle groups of 

neonate SOD1 mice, similar to the EIAV lentivirus study. However this treatment had no 

effect on survival, despite efficient retrograde transport to motor neurons as evidenced by 

the greater than 50% reduction of hSOD1 mRNA levels in those cells. This discrepancy 
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is likely due to the lower number of motor neurons transduced in the AAV6 study 

compared to the EIAV lentivirus study (40% versus >50% in the lumbar spinal cord, 

respectively). In a separate experiment, a shRNA against hSOD1 was delivered by an 

intramuscular injections of a lentivirus or a AAV. Only the AAV was capable of 

retrograde transport. Subsequently, while the same level of hSOD1 reduction was seen in 

the muscle with both treatments, hSOD1 reduction in motor neurons was only observed 

in AAV treated mice. This lead to an improvement in motor function solely in the AAV 

treated SOD1 mouse 87. Thus, a therapeutic strategy aimed at treating just motor neurons 

is not sufficient, and it is possible that a threshold percentage of motor neuron 

transduction is necessary for therapeutic benefit. 

Additionally, a recent study aimed to definitively answer the question as to 

whether neurons or astrocytes alone can be therapeutic targets. AAV vectors encoding 

SOD1-specific artificial microRNAs under cell specific promoters were infused into the 

lateral ventricles of neonate SOD1 mice 234. The infusion with the neuronal promoter 

extended survival by 26% and with the glial promoter by 14%. The combined injection of 

both AAV vectors showed no additional benefit, and was not able to recreate the large 

increase in lifespan seen with the intravenously delivered, ubiquitously expressed 

shRNA. From these studies, it is clear that hSOD1 must be reduced in all cells of the 

CNS, and targeting of only specific subpopulations is not sufficient.  

Recently, more attention has been given to the potential role of upper motor 

neuron degeneration on disease phenotype. Ozdinler et al. 101, showed them to be a cell 

population susceptible to degeneration in SOD1G93A mice. This degeneration is also seen 
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in ALS patients. Following up on this, Thomsen et al. 235 showed that multiple motor 

cortex injections of an AAV-H1-shRNA in a SOD1 rat model improved survival. This 

raised questions regarding the hypothesis that ALS is caused by a “dying back” 

mechanism, since treating the neurons of the CNS resulted in a therapeutic benefit. Thus, 

it is possible that motor neuron death starts concomitantly in at all levels of the CNS.  

Widespread CNS transduction has been achieved in adult non-human primates 

with a AAV intrathecal infusion into the CSF of the lumbar spinal cord. However, this 

delivery method has variable reproducibility in the much smaller mouse model, and only 

limited vector spread is achieved in distal spinal cord regions and in the brain. Wang et 

al. 236 used a AAVrh10 vector encoding an amiRNA against hSOD1, and injected it 

intrathecally into the lumbar spinal cord of adult SOD1G93A mice. This resulted in only an 

11% increase in survival that was directly correlated with the level of transduction of the 

spinal cord. Patel et al. used a similar injection method to deliver a AAV1 encoding a 

single chain antibody against misfolded hSOD1, leading to an increased in survival by up 

to 28%. However, they observed large variations in the survival time of treated mice, 

which directly correlated with antibody titers in the spinal cord 237. Intrathecal injections 

are technically challenging in mice due to their small size, but easily overcome when 

using larger animals, and are feasible in the clinic. This highlights the still unsolved 

problem of widespread AAV delivery to motor neurons in adult mice. 

Thus, this work sought to achieve widespread delivery of an AAV-amiRNA 

against hSOD1 in the CNS of a SOD1G93A mouse model.  We chose an intraventricular 

delivery of AAV9 in neonate mice, since it has been shown to transduce the upper motor 



29

neurons in the motor cortex, the motor neurons at all levels of the spinal cord, as well as 

glial cells 238. Due to the current challenges in achieving widespread CNS transduction in 

adult mice, we believe this delivery route most closely reproduce what is feasible in adult 

non-human primates, and eventually in the clinic. We chose the ubiquitous CBA 

promoter to achieve expression of our artificial microRNA in all cell types, since SOD1-

ALS disease progression involves both neuronal and non-neuronal cells. This proof of 

concept study proves the viability of AAV-amiRNA treatment for treating SOD1-ALS, 

and can be the basis for future non-human primate safety studies and subsequent clinical 

trials.  
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CHAPTER II – RESULTS 

 

An amiRNA is effective at reducing expression of hSOD1 mRNA and protein in vitro and 

in vivo 

We designed an artificial microRNA against hSOD1 (amiRNA) that is perfectly 

complementary to human SOD1 (Figure 2.1A). The amiRNA targets the coding sequence 

of exon 2 of the human SOD1 gene (Figure 2.1A), is based on the Invitrogen Block-iT 

PolII miR vector system originally developed in the laboratory of David Turner (US 

Patent No 2004/0053876), and uses the endogenous murine miR-155 flanking sequences. 

We used two tandem copies of the amiRNA in our constructs for increased efficiency. 

The full tandem sequence is as follows, with the guide strand underlined: 

CCTCTTGCTGAAGGCTGTATGCTGATGAACATGGAATCCATGCAGGTTTTGGC

CACTGACTGACCTGCATGGTCCATGTTCATCAGGACACAAGGCCTGTTACTAG

CACTCACATTGGCCCAGATCCTCTTGCTGAAGGCTGTATGCTGATGAACATGG

AATCCATGCAGGTTTTGGCCACTGACTGACCTGCATGGTCCATGTTCATCAGG

ACACAAGGCCTGTTACTAGCACTCACATTGGCC. In order to facilitate loading into 

Dicer, two nucleotides are missing from the passenger strand, creating a bulge. The 

folded pre-miRNA is shown in Figure 2.1B.   
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Figure 2.1. The amiRNA is perfectly complementary to human SOD1. A) The 
amiRNA is perfectly complementary to the coding region of human SOD1 in exon 2, but 
has four base pair mismatches to mouse SOD1, indicated in red. B) The stem-loop 
structure of the artificial microRNA used in this study, designed based on the murine 
miR-155, has two nucleotides missing in the passenger strand.   
 

