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As Internet communities such as question-answer (Q&A) forums and

online social networks (OSNs) grow in prominence as knowledge sources, tra-

ditional editorial filters are unable to scale to their size and pace. This absence

hinders the exchange of knowledge online, by creating an understandable lack

of trust in information. This mistrust can be partially overcome by a forum by

consistently providing reliable information, thus establishing itself as a reliable

source. This work investigates how algorithmic approaches can contribute to

building such a community of voluntary experts willing to contribute authori-

tative information. This work identifies two approaches: a) reducing the cost of

participation for experts via matching user queries to experts (question recom-

mendation), and b) identifying authoritative contributors for incentivization

(authority estimation). The question recommendation problem is addressed

by extending existing approaches via a new generative model that augments

textual data with expert preference information among different questions.
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Another contribution to this domain is the introduction of a set of formalized

metrics to include the expert’s experience besides the questioner’s. This is

essential for expert retention in a voluntary community, and has not been ad-

dressed by previous work. The authority estimation problem is addressed by

observing that the global graph structure of user interactions, results from two

factors: a user’s performance in local one-to-one interactions, and their activ-

ity levels. By positing an intrinsic authority ‘strength’ for each user node in

the graph that governs the outcome of individual interactions via the Bradley-

Terry model for pairwise comparison, this research establishes a relationship

between intrinsic user authority, and global measures of influence. This ap-

proach overcomes many drawbacks of current measures of node importance in

OSNs by naturally correcting for user activity levels, and providing an expla-

nation for the frequent disconnect between real world reputation and online

influence. Also, while existing research has been restricted to node ranking on

a single OSN graph, this work demonstrates that co-ranking across multiple

endorsement graphs drawn from the same OSN is a highly effective approach

for aggregating complementary graph information. A new scalable co-ranking

framework is introduced for this task. The resulting algorithms are evaluated

on data from various online communities, and empirically shown to outperform

existing approaches by a large margin.
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Chapter 1

Introduction

Expert finding [58] is the problem of identifying experts in a particular

topic, based on evidence drawn from a dataset. The problem has traditionally

been studied in the context of enterprise data: for example, to identify experts

inside an organization [135]. However, the advent of the Web over the past

decade has radically lowered the barriers to information exchange, making it

possible for people to seek expertise outside their immediate peer group. For

example, a computer programmer faced with a technical problem can seek

advice from a volunteering expert on a question-answer forum, broadening the

range of expertise available to her. Or an organization looking for an expert

in a field could turn to profiles on online social networks to find a suitable

candidate. These developments have considerably broadened the scope of

applications for the task, while introducing several interesting challenges.

This dissertation focuses on the problem of identifying experts, and

matching them with problems that match their expertise, in online communi-

ties. This work identifies two kinds of online communities where people and

organizations search for expertise: community question-answer (Q&A) forums

and professional online social networks.
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Question-answer forums are primarily intended to connect information

seekers with experts. However, as documented by Paul et al. [119], they also

function as social networks, where users meet to increase their social reach

and enhance their reputation among their peer group. Harper et al. [72]

divide questions on such forums into two categories: informational and con-

versational. Informational questions are intended to seek useful information,

while the aim of conversational questions is to establish and maintain social

ties. Due to this dual aspect, Q&A forums are frequently classified as online

social networks [70, 104, 111].

Interestingly, professional online social networks (OSNs) have a similar

dual aspect. Apart from being a forum for maintaining social and professional

ties, they also function as a place for showcasing a user’s expertise and abilities.

For example, a connection on a professional OSN such as LinkedIn [46] is often

treated by third parties as a tacit endorsement. Often the OSN allows referrals

to be made more explicit by writing a recommendation, or endorsing another

user for a particular skill mentioned in their profile [47].

The distinction between Q&A communities and professional OSNs is

thus, quite narrow in practice. In both communities, users proceed by making

a claim to possessing certain skills or expertise, for example by answering

a question, or via the text in their profile. These claims then may or may

not be endorsed by their peers. The key challenge in identifying experts,

or authorities (the two terms are used interchangeably in this work) is the

aggregation of these endorsements in a useful way. An additional challenge
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that may be encountered is identifying the topic of expertise the endorsement

applies to. These two problems form the focus of this work.

1.1 Motivation

Patrick [118] defines cognitive authority as “influence on one’s thoughts

that one would recognize as proper”. Traditional information sources rely

on mechanisms which do not exist for the Web, such as editorial selection,

institutional reputation and peer review, to establish the cognitive authority

of information. The absence of such filters hinders the exchange of knowledge

online, by creating an understandable lack of trust in information.

This lack of trust can be partially overcome by a forum for a user, by

establishing itself as a reliable source through multiple positive experiences

[97, 142]. A collaborative website relying on volunteers needs consistent par-

ticipation from authoritative users to achieve this. This research identifies two

approaches which can help a website progress towards the goal of increased

participation by authoritative users: a) reducing the cost of participation, so

that the website can select the highest quality contributions from a wider set

of volunteers, and b) identifying authoritative users among contributors, and

incentivizing them for participation. Often a combination of both is needed

to encourage expert participation.

The next two sections discuss the specific problems in Q&A forums

and OSNs identified by this research, that are motivated by the broad goal of

encouraging behaviors that enhances the reputation of an online community.
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1.1.1 Question-answer Forums

Community question and answer (Q&A) forums allow users access to

expertise over the Internet, enabling them to find information when ordinary

search results do not meet expectations. This could happen if a search query

is hard to formulate for a question, if the information is not available online,

or for questions requiring personalization or opinions. In addition to several

specialized forums dedicated to specific domains, general-purpose question-

answer forums are extremely popular: for example, the Q&A website Yahoo!

Answers [85], one of the first popular Q&A forums, has reported having over

200 million users and over a billion resolved questions [86]. Despite this suc-

cess, doubts about the quality of expertise available on these forums have

been persistent [2, 6, 9]. Adamic et al. observed that the quality of expertise

available on Yahoo! Answers is ‘broad rather than deep’ [2].

To avoid this problem, later forums evolved a different approach. As

noted by Anderson et al. [8], “one direction this evolution has taken is the

development and maturation of sites such as Stack Overflow and Quora built

around focused communities in which a significant fraction of the participants

have deep expertise”. As a result, the core value of these forums resides in

the voluntarily participating experts. Growing and retaining this community

is essential to the success of such a forum.

On the other hand the expert finding problem, in the enterprise space

and more recently in question-answer forums [70, 109], has traditionally been

studied from the questioner’s perspective. That is, given a question, the aim
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is to identify experts in the question topic. This goal ignores the perspective

of the responding experts, though due to the voluntary nature of expert par-

ticipation, it is being recognized [35, 75] that retaining high-quality responders

is the key to long-term success for the forum. This is a less serious problem

in traditional applications such as enterprise expert search, where helping out

colleagues may be part of the job description. In fact, in the enterprise we

may be more concerned with the questioner’s satisfaction, so that they can be

more productive in the workplace.

An interesting aspect of Q&A recommendation is that recommending

a responder for a question is at the same time, equivalent to a recommen-

dation to the responder: the expectation being that the responder will be

sufficiently interested in the question to provide an answer [35, 75]. In other

words, responders have their own preferences among questions, and can lose

interest if recommended too many irrelevant questions. This was emphasized

by Horowitz and Kamvar [75] in their study of the social Q&A engine Aard-

vark, which took into account preferences such as frequency of contact, time

of day, etc., while identifying relevant experts for a question. This research

[35] formalizes this observation by introducing metrics based on the idea that

Q&A forums should be motivated as much by minimizing responders’ load

of irrelevant questions, as by the quality of recommendations made to the

questioner.

For example, consider two expert finding algorithms, both of which

find an expert responder for a similar fraction of questions. However, the first
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algorithm ensures that no expert sees more than three irrelevant questions

for each question they answer, while the second algorithm makes no such

commitment. So, even though both approaches find experts at the same rate,

this work argues [35] that the first algorithm is better, as it promotes the

long-term health of the forum via a lower expert load, and develops metrics

to formalize this intuition.

Another way to encourage expert participation, apart from reducing

the time investment in finding relevant questions, is to provide them with

social recognition. Most Q&A forums do not provide any monetary bene-

fit to contributing experts (one exception being the now-defunct Google An-

swers [55]). An important incentive, then, is visibility, in the form of ‘points’,

‘badges’[7, 11], or by being highlighted as an important contributor (for exam-

ple, ’contributor of the week’, ’trending user’, etc.). It is known that forum-

wide exposure and feedback from peers makes it more likely that a content

contributor will continue participating [38]. More recently, Q&A forums such

as the Stack Exchange network [80] have started to showcase their best con-

tributors to employers, thus monetizing as job forums [81] as well as providing

another incentive for contribution.

A common approach to rewarding experts is to provide recognition to

those who have answered a large number of questions well. This approach, as

discussed by Deangelis [50] for Yahoo! Answers, while effective in retaining

strongly engaged responders, fails to target new responders. In fact, it may

even discourage new users, unwilling to make the time investment needed to
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answer a large number of questions. Also, it does not take question quality

into account, which could reward users who answer many simple questions

well, instead of tackling the more difficult questions. As observed by Ghosh

et al. [64] based on a game-theoretic analysis of behavior on user generated

content forums, “without some connection between quality of a contribution

and amount of exposure, such exposure motivated contributors will flood a

site with low quality contributions”.

This research proposes a complementary approach, where an attempt

is made to identify users for recognition, in terms of quality of participating

responses, instead of the quantity. So for example, we might be interested in

providing recognition to users who are less prolific, as long as the questions

they answer are difficult, and they answer them well. It is hypothesized that

recognition will encourage a subset of them to become regular contributors.

Another major advantage of this approach is that, identifying and encouraging

high quality users enhances the reputation of the community, so that new users

are more likely to trust answers they receive on the forum, and so start asking

questions. Besides that, it cultivates a broader base of experts, lowering a

forum’s dependence on a small set of highly active users. To distinguish the

problem of finding users who would provide a high quality response, from the

broader issues involved in expert finding, this research refer to this second

problem as authority identification, as the task being set is that of identifying

cognitive authorities, individuals new users are willing to trust, even if these

individuals are not highly active participants.
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Note that authority is not the same as popularity. Thus, while a prolific

expert who answers many questions is valuable, another expert who answers

a few difficult questions is at least as valuable for establishing a website’s

reputation. High quality content is also valuable for forums due to its potential

for monetization, both from an archival and search engine ranking perspective.

Besides, by emphasizing quality alongside quantity, this approach encourages

a broader expert base, reducing the likelihood of the community relying on a

small subset of volunteers who may leave at any time, as is often the case.

Identifying authoritative responders is, however, not straightforward.

One approach is to use a supervised learning approach, where features such as

answer length, word size, etc., are used to estimate answer quality [5] . Such

approaches are, however, highly vulnerable to manipulation. An alternate

approach, investigated in the past [18, 151], and further developed in this work

[32, 33], is to aggregate user endorsements. These endorsements are usually

provided in Q&A forums to an expert when they answer a question. For

example, the question may mark a response as the ‘best answer’, indicating

that they prefer the response to the alternatives provided by other responders.

Such endorsements can be aggregated simply by count in a näıve approach, but

can be made more precise by taking into account the quality of the endorser,

and the alternatives the endorser had [33], usually via graph-theoretic measures

[32, 88, 151].
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1.1.2 Professional Social Networks

Endorsement aggregation of a similar type is used by this research

[34] for authority identification in professional social networks. In this case,

however, endorsements may not have resulted from online activity, but from

offline interactions. An endorsement may be straightforward, such as a positive

recommendation, or may need to be inferred from actions such as an invitation

to connect, or a series of initiated interactions. As this research shows [34],

something as subtle as viewing a profile can be a powerful signal.

Returning to the definition of authority as “influence on one’s thoughts

that one would recognize as proper” [118], the question arises, influence who

would recognize as proper. For example, should we focus solely on members

active inside the network, or any interested individual who may be outside the

social network? Another related question is, should this influence be measured

in aggregate, so that a user who is less convincing in a single interaction might

still be influential due to having more interactions, for example by being more

active or being active for a longer period of time? Or should we attempt to

estimate the outcome of a single interaction?

The problem of identifying influential users on an OSN, a well-studied

problem in the social network research community [3, 41, 68, 92, 137, 138, 145]

which often relies on endorsement aggregation [41, 138, 145], has traditionally

not considered these distinctions. An influential user (or ‘influencer’) is usually

defined as one who can induce other members to take certain actions, such as,

take interest in some information they share, etc. Influence is, thus, a mea-
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sure of the user’s importance within an OSN. However, this measure does not

discriminate between influence garnered across a large number of interactions

with a low success rate, and persons with a high probability of influencing

others in a single interaction, who interact less frequently. In other words,

influence as historically measured, does not consider user activity levels.

In contrast, Patrick’s definition given above considers as an authority

a person likely to be influential in a one-to-one interaction, irrespective of

whether they are active in the network or not. This is also the traditional view

of authority, where an authoritative work or person is one that is convincing

in its reasoning at an individual level. Identifying such individuals on an

OSN or Q&A forum, referred to here as the authority identification problem,

is the problem introduced by this research [34]. In other words, this research

[32, 34] argues that a node’s influence on an OSN as traditionally measured

consists of two components, its authority strength, and its activity level, and

develops algorithms that attempt to separate these components, for authority

identification.

Influential users, as traditionally identified, are often not persuasive

outside the network. Khrabov et al. [93] observed that many very influential

users on the social network Twitter [82] are relatively, if not completely, un-

known outside their online circles. On the other hand, an individual who is

quite well-known in the real world may not be at all influential online. The

reasons for this mismatch are largely related to user activity levels [34]. Main-

taining an influential online presence can be extremely competitive, and many
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authoritative people may not be willing to invest such a high degree of time

and effort. Another reason could be that they represent a demographic group

not yet engaged by the OSN, or the online world in general. Phenomena such

as hyper-networking also allow low-authority users to garner disproportionate

influence, by compensating for less authority with higher activity. In contrast,

this research demonstrates that authoritative users who are more likely to in-

fluence someone in a single interaction, are much more likely to be well-known

in the real world [34].

Authority identification is an important problem in OSNs for many

reasons. Authoritative users have the potential, with the right incentives to

be more active, of providing valuable content to a forum. Also, as noted by

Paul et al. [119] for the Q&A forum Quora [123], having users that are well-

known in the real world makes it more likely that users will trust the forum,

boosting its reputation. Besides this, in many other applications, such as

when an organization is looking to fill a job position1, real world reputation

is often a greater concern than influence. Even in the marketing domain,

where marketers largely care about the online influence of users, Carl [39]

has argued that an overwhelming majority of word-of-mouth marketing takes

places offline, in which case real world reputation is a factor worth considering.

Also, while the quest for influence can drive activity on an OSN in the short-

term, it is also easy for an OSN to lose credibility if authoritative users get

1A number of websites, for example, LinkedIn [46], and Stack Exchange [80], combine
professional social networking with recruitment solutions, which is a large fraction of their
revenue.
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‘crowded out’ [144] by users relying primarily on higher activity for influence.

Thus, it is essential for an OSN to have an understanding of the level of

engagement of authoritative users.

At a deeper level, this work argues that the separation of authority and

influence provides important insights into the nature of influence on OSNs.

Measuring user authority can enable a comparison of various influence mea-

sures, in terms of the extent to which they coincide with authority, or can

explain the gap via activity. This is important because influence is usually

defined operationally in terms of the algorithm used to measure it [41, 145],

and it is often difficult to obtain external verification based on ‘ground truth’.

Authority estimation can be a useful sanity check in such a situation: a mea-

sure of influence that does not correlate at all with authority, and is not able

to explain the gap, may well be measuring the wrong thing.

1.2 Problem Description

This dissertation investigates the problem of preference aggregation

for authority identification in online communities: how individual expressions

of preference can be aggregated to estimate user interests, and the level of

authority in these topics of interest, in an online forum.

Online communities often provide way for users to endorse other users’

activities. For example, on a Q&A forum, a questioner may be allowed to

rate one of many answers to her question as the best answer; or a visitor to a

photo or content sharing site may be able to ‘up-vote’ a photograph or article
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she likes. It may also be reasonable to interpret certain actions as expressing

a revealed preference. For example, sending another user an invitation to

connect can often be seen as an endorsement: as observed by Leskovec et al.

[105], invitations in OSNs often flow from lower status members to those of

higher status.

The traditional way to represent user preference expressions on an OSN

or Q&A forum is as a directed graph, where each user is represented as a

vertex/node in the graph, and interactions are represented by edges. This

research refers to such graphs as endorsement graphs, or preference graphs.

The direction of the edge is often used to represent the asymmetric aspect of

the interaction. For example, a directed edge from OSN member A to member

B might represent that A endorsed B.

While preferences are expressed at an individual rater level, they are

often aggregated across all raters to estimate the consensus about a rated

user’s importance or reputation in a network (these scores can then be sorted

in descending order to identify the most authoritative users). The simplest

aggregation measure is degree centrality [141], which is simply the in-degree

of a node on the endorsement graph. It can be seen as the marginalized user

preference, with the rater whose influence we are concerned about selected

from a uniform distribution2.

However, we may be able to infer additional information about each

2Or with a probability proportional to level of activity for each rating user, assuming
multiple endorsements per rated user by a rater are allowed.

13



rater, concerning qualities a rating scheme should care about. A quality com-

monly taken into consideration is the level of expertise of the rater. Since the

available information consists of mutual preference expressions, this is often

done in Q&A forums using a recursive definition [87, 151], where the expertise

of each user is defined as the average of the expertise of all other users who

endorsed her.

In the graph-based representation described earlier, this definition trans-

lates to defining each user’s expertise score as the stationary distribution of

the Markov chain corresponding to the graph3, or the fraction of time spent

on the node during a random walk on the graph. This approach to identifying

experts is inspired by the well-known PageRank [19, 30] algorithm for ranking

pages based on authority, on the Web graph.

Closely related random walk based measures [25, 90] (pre-dating PageR-

ank) have also traditionally been used for measuring the influence of nodes in

online social networks. As mentioned earlier, measuring a node’s influence

and its authority are closely related problems. A node’s influence attempts to

measure how important a node is to a network, and how central it is to the in-

teractions taking place on the network. The distinction between influence and

authority is not very meaningful in real world social networks, for which these

measures of influence [25, 90] were originally constructed. Given that most

individuals are embedded in their real world community and cannot change

3After some adjustments [30] to ensure that the Markov chain corresponding to the graph
is ergodic [91].
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it at will, all members are strongly incentivized to attempt to maximize their

influence in this community, and the more authoritative4 are more likely to

succeed.

In contrast, on an OSN, users are free to be inactive, or even leave the

network at any time, with little or no negative consequences. The benefits

of participation are often intangible, and may even be insufficient to moti-

vate many authoritative users. Also, less authoritative users may have greater

incentive to be active, as they may value online influence more highly. As

a result, authority and influence are two quite different concepts for online

communities. This research [32, 34] focuses on the problem of authority iden-

tification, distinguishing it from the problem of identifying influential nodes.

Another interesting aspect of OSNs and Q&A forums is the existence

of multiple graphs over the same set of members, reflecting different aspects of

user behavior. For example on an OSN, one graph may reflect invitations for

connecting across the network, while another graph may reflect actions such as

‘liking’ someone else’s content, etc. Historically research on OSNs has focused

on ranking based on a single graph. This research extends these approaches via

new algorithms that can combine information from multiple graphs to arrive

at a single ranking [34], and finds that this improves the accuracy of ranking

considerably.

4Defined, as mentioned previously, as members most likely to influence other members
of a community, in a one-to-one interaction, if not at an aggregate level.
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1.2.1 Preference Expressions in Q&A Forums

Q&A forums present some interesting challenges that are often not

present on OSNs. For example, all actors in professional social networks are

usually capable of the same set of actions. On the other hand, in the case

of Q&A forums, preference revealing actions need to be considered from two

perspectives: the questioner and the responder. Questioner activity largely

consists of asking questions and rating experts based on the answers, and

so is similar to the action set of users in professional OSNs. However the

responder action of choosing a question to answer is also a preference revealing

activity, among question topics. Aggregating this preference across experts can

help group questions by topics: if multiple users have a history of selecting a

common set of questions, it is likely that these questions are from the same

topic of expertise. This research shows [35] that aggregating expert preferences

among questions can considerably improve accuracy in expert finding.

Another interesting aspect of Q&A forums is the existence of relative

preference graphs. A relative preference or pairwise preference is one expressed

by a user for a particular user or item among multiple choices. For example,

in a Q&A forum, a user A might pick an expert B’s answer out of a set of

responses by experts B,C,D, as the ‘best answer’. This would be represented

in the relative preference graph as directed edges from C and D to B, as

B ‘won’ while competing against C and D. An absolute preference, on the

other hand, is not in comparison to other items. So for example, a ‘like’

or ‘up-vote’ on a content-sharing forum is an absolute preference. Relative

16



preference graphs, while not restricted to them, are much more common on

Q&A forums, and contain valuable information about the comparitive levels

of expertise of competing experts. This is the first work to consider them for

ranking users in Q&A forums [33].

1.3 Research Questions

This dissertation examines the following hypothesis:

In an online community of experts, mutual expressions of ab-

solute and relative preference can be aggregated to yield effective

estimates of an expert’s topics of interest, and his/her credibility

as an authority in these topics, both inside the community and in

the real world.

This hypothesis is evaluated by answering the following research ques-

tions.

1.3.1 Research Question 1: Responder Preference Aggregation for
Question Recommendation in Q&A forums

RQ1: How should information about experts’ preferences among

different questions, based on training data, be used to make more

precise question recommendations to them in the future?

A motivating factor for this work is reducing the load on responders

in Q&A forums through more precise recommendation of relevant questions.
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This requires identifying for each responder, the set of topics of interest to

them. The set of questions answered by a user in the past is an important

signal of user interests. Ignoring a question, on the other hand, suggests a

lack of interest in the question topic. So, for example, if users A, B and C

always answer the same set of questions, this behavior is likely to have been

motivated by interest in a common topic. How can this observation be used

to recommend interesting questions to an expert?

The main challenge in being able to incorporate expert feedback is that,

while an expert’s availability and interests are explicit for questions that they

answered, the same information is not available for questions that they did

not answer. Thus, it is often not possible to know whether an expert did not

answer a question due to lack of interest, or because she did not read it, or

read it but was too busy at the time to answer. This research overcomes this

problem via two generative model based algorithms [35], that assume different

models of expert behavior for questions they did not answer. These models

attempt to estimate the latent behavior of the user where such information is

not available.

1.3.2 Research Question 2: Preference Aggregation for Authority
Identification in Q&A Forums and Social Networks

RQ2: How should information about users’ absolute and rela-

tive preference for other users be aggregated to identify authorita-

tive users in an online forum or social network?
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This research question is motivated by the need to encourage participation

from authoritative users via recognition within a community. It is necessary to

be able to first identify authoritative users to achieve this. It is also motivated

by other applications, such as finding experts for recruitment in professional

OSNs, and content recommendation in content-oriented OSNs.

A näıve measure of a user’s authority is her popularity, that is, the num-

ber of endorsements received by her. More sophisticated approaches include

weighing these endorsements based on information that can be derived about

the endorser, for example by using graph-based approaches [30] that measure

a user’s authority recursively. This approach has been used for ranking re-

sponders in Q&A forums [88] in the past, and for finding influential nodes in

OSNs [145]. Relative preference data provides even more information in Q&A

forums, not only about the user who endorsed a responder, but also who they

were competing against. This data contains intrinsic information about the

authority strength of various experts, as more authoritative responders will do

well even when competing against other strong experts. This work is the first

to use relative preference data for ranking in Q&A forums [33].

The problem of identifying influential users in social networks [68] is

closely tied to authority identification. A common assumption is that the two

are equivalent: this is one reason why authority analysis algorithms for web

pages such as PageRank [30] are often used for identifying influencers in OSNs

[145]. However, in practice, influence can deviate from authority, which is

related to the likelihood of influence propagating during a single interaction,
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as opposed to aggregate following, which can be achieved via increased activity.

Based on this idea, this research [33, 34] approaches the authority iden-

tification problem by positing ‘authority strength’ as an intrinsic property of

a node on a graph. In this view, the outcome of an interaction between two

nodes depends on their intrinsic level of authority ‘strength’: the ‘stronger’

node is more likely to influence the ‘weaker’ node, than the other way around.

A less authoritative user, might however, become more influential, if it chooses

which nodes to interact with wisely, or chooses to have more interactions than

others. This is formalized by considering each interaction on an OSN as a

game, where the player with more authority ‘wins’. The final structure of an

OSN or Q&A preference graph can be viewed as the result of a tournament of

multiple such games.

This research finds that this model of authority is a better predictor of

who will give the best answer to a given question, compared to influence [33].

It also finds [34] that authority correlates better with real world recognition,

as opposed to influence as traditionally measured.

1.3.3 Research Question 3: Preference Aggregation across Multi-
ple Graphs for Authority Identification in Q&A Forums and
Online Social Networks

RQ3: How can multiple signals of user preference in an online

Q&A forum or social network be combined to yield an effective

consensus ranking of members by authority?
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Relying on a single behavior as a signal of authority is not effective

in OSNs. This is because there are often multiple modes in which these en-

dorsements are expressed: for example, sending a user an invitation, viewing

their profile, etc., can all be considered as an endorsement. Often information

contained in these graphs is complementary. For example, Weng et al. [145]

found that on the OSN Twitter [82], famous people tend to have more ‘fol-

lowers’, but ‘retweet’ graphs are often dominated by individuals who tend to

contribute news. Similar complementarity is demonstrated for the LinkedIn

[46] OSN in this work [34]. However, traditional approaches for ranking users

in Q&A forums and OSNs have been restricted to single graphs.

This research question aims to extend graph-based ranking approaches

for OSNs, enabling them to aggregate information from multiple endorsement

graphs into a single ranking. The goal is to combine the complementary modes

in which user preferences are expressed on an OSN.

Another scenario involving multiple graphs is, where social relationships

reflected in one graph, impact the interactions in another graph. An example

of this is social voting [65], where OSN users tend to vote based on social ties,

instead of objective judgments of information quality. This problem is also

addressed by this work.

1.4 Contributions Outline

The contributions of this research are addressed at two problems: a)

expert finding in Q&A forums, and b) authority identification in online social
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networks (OSNs).

1.4.1 Expert Finding

For the expert finding problem, this research contributes:

• A new set of evaluation metrics that formalize the trade-off between

questioner and responding expert’s satisfaction in Q&A forums [35].

• Two new generative model-based algorithms [35] for discovering top-

ics of discussion in a forum, and each expert’s interest in these topics.

These models incorporate user choices between questions as part of the

topic identification process. In contrast existing approaches are largely

restricted to topic-word distributions.

1.4.2 Authority Identification

This research makes the following contributions to the authority iden-

tification problem:

• Two new algorithms for authority identification in OSNs [33, 34], that

overcome the chief drawback of current PageRank based approaches,

sensitivity to user activity, by modeling user interactions as the outcome

of a tournament-based model.

• A co-ranking algorithm [34] for combining authority or influence related

information from multiple graphs representing different aspects of inter-
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actions on an OSN, in a principled way. Historically, ranking approaches

in OSNs have been restricted to single graphs.

• A mixture-model based algorithm [32] for balancing a questioner’s pref-

erences between authoritative sources and socially proximate experts.

1.5 Dissertation Outline

This document is organized as follows: Chapter 2 provides the tech-

nical background to this research. It briefly discusses information retrieval

metrics and techniques, which are used extensively as part of the expert find-

ing approach, outlines graph-based models for identifying important nodes in

a network, and also discusses the related work. Chapter 3 is focused on the

problem of expert finding in Q&A forums. It contains a discussion of metrics

best suited for expert finding in online communities, and develops two new

generative model based approaches that address Research Question 1.

Chapter 4 addresses Research Questions 2 and 3. For Research Ques-

tion 2, a conceptual model of user authority in online networks using the

Bradley-Terry model is developed, and its relationship to the concept of in-

fluence is established via tournament models. Research Question 3 is also

addressed in Chapter 4, via the development of a co-ranking approach for

combining information from multiple graphs. Chapter 5 presents an empirical

evaluation of the ideas developed in Chapters 3 and 4. The expert finding

models are evaluated on data derived from the StackExchange online com-
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munity [80]. The approaches developed to address Research Questions 2 and

3 are evaluated on the professional social network LinkedIn [46] and also on

data from StackExchange, Yahoo! Answers [85] and Digg [17]. Chapter 6 re-

states the research questions, how they have been addressed, and the research

contribution made.
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Chapter 2

Background

The culture of information exchange on the Web differs from traditional

media in emphasizing broad-based participation as opposed to selectivity. This

is a natural byproduct of the nature of the Internet, which has succeeded by

breaking down the traditional barriers to communication. The trend has been

further strengthened by the advent of Web 2.0 [117](or the participatory Web

[23]) that relies on user generated content and collaboration, based on the idea

that everyone knows something [2]. As a result, the Web is able to provide

access to an unprecedented amount of constantly growing information. In the

words of David Shenk [129], “putting a computer in every classroom is like

putting a power plant in every home”.

This informational affluence does have its drawbacks. It is generally

recognized [6, 9] that user generated content unmediated by editorial discre-

tion shows a very broad distribution of quality. In the traditional media space,

information seekers rely on filters such as editorial and peer review, and guid-

ance from recognized ‘cognitive authorities’ [118] such as editors, reviewers,

professors, librarians, for quality control. However a combination of factors,

such as the proliferation of voices, the tendency towards anonymity or pseudo-
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anonymity, and the scale and speed of interactions, renders the traditional

approaches impractical for the Web.

In these circumstances, users have to develop their own strategies for

finding reliable information. A common strategy among users, documented by

Rieh et al. [125], is to only trust content found on ‘known’ sources, i.e., websites

they are familiar with and developed trust for, or websites recommended by

their peers. Thus, a collaborative knowledge-sharing site, to succeed needs to

develop a reputation for being populated by a community of experts who are

credible sources of information.

This work identifies two ways in which algorithmic approaches can help

with achieving the goal of encouraging an active expert community: a) Ques-

tion Recommendation: Lower the cost of expert participation (in time), by

automatically recommending questions of interest to them, and b) Authority

Identification: Identify experts so that they can be incentivized for participa-

tion via visibility and other incentives.

2.1 Question Recommendation

The problem of matching experts to problems has traditionally been

studied in the information retrieval (IR) community, in the context of large

organizations. A common use case is helping employees find experts to con-

tact via email, to meet an information need. A prominent example of this

is the expert search track [61, 135] at the Text Retrieval Conference (TREC)

[1], focused on the problem of finding experts to email within an organization,
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given descriptions of topic of expertise, and a supporting document collection.

With the growing importance of the Web as an information source, the prob-

lem scope has broadened to include expert finding in online settings such as

community question-answer (Q&A) forums, a problem first addressed by Liu

et al. [109] .

Given a query for expertise, Fang and Zhai [58] divide expert finding

approaches into two categories: profile-based approaches and document-based

approaches. Profile-based approaches construct a profile for each user, based

on the terms (or words) that have been associated with them in the past.

Experts can then be matched in terms of the proximity of their profile with

the query. The alternate document-based approach users a two-step process

where first, the relevance of each available document to the query is estimated.

Following this, experts can be ranked based on how closely involved they

are with the most relevant documents. Thus, both approaches proceed by

reducing at least part of the expert finding problem to the classical information

retrieval (IR) [13] problem: given a query and a dataset of documents, rank the

documents in order of relevance. In the profile-based approach, this is done by

explicit ‘document reorganization’ [61], by consolidating information related

to an expert into a single document. As a result, most standard retrieval

methodologies, along with evaluation metrics, can be applied to the expert

finding problem in Q&A forums. Three common IR models are vector space

models [130], language models [99], and cluster-based models [108]. The next

section discusses standard metrics used in IR, followed by a discussion of the
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Relevant (R = 1) Not Relevant (R = 0)

Retrieved

R+

(True Positive)

N+

(False Positive)

Not Retrieved

R−

(False Negative)

N−

(True Negative)

Table 2.1: General Contingency Table for Retrieval

three common retrieval methods mentioned.

2.1.1 Evaluation Metrics

In the standard IR framework, the evaluation of a document retrieval

system requires a test dataset consisting of three parts [112]: a) a collection

of documents D, b) a set of queries Q, and c) a binary relevance judgement

for each query-document pair P (R = 1|Q,D). The system is presented with

each query in turn, and retrieves a set of documents it believes to be relevant.

The results of this process can be represented as a contingency table, shown in

Table 2.1. Two standard measures derived from this table are precision and

recall, defined as:

Precision =
R+

R+ +N+

Recall =
R+

R+ +R−

Precision measures the quality of retrieval, that is, of the documents retrieved,

how many were relevant. Recall, on the other hand, measures the breadth of

the retrieval system, in terms of how many of the relevant documents it was

able to find.
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2.1.1.1 Metrics for Ranked Lists

In many cases the retrieval system returns a ranked list of documents,

in decreasing order of estimated relevance, instead of an unordered set of

documents. Precision and recall may still be used, by selecting a subset of

documents, say the top k documents, as the relevant set. The resulting metrics

are often written as Precision@k and Recall@k respectively. The choice of k

depends on the application. For example, users may be relatively unlikely to

look beyond the first page for search engine results, in which case the value of

k is likely to be quite small. On the other hand, a researcher might be willing

to look through hundreds of documents to find relevant information, in which

case the value of k may be much larger.

A reasonable alternative, then, is to average across a range of values of

k. This is the intuition behind average precision [112]. According to Robert-

son’s probability ranking principle [126], the approach of presenting results by

decreasing estimated relevance is provably optimal on many evaluation met-

rics, including the expected average precision.

Formally, for a given query q ∈ Q with n relevant results, let the

retrieved results include relevant documents at ranks r1, r2, . . . rn ∈ R, where

r1 ≤ r2 ≤ . . . rn. Then the average precision is calculated as :

AP(q) =
1

n

rn
∑

k=1

Precision@k

If the ranked list does not cover all the documents in the dataset, certain

relevant documents may be missing. The precision score for such documents
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is usually set to 0. The mean average precision (MAP) metric is simply the

mean of the average precision across a set of queries Q, given by:

MAP(Q) =
1

|Q|
·
∑

q∈Q

AP(q)

In the case of only a single relevant result (for example, if we are inter-

ested only in the rank of the ‘best answer’ to a question), the MAP measure

becomes equivalent to the mean reciprocal rank, defined as:

MRR(Q) =
1

|Q|
·
∑

q∈Q

1

r1

Remember that r1 ∈ R is the first rank with a match.

Another way to mitigate the impact of an arbitrary cut-off is to analyze

the system behavior at different rank levels. This is often done in IR via a

precision-recall graph, where the precision is usually represented on the x-

axis, and the recall on the y-axis. Generally, as the rank cut-off increases,

the precision falls, while the recall increases. A curve on the graph shows the

relationship. The closer the curve is to the top-right corner of the graph, the

better the system is doing. This can be expressed as a single value as the area

under the curve (AUC) of the graph. Since MAP computes the precision at

each matching rank till the last match, it can be seen as an approximation of

the AUC.

2.1.2 Vector Space Models

The vector space model [130] represents each document or query as a

vector in an n-dimensional vector space, where n is the cardinality of the set
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of all unique terms (or words) in the dataset. In other words, each term is

assigned a dimension in one-to-one correspondence to it. Loosely, we can say

that the terms are arbitrarily numbered 1 to n, and the kth term corresponds

to the kth dimension in the vector space. The magnitude of a document vector

d in a dimension k is usually a function of the kth terms occurrence count (also

called the term frequency). A popular and simple heuristic function is the term

frequency inverse document frequency (TF-IDF) function [13], which is given

by the product of the term frequency with the inverse document frequency

(IDF), defined for the kth term as:

IDF(k) = log
|D|

|d ∈ D : k ∈ D|

Here |D| is the number of documents in the dataset D, and the denominator

counts the number of documents where the kth term occurs at least once. The

core idea behind the IDF score is to lower the importance of terms that are

common across documents in the dataset, and emphasize rare words. There

are a number of other more sophisticated approaches for re-weighing the term

documents based on global statistics [128].

Given two re-weighted document vectors d1 and d2, the similarity sim(d1, d2)

between them is calculated as the normalized dot product or cosine score be-

tween them:

sim(d1, d2) =
d1.d2

‖d1‖‖d2‖

Here ‖d1‖ and ‖d2‖ represent the Euclidean norm of d1 and d2 respectively. As
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it was found that the Euclidean norm over-penalize longer documents, Singhal

et al. [131] have suggested an alternate approach.

The vector space model is a powerful model, and has been used in the

past for expert finding in Q&A forums [67, 150]. However, it does not have a

straightforward probabilistic interpretation. As a result it is difficult to extend

to more complex scenarios and needs. The language model, discussed next,

overcomes this drawback.

2.1.3 Language Models and Pseudo-Relevance Feedback

Given a vocabulary of terms V , a language model [99, 120][147] is for-

mally a probability distribution over the set of all possible strings V ∗ of any

length that can be generated by concatenating terms from V . The language

modeling approach proceeds by assuming that the string of terms in a docu-

ment or query was generated by an underlying probabilistic process. Based on

this assumption, if the underlying generative process for a string a is known,

its proximity to another string b can be estimated by the likelihood that the

process that generated a could also generate b1. A key advantage of language

models compared to the vector space model is that they can be extended via

more complex generative processes, or by combining them with other proba-

bilistic models.

A common assumption for the string generation process is that each

1An alternate approach is to use a statistical measure of distance, such as the Kullback-
Leibler (KL) divergence, between the query and document models [149].
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term is independent of the previous or subsequent terms seen. This assump-

tion, often called the bag-of-words assumption, essentially implies that a multi-

nomial distribution process generates each string, as the probability of any

sequence of terms now depends only on the aggregate count of the number of

time each term occurs, and not on the specific ordering of the terms. Another

common simplification is to ignore the impact of a string’s length on a lan-

guage model’s likelihood, given the string. This is because in practice, we are

usually comparing the likelihood across different language model distributions

given a string of fixed length. For this particular task, the string length dis-

tribution can be assumed to be independent of the language model, and can

be ignored as constant across the different models.

Two popular language models that make different assumptions about

the string generation process, are the query likelihood model [120] and the doc-

ument likelihood model [99]. The query likelihood model assumes there is a

language model underlying each document, and estimates the match between

a document and a query based on the probability of the query being generated

from the document. The document likelihood model, on the other hand, tries

to estimate the language model underlying the query, and calculates the prob-

ability of each document being generated from the query’s language model.