We first tested the amiRNA in vitro by transfecting human embryonic kidney 

(HEK293T) cells, and observed an 80% reduction in hSOD1 mRNA as measured by RT-

qPCR and a 35% reduction in hSOD1 protein as measured by immunoblot (Figure 2.2A). 

Our therapeutic construct has a chicken beta acting (CBA) promoter driving a green 

fluorescent protein (GFP) expression cassette, with two tandem copies of the amiRNA 
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cloned in the 3’UTR, between the GFP stop codon and the Woodchuck Hepatitis Virus 

Posttranscriptional Regulatory Element (WPRE) and is packaged into a single stranded 

AAV9 (Figure 2.2D). We tested it in vitro by infecting HEK293T at two different doses, 

and observed a greater than 90% reduction in hSOD1 mRNA (Figure 2.2B). We then 

tested it in vitro in adult SOD1G93A mice by an intravenous infusion. AAV9 has high 

transduction of the liver after an intravenous infusion, thus we analyzed hSOD1 

expression levels in this organ. Again, we observed very efficient reduction in both 

hSOD1 mRNA (>95%) and protein (80%) (Figure 2.2C). Lastly, we validated the 

efficiency of our vector in the CNS by directly injecting the striatum of adult SOD1G93A 

mice. We observed an almost 70% reduction in hSOD1 mRNA when measured in a 

tissue punch of the GFP positive brain region (Figure 2.2C).   
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An AAV9-GFP injection into the ventricles of neonate mice results in transduction of 

multiple cell types of the CNS 

We first analyzed the CNS transduction profile of a ssAAV9-GFP vector injected 

into the lateral ventricles of neonatal SOD1G93A mice at a total dose of 1x1011 vector 

genomes, to determine if it is an appropriate delivery route for targeting upper and lower 

motor neurons.  Analysis of GFP expression at four weeks post-injection revealed 

transduced neurons in the motor cortex and ventral horn of the spinal cord (Figure 2.3, 

arrows). Based on location, size, and morphology, many of these GFP+ neurons are layer 

V cortical (Figure 2.3A) and spinal cord motor neurons (Figure 2.3B). It also appears that 

astrocytes or microglia were transduced in the spinal cord (Figure 2.3B, arrowhead), as 

gauged by the morphology of the cells and the lack of GFP/NeuN co-localization. This 

pattern of targeting (cortical and spinal motor neurons, glial cells) corresponds to the cell 

types most affected by ALS.   
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Figure 2.3. A single neonate ICV injection of AAV9-GFP transduces neurons in 
motor cortex and spinal cord. Immunofluorescence staining of brain (A) and spinal 
cord (B) sections with antibodies to GFP and NeuN revealed broad neuronal 
transduction. Boxes indicate locations of magnified regions. Arrows indicate double 
labeled cells. Arrowhead indicates non-neuronal transduced cells. Scale bars, 25µm brain, 
50µm spinal cord  
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An AAV9-amiRNA injection into the ventricles of neonate mice results in a decrease of 

hSOD1 gene expression 

We investigated the therapeutic effectiveness of our vector by injecting SOD1G93A 

mice at post-natal day 0-1 (P0-P1) and quantified hSOD1 mRNA levels at four weeks 

post injection (Figure 2.4). Human SOD1 mRNA levels in spinal cord were reduced up to 

50% with no significant difference between cervical, thoracic, and lumbar regions. In 

peripheral tissues, hSOD1 mRNA levels were reduced by more than 80% in heart and 

gastrocnemius muscle, but were unchanged in liver or lung. We also analyzed the levels 

of mouse SOD1 mRNA and found no changes in the thoracic spinal cord. This was 

expected, since amiRNA was designed to be human specific with four mismatches to the 

mouse SOD1 mRNA (Figure 1.2A).  
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We also measured the number of copies of the mature guide strand of the 

amiRNA, in injected SOD1G93A mice at four weeks post injection, and at endpoint. There 

was not a significant difference in guide strand presence at the two time points (Figure 

2.5B).  
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We also analyzed changes in hSOD1 mRNA levels in AAV9-transduced upper 

and lower motor neurons using multiplex fluorescent in situ hybridization (RNAscope). 

This technique provides detailed spatial information on changes in hSOD1 mRNA in 

specific cell populations such as spinal cord motor neurons and layer V upper motor 

neurons, identified with probes specific for ChAT (choline acetyl transferase) or Etv1 (ets 

variant 1) 239, respectively  (Figure 2.6). The intensity of hSOD1 mRNA signal was 

considerably reduced in cells expressing GFP mRNA both in motor cortex (Figure 2.6A) 

and spinal cord (Figure 2.6B). Furthermore, co-localization of GFP mRNA signal with 

probes specific for Etv1 and ChAT mRNAs confirms the transduction of both layer V 

cortical neurons (Figure 2.6A, arrows) and spinal cord motor neurons (Figure 2.6B, 

arrows) in AAV9-injected mice. Non-transduced ChAT-positive neurons (GFP-negative) 

show strong hSOD1 mRNA signal (Figure 2.6B, arrowhead).  
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Figure 2.6. AAV9-amiRNA treatment reduces SOD1 mRNA expression in 
transduced cortical and spinal cord motor neurons. Multiplex fluorescent in situ 
hybridization was used to assess changes in human SOD1 mRNA at the cellular level in 
brain and spinal cord of AAV9 treated and untreated SOD1G93A mice at 4 weeks of age. 
Probes for GFP (green), and human SOD1 mRNA (magenta) were multiplexed with 
probes to genes in cortical (Etv1) or spinal cord (ChAT) motor neurons (cyan). Cells 
expressing GFP mRNA, indicating transduced cells, had reduced levels of hSOD1 
mRNA, in both the brain (A) and spinal cord (B). Arrow indicates AAV9 transduced 
cells with reduced hSOD1 mRNA signal. Arrowhead indicates non-transduced cells, 
lacking GFP mRNA, and retaining high SOD1 mRNA signal in the spinal cord. Scale 
bars, 10 µm (A) and 25 µm (B). 
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AAV9-amiRNA treatment improves survival and delays the onset of paralysis in 

SOD1G93A mice  

Based on the initial indications of efficient reduction of hSOD1 mRNA in upper 

and lower motor neurons we next assessed the therapeutic benefit of neonatal ICV 

injection of AAV9-amiRNA vector in SOD1G93A mice. We injected the therapeutic vector 

into the cerebral lateral ventricles of 22 neonatal ALS SOD1G93A mice. As controls, we 

used 18 untreated SOD1G93A mice, 12 treated NTG B6/SJL mice and 12 untreated NTG 

B6/SJL mice. Four mice from each group were sacrificed for histological and 

biochemical studies at 135 days, the median age of survival of untreated SOD1G93A mice. 