Assuming the underlying distribution is multinomial, the parameters of the

language model for a string are usually straightforward to calculate using a

maximum likelihood estimate [63]. This estimate usually needs to be smoothed

[148] to correct for data sparseness problems.
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Compared to query likelihood models, document likelihood models face

a steeper challenge, as language models need to be estimated for queries, which

are usually much shorter than documents. This means the language model

constructed for a query is more likely to be inaccurate. One way of addressing

this problem, known as relevance feedback [146], is to refine the query using

explicit user feedback. This can be done by providing the user with an initial

set of results based on the query, allowing her to mark them as relevant or

irrelevant. Terms from the relevant documents can then be used to expand the

initial query. In the absence of user feedback, an alternate approach known

as pseudo-relevance feedback (PRF) [99], is to make the assumption that a

small subset of the highest ranked documents retrieved based on the original

query are relevant, and construct the query language model using this sets of

documents.

Mathematically, the steps are given next, loosely based on the descrip-

tion by Lease [100]. As with the description of the cosine model, let the

words/terms be numbered arbitrarily from 1 to n, where n is the vocabulary

size. Let the query be given by Q, so that fQ
i is the frequency of the word

marked i, in the query, and let θd = (θd1, θ
d
2, . . . , θ

d
n) be the multinomial (uni-

gram) word distribution vector corresponding to the document d in the dataset

D. Then the documents are first ranked by the probability that the query was

generated by the document, written as:
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logP (Q|d) =
n

∑

i=1

f
Q
i log θdi = (fQ)

⊤
· θd (2.1)

That is, the log likelihood of the query being generated by the document

is given by the dot product of the log likelihood of distribution representing

the document, and the query. Each document d is often smoothed using word

statistics from the entire collection C, to deal with possible sparsity problems.

Thus eq. (2.1) uses instead of θd, θ̂d, given by [100]:

θ̂di = λ
f d
i

|d|
+ (1− λ)

fC
i

|C|

where λ = |d|
|d|+µ

, µ being a previously chosen hyperparameter. Here |C|

and |d| are the number of word occurrences in C and d respectively.

Now, given the log likelihood for the query given each document, a

cutoff |R| is used so that only the top |R| feedback documents R are used

for pseudo-relevance feedback. This is done to avoid query drift, where words

irrelevant to the query may become prominent in the feedback set. The feed-

back query θR is then constructed as
∑

r∈R wrθ
r. The weight wr is set to the

likelihood of the query given θr (exponential of eq.(2.1)), normalized so that

all wr sum to 1. Following this, another cutoff κP is used, on the number of

words in the pseudo-relevance feedback query. The words in θR are ranked by

weight, all but the top κR words are discarded, and the query is re-normalized.

After this, the documents can be ranked using the feedback query, based on
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equation (2.1) (the weights fQ
i are now less than 1, as the query is normalized).

This gives us the set of relevant documents R.

We still need to translate document relevance estimates to an estimated

relevance for each user. This research ranks users via their marginalized dis-

tribution across all relevant documents, using the following equation.

P (u|q) =
∑

d∈R

P (u|d)P (d|q)

Again, this research does not use all document, but a cut-off NR, so

that only the top NR are used, weighed by their normalized likelihood.

Pseudo-relevance feedback is empirically known to be a successful ap-

proach in document retrieval [147]. However, with the exception of the rel-

atively early work of Liu et al. [109] on the Q&A site Wondir.com [15], the

approach has not been investigated for Q&A recommendation.

2.1.4 Cluster-based Models

Cluster-based models [108] group similar documents together, based

on the assumption that similar documents will be required for similar tasks.

A representative model for the topic, such as a mean cluster vector or cen-

troid, or a probabilistic distribution over words, is often created as part of the

clustering process, and can be used to match to the query. There is a vast

amount of literature on document clustering (surveyed in [4]), with different

algorithms resulting from differing underlying assumptions. For example, a

vector space representation of documents in combination with the similarity
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measure is generally used for agglomerative algorithms, or partitioning algo-

rithms such as k-means. A common probabilistic approach mathematically

related to the k-means algorithm, is to assume that the dataset was gener-

ated by a mixture of multinomial topic models, which can be discovered using

the expectation-maximization (EM) algorithm [22, 51]. More complex models

make assumptions such as assuming a topic for each word in a document, as

opposed to a single topic for each document [24], or including author informa-

tion as part of the generative process [127].

Yi and Allan [147] consider two possible approaches for using clustering

information during document recommendation: a) using topics for smoothing

documents before matching with queries, and b) using topic models for pseudo-

relevance feedback. However, for the problem of finding experts, Fang et al.

[58] propose removing documents from consideration once topics have been

identified. Thus, for a query q, the probability that an expert u is a good

match can be calculated as:

P (u|q) =
∑

ti∈T

P (u|ti)P (ti|q)

Here T is the set of topics, P (ti|q) is the estimated probability that ti is the

underlying topic for the query, and P (u|ti) is the probability that expert u is

the best match given topic ti.
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2.2 Authority Identification

Historically, the presence of editorial input and other filters mitigated

the problem of low quality content in the information exchange landscape.

The absence of these filters on the Web has broadened the scope of the re-

trieval problem, by emphasizing content quality or authority as an additional

consideration. Given the impossibility of scaling human input to Web scale,

algorithmic approaches to authority estimation on the Web were developed.

These techniques usually relied on the analysis of the hyperlink structure of

the Web.

2.2.1 Graph-based Authority Models for Web Pages

Authority in popular link analysis algorithms such as PageRank [30]

and HITS [94] is conferred on a web page, in one way or the other, by other

pages via links or references. Thus, for example, the PageRank algorithm

is often interpreted via the random surfer model [42], so that a web pages

authority score can be seen as the probability a web page surfer would visit

the page given that she starts at a random page, and selects a random outgoing

link from the page at each time step. So, it is a random walk on the Web graph,

so that pages that are linked to by many others, or by a few important pages,

are ranked highly. Similarly, in the HITS algorithm [94], a webpages authority

score is equal to the sum of the hub scores of the pages that link to it, a

hub being recursively defined as pages that tend to link to authorities. The

assumption behind these approaches is that web page creators link to pages
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they believe to be of high quality, and creators of higher quality web pages

will link to proportionately higher quality ones.

In other words, a web page’s authority is the result of a weighted voting

scheme, and is the consensus arrived at with respect to the quality of a page

by the participants in the system. It has not been independently verified

by someone, say an expert, as corresponding with external reality. For this

reason, these approaches are vulnerable to manipulation, for example to ‘link

farms’ [40], and ‘sybil’ strategies [44]. However, contingent trust can be placed

in the results, if the basic assumptions of the algorithms are believed to be

correct, and also if the results can be verified empirically by being useful to web

searchers. Section 4.2.1 provides a more detailed discussion of the PageRank

model, and other similar measures.

2.2.2 Influence Analysis in Social Networks

Historically, graph centrality measures such as eigenvector centrality

[25] and the Katz measure [90], have been used for identifying important

nodes in social networks. These methods are closely related to the PageR-

ank model [60]. With the popularity of PageRank algorithm, it has generally

been adopted for identifying influencers in online networks [41, 145].

Influencers are usually defined as users, who can induce other members

to take certain actions, such as, take interest in some information they share,

etc. Influence is, thus, a measure of the users importance within an OSN, but

may not be relevant to the real world. For example, Weng et al. [145], for
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identifying influential users on Twitter [82], measure algorithm effectiveness

using a measure based on the number of followers the identified users have.

Ghosh and Lerman [65] measure user influence on news sharing site Digg [17]

by the number of votes the stories posted by them get.

It is common for social media influencers to not be authoritative in

the real world [93]. There are many reasons for this. A primary reason is

the large investment of time required to maintain an influential presence on

a forum. Also, given the large number of social networks, it is possible that

an authoritative user might invest her time on a different forum. In fact, a

good measure of a social forum’s relevance might be the number of influential

users who are authoritative. Moreover, there are many social norms which

motivated users can use to increase their influence. Some such norms are:

1. Reciprocity: A common social norm on many forums is for users to

provide a reciprocal link in response to a link. So, for example, if a user

follows another users, or likes some content by her, the latter user may

reciprocate by following or liking in return. This norm can be seen as a

form of courtesy, but is easily exploited by some users to increase their

link count. Reciprocity of links is a well-documented phenomenon on

the websites Flickr [101] and Twitter [62]. This norm can be exploited

via hyper-networking, where a user might follow or like content from

random users, with the expectation that sufficient number of them will

reciprocate to improve her influence scores.
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2. Social Voting: Many content-sharing sites such as Digg and Yahoo! An-

swers allow users to add other users as contacts or friends. The aim is to

increase engagement: the site is designed so that users find it easy to get

updates on the activities of their contacts. As a side-effect, most users

find interesting stories via their contacts, with the result that users with

many contacts find it easier to promote their content. Social voting has

been documented on the website Digg [65] as well as the photo-sharing

website Flickr [103].

With some exceptions [62], influence estimation algorithms have not

attempted to correct for these distortions. The main reason for this is that

influence as a concept is strongly tied to activity, and in practice, it is difficult

to make the distinction between social activity and abusive behavior. This

is one reason why this work proposes a separate problem, that of authority

identification, which separates the concepts of activity and influence. Loosely

speaking, this work defines authority as the rate at which influence grows with

activity.

2.2.3 Tournaments and Voting Models

In sports tournaments, contenders play against each other, and the

results of these games need to be aggregated to a single ranking [114]. The

same problem also exists in voting systems [106], where individual pairwise

preferences among options may need to be aggregated into a single decision.

It is easy to see that authority estimation is a preference aggregation problem:
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users express preferences for each other, and these preferences need to be

aggregated into a single ranking.

Expressed preferences may be categorized as relative or absolute. A

relative or pairwise preference is one that is made in comparison to another

user. For example in a Q&A forum, provided a choice between answers to a

question by k different users, a user might choose one users answer as the best

answer. This can be interpreted as expressing a relative preference for the user

giving the best answer, compared to the other users. An absolute preference,

on the other hand, does not include an implicit comparison to other users.

Preference aggregation methods can broadly be defined into two cate-

gories, referred to here as: a) parametric methods, and b) graph-based meth-

ods. Parametric methods [140] assume that there is an latent random variable

associated with each option, signifying its quality. When a preference is ex-

pressed by a rater between two options, it is drawn from a distribution that

depends on the quality distributions of both options. A popular parametric

model is the Bradley-Terry model [26–28], which assumes that, for a compar-

ison between two options i and j , two samples wi and wj are obtained from

their quality random variable distributions, and then:

P (i preferred ) = P (wi > wj) =
wi

wi + wj

Then by writing wi as wi = e(i/s), where s is a scaling factor, we can
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write:

P (wi > wj) =
1

1 + e
µi−µj

s

That is, the probability of i being preferred can be modeled as a logistic

function [22]. The parameters i can be estimated using iterative algorithms

related to the EM algorithm [77], or via convex optimization techniques [139].

Graph-based methods for tournaments, on the other hand, result in

models quite similar in spirit to the link analysis approaches used on the Web.

Thus, for example a round-robin tournament is represented as a graph with

each player as a node. If player i wins against player i, this is represented as

an edge directed from j to i. In matrix form, this can be represented as a

tournament matrix M , where Mij represents the number of times user i lost

to user j . Thus, the number of games users i and j have played against each

other is given by Mij +Mji. In case of tournaments for which Mij +Mji = 1,

referred to as generalized tournaments, a common recursive measure of a user’s

quality or ability is the power rank method [106], which is a close variant of

the PageRank algorithm. A related measure is the fair bets score [48], which

penalizes losses, unlike the PageRank score. Related random walk models

have also been proposed by Dwork et al. [54]. Usually, a particular measure is

chosen based on its suitability to the problem, based on an axiomatic analysis

of different measures’ properties [29, 133], or empirically [54].

Graph-based approaches are better suited for the Web, because they

tend to scale more easily. This is because the computations can often be
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reduced to eigenvalue calculations using the power method [16]. However,

parametric methods have the advantage of being interpretable in terms of la-

tent quality characteristics, while graph-based approaches can usually only

be studied via analytically characterizing their properties. Daniels [48] es-

tablished a relationship between Bradley-Terry models and ranking measures

for round-robin tournaments, provided the node strength is not assumed to

be parametrized by a particular distribution. This approach has traditionally

been ignored in favor of parametric Bradley-Terry models. However, given the

size of tournament graphs on OSNs, this research uses the result proved by

Daniels [48], besides extending it to more general cases that reflect online user

behavior, than round-robin tournaments. A similar approach was recently pro-

posed by Oh et al. [116], where they used a graph-based approach to discover

the underlying parameters of data generated by a Bradley-Terry process.

2.3 Research Contributions

The problem of expert finding in Q&A communities was introduced by

Liu et al. [109]. They presented experiments using cluster-based and pseudo-

relevance feedback (PRF) based approaches on the Wondir Q&A forum2 [15].

In their experiments, cluster-based approaches outperformed PRF by a small

margin. Since then, research on Q&A forums can be divided into two com-

plementary categories: expert finding, usually via text analysis approaches for

matching topics with responders, and expert ranking for ranking responders

2Wondir.com was one of the first community Q&A websites. It closed down in 2009.
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by expertise using graph-analysis based approaches.

2.3.1 Expert Finding

For expert finding, Guo et al. [70] explored topic-based generative

models for finding best responders. Liu et al. [107] investigated LDA-based

[24] techniques for the task of topic identification in Yahoo! Answers [85].

Similar approaches have been explored by Riahi et al. [124]. Qu et al. [122]

discuss the problem of identifying the best responder, after assuming that

the set of responders is already known. Most of these methods rely on the

textual content of interactions to identify clusters of similar Q&A interactions,

presumably belonging to a single topic, and use this information to construct

topic-user interest distributions.

This research takes an alternate approach, by augmenting textual infor-

mation with patterns of common interests among experts for topic identifica-

tion [35]. For example, if a subset of available experts have answered (loosely)

the same set of questions, while ignoring others, this is a strong signal that the

questions belong to the same topic, which is the motivation behind the com-

mon interest among the experts. This insight is incorporated via a generative

model [63] based approach. This signal has generally been ignored in current

research, with the exception of Guo et al. [71], whose approach is similar to

one of the two generative models, the pure multinomial model, proposed in

this research [35], and was proposed around the same time. The other model

proposed in this work, the extended generative model [31], outperforms this
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older approach.

The other contribution of this work to text-based expert finding is the

introduction of formal metrics that measure expert satisfaction in a Q&A fo-

rum. Evaluation of expert finding has historically focused on the questioner’s

satisfaction, ignoring the experts’ viewpoint. More recent research has tried

to incorporate the expert’s satisfaction as well. Dror et al. [53] investigate

question recommendation to experts, as opposed to the traditional ’expert

recommendation to questioners’ perspective, as a supervised learning prob-

lem. Horowitz et al. [75], in describing the design of the social Q&A engine

Aardwark, emphasize the importance of maintaining a high level of satisfaction

within the expert community, as the community grows via peer invitations.

The engine, when recommending questions to responders takes into account re-

sponder availability and the evenness with which question load is spread across

the responder base, besides the topic match. However, their work did not pro-

pose any formal metrics that can be used to compare different algorithms that

attempt to balance questioner and expert satisfaction. This research [35] in-

vestigates a large set of metrics for their suitability for representing both the

questioner’s and responder’s experience. Based on this analysis, it identifies

the key trade-off in Q&A recommendation, between two metrics, questioner

coverage, the fraction of questions for which the most suitable expert is found,

and responder load, the ratio of irrelevant to relevant questions recommended

to an expert.

Another characteristic of Aardvark is the use of ‘connectedness’ along
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with expertise while ranking responders by relevance. Connectedness is mea-

sured by the system using a function that takes into account questioner and

responder similarity, as well as their social proximity. The final score of a

responder for ranking is the product of these values, so that only experts who

score highly on both counts are recommended.

This research [32] explores a different approach to the incorporation

of social ties, by estimating for each user their preference between authorita-

tive responders and personal connections as a probability (Section 4.6). This

approach is chosen for two reasons:

1. A large number of questioners on a Q&A forum are not regular visitors

to the site, so there is usually insufficient information for personaliza-

tion. This approach handles such situations gracefully, by setting the

preference for personalization to 0.

2. There is a common tendency, noted by Welser et al. [144], for exper-

tise oriented forums to become dominated by conversations. Often this

phenomenon ‘crowds out’ experts, who leave. The goal of estimating

the preference of each user between authority and social affinity, is to

allow each user to select (indirectly via behavior), the level of trade-off

between the two preferences that they are most comfortable with.

This approach is experimentally evaluated only on the Yahoo! Answers dataset

(Section 5.2.3), as social affinity is not believed to be a driver of interaction

on the Stack Exchange dataset.
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2.3.2 Expert/Authority Ranking

Complementary to text-based approaches, expert ranking models ana-

lyze the user interaction graph to identify experts. It is usually assumed that

experts’ interests are either described by them, or can be discovered as part of

expert finding. Usually graphs constructed from questioner-responder inter-

actions (absolute preference) are used, with the assumption that experts will

ask harder questions compared to non-experts: relative preference information

has generally been ignored. A majority of these approaches use a variant of

PageRank [30] or the HITS algorithm [94]. HITS has been explored by Jur-

czyk and Agichtein [88], while Jhang et al. [151] explored both PageRank and

HITS for Q&A forums. Bian et al. [18] proposed a coupled scheme, where

answer quality and user reputation were alternately estimated. However, most

of these approaches do not differentiate between highly active responders and

experts who answer a few questions well.

Graph-based ranking algorithms are also used for identifying influential

nodes in social networks [41, 95, 145]. These algorithms, however, do not take

into account how user activity levels impact their influence. As a result, it is

common to find non-authoritative but highly active users as highly influential

on an OSN [93]. These algorithms are also vulnerable to manipulation using

social norms such as reciprocity, where users play a ‘number game’ [145], en-

dorsing a large number of fellow users, with the expectation that a subset of

them will feel obligated to return the endorsement. Gayo-avello [62] attempts

to correct for this distortion by heuristically reducing the weight of reciprocal
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links. Weng et al. [145] attempt to differentiate users on Twitter who ‘follow’

(endorse) another user based on topical interests from those who ‘follow’ with

the expectation of reciprocation, by constructing topic-specific ‘follow’ graphs,

based on the hypothesis that reciprocation in users with common topical in-

terests are more likely to be driven by common interests, or homophily [113].

Alternate measures of influence such as the ‘follower’ to ‘following’ ratio have

also been proposed [10]. However, most of these approaches rely on heuristic

techniques, and produce different ranked results. As a result, it is difficult to

justify preferring one to another.

This research addresses the problem of differentiating between influence

derived from activity and social norm manipulation from ‘legitimate’ influence,

by introducing the concept of user authority. A user’s authority is her intrinsic

ability to influence another user in a one-to-one interaction. This is formalized

by viewing each user interaction as a game, the outcome of which, represented

by the direction of the resulting edge between them, is determined by their

relative authority ’strengths’. The Bradley-Terry model [49], discussed in Sec-

tion 2.2.3, is assumed to model the dynamics of a game between two players.

The endorsement graph resulting from multiple such games can thus be seen as

encapsulating the results of a tournament among users. The intrinsic ’player’

strengths, or authority, can then be discovered from the tournament results.

Based on the assumption that Q&A and OSN results are the prod-

uct of an underlying Bradley-Terry model, a new tournament scoring model,

called the average winnings model, is proposed by this research. The fair bets
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measure [48], a tournament measure traditionally used for ranking players in

round-robin tournaments, is shown to be a special case of the average winnings

model. Based on their characteristics, the average winning model is found to

be better suited to finding experts in Q&A forums, while the fair bets model

is found to be a good fit for authority-based ranking in OSNs. These models

naturally deal with the impact of activity. As they attempt to estimate an in-

trinsic value, they are less affected by user activity (though the degree of effect

depends on the fidelity of underlying dynamics to the Bradley-Terry model).

While this is the first work to model OSN graph structure as a combi-

nation of node authority and activity, the idea that a graph node might have

an intrinsic strength or quality, that may not be reflected in centrality mea-

sures due to ‘first mover’ advantage, has been explored for degree centrality

by Bianconi et al. [20, 21]. Another related work is the unbiased web ranking

approach by Cho et al. [45], that takes multiple snapshots of the Web over

time, to take into account the rate at which a node’s PageRank score grows.

Another challenge for link-based approaches in OSNs is the separate

modes in which influence may be expressed. Cha et al. [41] identify three

different modes of influence on Twitter [82]: ‘indegree’ (follow) influence,

‘retweet’ influence, and ‘mention’ influence, each of which can yield its own in-

teraction graph. However, research on ranking nodes in OSNs has traditionally

focused on a single graph drawn from the network. Also, no principled way to

combine information from multiple such complementary graphs exists. Zhou

et al. [152] have proposed a coupled random walk approach for combining
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multiple graphs for the problem of combining citation networks of technical

papers with the author social network. However, their approach is restricted

to the PageRank model, and is not extensible to other tournament models

proposed in this research.

This research demonstrates that combining information from multiple

graphs is a powerful technique for authority identification in OSNs. To do

this, it presents a new co-ranking framework for combining information from

multiple graphs, based on a mutually positive reinforcement principle [152],

where authority information from one graph is used to inform the authority

measurement process in the other graph, and vice versa, till convergence.

However, such a process will require multiple estimations of authority

for each graph, and will not scale to the large graphs found in real world OSNs.

To overcome this drawback, a composite graph equivalent of the co-ranking

framework is developed, by showing that the original co-ranking process is

equivalent to a single authority calculation process on a specially constructed

single graph. This model has the added advantage of being easily extensible

to the authority models, average winnings and fair bets, described in this

research.
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Chapter 3

Expert Finding in Q&A Communities

This chapter presents two new generative model based algorithms, the

pure multinomial model (Section 3.3.1), and the extended generative model

(Section 3.3.3), for recommending experts for a question, given the question

text. These algorithms augment traditional text-based retrieval models with

expert preference information among questions. This chapter also presents

two new measures, question coverage and responder load, for measuring the

performance of expert recommendation algorithms in such scenarios (Section

3.2.2). Empirical evaluation of the algorithms is presented in Section 5.1.

Algorithm performance is evaluated on a variety of metrices including question

coverage and responder load, treating the pseudo-relevance feedback retrieval

method [99, 100] (discussed in Section 2.1.3) as the baseline. Experimental

results show statistically significant improvement on question coverage, holding

responder load roughly constant, and improvement on other important metrics

as well.
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3.1 Introduction

A Q&A forum consists of participants in two chief roles: questioners

seeking information via questions, and responders who answer these questions.

The two roles are not mutually exclusive: a user may play either of the roles

depending on the situation. The interests of the questioner and responder are,

however, different. A questioner would like to find an answer to her question

as quickly as possible. A responder would like to quickly find interesting

questions, and would not want to search through too many irrelevant questions.

The expert finding problem has historically focused on metrics that

measure questioner satisfaction [109]. This is a reasonable choice for the en-

terprise search problem, where it is more important that expertise seekers be

able to find the relevant expert, and the query load is likely to be low. Also,

the expert is most likely compensated for her efforts. On the other hand,

the success of a voluntary online community depends largely on creating and

maintaining a community of high quality experts that commit their time and

efforts.

This is not only because strong experts are more likely to provide sat-

isfactory answers, but also due to the monetary value of high quality content

from an archival and search engine ranking perspective. As noted recently by

Anderson et al. [8], “While most Q&A sites were initially aimed at providing

useful answers to the question asker, there has been a marked shift towards

question answering as a community-driven knowledge creation process whose

end product can be of enduring value to a broad audience. As part of this
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shift, specific expertise and deep knowledge of the subject at hand have become

increasingly important.”

As a result of this shift, there has been a recent perspective change in

how the expert finding problem is studied: from a focus on questioner satis-

faction, to also taking into account the responder’s viewpoint, and considering

the trade-offs involved where their interests diverge [35, 53, 75]. This research

contributes [35] an evaluation of various information retrieval (IR) metrics that

represent questioner and responder interests. In the end, it selects a subset of

these metrics as suitable for comparing expert finding algorithms in subsequent

work. This evaluation is presented in the next section.

3.2 Evaluation Metrics

The expert finding task in the Q&A scenario can be described as follows:

each time a new question is introduced in the system by a questioner, the

expert finding system contacts a subset of available responders in the system

and recommends the question to them as of interest. Some (or none) of these

may answer the question. One of the responses may then be selected as the

‘best answer’ by the questioner, indicating it most fit her needs1. This can

be mapped to the standard IR retrieval scenario (Section (2.1.1)), consisting

of: a document dataset, a set of queries, and a binary relevance judgement for

each query-document pair. However, while the mapping of documents (each

1Certain Q&A forums allow votes from forum members other than the questioner on
answers as well. However, this work limits its scope to the questioner’s preferences.
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Q&A interaction) and queries (questions) is obvious, the relevance judgements

are actually made by two actors: questioners and responders. Based on this

observation, this research [35] defines the standard retrieval metrics, precision

and recall (Section (2.1.1)), from two perspectives.

Loosely speaking, from a questioner’s perspective, her recall is the frac-

tion of questions asked for which she received a satisfactory answer, while her

precision is the fraction of answers that were relevant to her query. From a

responder’s viewpoint, her precision is the fraction of questions recommended

that were recommended to her, while her recall is the fraction of questions she

would have been interested in, that she was actually recommended. This is

formalized in the next section.

3.2.1 Question and Responder Precision/Recall

Let X represent all the participants (questioners and responders) in

the Q&A forum. Let a user x’s responder precision be written as πa
x, and

responder recall as ρax. Then,

πa
x =

R+
x

R+
x +N+

x

ρax =
R+

x

R+
x +R−

x

The right-hand side terms are as defined in Table 3.1. Table 3.1 can be

understood as follows: Rx implies that the responder x believed the question
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was relevant. This can be assumed to be the case if she responded to the

question. Nx means that the responded x did not think the question was

relevant (did not respond). A superscript of + means the recommender system

suggested the question to the responder x. A superscript of − implies that

the question was not suggested to the responder.

Thus, for a given responder, responder precision is the ratio of the

number of questions that were recommended to a responder that the responder

answered, to the total number of questions recommended to the responder.

The recall for a responder measures how many of the questions the responder

answered were recommended by the system. It is a measure of how well the

recommender covers all the interests of the questioner.

Now, let the user x’s questioner precision be written as πq
x, and ques-

tioner recall as ρqx. Then,

πq
x =

U+
x

U+
x + I+x

ρqx =
U+
x

U+
x + U−

x

Here the right-hand-terms are as defined in Table 3.2. Questioner pre-

cision measures how many of the responders recommended by the system

provided satisfactory answers. Questioner recall measures how many of the

answers of interest to the questioner, the recommender was able to identify in

advance.

56



There are three possible ways to count the number of correct matches

(U+
x ) when calculating questioner recall (and precision). In decreasing order

of strictness they are:

1. Count only ‘best answer’ matches: The recommender is assumed to have

failed from the questioner’s perspective, unless it retrieves the responder

who provided the best answer to the question. In this case, the questioner

recall is the fraction of questions asked by her, where the best responder

was retrieved.

2. Count all matches: Precision and recall are calculated across all respon-

ders who answered the question.

3. ‘Weak’ Recall: The recommender is assumed to have succeeded if it

retrieves at least one of the responders. In this case, each question for a

questioner contributes as a single increment to U+
x or U−

x .

Among these choices, options 2 and 3 are generally not good choices due to

two reasons. Firstly, questions often receive multiple answers, only a subset

of which are of good quality. Focusing on overall precision/recall or on ’weak’

recall may cause the system to focus on users that consistently provide answers,

but poor ones, or in the worst case, even spammers. Option 2 is generally less

susceptible to this than option 3. However, a drawback of option 2 is that

there is a lot of churn on most Q&A forums, with users often answering a few

questions and then leaving. A fair subset of answers on questions are from such
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users. Retrieval algorithms generally cannot be expected to make effective

recommendations for such users, and it is not clear how much questioners

stand to gain from these responses (unless there is specific feedback from the

questioner).

For these reasons, this research focuses on option 1 (counting only best

answer matches). An exception to this is conversationally oriented forums

(such as forums discussing sports, relationships, etc.), where the idea of a

‘best answer’ is less meaningful, and users are much more interested in com-

municating with each other, than exchanging information.

3.2.2 Question Coverage and Responder Load

Despite being able to define four separate metrics, the action governing

all of them is the same: each time a new question is introduced in the system,

the expert finding contacts a subset of possible responders in the system and

suggests the question to them. The decision to answer the question is made

by each individual responder and cannot be controlled by the system. The

decision made by the system to recommend a question has to take into account

both the possible impact on questioner metrics as well as responder metrics.

While the importance of each metrics depends on the intentions of the

designer, some judgements can be made about their relative significance. For

example, responder precision is clearly an important measure of the quality of

the recommender, as a system that recommends too many irrelevant questions

to a responder will drive them away. Responder recall is important as well, as
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otherwise responders may not see most questions of interest to them. However,

in balance, responder precision is probably more important than responder

recall.

Questioner precision, on the other hand, is not quite as important.

A questioner may not usually mind extra answers so long as she gets the

answer she is looking for. There may be problems in extreme cases, such as

when a particular user is spammed, but this problem might be handled in

other ways, such as by allowing questioners to ban specific responders from

their questions, or by ranking answers based on responder quality or history.

Questioner recall, however, is important: a questioner is primarily interested

in finding the answer to their question, and a low questioner recall means that

she did not receive a good answer.

Based on these intuitions, this work focuses on the following two met-

rics: questioner recall and responder precision [35]. Since we are only interested

in best answers from the questioner’s perspective, the questioner recall essen-

tially measures the fraction of questions for which the recommender retrieved

the responder who gave the best answer. Questioner recall can be seen as

a measure of how satisfied questioners will be with the Q&A system if the

responders relied entirely on the recommender to provide them with interest-

ing questions. One way to think of this is as the coverage over all questions

that the system is able to provide. From the responder’s perspective, a good

intuition for interpreting precision as the responder load, in terms of irrele-

vant questions read for each relevant question seen. The lower the value of
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responder precision, the more questions a responder has to read through to

find questions of interest to her.

There is an important trade-off between responder load and question

coverage. For example, recommending all questions to every responder in the

system will result in full question coverage. However, this will have a huge

adverse impact on the responder load, as most of the questions we suggest

to a responder will not be interesting to her. The fundamental challenge in

the Q&A recommendation problem is to maximize question coverage, without

overloading responders with irrelevant questions.

While precision and recall assume binary relevance judgements are pro-

vided, in practice a system is likely to calculate scores such as a probability

value, that each responder will provide the best answer for a question. A

common approach used in such cases is to select an arbitrary rank cut-off, so

that only the top k ranks are considered relevant [112]. A more sophisticated

approach is to average across multiple rank cut-offs for responder precision,

resulting in the responder mean average precision, or responder MAP measure

(Section 2.1.1.1). Since this work focuses retrieving the ‘best answer’ alone,

the questioner’s experience can be encaspulated by the mean reciprocal rank

(Section 2.1.1.1) of the best answer, referred to here as quesioner-MRR. The

lower the best responder in the ranks, the less likely it is that she will be

contacted, thus enabling the questioner to receive the ‘best answer’.

Another way to understand the relationship between questioner recall

and responder precision is to draw a responder precision vs. questioner recall
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graph, analogous to a precision-recall graph (Section 2.1.1.1) in document

retrieval, showing the trade-off different algorithms make between load and

coverage.

3.2.2.1 Micro and Macro Averaging

Given multiple topics, or in our case users, macro-averaging refers to

the process of first calculating the relevant metrics for each user, and then

averaging these metrics over the number of users [112]. Micro-averaging, in

contrast, counts all matches/non-matches individually, and then averages these

values across the entire dataset. An alternate interpretation of micro-averaging

is, thus, weighing each user by their frequency of occurrence in the test dataset.

There is no strong reason to use macro-averaging for questioners. How-

ever, given the large amount of churn in the dataset, micro-averaging is an

attractive choice for responders, as macro-averaging will over-emphasize the

transient users. However, at the same time, Q&A forums are often dominated

by a few highly active users. This set might sometimes be as small as con-

sisting of only 2− 5 highly active users. Generally a reasonable recommender

should do well on these users. Also, a recommender that retrieves these users

frequently will do well on questioner recall metrics, due to the large number

of questions they answer, so overall the recommender will appear to perform

quite well. However, given their existing investment in the community, it is

unlikely that a recommender would lead to increased participation from them,

though it may reduce the likelihood of their stopping participation. Thus,
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Answered question Did not Answer
Contacted R+

x N+
x

Not Contacted R−
x N−

x

Table 3.1: Metrics table for Responder x[35]

Liked Answer Did not like Answer / Ignored Answer
Contacted U+

x I+x
Not Contacted U−

x I−x

Table 3.2: Metrics table for Questioner x [35]

while micro-averaging is a reasonable choice for measuring responder satisfac-

tion, it does not provide the complete picture.

For these reason, this work considers both micro and macro averaging

while considering responder metrics, by reporting the macro mean average

precision (MAP) scores, as well as the micro-precision score@10. To deal with

the churn problem during macro-averaging, a threshold is used: only users

who have answered at least 20 questions in the training dataset are considered

during the macro-averaging stage.

3.3 Topic Models for Recommendation

A simple approach to the expert finding problem is to build a text-

based profile, for example a TF-IDF profile (Section 2.1.2), for each responder.

Then, when the system receives a new question, the question text could be

compared to all the responder profiles using a similarity measure such as the

cosine score (Section 2.1.2), and the responders with most similar profiles could

be recommended the question. This is a common approach with respect to
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expertise modeling and recommendation [150].

However this approach, which treats the expertise identification prob-

lem as a document retrieval problem, suffers from two serious drawbacks.

Firstly, an expert is very different from a document in the sense the exact

words used by a responder are heavily contingent on the questions she chose

to answer, and do not cover all the information that a responder has, or the

topic she may be knowledgeable about. Secondly, data about infrequent or new

responders is likely to be sparse, and insufficient for retrieval purposes. For

this reason a simple text profile based approach is not sufficient for the purpose

of modeling human expertise. Preliminary experiments with a cosine-TFIDF

based approach are presented on the Yahoo! Answers dataset in Section 5.2.3.

The approach under performed other approaches by a wide margin, and so

was not pursued in the main evaluation.

An alternate approach that overcomes this drawback introduced by

this work is to model user expertise in terms of topics, instead of words. A

topic can be seen as a higher-level concept over words and responding experts,

and is modeled as a distribution over words, as well as experts. Hence, two

questions may belong to the same topic even though they may have no words,

or responders, in common. Similarly, a expert may be recommended a question

even though there is no match in terms of profile words, if the question is

judged as belonging to a topic the expert is interested in.

The next section introduces two generative models for a collection of

question-answers in a Q&A system. Learning the parameters of these models
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Figure 3.1: The Pure Multinomial Model [35]

enables the identification of topics of interest to various authors, as well as

topic-word and topic-expert distributions.

3.3.1 The Pure Multinomial Model [35]

A basic outline for any online forum where people might gather for a

discussion, or to exchange information can be constructed as follows: at each

timestep, a topic is generated from a distribution over topics, which might

have its own prior distribution. Then, some (question) words are generated

related to the topic. The topic distribution may or may not be independent

of the original author of the post, depending on how closely people stick to

their topic of interest. Following this, a set of responders are chosen from a

64



distribution, based on the topic, and each of these responders generate further

words. The words generated by the responders are related to the topic, but

may or may not be seen as drawn from the same distribution as the topic. For

example, if users have strong personal opinions, or try to draw the discussion

in some favored direction, this might need to be modeled as each user might

having its own word distribution for each topic, or the words as drawn from a

mixture distribution of the original topic distribution, and a word distribution

related to the user.

The model outlined above will be expensive to model due to the large

number of parameters involved, but it can simplified considerably by intro-

ducing some assumptions, reducing it to a finite mixture model. These simpli-

fications reduce the number of parameters considerable, while still providing

important insight into the dataset. A more detailed outline of this model

which we refer to as the pure multinomial2 (PM) model, is given below:

Let the number of unique words p, the number of topics |T |, and the

number of unique responders s be known in advance. Let the words be labeled

1, . . . , p and the users 1, . . . , s, arbitrarily. At each timestep, a topic t is

generated from a mutinomial distribution τ over topics, and a vector wq =

{w1, . . . , wp} is generated, where wi, is the count of word labeled i in the

generated words. The words are generated from φt, a multinomial distribution

over words corresponding to topic t. Following this a responder vector x =

2Because, unlike the next model presented, this model uses multinomial models to rep-
resent both word and user distributions.
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{x1, . . . , xs} is generated from θt, a multinomial distribution over users for

topic t, where xi is the number of time user labeled i responded. Each of the

users in x in turn generates words based on the topic t. Here, an important

simplifying assumption is made that the words generated by a responder as

part of the answer are drawn from the same distribution φt as the topic.

This assumption can be understood as saying that the words used in the

answer to a question by a responder depend only on the topic of the question,

and do not depend on any attributes of the responder. This appears to be a

reasonable assumption in Q&A forums where factual information is exchanged

for the most part, or even in forums where personal opinions are expressed but

the vocabulary used does not differ very much from user to user. It may not

hold true in forums such as blogs or discussion forums, where responses to

topics are much longer and more personal, and people may have favourite

topics they might try to steer the topic to. But this level of model complexity

is not required for Q&A forums. Figure 3.1 displays the generative model

described above in plate notation. The shaded variables are the observed

variables, while the unshaded variables are the hidden variables. Also, α,

β and γ are symmetric Dirichlet priors. Another simplifying assumption is

made that the total number of words and users generated for each question

is independent of τ , θ and φ, and hence their randomness can be ignored in

our discussion. Also, since it is assumed that the words generated by the

responders depend solely on the topic, the words generated by all responders

can be written as a vector wr = {w1, . . . , wp}. Let w = wq +wr.
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3.3.2 Parameter Estimation

The generative model is represented in plate notation in Figure 3.1, and

is essentially a mixture model with a finite number of components, where the

number of components is the number of topics expected in the dataset. Let the

number of such components/topics be g. Let the total number of unique Q&A

interactions in the dataset D be n, where the jth such interaction is referred to

as dj. Then let there be associated with each dj a hidden vector zj of length

g, where zji = 1 if dj is about topic i. Let θ = {θ1, . . . , θg}, φ = {φ1, . . . , φg},

and ǫ = (θ, φ). Then, assuming zj is known for all dj, the log likelihood of ǫ

given D is given by:

logD L(ǫ) =

g
∑

i=1

n
∑

j=1

zij{log τi + logP (wj|θi) + log (P (xj|φi)} (3.1)

The expectation maximization (EM) algorithm [51] is used to estimate

the hidden variables zi. The derived E-step and M-step for the algorithm are

below:

E-Step: Given a guess for τ and ǫ, the expected value of zij is given by:

zij =
τi · P (wj,xj|ǫi)

∑g
h=1 τh · P (wj,xj |ǫh)

M-step:

Given expected values of zj, τ , θ and φ can be estimated as:

τi =

n
∑

j=1

ψ + zij

ψ|T |+ n
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Figure 3.2: The Extended Generative model[31]

θi =
α +

∑n
j=1 zijxj

αs+
∑n

j=1

∑g
i=1 zijxj

φi =
β +

∑n
j=1 zijwj

βp+
∑n

j=1

∑g
i=1 zijwj

All θi and φi are normalized to 1.