The remaining eighteen AAV9 treated SOD1G93A mice were followed until euthanized at 

endpoint. AAV9 treated and untreated NTG B6/SJL mice (8 per group) were euthanized 

at 260 days, well past the age of the longest surviving treated SOD1G93A mouse.  

Histological and biochemical studies were performed in tissues from AAV9 treated 

SOD1G93A mice at endstage and NTG controls at 260 days. 

AAV9-amiR treatment extended median survival by 50%, from 137 days for 

untreated SOD1G93A mice to 206 days (p<0.0001; Figure 2.7A). Untreated SOD1G93A 

mice usually show clear signs of hind limb paralysis by 135 days (Movie 2.1A), and are 

considered at endpoint when they are unable to right themselves. Unexpectedly, AAV9 

treated SOD1G93A mice did not die from paralysis but instead were euthanized due to 

rapid weight loss and the development of kyphosis, or a hunched appearance (Figure 

2.7B, Movie 2.1B, >200 days). Up to that point, mice were fully ambulatory (Movie 

2.1C, 198 days); and even at endpoint, treated mice remained active and continued to 
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display behaviors that required considerable limb strength, such as rearing and hanging 

from the wire food hopper (Movies 2.1D, >200 days). 
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In addition to observing the mice for limb paralysis, we also assessed 

neuromuscular function in AAV9 treated SOD1G93A mice and controls at different ages 

using quantitative electrophysiological measures 240,241. Needle electromyography (EMG) 

assesses several critical muscle parameters including the presence of fibrillation 

potentials and the amplitude of the compound muscle action potential. The results were 

scored as 0 being normal to 5 being highly abnormal. The EMG scores of NTG control 

animals were zero while untreated SOD1G93A animals scored in the 3 to 5 range, 

corresponding to extensive acute muscle denervation (Figure 2.8A). In contrast AAV9 

treated SOD1G93A mice scored 0 to 2 throughout the experiment. The scores of 2 were 

evident in only a subset of AAV9 treated SOD1G93A mice and only at older ages. Even at 

the latest time point analyzed (ranging from 207 to 242 days), some AAV9 treated 

SOD1G93A mice had normal EMGs (scored zero).  

We further assessed neuromuscular function by estimating the number and sizes 

of motor units 242. AAV9 treated SOD1G93A mice maintained a normal number of motor 

units, and only a few mice, which had scored 2 on the EMG scale, showed a decrease at 

older ages (Figure 2.8B). We also quantified the motor unit size, which corresponds to 

the number of muscle fibers innervated; in ALS, this parameter can be a measure of 

axonal collateral re-innervation, which increases as motor neurons degenerate. Untreated 

SOD1G93A mice showed an increase in motor unit size compared to NTG controls while 

AAV9 treated SOD1G93A mice maintained a normal motor unit size (Figure 2.8C). These 

quantitative measures of neuromuscular function were consistent with the absence of 

overt signs of paralysis in AAV9 treated SOD1G93A mice. 
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Figure 2.8. AAV9-amiRNA treatment improves neuromuscular function of 
SOD1G93A mice. Electrophysiological recordings revealed preservation of motor neuron 
function in AAV9 treated SOD1G93A mice as assessed by (A) needle electromyography 
scores, (B) number of motor units, and (C) motor unit size.  
 

In ALS the most frequent cause of death is respiratory failure resulting from 

denervation of the diaphragm and the chest wall muscle.  We therefore assessed 

pulmonary function on awake, spontaneously breathing animals. At 127 days, AAV9 

treated and untreated SOD1G93A mice had greater minute ventilation (MV) than NTG 

mice (p<0.05).  However, when subjected to a respiratory challenge using hypercapnia 

AAV9 treated and untreated SOD1G93A mice had a significantly attenuated MV response 

compared to NTG controls (p<0.001). By day 192, the AAV9 treated SOD1G93A mice had 

a further decline in their MV response to the respiratory challenge compared to the day 

127 recordings (p<0.05). Figure 2.9 illustrates the absolute change in MV (Figure 2.9A) 

and peak inspiratory flow (PIF) (Figure 2.9B) during hypercapnia relative to baseline in 

each group.  PIF is a primary measurement of respiratory muscle strength, specifically of 

diaphragm strength; progressive diaphragm weakness seems likely in AAV9 treated 

SOD1G93A mice since PIF values declined with age. Additionally, chest computerized 
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tomography (CT) scans of > 200 day old animals showed decreased chest volume in 

AAV9 treated SOD1G93A mice compared to NTG controls (Figure 2.9C). Chest volume is 

a measure of the distortion of the chest wall due to kyphoscoliosis, and the decrease is 

indicative of physical lung restriction.  

 

 

Figure 2.9. AAV9-amiRNA treated SOD1G93A mice display evidence of pulmonary 
dysfunction at endpoint. Plethysmography recordings show a drop in response to 
hypercapnea in both (A) minute ventilation (MV) and (B) peak inspiratory flow (PIF) in 
both AAV9 treated and untreated SOD1G93A mice when compared to age matched NTG 
mice, indicating breathing impairment due to diaphragm dysfunction. *p<0.05, 
**p<0.001. Near the humane endpoint there is a significant decrease in (C) chest volume 
of AAV9 treated SOD1G93A compared to NTG mice. *p<0.05 
 