68



3.3.3 Extended Generative Model with Responder Preferences [31]

The pure multinomial assumes that users are drawn from a multinomial

distribution. On the other hand, the decision made by a user whether or not

to answer a question, can be considered a much stronger preference expression.

For example, a user reads a question, and then, if the topic matches her

preference, she answers the question, else she does not. In this interpretation,

the information provided by a user’s decision to not answer a question is given

weight. A natural choice to express this decision is as a Bernoulli random

variable. If the user is interested in the topic, she answers the question with a

probability θ, else she does not answer with a probability 1 − θ. Notice that

we used θ for the user-topic multinomial distribution in the pure multinomial

model: effectively we have removed a single multinomial model per topic with

a much ‘stronger’ binomial model for each user-topic pair.

However, if we do not have information about whether a user saw a

question, it is difficult to interpret a user’s decision not to answer a question

as binary (the reason for the original multinomial model). To overcome this,

an extended generative model (Figure 3.2) is introduced, which uses a hidden

variable-based approach is used, where for any question q and user j, a ran-

dom variable rjq is 1 if the user saw the question, and 0 otherwise. There is

a multinomial distribution underlying rj for each user j, which is the proba-

bility that a user saw a question, independent of the topic. ρj can be seen as

roughly estimating the level of activity of user j on the forum. Available or

heuristic information about whether a user read a question is incorporated via
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a prior probability distribution µj, for each user. Currently, the prior simply

incorporates Laplace smoothing. The aim here is to provide a lower-bound

estimate of the effectiveness of this approach. In settings where more infor-

mation about user browsing patterns is available, the prior estimate can be

improved, or done away with altogether if the actual values of riq are known.

3.3.3.1 Parameter Estimation

A Gibbs sampling [63] based approach was used to estimate the dis-

tribution parameters. The sampling equations are straightforward to derive.

Given a user i and question q, riq, the probability the user read the question

even when she did not answer is estimated as:

P (riq = 1|xiq = 0) ∝ P (xiq = 0|riq = 1)P (riq = 1)

= (1− θit)ρi

Here θit is the Bernoulli distribution representing the user’s interest in

the question, based on the current best guess of its topic t. So essentially a

user is more likely to have seen the question even if she did not answer it, if

she is usually active (high value of ρq), and also not interested in the topic

(high value of θit), Since a user always read a question if she answered it,

P (rq = 1|xiq = 1) is always equal to 1. The topic t can be sampled as:
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P (t|w,x) ∝ P (w,x|t)P (t)

= P (w|φt)
∏

ri∈r,ri=1

(θit)
xi(1− θit)

1−xi

So essentially, the extended generative model incorporates responder

preferences between questions much more strongly in the model via the user

of a Bernoulli random variable. If a responder is believed to be active, but still

does not answer a question, this is seen as strong evidence that the topic of the

question does not interest the user. The aim is to arrive at clusters of questions

where broadly the same set of users were active. The pure multinomial model

and the extended generative model are evaluated empirically in Section 5.1.
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Chapter 4

Authority Identification in OSNs

This chapter presents a new model, the average winnings model (Sec-

tion 4.4.2) for ranking members in an question-answer forums. It also demon-

strates (Section 4.4.3) that the fair bets model [48], a model for ranking players

in round robin tournaments, is a good choice for ranking members in online

social networks. This chapter also introduces a new co-ranking framework

(Section 4.5), for combining information from multiple endorsement graph.

Experimental results presented in the next chapter (Section 5.2), demonstrate

the effectiveness of the algorithms developed here.

4.1 Introduction

An online social network (OSN) is an imperfect representation of real-

world social interactions, as only a fraction of people’s real-world activities are

reflected online. It can be compared to a still camera capturing snapshots of

modern society: it cannot see reality from all possible angles. We see, so to

speak, ‘through a glass darkly’. However it does often capture a certain ver-

sion of reality. This raises a fascinating question: can the member interactions

on an OSN be used in general to draw conclusions about real-world relation-
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ships and hierarchy; and – in particular – can we identify who the most well

respected, prominent members of a social group are? This work attempts to

construct an inferred global ranking of members of an OSN, according to the

level of recognition they have achieved in the real world, or the authority[118]

they may be considered to have on individuals in the real world.

4.2 Endorsement Graphs

Member interactions on an online social network (OSN) are often as a

graph G, where each vertex in G represents a member, and an edge between

members i and j indicates that at least one interaction took place between

them. The edges may be directed if representing asymmetric interactions,

such as user preference expressions. So, for example, a directed edge in graph

G from member i to j might represent that i endorsed some content posted

by j, for example, by ’liking’ the content, or sharing it with others, etc. The

resulting graph, referred to in this work as an endorsement graph, can be

analyzed to identify the most popular (by endorsements) nodes in the graph.

An endorsement graph can be represented as an adjacency matrix M such

that Mij = 1 if i endorsed j.

It is possible to have multiple endorsement graphs over the same OSN

[34]. For example, an endorsement graph may be constructed from invitation

data, containing information about who initiated a connection with an invita-

tion (invitation graph [34]). The assumption would be that users on a social

network are more likely to send invitations to users that they respect, or at
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least do not disrespect. Similarly, liking content provided by another user, or

even navigating to another user’s profile multiple times and browsing through

it can be seen as a sign of interest (navigation graph[34]).

A number of methods have been developed in social network analysis

[141] for measuring the importance of a node in a single graph. A straightfor-

ward measure is degree centrality, which is essentially the indegree of a node,

in this case the number of endorsements received. A more sophisticated mea-

sure, eigenvector centrality [25], weighs each endorsement by the importance

of the endorser. Thus the weight of each node depends on all other nodes, in

a recursive fashion. The well-known PageRank algorithm [30], used for rank-

ing web pages by interpreting hyperlinks as endorsement, is a variant of the

eigenvector centrality measure.

4.2.1 Eigenvector Centrality and PageRank

There are two main differences between eigenvector centrality and PageR-

ank:

1. While eigenvector centrality uses the adjacency matrix, PageRank nor-

malizes each row of the adjacency matrix M to sum to 1, by dividing

each row by its outdegree ci, so that the resulting matrix P ′ is stochastic.

2. Each row of the stochastic matrix P ′ is smoothed with a random positive

stochastic vector r, so that the resulting matrix is non-zero. In other

words, a new matrix P is created such that, each row i of P , Pi∗ =
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(1−d)P ′
i∗+dr

⊤. The new matrix P used for further computation is thus

a positive stochastic matrix.

Given an endorsement graph G with k vertices, the PageRank score ai

of the vertex vi is given by:

ai =
K
∑

j=1

Pjiaj

That is, the score ai for vertex i is recursively the summation across all the

vertices j that endorsed i, of the fraction of endorsements that were for Pji,

multiplied by their score aj . In matrix form, this can be written as:

P⊤a = a

⇒ a⊤P = a⊤ (4.1)

Since P is a row stochastic matrix, a in eq.(4.1) is by definition [91] the

stationary distribution vector of the Markov chain defined by P . An intu-

itive interpretation for why a is the stationary distribution is provided by the

random surfer model, in the context of web pages. According to this inter-

pretation, the PageRank algorithm mimics the behavior of a web surfer, who

starts surfing at a random page and at each timestep, randomly select an out-

going link (edge) from the current page. However, with a certain probability

d at each timestep, the surfer gets bored with the current page and jumps to

a randomly selected new page. The new page is selected from the probability

distribution r. Then the PageRank score of a page corresponds to the fraction

of time the surfer will spend on it. Thus, pages with a high PageRank score
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are pages that are linked to by a large number of web pages, or by a smaller

number of other pages with high scores.

Due to this interpretation, d is often called the random restart proba-

bility, or the teleportation probability, as it is the probability with which the

random walk randomly restarts. r is usually referred to as the random restart

of teleportation vector.

A similar reasoning justifies the use of eigenvector centrality in social

networks: the important nodes connect not only to a lot of other nodes, but to

other important nodes as well. The PageRank vector has been used to identify

influential users in OSNs [41, 62, 145].

4.3 Random Surfer Model: Drawbacks

Intuitively, the random surfer model suggests PageRank as a reasonable

algorithm for identifying authorities: authorities are likely to be users who

receive a large number of strong endorsements. However, the model ignores

a number of social dynamics, which can distort authority estimates. Two

prominent dynamics identified by this research [34]are:

4.3.1 Impact of User Activity on Endorsements

Two factors determine the number of endorsements an OSN member

receives: a) their authority level, which determines the desirability of a connec-

tion with them, and b) their visibility on the graph, that is, the likelihood that

they will be noticed by other users. Non-authoritative members can improve
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their PageRank scores by increasing their visibility, usually through increased

activity (engaging other members via page views), or increased connectivity

(by sending more invitations). Some other factors that complicate the rela-

tionship between endorsements and authority are:

1. An authoritative user is more likely to accept connection invitations than

to send them out. This is because many non-authoritative users find a lot

of value in connecting with authorities, while the opposite is not always

true. More generally, link formation in OSNs is found to be consistent

with a status-based model [105], where low status nodes link to those of

high status. This observation does not play a part in the random surfer

model.

2. In contrast to the Web where most information is publicly accessible,

OSNs have a variety of privacy settings, and sometimes do not allow

users to access profiles more than a few degrees from their own. As

a result, a user’s network size and openness play a major role in the

number of invitations / profile views she receives.

3. Motivated users can take advantage of behavioral norms. For example,

the norm of reciprocity, i.e., users feeling obligated to return links with

courtesy links, is used by unscrupulous users to increase their link count

[101, 145], on both Flickr[84] and Twitter[82].

4. Older users can become entrenched over time, and have an indegree
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disproportionate with their authority level. This can discourage younger

users from participating.

4.3.2 Complementary Endorsement Graphs

There are many different ways in which an OSN member may choose

to interact with another. The chosen type of interaction often depends on the

relationship between them. A useful distinction made by this research [34] is

between symmetric and asymmetric interactions. A symmetric interaction is

one with an expectation of reciprocation, or at least an acknowledgement. For

example, sending an invitation to connect, or sending an email, is a symmetric

interaction. An asymmetric interaction, on the other hand, does not expect

any response for the receiving person. Looking at a person’s profile, ’following’

their updates on a network such as Twitter [82], are asymmetric interactions.

Asymmetric and symmetric endorsements are broadly complementary.

Asymmetric endorsements are more aspirational in nature compared to sym-

metric endorsements. Thus, for example, on a professional OSN, a user may

be more likely to connect to her immediate supervisor, but may browse her

company CEO’s profile more often. Also, symmetric endorsements are more

’exposed’ to the receiver and thus more guided by social norms: a user may

feel obligated to send invitations to connect to all the people she meets at her

workplace. However, symmetric endorsements are less susceptible to celebri-

ties and the vagaries of the news cycle.

Identifying user invitation (hyper-linking) and browsing behavior on
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OSNs as symmetric and asymmetric respectively is an important departure of

this work from the standard random surfer model, which posits a very close

relationship between link structure and browsing. Essentially, for a random

surfer, the PageRank vector is the result of browsing the hyperlink graph. For

example, Gleich et al. [66] empirically learn the random restart (d) param-

eter over the hyperlink graph from web browsing data. On the other hand,

Browserank [110] assumes that the Web hyperlink structure can be ignored

given the user web browsing behavior, which it treats as the ’actual’ random

surfer walk. These assumptions are less true for OSNs, where the differences

between linking and browsing behavior is much greater.

To address the differences between endorsement behavior on the Web,

and on OSNs, this work proposes the following approach [34]:

1. A tournament model [48, 114] of member interactions, where user behav-

ior can be interpreted as driven by an underlying Terry-Bradley model

[28]. Intuitively, this can be understood as follows: each OSN member

has an intrinsic authority strength. The direction of an interaction (edge

in the graph) is a probability distribution based on the relative strength

of the two member nodes.

2. A model for combining authority strength related information from mul-

tiple graphs, where each graph is constructed over the same set of mem-

bers, but represents different aspects/modes of their behavior. The

model is equivalent to simultaneously using the authority scores vec-
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tor of one graph as the random restart vector of the other graph, and

vice versa.

4.4 Tournament Models

Leskovec et al. [105] analyzed data from two online communities, epin-

ions[57], and Wikipedia [83] moderator interaction, and found that a status

based interpretation serves as a good predictor of user endorsements. They

observed that users are more likely to provide a positive rating to others users

they perceive as being higher status, in terms of being more knowledgeable,

etc., instead of being concerned with likability or personal relationships. In-

tuitively, this is plausible: say two users i and j come in contact with each

other on an OSN, or in the real world, and suppose j is more authoritative

than i. Then it is in i’s interest to connect with j, and try to maintain that

connection. Thus if we see a connection between i and j on an OSN, we should

expect i to initiate that connection.

4.4.1 The Bradley-Terry Model [49]

Under the Bradley-Terry model [26–28, 49] (also discussed in Section

2.2.3), we can formalize this as follows: suppose the authority strengths of

OSN members i and j are given by ai and aj respectively, where ai ∈ R+

for any i. Say we treat the interaction between i and j as a game, where

the endorser is considered to have ‘lost’ the game, and the endorsed member

to have won. Then assuming a tournament took place between i and j, the
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probability that i won the game is given by ai
ai+aj

. Assuming no draws, it

follows that the probability that j won the game is given by
aj

ai+aj
.

A tournament matrix [48]M can be constructed to represent the result

of all such ‘games’, withMij , containing the number of times player i lost to j.

Assuming Ni is the total number of games played by i, and Nij is the number

of games between i and j. Then as Nij → ∞, Mij converges to its expected

value, Nij
aj

ai+aj
almost surely. The resulting matrix at convergence may be

referred to as the asymptotic tournament matrix. Then:

E

[

Mij

Nij

]

=
aj

ai + aj

Based on this observation, the approach taken in this work is to treat

the currently available tournament matrix at any given time, as the asymp-

totic tournament matrix; the assumption being that the current matrix will

eventually converge to this state as time progresses. The next section presents

the average winnings model, a new scoring model for calculating the underly-

ing authority weights ai of players in a tournament where each player has a

different probability of engaging in a game.

4.4.2 The Average Winnings Model

Continuing our understanding of interactions on a Q&A forum or OSN

as games, with the direction of the resulting edge determined by the outcome

of the game, consider a tournament where the number of games two players
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play against each is drawn from a distribution. Let the number of games i and

j play against each other in this tournament be given by Nij .

An example of this could be data drawn from a Q&A forum, where Nij

is the number of questions that both i and j have answered. Nij could depend

on a number of factors, such as their respective levels of activity, and the degree

of interest they have in the same set of questions. Let Zij be the number of

times player i lost to player j, and let Zi be the total number of games lost

by i. This information can be represented as a tournament matrix (Section

4.4.1) Z, and also as an endorsement graph. For numerical purposes, it needs

to be ensured that he graph is strongly connected. This can be achieved by

modifying Z in two ways:

1. By introducing a regularizing node in the graph, a technique also used by

Chen et al. [43]. This node can be understood as a player that has won

and lost against every other player exactly once. A self-loop is added to

the regularizing node, to ensure that the corresponding Markov chain is

aperiodic, or

2. By adding a small probability of teleportation (loss) to a uniformly cho-

sen node, as per the PageRank model [30].

Given the popularity of the PageRank algorithm in the online social network

research community, this research selects the second option. Then the follow-

ing proposition provides a method for calculating the authority strengths of

the participating players (OSN/Q&A members).
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Proposition 4.1. Let Z be a K ×K tournament matrix of results based on

an underlying Bradley-Terry model, so that the probability i loses to j is given

by
aj

ai+aj
. Let the number of games played between i and j be Nij = Nji, and

let Ni represent the number of games played by i. Then construct a matrix

P where Pij =
Zij

Zi
and Zi =

∑K
j=1 Zij. Then, assuming the Markov chain

corresponding to Z is ergodic, ai =
πi

Zi
, where π is the stationary distribution

of the Markov chain corresponding to this matrix.

Proof. The proof uses the property that any ergodic Markov chain that satisfies

the detailed balance equations given by πiPij = πjPji, has a unique stationary

distribution, given by scaling π to add to 1 [69]. For P , the detailed balance

equation between two states i and j are given by:

πi ·
Ni,j

Zi
·

aj

ai + aj
= πj ·

Nij

Zj
·

ai

ai + aj

Setting πi = ai · Zi balances the equation. Then ai is given by:

ai =
πi

Zi
(4.2)

In other words, under the Bradley-Terry model, the authority score of

a node is given by its PageRank score, divided by the number of games it has

lost.

This section presented a new method, the average winnings model, for

assigning authority scores to nodes in an OSN. The next section presents the

83



fair bets model [48, 114, 132], a model introduced by Daniels [48] for ranking

players in round robin tournaments, where each player plays against another

player exactly once. This research shows that the fair bets model can be

interpreted as a special case of the average winnings model, and is effective for

ranking members in professional OSNs. In comparison, the average winnings

model is found to be a good fit for Q&A forums.

4.4.3 The Fair Bets Model [48]

The fair bets model calculate player strength scores based on a gen-

eralized tournament matrix [132]. A tournament matrix M can be converted

to a generalized tournament matrix V by normalizing the scores of all pairs

of players, so that their total number of games played sums to 1. That is,

Vij + Vji = 1. Suppose a stochastic matrix P is constructed from V by nor-

malizing each row. That is:

Pij =
Vij

∑K
k=1 Vik

=
Vij

deg+(i)

Here deg+(i) represents the outdegree of vertex i. P is a row stochastic matrix.

Assuming, for now, that P is aperiodic, and thus ergodic. Then the following

proposition is true [48].

Proposition 4.2. Given an asymptotic generalized tournament matrix V that

is ergodic, so that for any game between i and j, Pij =
aj

ai+aj
. Then ai =

πi

deg+(i)
,

scaled by a constant factor, where π is the stationary distribution for P .
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Proof. For P , the detailed balance equations are given by:

πi
aj

deg+(i)(ai + aj)
= πj

ai

deg+(j) · (ai + aj)

They are satisfied by setting πi = ai · deg
+(i). Then:

ai =
πi

deg+(i)
(4.3)

Thus the authority vector a can be estimated from an asymptotic tour-

nament matrix V , by calculating its stationary distribution π, and then cal-

culating ai =
πi

deg+(i)
.