AAV9-amiRNA treatment improves axonal integrity and surviving motor neuron numbers 

in SOD1G93A mice  

Next we evaluated axonal integrity in the sciatic nerve and ventral roots of the 

lumbar spinal cord as gauged by fiber morphology and distribution of fiber sizes. On 

comparing the sciatic nerves of end-point (EP) untreated SOD1G93A mice, AAV9 treated 

and NTG mice at 135 days of age, we observed extensive axonal loss in untreated 
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SOD1G93A mice, while the sciatic nerves of AAV9 treated SOD1G93A and NTG mice were 

indistinguishable (Figure 2.10A). We also analyzed lumbar ventral roots, which are 

composed solely of motor axons; it is well documented that the large caliber alpha axons 

degenerate in the ventral roots of ALS patients and SOD1G93A mice 243-246. We observed 

this degeneration in untreated SOD1G93A mice when compared to NTG mice as denoted 

by a shift in axonal size distribution towards small caliber axons (Figure 2.10B,C). The 

distribution of ventral root axon size in AAV9 treated SOD1G93A mice at endpoint is 

intermediate between that in untreated SOD1G93A and NTG mice. The numbers of large 

and small diameter fibers in the ventral roots of AAV9 treated SOD1G93A mice differs 

statistically from untreated SOD1G93A mice and NTG controls (Figure 2.10C). Thus, 

treated mice display remarkable preservation of axonal integrity.  
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Figure 2.10. AAV9-amiRNA treatment preserves axons in sciatic nerve and lumbar 
ventral roots. A) Cross sections of sciatic nerves of untreated SOD1G93A mice at 
endpoint were compared with AAV9 treated SOD1G93A and NTG mice at 135 days. 
Representative toluidine blue stained sections show degeneration only in untreated 
SOD1G93A mice. Scale bar, 25µm. B) Ventral roots of untreated SOD1G93A mice were 
compared with treated SOD1G93A mice at their respective endpoints, and NTG mice at 
260 days. Representative toluidine blue stained sections are shown for all groups. C) 
Quantitative analysis of ventral root axon fiber distribution in SOD1G93A mice shows loss 
of large diameter fibers with a shift toward small diameter fibers compared to NTG mice. 
Treated SOD1G93A mice displayed a fiber distribution pattern between untreated NTG and 
SOD1G93A mice. All mice were compared with NTGs. *p<0.05, **p<0.01, ****p<0.001 
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ALS has been described as a dying back neuropathy, a term that implies greater 

distal than proximal peripheral nerve degeneration.  We therefore also assessed the 

integrity of neuromuscular junctions (NMJ) of the gastrocnemius in all cohorts. AAV9 

treated SOD1G93A mice at the humane endpoint revealed variable degrees of mild NMJ 

denervation, and overall distinctly less disorganization than detected in untreated 

SOD1G93A mice (Figure 2.11). 

 

 
 
Figure 2.11. AAV9-amiRNA treatment preserves neuromuscular junctions. NMJs 
were analyzed in AAV9 treated and untreated SOD1G93A mice at their respective 
endpoints and in NTG mice at 260 days. Immunofluorescence staining with antibodies 
against neurofilament-200 (green) and α-bungarotoxin (magenta) revealed disorganized 
neuromuscular junctions in untreated SOD1G93A at endpoint. AAV9 treated SOD1G93A 

mice had variable degrees of NMJ denervation, depending on the animal and NMJ 
analyzed. Scale bar, 10µm; 
 
 

We also quantified the number of motor neurons in the ventral horn of the lumbar 

spinal cord at endpoint by counting ChAT+ neurons. The end stage spinal cords of 

untreated SOD1G93A mice had a significant reduction in the number of ChAT+ neurons 

compared to control NTG mice (p<0.005; Figure 2.12A). In contrast, there was no 

statistical difference between end stage AAV9 treated SOD1G93A and NTG mice (Figure 
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2.12C). To account for the possibility that we were including ChAT+ neurons 

compromised by the disease we also quantified numbers of motor neurons using a Nissl 

stain (Figure 2.12B). Stained cells in the ventral horn with a cell body area >250 µm2 

were considered motor neurons 247. This method also showed a significantly higher 

number of motor neurons in AAV9 treated SOD1G93A mice compared to untreated 

SOD1G93A mice, albeit lower than in control NTG mice (Figure 2.12B,D). Thus, with the 

ChAT+ stain we counted all motor neurons, regardless of status of degeneration, while 

with the Nissl stain we counted only healthy motor neurons. This confirms that our AAV 

treatment dramatically preserved motor neurons, and slowed their degeneration.  
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Figure 2.12 AAV9-amiRNA treatment improves survival of spinal cord motor 
neurons. Untreated SOD1G93A mice were compared with AAV9 treated SOD1G93A mice 
at their respective endpoints, and NTG mice at 260 days. Immunostaining for ChAT 
positive motor neurons (A) and Nissl-positive neurons (B) of the lumbar spinal cord 
showed significant preservation of motor neurons in treated mice when compared to 
untreated mice. Scale bar, 50 µm. Motor neurons were quantified, defined as either 
ChAT-positive cells (C) or Nissl-positive cells larger than 250 µm2 (D), in the ventral 
horn of the lumbar spinal cord. **p<0.001, *p<0.005  



53

 
Recently it has been shown that upper motor neurons undergo degeneration in 

SOD1G93A mice 101 as seen in human ALS. Therefore we analyzed the motor cortex of 

mice in all three cohorts for the presence of layer V motor neurons identified by 

immunofluorescence staining with a Ctip2 (COUP-TF-Interacting Protein 2) specific 

antibody 101,248. A qualitative assessment suggests that there are lower numbers of 

neurons in the untreated SOD1G93A mice at endpoint compared to NTG mice, and that 

AAV9 treatment had a modest impact on the survival of cortical layer V motor neurons. 

Thus, although a large number of cortical neurons were transduced, it was not sufficient 

to fully protect the whole layer V neuronal population (Figure 2.13).  

 
 

 

Figure 2.13 AAV9-amiRNA treatment improves survival of corticospinal motor 
neurons. Immunostaining for Ctip2 positive neurons of motor cortex showed 
preservation of neurons in treated mice when compared to untreated mice. Dotted lines 
represent region of layer V neurons. Scale bar, 100 µm. 
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AAV9-amiRNA treatments delayed onset of inflammation in the spinal cord of SOD1G93A 

mice  

Motor neuron death in both human and mouse ALS is accompanied by a 

neuroinflammatory process, characterized by activation of astrocytes and microglia. We 

assessed the levels of inflammatory markers in the lumbar spinal cord of our ALS mouse 

cohorts. The AAV9-mediated silencing of hSOD1 in the SOD1G93A mice markedly 

delayed the onset of microgliosis and astrocytosis (Figure 2.14). The spinal cord of 

AAV9 treated SOD1G93A mice at 135 days of age showed a marginal increase in activated 

Iba1+ microglia (Figure 2.14A) and GFAP+ reactive astrocytes (Figure 2.14B) compared 

to NTG control animals at 260 days. A considerable increase in these markers was 

apparent by the humane endpoint (median age 206 days) of AAV9 treated SOD1G93A 

mice, but perhaps to a lower extent than observed in untreated SOD1 mice at their 

endpoint (median age 137 days).  To validate these observations using a quantitative 

assay, we performed RT-qPCR for genes up-regulated in activated microglia (Tyrobp, 

Cybb) 249 and reactive astrocytes (GFAP) 250. All three genes were significantly increased 

in the spinal cord of untreated SOD1G93A mice at endpoint, but only mildly increased in 

AAV9 treated SOD1G93A animals at 135 days of age. However, treated and untreated 

SOD1G93A mice had comparable levels of inflammatory markers at their respective 

human endpoints. The expression levels of these three genes were unchanged by AAV 

treatment of NTG animals (Figure 2.14C). 
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Figure 2.14. AAV9-amiRNA treatment delays the onset of spinal cord inflammation 
in SOD1G93A mice. The presence of inflammatory markers in the spinal cord of AAV9 
treated SOD1G93A mice at 135 days and humane endpoint (EP) was compared to that in 
untreated SOD1G93A also at their humane endpoint (EP), and NTG mice at 260 days of 
age. Immunohistochemistry for Iba1, a marker for activated microglia, (A) and for 
GFAP, a marker for astrogliosis (B), showed mild changes in AAV9 treated mice at 135 
days but a strong increase in these histological markers at endpoint. (C) RT-qPCR 
analysis of genes up-regulated in activated microglia (Tyrobp, Cybb) and reactive 
astrocytes (GFAP) confirmed the histological findings. All mice were compared to 
SOD1G93A untreated mice. Dotted line represents age matched untreated NTG mice at 
260 days. Scale bar, 100 µm, **p<0.005 
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Treatment of neonate SOD1G93A mice with an AAV9-amiRNA successfully delays all 

symptoms of disease 

 Our single stranded AAV9-CBA-amiRNA-WPRE therapeutic construct was 

successful at reducing hSOD1 mRNA and protein expression both in vitro and in vivo. 

This resulted in a 50% increase in lifespan of treated mice with our therapeutic approach. 

At the median age of euthanasia of untreated SOD1G93A mice (~135 days), AAV9 treated 

mice were almost indistinguishable from NTG mice. Additionally, AAV9 treated mice 

showed a delay in paralysis, as determined by visual observations, and electromyography 

recordings. However, although at that age AAV9 treated mice had normal looking sciatic 

nerves, there were already signs of inflammation in the spinal cord. Untreated SOD1G93A 

mice were euthanized due to hind limb paralysis, but treated mice were euthanized due to 

a sudden and rapid weight loss and development of kyphosis. This is likely due to an 

extrinsic restrictive pulmonary phenotype. Kyphoscoliosis, which results from axial 

muscle weakness, is known to disrupt the chest wall architecture and disturb the 

mechanics of respiratory muscle function.  This phenotype is similar to that seen in ALS 

patients, but was previously unseen in SOD1G93A mice due to the earlier death due to 

paralysis. In fact, AAV9 treated mice maintained good motor function, as indicated by 

visual observation, and supported by maintenance in the number of upper and lower 

motor neurons and integrity of neuromuscular junctions and ventral roots. Surprisingly, 

the levels of inflammatory markers in the spinal cord of treated and untreated mice were 

not significantly different at their respective endpoints. This indicates that our treatment 

was successful at slowing down, but not halting, disease progression.  
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CHAPTER III – DISCUSSION 
  

In this work we show that using AAV9 delivered artificial microRNAs to silence 

hSOD1 is a viable gene therapy approach for SOD1-ALS, as validated in the SOD1G93A 

mouse model. In this mouse model ALS is caused by an accumulation of mutant hSOD1 

protein. Thus, for our therapeutic approach, we wanted to decrease the amount of mutant 

hSOD1 protein being made. Artificial miRNAs have been shown to successfully decrease 

mRNA expression in vivo. Additionally, AAV viral vectors are good gene delivery 

vehicles for ALS due to their ability to transduce all cells types involved in the disease, 

including upper (corticospinal) and lower (spinal cord) motor neurons, as well as 

astroglia, oligodendrocytes, and skeletal muscle. Several studies have used lentivirus or 

AAV delivered RNAi molecule against hSOD1 for treating SOD1-ALS with various 

degrees of success 227-229. However we were the first to use an AAV vector and delivery 

route that targeted both upper and lower motor neurons, astrocytes and skeletal muscle. 

Reducing hSOD1 mRNA expression in all these cell types led to a 50% increase in 

survival and almost complete delay of paralysis in the SOD1G93A mouse model. This is 

the largest survival achieved to date with AAV gene therapy. 

Multiple studies have used viral vectors to deliver an RNAi species aimed at 

reducing hSOD1 mRNA expression in the SOD1 mouse model. Some of the most 

successful thus far used a lentivirus-shRNA delivered intramuscularly at P7 (77% 

extension in median lifespan), an AAV9-shRNA delivered intravenously at P1 (39% 

extension in median lifespan), and an AAV6-amiRNA delivered intravenously at P1 
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(26% extension in median lifespan) 227,229,234. These studies successfully delivered a 

therapeutic RNAi species to different cell population in the CNS. The intramuscular 

lentivirus study used retrograde transport to target both skeletal muscle and their 

innervating motor neurons. The intravenous study used AAV9 to cross the blood brain 

barrier and transduce spinal cord motor neurons as well as other non-neuronal cells. The 

intraventricular AAV6 study used direct CSF delivery to target both upper and lower 

motor neurons. In our study we used a AAV9 vector containing an artificial microRNA 

against hSOD1, expressed from the CBA promoter, and delivered it into the lateral 

ventricles of neonate SOD1G93A mice. We used the direct CSF intraventricular infusion of 

AAV9 for widespread CNS delivery, AAV9 to for its superior transduction properties, 

and the ubiquitous CBA promoter for broad gene expression in neuronal and non-

neuronal cell populations. With this approach, we achieved a 50% increase in median 

survival of our mouse model. Additionally, the AAV9 treated SOD1G93A mice in our 

study remained fully ambulatory up to end stage and were euthanized due to rapid weight 

loss and the development of progressively worsening kyphosis (hunched posture) rather 

than the usual limb paralysis. We believe the success of our approach is due to 

simultaneous reduction of hSOD1 in upper motor and lower motor neurons, as well as in 

non-neuronal cells of the spinal cord, and in skeletal muscle; as well as the specific 

design of our targeting cassette. 