A significant advantage of the fair bets model is that, since it models

each interaction as a game in a tournament, it naturally de-incentivizes recip-

rocation. This is because an OSN member with a higher fair bets score will see

her score decrease, even if she draws with a weaker member. In comparison,

there is no penalty for outgoing edges in the standard PageRank approach.

4.4.3.1 Social Capital Exchange Interpretation

For a generalized tournament matrix V , the fair bets score aj of player

j satisfies the following property:

K
∑

i=1

vijai =

K
∑

i=1

vjiaj

Based on this equation, Slutzki et al. [132] provide the following interpretation

of the fair bets model: a player is allowed to bet an amount of money per game.
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She forfeits this amount to her opponent if she loses the game, and if she wins,

she is awarded the amount bet by her opponent. The score assigned to a player

is then the amount she can afford to bet, assuming she has to bet the same

amount against all players. That is, the amount of money any player j pays

out per game (aj) is the amount she makes in total, divided by the number of

games lost.

In the context of online social networks, this research [34] views fair

bets as a model of social capital accumulation and expenditure. Users can

grow their connection graph in two ways: either by sending invitations or ac-

cepting them1. As sending an invitation requires time and effort on a user’s

behalf, and a willingness to make the gesture, users are more likely to make

this investment if they believe the new connection can help them in achieving

social/professional growth. This growth can take place online: more connec-

tions increase the likelihood that someone will stumble on the person’s profile,

thus increasing the likelihood of invitations. Or both the original invitation,

and subsequent new connections, could be side-effects of real world activity.

Thus, over time, the initial time and social capital spent in inviting

connections pays off, as the user accumulates invitations in return. In this

setup, highly respected users receive multiple invitations without making a

significant effort, while the payoff for less authoritative users is lower. The

standard fair bets model can then be visualized as follows: assuming users

1A similar intuition can be applied to other endorsement graphs besides the invitation
graph.
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were paying each other to accept invitations on an OSN, then the fair bets

score of a user is the amount she can afford to pay on average. The fair bets

model, is thus, intuitively a good fit for professional social networks.

4.4.4 Average Winnings and Fair Bets: Comparison

Because the fair bets model was designed for ranking in round robin

tournaments, it assumes a single interaction between any two players. In

the case of multiple interactions, these interactions are normalized to add up

to a single game. In comparison, the average winnings model counts each

interaction separately. The fair bets model is better suited to situations where

the likelihood of multiple interactions given the first one is high, and they are

likely to follow the same pattern. Consider a professional social network: if

two users interacted once, then multiple interactions are likely to follow the

same pattern as the first one, in terms of edge direction. In contrast, in a

Q&A forum, if one players wins one interaction by giving the ‘best answer’,

it is still likely that the other player will win the next round. The average

winning model, by counting each win separately, is thus better suited to Q&A

forums, while the fair bets model is a good model of user behavior on OSNs.

4.5 Co-ranking Complementary Graphs

In the random surfer interpretation of the PageRank algorithm [30], at

each timestep, with a certain probability 1− d (usually set to 0.85), the surfer

randomly selects an outgoing link from the current page. With the remaining
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probability d, the surfer gets bored and jumps to a completely new page. The

probability d is referred to as the teleportation probability(also random restart

(RSR) probability), and the vector the new page is chosen from is called the

teleportation vector (or RSR vector). The vector can be uniform, or biased to

reflect some priorly known information. For example, the teleportation vector

could be personalized [59] given sufficient information about the surfer, or be

biased towards trusted vertices. Its effect is to bias the overall scores towards

the preferences of the vertices with higher values in the teleportation vector.

This research [34] considers the following method to inform one graph

(say, invitation) with information from the other (say, navigation) graph: sup-

pose we use the authority vector of the invitation graph as the teleportation

vector for the navigation graph. Following this, the improved results in the

navigation graph can be reused to improve the results in the invitation graph,

and so on till convergence (assuming the process converges). This approach is

referred to here as the bimodal co-ranking approach. The idea behind this ap-

proach is mutual positive reinforcement [152]: useful information in one graph

can be used to improve the authority estimates of the other graph, and vice

versa. The authority vector of one graph serving as teleportation vector of the

other graph could be either of the three authority scoring choices considered

till now: PageRank, or fair bets, or average winnings.

As the next section shows, the process does converge for strongly con-

nected graphs. The research also shows [34] that successive alternate runs

of the two algorithms are not necessary. Instead, a composite graph can be
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created, by merging the invitation and navigation graphs in a certain way.

The invitation and navigation PageRank vectors that would result from the

iterative bimodal approach, can be obtained from the the PageRank vector of

the composite graph.

4.5.1 The Bimodal Co-ranking Algorithm [34]

Given two strongly-connected graphs GA and GN with stochastic ma-

trices PA and PN , the co-ranking algorithm can be defined as follows:

1. Select one of the two graphs, say GN , at random. Calculate the PageR-

ank vector r
(1)
N for GN , using a uniform teleportation vector z0, and a

teleportation probability 0 < d < 1. Calculate the PageRank vector r
(1)
A

for GA, using r
(1)
N as the teleportation vector.

2. Repeat till r
(t)
A does not change: at iteration t, calculate the PageRank

vector r
(t)
N for GN , using r

(t−1)
A as the teleportation vector. Next cal-

culate the PageRank vector r
(t)
A for GA, using r

(t)
N as the teleportation

vector.

3. Suppose the process stops at timestep t′. Then set final PageRank vec-

tors rA = r
(t′)
A , rN = r

(t′)
N .

The proof for: a) the co-ranking process converges, and b) the process is

equivalent to simultaneously using the PageRank vector of one graph as the

teleportation vector of the other graph, and vice versa, is provided below.
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4.5.1.1 Bimodal Co-ranking: Proof of Convergence [34]

To prove:

1. The algorithm described in Section (4.5.1) converges after a certain num-

ber of iterations t.

2. The PageRank vectors rA = rA
(t) and rN = rN

(t) satisfy the following

equations at convergence:

(

(1− d)PA + derN
⊤
)⊤

rA = rA

(

(1− d)PN + derA
⊤
)⊤

rN = rN

Outline We prove the result by showing that the bimodal co-ranking algorithm

is equivalent to applying the power iteration eigenvalue algorithm [136] to a

specially constructed positive column stochastic matrix M , where:

M = (d2(I − (1− d)PN
⊤)

−1
(I − (1− d)PA

⊤)
−1

Since the power iteration algorithm converges for positive stochastic matrices

in a finite number of steps, the process described above converges as well.

Following this, part (2) is shown algebraically.

To simplify the notation below, let c = 1− d.

Claim 1. [73, equations (2–6)] For a row stochastic matrix P , construct an-

other matrix A = cP⊤ + (1− c)re⊤, where ei = 1 for all i, 0 < c < 1 and r is

a positive vector with |r|1 = 1. That is, r is a teleportation vector added to P ,

and 1 − c is the teleportation probability. Then the solution to the PageRank

equation for A, x = Ax, is given by x = (1− c)(I − cP⊤)
−1
r.
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Proof.

x = Ax = [cP⊤ + (1− c)re⊤]x = cP⊤x+ (1− c)r

⇒ x = (1− c)(I − cP⊤)
−1
r

Claim 2. For a row stochastic matrix P , 0 < c < 1,
∑∞

k=0 (cP )
k = (I − cP )−1.

Proof. This follows from the fundamental matrix theorem [91, Theorem 3.2.1],

which states that, for any absorbing markov chain with transition matrix Q,
∑∞

k=0 (Q)
k = (I −Q)−1. This can be shown by considering the identity:

(I −Q)(I +Q +Q2 +Q3 + . . .+Qn−1) = I −Qn

⇒
n−1
∑

k=0

(Q)k = (I −Q)−1(I −Qn)

As n → ∞, (I −Qn) → I. We know (I −Q)−1 is nonsingular because I − Q

is diagonally dominant [136]. Thus,
∑∞

k=0 (Q)
k = (I −Q)−1.

As cP is an absorbing markov chain with a probability d = 1− c of absorption

at each timestep, setting Q = cP , the claim is correct.

Claim 3. For an irreducible row stochastic matrix P and 0 < c < 1, X =

(1− c)(I − cP )−1 is a positive row stochastic matrix.

Proof. We show that for a row stochastic matrix P with K rows, each row of

S = (I − cP )−1 sums to 1
1−c

. As a result, X = (1 − c)S is a row stochastic
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matrix. Using the relationship (I − cP )−1 = I +
∑∞

k=1 (cP )
k from Claim 2.

Sij =

{

0 + cPij + c2(P 2)ij + c3(P 3)ij + . . . if i 6= j

1 + cPii + c2(P 2)ii + c3(P 3)ii + . . . if i = j
(4.4)

Then
K
∑

j=1

Sij = 1 + c

K
∑

j=1

Pij + c2
K
∑

j=1

(P 2)ij + c3
K
∑

j=1

(P 3)ij + . . . (4.5)

Since P is a row stochastic matrix, and the product of row stochastic matrices

is a row stochastic matrix, rows of P n sum to 1 for all n. Thus (4.5) can be

written as:
K
∑

j=1

Sij = 1 + c+ c2 + . . . =
1

1− c

To show that all entries of S are positive, consider equation (4.4). Since P is

an irreducible matrix, for some 0 < k < K (K is the number of vertices) ,

ck(P k)ij > 0. Thus S has all positive entries. Hence and hence X = (1− c)S

is a positive row stochastic matrix.

Proposition 4.3. The co-ranking process defined in Definition (4.5.1) for

two graphs with irreducible stochastic matrices PA and PN is equivalent to

calculating the eigenvector corresponding to the largest eigenvalue of a column

stochastic positive matrix M = (1− c)2(I − cPN)
−⊤(I − cPA)

−⊤, using the

power iteration algorithm [96], and will thus converge in a finite number of

steps. The result is equivalent to using the PageRank vector of one graph as

the teleportation vector of the other graph, and vice versa.

Proof. Let z0 be a uniform stochastic vector we start with, and let the vector

after t application of alternate PageRank runs be zt. Then, using Claim (1),
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the co-ranking process can be written as:

zt+1 = ((1− c)(I − cPN
⊤)−1(1− c)(I − cPA

⊤)−1)zt

⇒ zt+1 = [(1− c)(I − cPN)
−⊤(1− c)(I − cPA)

−⊤]
t
z0 (4.6)

Here t is the number of steps till convergence (infinite if the process does not

converge).

Using Claim (3), it can be seen that equation (4.6) is the product of

the transpose of two positive row stochastic matrices, and hence is a positive

column stochastic matrix. Let this matrix be:

M = (1− c)2[(I − cPN)(I − cPA)]
−⊤

Then eq. (4.6) is equivalent to applying the power iteration algorithm to the

positive stochastic matrix M , and as a result is guaranteed to converge in a

finite number of steps [96], to a unique postive eigenvector corresponding to

the largest eigenvalue of M [136].

We now show that the above process is equivalent to using the PageR-

ank vector of each graph as the other graph’s teleportation vector. Assume

that the co-ranking algorithm required t alternate runs of PageRank on PN

and PA to converge, with PN randomly chosen to be first (initially multiplied

with z0). In this case, the last PageRank calculation would be applied to PA.

The code stops at the t + 1 run, when it realizes it has converged. The last

run calculates M t+1z0, with M
t+1z0 = M tz0. Let the final converged values

of PageRank vectors for PA and PN be rA and rN respective. For brevity, we
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use both d and c = 1− d below. Then we can write:

rN = d(I − cPN)
−⊤M tz0 (4.7)

Since M tz0 =M t+1z0:

rN = d(I − cPN)
−⊤M t+1z0 (4.8)

For rA, we calculate as follows:

rA = d(I − cPA)
−⊤d(I − cPN)

−⊤M tz0 (4.9)

Then using eq. (4.7) we can write:

rA = (1− c)(I − cPA)
−⊤rN (4.10)

Then using eq. (4.9), eq.(4.8) can be rewritten as:

rN = d(I − cPN )
−⊤MM tz0

⇒ rN = d(I − cPN )
−⊤d2(I − cPA)

−⊤(I − cPN)
−⊤M tz0

⇒ rN = (1− c)(I − cPN)
−⊤rA (4.11)

Based on Claim 1, eq.(4.10) is a solution to rA = A1rA, where:

A1 = ((1− d)PA + derN
⊤)

⊤

Similarly, eq.(4.11) is a solution to rN = A2rN , where:

A2 = ((1− d)PN + derA
⊤)

⊤

This proves the second part.
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4.5.1.2 Proof Of Equivalence: Bimodal and Composite Graph Mod-
els [34]

However, the process requires multiple runs of the PageRank algorithm,

which is computationally expensive, and not feasible for very large graphs. For

this reason, we develop an alternate approach by showing that computing the

PageRank vector for a specially constructed composite graph is equivalent to

running the co-ranking algorithm over a pair of graphs.

Assume we have two graphs, GA = (VA, EA) and GN = (VN , EN),

representing different aspects of user behavior. Both graphs have the same

number of vertices, say, k. For each vertex v ∈ VA , there is a corresponding

twin vertex v′ ∈ VN . In our example, the vertex v for a user represents her

invitation behavior, while v′ represents her navigation behavior. We would

like to use the PageRank vector of one graph as the teleportation vector of

the other. That is, the teleportation probability for v ∈ VA should be equal

to the PageRank score of its twin vertex v ∈ VN , and vice versa. To do this

efficiently, we prove the following result:

Proposition 4.4. Given two graphs GA = (VA, EA) and GN = (VN , EN),

construct a new graph G = (VA ∪ VN , E = EA ∪ EN ∪ EAN), where EAN is

a new set of directed edges, between all pair of twin vertices, and weighted d.

That is, a vertex v in the invitation graph is connected edge to its twin vertex

v′ in the navigation graph via a directed edge of weight d. A similar directed

edge of weight d connects v′ to v. Then the PageRank vector for the graph G,

normed so that the scores for vertices in VA and VN each sum to 1, is equal to
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the result of the bimodal co-ranking algorithm.

Proof. Let the transition matrix of VA be written as PA and its (unknown)

PageRank vector be rA . Similarly, let the transition matrix and PageRank

vector of VN be PN and rN respectively. Let e be a vector such that ei = 1

for all i. Then, as proven by Theorem 2(4.3), PageRank vectors of GA and

GN satisfy the following equations:

(

(1− d)PA + derN
⊤
)⊤

rA = rA (4.12)

(

(1− d)PN + derA
⊤
)⊤

rN = rN (4.13)

Expanding (4.12), we get:

(1− d)PA
⊤rA + drNe

⊤rA = rA (4.14)

⇒ (1− d)PA
⊤rA + drN = rA (4.15)

since rA sums to 1.

Similarly, for (4.13), we get:

(1− d)PN
⊤rN + drA = rN (4.16)

Let Ik be an identity matrix of size k. Then equations (4.15) and (4.16)

can be written in matrix form as follows:

[

(1− d)PA
⊤ dIk

dIk (1− d)PN
⊤

] [

rA

rN

]

=

[

rA

rN

]

(4.17)
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Let P be a matrix, such that:

P =

[

(1− d)PA dIk
dIk (1− d)PN

]

(4.18)

and let r =

[

rA
rN

]

. Then equation (4.17) can be written as P⊤r = r. Then,

by the definition of the PageRank vector (Section 4.2.1), r is the PageRank

vector for P .

4.5.2 Co-ranking with Tournament Models

The matrix P in equation 4.18 can be modified to use other authority

models instead of PageRank, as the teleportation vectors [34]. For example,

let the identity matrix in the first row of P be replaced by diagonal matrix

RA, whose i-th diagonal value is 1
oi
, where oi is the outdegree of vertex vi in

VA. Similarly, replace the identity matrix in the second row of P with diagonal

matrix RN , with RN(j, j) =
1
oj
, where oj is the outdegree of vertex v′j in VN .

After normalizing RA and RN each to add to d, this results in a bimodal model,

where the fair bets vector of each graph serves as the teleportation vector of

the other (the final results still need to be normalized to get fair bets scores).

A similar co-ranking models can be constructed with the average winnings

model, or two different authority models can be combined in a co-ranking

framework, if required.
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4.6 Authority Estimation under Social Voting in Q&A
Forums

A problem with a endorsement aggregation based approaches towards

authority estimation is that, even in the case of authoritative users on a forum,

the motivations behind a selection they made is not always clear. The reason

for this is the social aspect of online forums: over time users develop social

relationships with other users, and these relationships impact choices about

the content they consume or favor. In other words, the reputation that users

aggregate over time does not depend only on their quality, but also on many

behavioral side-effects of their social network interactions. Ignoring these bi-

ases during authority identification can adversely affect the accuracy of results.

Also, taking these preferences into account while recommending content for

users where such information is available for them, can improve the quality of

personalized recommendation.

Two common examples of such biases on OSNs are reciprocity and

social voting. Many content-sharing sites such as Digg and Yahoo! Answers

allow users to add other users as contacts or friends. The aim is to increase

engagement: the site is designed so that users find it easy to get updates on

the activities of their contacts. A side-effect is that since users find interesting

stories via their contacts, users with many contacts find it much easier to

promote their content. This phenomenon, called social voting [103] has been

documented on the website Digg [65] as well as Flickr [103].

Perhaps due to the asymmetric nature of the questioner-responder re-
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lationship, this research finds that reciprocation plays a smaller role on Q&A

forums: if B answers a question by A, it is likely that B is more knowledgeable

than A, which makes an answer by A to a question by B unlikely (unless it

is in a different topic). Also, the specific nature of the information requested

makes it less likely that social voting can play a role. Instead, this research

identifies a new behavioral pattern, discovered affinity, in data derived from

Q&A forums. This pattern is described in the next section.

4.6.1 Discovered Affinity

Most social network graphs demonstrate a ‘small world’ property [14,

115], where, even though most vertices are not adjacent, the shortest path

between most vertices is small. Watts and Strogatz [143] identifed another

property of small world graphs: a high value of the clustering coefficient. The

clustering coefficient for a vertex on an undirected graph as [56]:

Cv(G) =
Number of triangles including v

d(v) · (d(v)− 1)
(4.19)

where a triangle is any set of three edges including v, which are all con-

nected to each other. d(v) represents the degree of vertex v. The denominator

equals
(

d(v)
2

)

, and represents the number of possible ways in which two edges

may be chosen from the edges adjacent on v. For a network based on social

ties, the clustering coefficient measures the extent to which users who have

common friends are also friends of each other.
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Figure 4.1: Clustering Coefficient for a Multigraph

Q&A forums and content-sharing networks (referred to here collectively

as content-oriented networks of COSNs) have different dynamic, with a greater

emphasis on user interests and affiliations. This can be represented as an

affiliation network [98]: a bipartite graph, with edges connecting each user with

her affiliation/interests. The clustering coefficient can be calculated on the

induced undirected graph of the bipartite graph [115]. This approach has the

drawback of assuming that all user affiliations are significant. This is a strong

assumption on such networks, where an affiliation could represent something

like having answered the same question on a Q&A forum, or having commented

on the same article on a blog. Due to this drawback, the next section proposes

a new definition of the clustering coefficient, based on a multigraph (instead

of bipartite graph) model of user behavior on a COSN.
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4.6.1.1 Clustering Coefficient for a Multigraph

The following observation enables the modeling of user behavior and

affiliations on COSNs as a multigraph, instead of a bipartite graph: any event,

or an affiliation/group, is often initiated, or ‘owned’ by a user who is a member

of the same social network. Based on this, given a graph G consisting of all the

N users on a COSN, the multigraph representing user behaviors is constructed

as follows: for each event/group t, initiated by the user corresponding to vertex

vi, and attended/joined by a set of users V ′, for each user vj ∈ V ′, an outgoing

edge is added from vi to vj, labeled with t. Then a triad on the graph is

defined as three vertices vi, vj and vk, such that one of them is incident on the

other two via outgoing edges, and the edges share at least one common label.