Recent work has shown progressive degeneration of upper motor neurons in 

SOD1G93A mice to be a major contributing factor to the paralysis phenotype. Ozdinler et 

al. 101 showed that upper motor neurons in layer V of the motor cortex degenerate in the 
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SOD1G93A mouse. Thomsen et al. 235 injected a AAV9-shRNA directly into the motor 

cortex of adult SOD1 rats, to selectively silence hSOD1 in cortical but not spinal motor 

neurons. This led to an extension in survival of 20 days, demonstrating the importance of 

targeting this neuronal population. Our intraventricularly injected AAV9-amiRNA 

transduced the layer V motor neurons in the cortex and in situ hybridization revealed a 

considerable reduction of the hSOD1 mRNA in transduced cells. This led to increased 

preservation of these neurons in our treated mice.  

The presence of hSOD1 in non-neuronal cells is important for disease progression 

and multiple studies have shown that motor neurons are selectively vulnerable to 

astrocyte-mediated toxicity 71. Several studies have shown that reduction of hSOD1 

specifically in astrocytes leads to an increase in survival, in multiple SOD1 mouse 

models 83,84. Additionally, delivery of hSOD1 carrying astrocytes is toxic to motor 

neurons, both in vivo and in vitro 95,97,98. An increase in astrocytosis is also associated 

with SOD1 astrocyte driven disease progression 81. We observed some GFP positive 

astrocytes in the spinal cord after a neonate intraventricular injection of our AAV9-GFP 

vector. We also observed a delay in astrocytosis in the SOD1G93A mice treated with our 

AAV9-amiRNA, although it is difficult to determine if that is specifically due to a 

decrease of hSOD1 in astrocytes.  

 Skeletal muscles have also been implicated in disease progression. Our 

intraventricular injection delivers vector into the CSF, but there is leakage into the 

periphery, and transduction of peripheral organs. AAV9 is known to transduce skeletal 

muscle at high efficiency, and accordingly we noted significant reduction of hSOD1 
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mRNA in the gastrocnemius. Reduction of mutant hSOD1 in the muscle has not been 

shown to have a significant effect on motor function 87, although expression of mutant 

SOD1 in muscle alone leads to motor impairment by causing neuromuscular junction 

dysfunction 77,82. Thus, while this reduction is unlikely to be a principal component of 

increased survival in our study, it likely plays a role, especially since most of our mice 

displayed no obvious signs of paralysis.  

While previous studies used AAVs to deliver therapeutic RNAi molecules, none 

of them achieved widespread distribution throughout the CNS and periphery. IV infusion 

of AAV9 into neonate mice, such as the Foust et al. 229 study, transduce peripheral organs 

and a large number of motor neurons in the spinal cord, but not in the cortex. However, 

delivery of the same vector into older mice leads to a loss of neuronal transduction and an 

increase in non-neuronal cell transduction. Similarly, intrathecal injections in adult mice 

can transduce the spinal cord, but not cortical motor neurons 219. Additionally, studies 

using this type of delivery method have shown significant inter-animal transduction 

variations 236,237. The study using intramuscular lentiviral injections used the vector’s 

ability to undergo retrograde transport, and transduce the motor neurons, but only those 

neurons innervating the injected muscles 227. Lastly, although Dirren et al. used a 

neonatal intraventricular delivery approach, they transduce very few neurons in the cortex 

with their AAV6 vector driving GFP expression from the CMV promoter 251. Is apparent 

from these previous studies that treatment of either upper or lower motor population 

alone is beneficial, but not sufficient to substantially affect the course of disease 

progression. Thus, the significant increase in survival and delay in paralysis we achieved 
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with our AAV injection is primarily due to the widespread reduction of hSOD1 in both 

upper and lower motor neurons. 

Additionally, several design features in our AAV9 vector may account for its 

efficacy, such as the use of the CBA promoter or the presence of a WPRE element in the 

vector-derived mRNA. We chose the strong ubiquitous CBA promoter to achieve 

expression of our amiRNA in all cell types. It is interesting to note that the two previous 

studies with the largest increase in survival both used the strong and ubiquitous H1 

promoter to drive shRNA expression. These studies suggest that high levels of expression 

of the RNAi molecule are required in multiple cell types to achieve a strong therapeutic 

effect. While we do not use a strong polIII promoter, we have both an enhancer and a 

chimeric intron flanking the basic chicken beta actin promoter, as well as a WPRE 

element. These features have been shown to enhance transgene expression 252. 

Additionally, we used the murine pre-miRNA155 backbone in the design of our artificial 

microRNA. The exact contribution of each element in our vector remains to be 

determined, and future modifications should maintain a high enough level of expression 

for efficacy, yet not cause toxicity.  

Cell-specific promoters could be used to determine the exact contribution of each 

cell type in our therapeutic approach. However, since the CBA promoter is ubiquitously 

expressed, it would be challenging to assess every cell type that could be contributing, 

especially given the heterogeneous nature of astroglial cells. Cell specific promoters 

could also lead to different expression levels than with the CBA promoter. Furthermore, 

it is most likely that the therapeutic effect is a due to simultaneous expression in multiple 
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cell types. Testing this would require the use of combination of vectors with cell-specific 

promoters. This would also be challenging, since both volume and quantity of vector 

genomes have an effect on the spatial distribution of the vectors. Thus, such studies may 

end up raising more questions regarding the contribution of different cell types to the 

therapeutic effect. 

While we achieved significant survival improvement with our AAV9-amiRNA 

vector, the question still remains as to why were not able to cure the SOD1G93A mice. The 

electrophysiological recordings for the AAV9 treated animals remained within normal 

range until end-stage, when only a few mice showed evidence of mild motor dysfunction. 