A triangle is then defined as a triad in which all vertices are connected to each

other. The clustering coefficient is then defined as:

C(G) =
Number of triangles in G

Number of triads in G
(4.20)

So, in Figure 4.1, vertices v1, v2 and v3 form a triangle, as the v1− v2

and v1 − v3 edges share the same label tn. Since it is also the only triad in

the graph, the clustering coefficient of the multigraph is 1.

Multigraph clustering coefficient values for three question categories,

crawled from the Yahoo! Answers website, are shown in Table 4.1. The

categories were selected with the expectation that they would lie at different

points on the spectrum from information seeking to social behavior, with the
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Space & Astronomy forum being most informational, and the Wrestling forum

the least. The clustering coefficient was calculated for data crawled at different

points of time, with an approximately 1.5 year gap in between. The aim was

to see by how much the coefficient values changed over time.

The results show an interesting trend, where the coefficient values fall

significantly for the S&A dataset, while rising significantly for the Wrestling

dataset. The values for the B&A dataset are comparatively low but relatively

stable. One reason for the low value, based on an analysis of the data, is

that there are a large number of extremely short-term visitors to the forum,

who leave the forum after a few questions or answers. However, the reason

for the decline in the clustering coefficient for the S&A dataset are less clear.

Preliminary analysis suggests two reasons: an increase in the number of short-

term visitors, and a trend towards less discussion oriented and more factual

questions. The reasons behind these trends are not known.

A high clustering coefficient indicates the following mechanism of social

behavior: if users A and B attend the same event (hosted by say, C), it

increases the probability that B will attend an event hosted by A, or vice versa.

This research refers to this as discovered affinity. Identifying this phenomenon

on the Yahoo! Answers website enable its use as part of the prediction model,

enabling significant improvements in recommendation quality.
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Time Period
Data Category Feb-Mar 2009 Oct-Nov 2010

Space and Astronomy (S&A) 10.46% 3.42%
Books and Authors (B&A) 3.47% 4.85%

Wrestling 13.75% 16.14%

Table 4.1: Clustering Coefficient Values for the Yahoo! Answers Dataset (three
categories)

4.6.2 Estimating Selection Preference Distribution

Sections 3.3 and 4.6 discussed topic-based models of user authority, and

some documented behavioral mechanisms that impact user behavior on OSNs.

This section provides an algorithm for estimating, for each user on an OSN, the

degree to which they are interested in, or influenced by these different modes

of behavior: information seeking, or social. This influence is represented for

each user by a latent variable, called fairness or objectivity. Raters’ fairness

or objectivity, represented as a vector o, is supposed to estimate the degree to

which the selections made by them are motivated by the quality of the content

rated, as opposed to the influence of their. For raters motivated by content

quality, oi = 1, and for raters completely driven by their social network, oi = 0.

The algorithm can intuitively be understood as follows: suppose the

objectivity value of each user was known. Then, while performing reputa-

tion estimation, the transition probability values for the non-objective users

(oi = 0) should be ignored. In the random surfer model, this is equivalent

to the following behavior: if the surfer visits a vertex that it knows to be

non-objective, it teleports at random to a new vertex on the graph. However,
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since the exact value is not known, the probability of teleportation is set in

the algorithm as proportional to the expected value of the objectivity. Thus,

ratings by questioners estimated as making more selections based on a per-

sonal distribution will be less influential than selections made by questioners

estimated as making few or no selections based on a personal distribution.

To estimate oi, a rater’s behavior is modeled as follows: the number

of ratings qj each user provides is drawn from a distribution (this distribution

need not be modeled as part of the final algorithm). Each user also has a

hidden variable oi associated with him/her. Following this, for qj timesteps,

depending on the value of oi, the user i draws values from one of two distribu-

tions: the quality distribution (if oi = 1) and his/her personal social affinity

distribution (if oi = 0.). The quality distribution α is the reputation distribu-

tion, calculated as defined in Section 3.3. The social affinity distribution σi for

user i is defined as the user’s social network, with all members equally likely;

people who are not member are assigned a small prior, to assure nonzero like-

lihood. We use another prior: the prior probability of selecting from the social

affinity distribution defined for each user, which is the number of times the

user selected a poster from his/her social network, based on historical data.

We refer to this as the affinity prior π. Then given a set of selections, the

posterior probability of selecting from either of the two distributions can be

calculated.

The quality distribution depends on O, as only users who are objective

should be considered while calculating α. However, re-estimating α changes
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the objectivity values O for all users. We use an iterative expectation maxi-

mization based algorithm, where user objectivity and the quality distribution

are alternatively estimated.

The algorithm [32] is given below. An experimental evaluation of the

algorithm, on data drawn from Yahoo! Answers and Digg are presented in

Sections 5.2.3 and 5.2.4 respectively.

1. Initialize πi for each user i, Q and r. Set α = (I −OQP )−T r. Repeat

Step 2 to 4.

2. Objectivity Estimation: For each rater i in the dataset, and their ratings

si, estimate oi =
πiP (si|α)

πiP (si|α)+(1−πi)P (si|σi)
.

3. Likelihood Estimation: a) Calculate LL(j) =
∑N

i=1(1− oi) logP (si|σi) +

oi logP (si|α), where j is the current iteration number.

4. Exit Condition: If LL(j) < LL(j−1), exit.

5. Reputation Estimation: Set α = (I − OQP )−T r.
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Chapter 5

Experimental Results

This chapter presents an empirical evaluation of the approaches devel-

oped in Chapters 3 and 4. Section 5.1 evaluates the expert finding approaches

on data derived from the online StackExchange Q&A forum [80]. Section 5.2

evaluates authority identification techniques on data derived from four online

communities. Co-ranking tournament models were evaluated on the profes-

sional social network LinkedIn [46] and the Q&A forum StackExchange [80].

The algorithms for incorporating social and behavioral effects in authority cal-

culations are evaluated on data from the Q&A forum Yahoo! answers [85], and

the social content exchange forum Digg [17].

5.1 Question Recommendation in StackExchange

Due to the logistic effort involved in an online evaluation, the exper-

imental evaluation for this research was entirely offline. There are two main

consequences of an offline approach:

1. When a question is recommended to a responder, it is not possible to

tell whether she saw the question or not. In the case of less active

responders, it is quite likely that they did not see the question. As a
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result, the evaluation metrics have unnaturally low values. It can be

expected that the system will perform better on the same metrics in an

online evaluation.

2. It is not possible to evaluate whether the system design decisions im-

pacted expert retention in any way. Thus, while it is hypothesized that

lower expert load should lead to higher expert satisfaction, and so reten-

tion, it cannot be empirically evaluated that this is the case.

In contrast, Horowitz et al. [75] and Hecht et al. [74] provide examples of

online evaluations of Q&A recommenders.

The evaluation compared three question recommendation algorithms

based on data extracted from a data dump [78] provided by the Stack Exchange

network website. The dataset consisted of Q&A interactions performed on the

website in August 2012. Six expert communities were selected for evaluation:

two scientifically oriented communities (Mathematics and Physics), three tech-

nology and engineering communities (Security, AskUbuntu and ServerFault),

and one language and discussion-oriented community (English). For each com-

munity, the dataset was chronologically ordered based on the timestamp when

the question was posted, and then divided into two equal halves. For datasets

consisting of more than 7, 000 questions (Mathematics and ServerFault), only

the first 7, 000 questions were selected. For datasets with fewer than 4000

questions, the first 2000 documents were used for training, and the rest for

testing. The reason for the 50 − 50 division instead of the more common
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70− 30 one, was to mimic the fast pace at which Q&A datasets change. Each

of the models was then trained on the first chronological half, and tested on

the second.

5.1.1 Evaluation Metrics

The evaluation focused on the following metrics:

1. Question Coverage: The micro-averaged precision across questioners,

where only best answers were considered. That is, the fraction of ques-

tions (expressed as a percentage) for which the responder who gave the

best answer was suggested by the retrieval model.

2. Responder Load : The inverse of the responder micro-averaged precision.

This is the number of irrelevant questions a responder will have to look

through, to find a question of interest to her.

3. Questioner Coverage and Responder Precision F1 measure: This F1 mea-

sure attempts to balance the trade-off between the question coverage and

the responder precision (inverse load), discussed in Section 3.2.2, to ar-

rive at a single value for comparing different algorithms.

4. Responder Mean Average Precision: The mean macro-averaged precision

for responders, averaged across all ranks. To deal with the large amount

of churn among responders (responders who answer a few questions, then

leave), only responders who answered at least 20 questions in the training

dataset were considered.
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5. Best Answer Mean Reciprocal Rank : This evaluates how high up the

ranks the responder who gave the best answer was in the retrieval sys-

tem’s list.

The three models evaluated were, the Pseudo-Relevance Feedback (PRF) model

discussed in Section 2.1.3 based on the descriptions in [99, 100], the pure multi-

nomial model (PM) discussed in Section 3.3.1, and the extended generative

(EG) model outlined in Section 3.3.3. The settings for pseudo-relevance feed-

back parameters is given in Table 5.1.

Table 5.2 shows the question coverage and responder load results when

the top 10 ranked experts are contacted at each timestep. For all communities

except for ‘AskUbuntu’ and ’English’, the load results are in the 14−20 range

for the extended generative model, and in the 17 − 25 range for the pseudo-

relevance feedback approach, while the question coverage is over 30% for three

of the six communities. These are reasonable values given that this is not a

real run, and we have no way of knowing which questions were actually seen by

users. As can be seen from the table, the extended generative model approach

presented in Section 3.3.3 outperforms other approaches on both load and

coverage. Noticing that the load value for the extended model outperforms

the other approaches in all cases, a chi-square test was performed to test

the significance of the questioner coverage improvement. The cases where

the improvement was statistically significant at a 0.05 level are highlighted in

bold. Thus even assuming that the responder load is equal in both cases, the
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extended generative model showed a statistically significant improvement over

PRF.

The responder MAP scores are shown in Table 5.4. A Fisher’s random-

ization test as described in [134] was used to test the statistical significance

of the improvement shown with the EG model at a level of 0.05, using the

Average Precision results per user. The results were found to be significant in

all cases, except for the English dataset. The question mean reciprocal rank

(MRR) scores are shown in Table 5.3. The PM model under performs on the

MRR metric. The cause of this is investigated in Figure 5.1 using data from

the Mathematics community. The graph shows the cumulative number of best

responders that have been matched till each rank. PM seems to do extremely

well for the initial ranks, but its performance deteriorates over time. This

phenomenon is reflected in the MRR metric. This may be due to its weaker

model of user preference behavior, due to which it is not able to model users

without extensive textual data.

Overall, the EG model out performs other approaches by a statisically

significant margin for most datasets. The performance of PRF improves as

the ranking cutoff is increased, as can be seen in Figure 5.1 for the Mathe-

matics dataset. However, it still takes a fairly long time to overcome its initial

disadvantage.
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Figure 5.1: Graph showing the cumulative number of matches per rank for
the StackExchange Mathematics community. The pure multinomial model
performs much better in earlier ranks, while pseudo-relevance feedback out-
performs others once the top 35 ranks have passed. The extended generative
model is relatively consistent throughout.
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Param. Label Param. Decription Param. Value
|R| No. of Documents for Feedback 20
κR Feedback Query Word Cutoff 10
NR No. of Docs. Averaged Over for Users 30

Table 5.1: Parameter Settings for Pseudo-Relevance Feedback

PRF Pure Mult. Model Ext. Gen. Model

Community

Q.
Cov.

R.
Load F1

Q.
Cov.

R.
Load F1

Q.
Cov.

R.
Load F1

Math 26.3 15.64 0.102 29.3 16.39 0.1015 35.5 14.24 0.117

Physics 31.7 20.14 0.084 29.0 20.83 0.0824 31.5 19.55 0.088

Security 28.3 18.87 0.089 26.1 18.51 0.089 30.4 16.87 0.099

AskUbuntu 9.0 55.56 0.030 10.2 50.00 0.034 14.2 33.76 0.049

ServerFault 12.7 24.39 0.062 16.2 20.58 0.074 19.1 18.52 0.084

English 9.5 50.00 0.033 10.2 41.67 0.039 11.3 41.09 0.040

Table 5.2: Question Coverage (questioner recall) expressed as a percentage,
Responder Load (inverse of responder precision), and Qsnr. Recall-Resp. Pre-
cision F1 measure for six StackExchange communities, for Pseudo-Relevance
Feedback (PRF), the Pure Multinomial(PM) Model, and the Extended Gen-
erative (EG) Model, with retrieval cutoff at the top 10 level. The EG model
consistently outperforms the other two models on both coverage and load,
and in combination in the F1 metric. The cases where the questioner coverage
improvement is statistically significant at a 0.05 level is highlighted in bold.

5.2 Authority Identification in Social Networks

5.2.1 Evaluation in the LinkedIn Social Network [34]

For authority identification in the LinkedIn social network, we con-

struct two separate graphs, the invitation graph and the navigation graph,

to represent invitation data and browsing patterns respectively. The assump-

tion behind this decision is that the two graphs are complementary: there is

authority-related information in each graph that is missing in the other. Given

two separate graphs over which authority ranks can be calculated, a combined
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Community PRF Pure Mult. Model Extended Gen. Model
Math 0.076 0.102 0.121
Physics 0.129 0.069 0.126
Security 0.109 0.105 0.147

AskUbuntu 0.031 0.016 0.038
ServerFault 0.043 0.018 0.058
English 0.032 0.028 0.046

Table 5.3: The Mean Reciprocal Rank (MRR) of the best answer for the
three models: pseudo-relevance feedback (PRF), the pure multinomial (PM)
model, and the Extended Generative (EG) model. The Extended Generative
Model outperforms the others, except for the English dataset, where PRF
outperforms the other approaches by a small margin. The PM model under
performs on this metric, compared to PRF. The reason for this is clearer from
Figure 5.1: the PM model performs much better near the top ranks. This is
because the word-based signal is effective in identifying only the top few users
in any topic.

Community PRF Pure Mult. Model Extended Gen. Model
Math 0.045 0.043 0.061
Physics 0.059 0.049 0.084
Security 0.047 0.049 0.064

AskUbuntu 0.017 0.017 0.025
ServerFault 0.031 0.028 0.043
English 0.019 0.018 0.017

Table 5.4: The Mean Average Precision (MAP) for responders with at least
20 responses each in the training dataset. By the definition of MAP, this value
is macro-averaged, so all responders are weighed equally. The three models
being evaluated are: pseudo-relevance feedback (PRF), the pure multinomial
(PM) model, and the Extended Generative (EG) model. The EG Model out-
performs the others, except for the English dataset. This may be due to the
strong assumption that the EG model makes, that user responses are highly
determined by the topic. In more discussion-oriented forum, this may not be
the case.
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rank can be arrived at in two ways:

1. Rank Merging via Metasearch: Use a metasearch-based approach to

merge the two rankings. Borda voting [12], for example, is a simple

but usually effective approach to merging two ranked lists: the rank of

a user is essentially the mean of their rank in the two lists.

2. Bimodal Authority Models : Try to combine authority information from

both graphs using a co-ranking process, as described in Section 4.5. As

discussed in Section 4.4.3.1, the fair bets model is a good fit for authority

estimation in professional OSNs. Thus, a natural fit for the LinkedIn

graph is a fair bets based co-ranking framework.

Recall that, for a graph the fair bets score ai of a vertex vi, and its

PageRank score ri, can be written as:

ai =
ri

deg+(i)
(5.1)

⇒ ai =
deg−(vi)

deg+(vi)
· µi (5.2)

That is, the fair bets authority score of a vertex directly proportional to a)

the mean authority accumulated per incident vertex, µi, and, b) the indegree

to outdegree ratio (i-o ratio). Thus, the fair bets model assumes a linear rela-

tionship between a vertex’s indegree and its outdegree. However, in practice,

it was found that the relationship between a node’s indegree and outdegree

evolves as the outdegree increases. The next section discusses this relationship.
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Figure 5.2: Indegree-Total Connections Ratio Histogram: Users with 50 to
1000 Connections [34]. The histogram follows an approximately normal dis-
tribution, around an indegree to total nodes ratio of 0.5. These users form the
bulk of the LinkedIn social network.

5.2.1.1 Indegree Evolution with Outdegree

The evolution of user vertices on the invitation graph can be divided

into three stages. The first stage is that of users with less than 10 connections.

A normalized histogram of the indegree to number of connections (i-t ratio) for

this group of users is shown in Figure 5.3. As can be seen, a majority of these

users have a ratio close to 1.This is because new users are unlikely to send

invitations, due to being isolated by the small size of their connection graph.

This can give them an artificially high i-o score. To address the skewness of the
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Figure 5.3: Indegree-Total Connections Ratio Histogram: Users with ≤ 10
Connections [34]. This set largely consists of new or inactive users. They have
an artificially high indegree to total nodes ratio, due to their relative isolation.
A subset of these nodes grow to exhibit a ratio more in line with Figure 5.2
over time.

i-o ratio of poorly connected users, we use a Laplace smoothing of the outdegree

value in the fair bets formula, by adding a small constant (equation 5.3).

The i-t ratio for users with 50 − 1000 connections is shown in Figure

5.2. While there’s still a fair number of users with an i-t ratio of more than 0.9,

the ratio is relatively normally distributed, with an overwhelming majority in

the 0.2-0.6 range.

On the other extreme, for users with more than 3500 connections, the

graph is biased once again towards much higher ratio values, as shown in
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Figure 5.4. This is a very small subset of users, consisting largely of extremely

active1 and influential users. would rank these users near the top of the ranked

list. Interestingly, a fair bets-based ranking places these users near the bottom

of the list (with rare exceptions), despite their high indegree-outdegree ratio.

This is because, for users with an extremely large number of incoming edges, a

majority of these incoming edges have low values of authority, due to the way

authority scores are usually distributed across the graph (power law). This

results in a lower mean value.

5.2.1.2 The Log Fair Bets Model [34]

As a basic validation, we evaluated the relationship between the fair

bets based rank assigned to a user, and his/her professional seniority level. The

seniority level data is proprietary standardized data derived from LinkedIn

profiles, that maps millions of job titles in the LinkedIn dataset to one of ten

levels: from intern (0), to founder (9). A ranking by authority is more likely to

be reliable if users at higher ranks, on average, hold titles of higher seniority,

compared to lower ranked users. Figure 5.5 shows the evolution of seniority

with fair bets ranks. The ranks towards the right are the highest ranks.