Additionally, an increase in spinal cord inflammatory markers and decreased motor 

neuron counts in AAV9 treated SOD1G93A mice at endpoint indicated that disease was 

still progressing although with delayed onset. This could be a result of 1) an insufficient 

decrease in the level of mutant hSOD1 expression in transduced cells, 2) an insufficient 

number of transduced cells to completely prevent disease onset 3) an insufficient 

transduction of specific cell types, such as astrocytes. The identity of transduced cells is 

particularly important for SOD1 ALS, where there is a strong non-cell autonomous 

effect. Transplantation of a small number of SOD1G93A astrocytes into the spinal cord of 

normal animals is sufficient to cause motor neuron death 81. Additionally, recent work 

with co-culture models shows that SOD1 containing astrocytes can release toxic factors 

to induce motor neuron death 95,99. A disadvantage of neonate injections is the loss of 

expression due to cell proliferation during post-natal development. Since AAV is a non-

integrating vector, its presence in dividing cells is diluted over time. This is seen with the 
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liver and lung of our treated mice, where we found no evidence of hSOD1 mRNA 

silencing, despite preferential AAV9 transduction to these organs. Astrocytes continue to 

proliferate during post-natal brain development, so it is likely that expression of the 

amiRNA is lost in those cells as well. Since the accumulation of hSOD1 in astrocytes is 

implicated in disease progression, a loss of expression of amiRNA from these cell types 

during post-natal brain development could be diminishing the efficacy of our treatment. 

In future studies, valuable information could be gained about the levels of hSOD1 in both 

transduced and non-transduced cells at endpoint, through the use of immunostaining for 

the presence of hSOD1.  

Our initial studies both in vitro and in vivo showed our artificial microRNA to be 

effective at reducing hSOD1 mRNA expression by more than 90% in HEK293T cells, 

and by more than 60% in the brain at the site of a direct injection. In situ hybridization 

data for hSOD1 mRNA in the cortex and spinal cord showed successful silencing in 

transduced cells, although residual hSOD1 mRNA expression remained. However, only a 

subset of motor neurons in the spinal cord was transduced. It is currently unknown what 

level of hSOD1 reduction is sufficient to stop disease progression. As a significant 

number of motor neurons in the spinal cord are preserved at endpoint, it would be 

interesting to know if there is a correlation between neuronal survival and extent of 

hSOD1 reduction. This could be inferred by a correlation between the size of motor 

neurons at endpoint and their GFP status. It would be expected that the smaller, 

degenerating neurons, would have less GFP expression as compared to normal size motor 

neurons, assuming that GFP expression correlates with hSOD1 reduction. There is no 
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difference in the number of AAV vector genomes and amiRNA guide strand expression 

in the spinal cord of injection SOD1G93A mice at four weeks of age and endpoint, 

indicating that loss of amiRNA expression and subsequent loss of hSOD1 silencing is not 

a likely cause of disease progression.  

Although effective therapeutics to cure ALS do not exist, patients have multiple 

options to help manage their symptoms. Thus, while limb weakness is usually a primary 

symptom of disease, the cause of death is respiratory failure, due to weakness of the 

diaphragm and intercostal muscles 1. However, untreated SOD1 mice are euthanized due 

to the primary symptoms of hind limb paralysis, and do not display the respiratory 

phenotype seen in patients. Recent work has shown there are some signs of respiratory 

impairment in the SOD1G93A mice, but only a few days before their paralysis endpoint 253. 

Our AAV9-amiRNA treated SOD1 mice did not exhibit paralysis, but instead developed 

severe kyphosis (hunched posture) and rapid weight loss, requiring euthanasia. A 

kyphotic posture is consistent with axial muscle weakness, causing disruption of the chest 

wall architecture, and direct physical restriction of lung inflation. This would also cause a 

subsequent disturbance of the mechanics of respiratory muscle function. CT 

measurements confirmed a decrease in chest volume in the treated SOD1 mice, as 

compared to age matched non-transgenics. Additionally, loss of the motor neurons 

innervating the diaphragm and intercostal muscle would directly contribute to respiratory 

muscle weakness. This would affect the ability of the mice to maintain lung volume both 

during inspiration and at rest. Thus, respiratory impairment is a potential cause of death. 

To assess respiratory function we used a hypercapnic challenge and measured breathing 



65

response to an increase in CO2; a decreased response implies an increase in breathing 

effort at rest, and is commonly seen in restrictive pulmonary disease of neuromuscular 

origin 254. Indeed, the treated SOD1 mice had a significant decrease in minute ventilation 

in the hypercapnic respiratory challenge, and their ability to respond to the challenge 

continued to decline with age. Thus, our treatment successfully delayed hind limb 

paralysis, and revealed a respiratory phenotype in the SOD1G93A mouse model, similar to 

the restrictive lung disease seen in ALS patients.   

Further experiments need to be performed to determine the exact cause of death 

of the treated mice. While respiratory impairment due to intercostal and diaphragm 

muscle weakness seems to be a likely cause of death, this argument would be 

strengthened with histological proof. The status of the phrenic motor neurons in the 

cervical spinal cord and their innervation of the neuromuscular junctions on the 

diaphragm should be examined. As mentioned before, since our motor neuron 

transduction efficiency is not 100%, we likely rescued a sufficient number of phrenic 

motor neurons to alleviate the respiratory phenotype, but not halt the disease.  

The degree of SOD1 mRNA reduction we achieved was sufficient to extend 

survival but not cure the disease. Mostly likely, there is a critical amount of mutant SOD1 

accumulation that triggers motor neuron death, although this threshold and the cell 

type(s) responsible are not yet determined. However, it is clear that in the SOD1 mouse 

model disease is correlated with the level of mutant SOD1 transgene expression, and a 

“cure” was achieved only with 100% removal of the mutant SOD1 transgene in the 

double transgenic model 103,104,226. Thus, a cure of the SOD1G93A mouse may only be 
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possible with 100% reduction of hSOD1 in all cells. However, our results suggest that 

with enough mutant SOD1 reduction, symptom free survival could be extended to the 

normal lifespan of the nontransgenic mice.  

 

 

FUTURE DIRECTIONS 

 Future studies should test our therapeutic vector for efficacy in adult mice. 

However, the mode of delivery still remains a challenge. Foust et al. 229 has shown some 

therapeutic efficacy (23% extension in median lifespan) after an intravenous infusion at 

85 days. Thus, an intravenous infusion is a good starting point. However, their shRNA is 

expressed from an H1 promoter, which is likely stronger than our CBA promoter. While 

the WPRE in our vector is known to enhance transgene expression, it is unknown if it has 

an effect for amiRNAs embedded in the 3’UTR. Additionally, intravenous infusions are 

ineffective at transducing upper motor neurons of cortical layer V. Thus, an approach 

coupling an intravenous infusion as well as several direct intracranial injections into the 

motor cortex should also be tested. Also, it is possible that we could achieve a greater 

therapeutic success if we reduced hSOD1 expression in more astrocytes. Thus, an adult 

IV injection coupled with the neonate ICV injection would deliver our amiRNA to non-

proliferating astrocytes. Lastly, multiple groups have shown some success in targeting the 

spinal cord motor neurons and brain with a AAVrh10 intrathecal or AAV9 intra-cisterna 

magna injection 255,256. Thus, more efficient capsid variants and delivery approaches 

should be considered. Nevertheless, a lack of significant therapeutic success in adult mice 
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due to inadequate vector distribution should not be discouraging, since effective delivery 

has been shown to be possible in larger animal models 222,257,258.  

For clinical translation our vector will also need to be tested in non-human 

primates for safety, delivery, and SOD1 reduction efficacy, although it cannot be tested 

for therapeutic efficacy due to the lack of an NHP ALS model. Translation into larger 

animal models is also important for determination of doses for clinical trials. The level of 

SOD1 mRNA reduction should be the same as that demonstrated in the mouse model in 

order to expect similar therapeutic results. Large animal models for ALS do exist, 

including a newly developed SOD1G93A swine model 259, and a naturally occurring dog 

model 260. However these models are long lived, have late symptom onset, and have yet 

to be fully characterized and assessed for faithful reproduction of human disease. As non-

human primates are the closest mammals to humans in terms of assessing delivery 

methods and distribution, methods similar to those used in the clinic can be tested, and 

vector distribution and transduction efficacy can be evaluated. Our artificial microRNA is 

perfectly complimentary to both human and primate SOD1, allowing us to test the exact 

RNAi molecule that would be used in the clinic. Also, since they are not transgenic 

models, non-human primates will provide additional information regarding the potential 

negative impact of reducing endogenous SOD1 levels, or potential changes in 

endogenous microRNA expression profiles. This is particularly important as our 

therapeutic approach involves delivering a high dose of an amiRNA, which uses the 

endogenous RNAi pathway. As microRNA-155 is already overexpressed in ALS 261,262, 

an additional increase in microRNA processing due to expression of our amiRNA could 
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lead to a saturation of the RNAi pathway. These experiments will provide valuable 

information for translation to the clinic. 

A potential concern for translating this therapy to the clinic is the effect of loss of 

normal SOD1 function. Given that our amiRNA does not distinguish between mutant and 

normal SOD1 mRNA, it is likely that it will lead to a reduction in both proteins. We are 

unable to address this in our current SOD1G93A mouse, where the human SOD1G93A gene 

is highly overexpressed, and the endogenous mouse Sod1 is unchanged. The transgenic 

knock out Sod1 mouse does not develop overt ALS like symptoms 107. Thus, it is unlikely 

that when delivered to patients, a reduction in SOD1 will have negative effects. However 

a lack of phenotype in transgenic models could be due to backup or compensatory 

mechanisms. Nevertheless, we expect our therapeutic approach to be safe and well 

tolerated, since treated non-transgenic animals did not show any symptoms of toxicity.  

Another concern with the reduction of SOD1 is the overabundance of unused CCS 

(responsible for copper loading into SOD1), especially since mouse models 

overexpressing CCS display severe toxicity 263. Thus, levels of ROS and CCS should be 

carefully monitored, and enzyme replacement therapy to restore normal SOD1 levels may 

become necessary. An alternative therapeutic strategy would be simultaneously 

delivering an amiRNA and a SOD1 cDNA that is resistant to the particular amiRNA 

being used. 

The widespread gene transfer achieved with neonatal ICV infusions provides 

insight into therapeutic outcomes that may be attainable in adults. If a neuronal 

transduction profile similar to neonates can be replicated in adults, we anticipate the 
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therapeutic outcomes to be superior to those achieved by neonatal intervention. This is 

because in the adult brain there is minimal cell proliferation, and thus fewer vector 

genomes will be lost due to post-natal cell division. This would result in sustained 

silencing of hSOD1 expression in all CNS populations, and thus suppression, either 

partial or complete, of non-cell autonomous effects on disease progression.  

Although the SOD1G93A mouse reproduces many aspects of the patient phenotype, 

it is not an accurate model of disease progression, as the phenotype develops much more 

rapidly in the mouse due to the supraphysiological levels of mutant hSOD1. This raises 

concerns when attempting to test therapeutics in the mouse model. Therapeutic 

intervention in adult mice has only achieved a small increase in survival of the mouse 

model. However, it is possible that the effect in patients will be greater, since patients 

have a much milder disease progression than the SOD1G93A mice.  In our case, delivery to 

neonatal mice does not represent clinical administration of the therapeutic, which would 

occur after disease onset. However, a reduction in the misfolded protein burden should 

alleviate cellular stress, and lead to a deceleration of disease progression. As earlier 

interventions would yield the most benefit, development of biomarkers for ALS diagnosis 

is as important as development of therapies.  

Large animal studies have already shown the ability of AAV9 to transduce the 

CNS using alternative delivery approaches, such as cisterna magna 257 and intrathecal 

infusions 222. Additionally, the use of the Trendelenburg position after intrathecal 

infusion has shown transduction of cortical neurons in adult non-human primates. Both 

AAVs and siRNAs have been safely delivered to the CNS in multiple clinical trials. Our 
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proof of concept study proves that an AAV delivered amiRNA successfully decreases 

hSOD1 mRNA expression in multiple cell types, and significantly extends lifespan of the 

SOD1G93A mouse model. Thus, delivery of our AAV9-amiRNA through the use of a 

direct CSF infusion is directly translatable to the clinic.  
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