Interestingly, there is a dramatic jump in the seniority of people at

the very top of the ranked list. However, after a certain point, users’ ranks

seem to bear little relationship to seniority levels. The reason is the over-

1This seems paradoxical, but a user with 10, 000 connections and an i-t ratio of 0.9 has
sent out 1000 invitations, a higher level of activity than most users.
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steep normalization: a user with 100 connections will need to have twice the

PageRank score as a user with 50 connections (assuming the same i-o ratio),

to have the same fair bets score. Intuitively, this seems unlikely. PageRank

scores are likely to follow a power law distribution, so that a few users would

contribute most of a user’s score. Assuming more active users have higher

scores, users are more likely to receive their more valuable edges sooner rather

than later. Also, a user’s connection network grows much faster in the initial

stages, as each connection makes them visible to many new users. At some

point, the law of diminishing returns would set in, as most connections of a

newly added connection are already part of the user’s network, thus unlikely

to lead to more incoming invitations. The same logic extends to page views.

Based on these observations, the normalization we use, which we refer

to as log fair bets (LFB), is as follows:

fi =
deg−(vi)

log (10 + deg+(vi))
· µi (5.3)

Log fair bets can be interpreted as assuming that the arrival patterns of in-

coming links follows a power law distribution with respect to time (measured

by outdegree). That is, the expected authority value of links received once k

invites have been sent is 1
k
. This expected value includes both the probabil-

ity of receiving a link, and the authority of the link. In this interpretation,

the log k can be seen as approximating the sum
∑k

i=1
1
i
. The value of 10 is

the Laplace smoothing parameter, fixed based on the analysis in the previous

section.
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Figure 5.4: Indegree-Total Connections Ratio Histogram: Users with More
Than 3500 Connections [34]. These are the outliers in the dataset. Interest-
ingly, the PageRank algorithm ranks them near the top of the list, while the
Fair Bets algorithm ranks them near the bottom, due to their large outdegree
(often over 400−500). Log Fair Bets finds a balance between the two extremes.

A validation similar to that for fair bets results was done for log fair

bets by comparing ranking results against standardized seniority data. Figure

5.6 shows the resulting graph. As can be seen, the log fair bets graph is much

smoother, and the seniority level tracks the ranking much more closely.
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5.2.1.3 Evaluation Dataset Construction

The analysis was done on a subset of about 50 million LinkedIn mem-

bers, chosen from the entire LinkedIn member base (of about 100 million

members at the time) based on some simple criteria. We obtained all con-

nection invitations that were sent and accepted between the members in our

subset, resulting in an invitation graph with billions of directed edges, going

from inviters to invitees. We then constructed the navigation graph over the

same set of vertices as in the invitation graph: we draw an edge from user

A to user B if user A viewed user B’s profile at least twice within a certain

period of time (one year). Our assumption here is that a single view of a user’s

profile is too weak to count as an endorsement, so two views is set as a lower

bound. Unlike the invitation graph, where all edges are weighted equally, the

navigation graph edges are weighed by the number of times the profile was

viewed. The outgoing edge weights are normalized for both invitation and

navigation graphs, so that they sum to one for each vertex.

As the ground truth of authoritative people, we decided to use LinkedIn

users who have Wikipedia[83] profiles. Wikipedia is known to be selective

about allowing to create people profiles, so that only significant people tend

to have Wikipedia profiles. Obviously, as any manual process, the choice of

significant people is somewhat subjective. However, most well known people

are likely to have Wikipedia profiles – which is a reasonable starting point for

our model’s evaluation. The evaluation goal is to test whether most LinkedIn

users with Wikipedia profiles appear on the top of the constructed ranked list
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of authorities.

We built a text mining system that maps LinkedIn users to Wikipedia

profiles based on matching the textual data between LinkedIn and Wikipedia

profiles. Our goal was to optimize for the mapping precision trading off the

recall, therefore we made quite a few assumptions that kept the resulting

precision at a high level. Given a LinkedIn member li and a person wi who has

a dedicated Wikipedia profile, we assume that P (li = wi|Nameli 6= Namewi) =

0, that is, the probability of li and wi to be the same person is zero if li and

wi do not have the same name.

We started with a list of candidate LinkedIn members whose profiles are

dense enough (they contain a profile headline, at least one current position, and

a reasonable number of connections). For each name of a candidate LinkedIn

member, we checked if there exists a Wikipedia page with that name as a

title. We extracted the first paragraph2 of each such page, and aggregated

all of them into a candidate Wikipedia profile list. From the resulting list,

we filtered out disambiguation pages as well as pages that are dedicated to

deceased people and to fictional characters.

We represented each LinkedIn member li from the candidate list as the

Bag-of-Words BOWli of his/her headline and current position information.

We represented each Wikipedia personality wi from the candidate list as the

Bag-of-Words BOWwi of the first paragraph of his/her Wikipedia profile. We

2The first paragraph of a Wikipedia page dedicated to a person usually contains the most
essential biographical information about that person.
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estimate the probability of li and wi to be the same person as follows:

P (li = wi) ∝ P (li = wi|Nameli = Namewi)×

P (li = wi|Profileli ∩ Profilewi) (5.4)

The probability of li and wi being the same person given that they share

their name P (li = wi|Nameli = Namewi) is inversely proportional to the

commonness of the name. We estimate the name commonness over the list of

all member names on LinkedIn. The probability of li and wi being the same

person given the overlap in their profiles P (li = wi|Profileli∩Profilewi) can be

approximated by the cosine similarity between the two profiles, represented as

TFIDF vectors of their Bags-of-Words. We estimate the IDF scores of words

over the entire collection of LinkedIn member profiles.

For every person wi with a Wikipedia profile from the candidate list,

and for every LinkedIn member li with the same name, we compute the right

side of formula (5.4) and decide that li = wi if the resulting value is above a

preset threshold. After some hand-tuning, the final system yielded about 30K

LinkedIn members who have Wikipedia profiles. We estimate the mapping’s

precision as very high – we spot checked a couple of hundred mappings and

did not see a single instance of a wrong mapping. We cannot estimate the

mapping’s recall though. For our model’s evaluation purposes however, the

mapping’s recall does not matter.
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Figure 5.5: User Fair Bets Rank vs Mean Seniority Level (over consecutive
groups of 2000 people)[34]. The Fair Bets model performs extremely well for
the top ranks (on the right). The bottom-ranked users on the left are relatively
senior but in sales and recruiting, many of whom are hyper-networkers. This
is a reasonable result for the algorithm. However, in the middle, the algorithm
tends to stratify by outdegree, due to its assumption of a linear relationship
between indegree and outdegree. This is the reason for the repeated ‘up-down’
pattern. Each group in the pattern consists of people at approximately the
same outdegree.
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Figure 5.6: User Log Fair Bets Rank vs Mean Seniority Level (over consecutive
groups of 2000 people)[34]. The log fair bets scores vary much more closely
with seniority. There is a large group of low ranked relatively senior people
(large spike on the left). Investigation suggested this group consists largely of
sales people and recruiting professionals.
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5.2.1.4 Evaluation Measures

We uses the mean average precision (MAP) score, and another widely

used measure, the normalized discounted cumulative gain (NDCG) score, to

evaluate the quality of our ranked results.

Since, in our case, we are essentially evaluating a single query, the

average precision score serves as the MAP. Since we are more interested in

the quality of the higher ranks of our results, than the entire list, the MAP

scores are given after cutting off the list at three thresholds: after 1000 ranks

(MAP@100), after a hundred thousand ranks (MAP@100K), and after one

million ranks (MAP@1mil).

The MAP measure treats all users on the Wikipedia list as equally

relevant. The other measure we use, NDCG, enables us to differentiate between

users in terms of degrees of relevance. Given a ranked list, the DCG score of

the list upto n ranks is given by:

DCG = m1 +

n
∑

i=2

mi

log2 i
(5.5)

where mi is the estimated relevance of the ith match. The NDCG score is

given by normalizing this value by the ideal DCG (IDCG) value, that is, the

maximum score that any ranking can achieve given the relevance scores.

For any user with a Wikipedia profile, we calculate her relevance score

mi, as the log of the mean number of page views per day received by her
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profile, based on two months of Wikipedia page view data3 (May and June

2011). The relevance score for all users receiving less than three page views a

day is set to 1. This gives us a relevance range of approximate 1-15, as highly

trafficked profile pages on Wikipedia receive around 10, 000 page views a day.

The number of levels was chosen based on discussions with subject matter

experts at LinkedIn, and independent of the algorithm development.

Usually relevance scores for evaluation in the NDCG evaluation are

based on explicit user feedback. A page view based approach was used due to

constraints on how long the data was available. However, given the popularity

of Wikipedia as a primary source of online information, and since online page

views are an aggregation of the browsing preferences of millions of users, this

work believes it to be a reasonable replacement.

Based on this, the idea DCG score (IDCG) can be calculated as follows:

sort the Wikipedia users’ list by descending order of page views, and calculate:

IDCG = log2 p1 +

k
∑

i=2

log2 pi
log2 i

(5.6)

where pi is the page views received by the i-th ranked user. The value of k

is the cutoff limit. In our case, the maximum is approximately 30, 000, the

number of Wikipedia profiles we have mapped to LinkedIn users. To ensure

that ranks beyond the first few hundred impact NDCG results, we divide user

ranks into buckets of 500. For the first 500 ranks, i = 2, i = 3 for the next

500, and so on, in equations (5.5) and (5.6). Thus, a user with a relevance

3The data was collected from the website http://stats.grok.se.
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score mi, placed in the first 500, would add mi to the DCG score, while the

same user, placed in the 501-1000 range would add mi

log2 3
to DCG.

Like MAP, we calculate NDCG after 1000 (NDCG@1000), 100,000

(NDCG@100K), and 1 million (NDCG@1mil). The IDCG score increases in

value from NDCG@1000 to NDCG @100K, but then remains constant till

NDCG@1million. For this reason, the NDCG score falls from the 1000 to

100,000 level, but then increases for the 1 million level.

5.2.1.5 Algorithm Comparison

All algorithms were implemented in a map-reduce framework, and run

on a set of 100 Hadoop nodes. The open-source implementation of PageRank

in the Pegasus software toolkit [89] was used as the original code base, and

the code was modified to incorporate bimodal authority models. The results

are shown in Table 5.6. The percentage improvements/deterioration, shown in

brackets in each case, is based on treating the invitation graph based PageRank

(Invitation Graph-PR) algorithm as the baseline for comparison. As can be

seen from the table, the log fair bets (Log FB) model consistently performs

better than the PageRank model for both the invitation and navigation graphs.

Interestingly, among the hybrid models that combine both invitation

and navigation data, the best performing ones are the log fair bets models

(Borda LFB and Bimodal LFB). The performance of the PageRank-based

hybrid models is around the same as the single graph-based approaches. The

reason for this is the large impact of user activity levels on the hybrid PageRank
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models. In the case of bimodal PageRank, the largest mutual reinforcement

is for user who are most active, as they have higher PageRank scores on both

graphs. A similar effect occurs in Borda voting based PageRank. Since Borda

voting is based on mean scores, the highest ranked users on both graphs are

people ranked highly on both graphs. These are usually highly active users. In

contrast many authoritative users are not very highly ranked in one of the two

graphs (for example, many people would view the profile of someone famous

like Bill Gates, but very few would send an invite), and end up being ranked

low on average. As a result, PageRank-based Borda voting is unable to take

advantage of the best information in both graphs. In contrast, the bimodal log

fair bets more (Bimodal LFB) is the only one actually able to achieve positive

mutual reinforcement, and outperforms all other algorithms by a significant

margin.

The only exception to this is the NDCG@1000 score, where the bimodal

LFB comes in second to navigation graph LFB. The reason behind this is that

there a small number of very high profile ’celebrity’ users, who garner an

extremely large number of page views both on Wikipedia and LinkedIn. Their

high page views give them large values of mi, which gives navigation LFB an

edge at the 1000 level. This advantage, however, does not carry beyond the

first 1000 or so members. Even up to the 1000 level, the actual number of

members matched with Wikipedia is lesser for navigation LFB than it is for

bimodal LFB, as is suggested by the higher value of MAP@1000 of the latter,

compared to the former.
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Invitation Graph Navigation Graph
Metric(in %) PageRank Log Fair Bets PageRank Log Fair Bets
MAP@1000 3.26 5.52(69.3%) 9.22(182.8%) 12.84(293.9%)
MAP@100K 2.45 2.53(3.2%) 1.84(−24.8%) 3.37(37.5%)
MAP@1mil 1.23 1.36(10.5%) 0.87(−29.2%) 1.44(17.1%)
NDCG@1000 1.48 3.08(108.1%) 3.99(169.6%) 6.80(359.5%)
NDCG@100K 3.84 4.48(16.7%) 3.64(−5.2%) 5.91(53.9%)
NDCG@1mil 8.30 9.13(10.0%) 7.65(−7.8%) 10.27(23.7%)

Table 5.5: MAP and NDCG Results For Invitation Graph, Navigation Graph,
PageRank(PR) and Log Fair Bets (LFB) approaches. The values in parenthe-
ses give the percentage improvement over Invitation Graph PageRank, treated
as a baseline approach.

Metric(in %)
PageRank with
Borda Voting

Bimodal
PageRank

Log FB with
Borda Voting

Bimodal
Log FB

MAP@1000 7.55(131.6%) 12.16(273.0%) 13.03(299.7%) 13.60(317.2%)
MAP@100K 2.46(0.4%) 2.30(−6.1%) 3.76(53.4%) 3.93(61.2%)
MAP@1mil 1.27(3.2%) 1.08(-12.1%) 1.84(49.6%) 1.88(52.8%)
NDCG@1000 2.92(97.3%) 4.59(210.1%) 4.78(222.9%) 6.35(329.7%)
NDCG@100K 4.36(13.5%) 4.28(11.4%) 6.10(58.8%) 6.61(72.1%)
NDCG@1mil 8.79(5.9%) 8.73(5.18%) 11.13(34.0%) 11.75(41.6%)

Table 5.6: MAP and NDCG Results For Borda Voting and co-ranking ap-
proaches. The values in parentheses give the percentage improvement over
Invitation Graph PageRank, treated as a baseline approach. The bimodal log
fair best algorithm outperforms others by a wide margin.

5.2.2 Authority Identification in StackExchange

The co-ranking based authority-identification algorithm was evaluated

in the Q&A context as well, using the StackExchange dataset discussed in

Section 5.1. The problem was set up as follows: the co-ranking approach and

other baseline algorithms were used to rank the participants in descending
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Community PageRank

Top

Self-selecting

Top Best

Responder Av. Winnings

Math 40.1 42.7 40.6 44.5

Physics 43.0 40.1 39.4 47.3

Security 40.6 41.6 42.1 45.7

AskUbuntu 33.3 33.5 34.0 42.3

ServerFault 30.4 23.6 25.9 36.1

English 35.5 29.8 34.5 41.8

Table 5.7: Comparison of the PageRank-Average Winnings Co-Ranking Model
in terms of ‘best answer’ prediction accuracy, given a list of responding users.

order of authority. Following this at each timestep, both algorithms were

presented with the set of all responders for a question, and were expected to

predict the responder who gave the ‘best answer’. The assumption was that, if

a user voluntarily decided to answer a question, if she is an expert, she should

be able to get that question correct.

The co-ranking approach used two graphs: the question-answer refer-

ral model, and a tournament graph with directed edges from each person who

’lost’ in a question, to the winner. The ‘average winnings’ model was used for

authority estimation over the tournament graph. Besides the co-ranking and

the PageRank algorithm, two other approaches were used for comparison: a)

the top best responder, which always predicted the person among the respon-

ders who has given the most ‘best answers’, and b) the top self-selector: the

responder who is best at selecting questions for herself, that is the one with

the highest ‘best answers’ to answers ratio. The results are shown in Table

5.7. As can be seen, the average winnings co-ranking model outperforms other

models, while the PageRank model under performs simpler approaches.
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5.2.3 Incorporating Social Effects: Yahoo! Answers [32]

This section is aimed at an experimental exploration of the algorithms

developed in Section 4.6 for incorporating social effects in authority identifica-

tion in Q&A forums. For this purpose, two months of data (October-November

2009), for three categories was crawled from the Yahoo! Answers (YA) [85]

website. The data in each category consisted of approximately 10, 000 ques-

tions, and about 15, 000 participating users.

These categories are Astronomy and Space, Books and Authors, and

Wrestling. These categories were chosen to represent a broad spectrum of

the type of content available on YA. After the pages were stripped of html,

stopping and stemming [121] algorithms were applied to remove unimportant

words and suffixes.

Table 5.8, 5.9 and 5.10 show the results of three approaches on the

datasets: a cosine similarity based IR approach, a Topic-Model Based ap-

proach, and a questioner Objectivity Estimation based model. The Genera-

tive Model calculates, for each new question, the probability distribution of it

belonging to each topic. It then recommends the k responders with the high-

est probability of responding, based on the topic-user model (φ) calculated by

the algorithm during the training phase. The Objectivity Estimation model

estimates the probability, for each questioner, that she prefers one of two com-

ponents: a) an authority model, as described in Section 3.3, and b) a social

influence component, based on the discovered affinity mechanism described in

Section 4.6. The discovered affinity model calculates the probability of selec-
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Performance Measures
Recommender Model Responder Questioner Weak

Load Coverage Coverage
IR-based (cosine) 22.41 11.87% 35.70%

Generative Topic Model 16.11 31.24% 63.83%
Mixture Model 13.68 32.72% 65.97%

Table 5.8: Astronomy and Space Dataset: Recommender Performance

Performance Measures
Recommender Model Responder Questioner Weak

Load Coverage Coverage
IR-based (cosine) 38.21 4.72% 24.72%

Generative Topic Model 22.37 16.65% 43.92%
Mixture Model 22.37 16.65% 43.92%

Table 5.9: Wrestling Dataset: Recommender Performance

tion of each responder by a questioner by assuming that, of all the responders

with which the questioner has currently formed a triad, all are equally likely

to be selected.

For each dataset, composed of approximately 10000 questions, the first

3500 questions were used for training, while the rest of the questions were

shown chronologically to the algorithms for testing. The social influence model

could be updated in real time as data became available during the test phase,

but the other models did not change. The recommender performance were

analyzed using the three metrics of responder load and questioner satisfaction.

A simplifying assumption was made that all actual responses are satisfactory.
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Performance Measures
Recommender Model Responder Questioner Weak

Load Coverage Coverage
IR-based (cosine) 37.19 1.86% 11.41%

Generative Topic Model 30.76 20.01% 30.04%
Mixture Model 27.19 20.77% 32.00%

Table 5.10: Books and Authors Dataset: Recommender Performance

Table 5.11: Correlation: Reputation and Pagerank scores vs submitter total
votes on Digg

Correlation Coefficient
Reputation Mixture Model 0.795

Pagerank 0.709

5.2.3.1 Analysis of Results

Yahoo! Answers is a noisy and unpredictable dataset. Over a set of

approximately 10000 questions representing two month of activity for each

category, approximately 15000 unique users participated. Of these users, for

all dataset, around 45% responded to a question only once, and 40% never

responded to a single question; they only asked questions. In addition, many

users leave the system after a short period of time. Around 25% of the users

seen during the test phase were new with no previous information available

about them new users appeared in our test data set of 1000 questions. For this

reason, only users who were part of at least 20 interactions (as questioners or

responders) in the complete dataset were considered.

Due to these reasons, running an offline test of for a Q&A recommender

is difficult. The results show that the generative and mixture model approaches
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Table 5.12: Correlation: Averaged Reputation and Pagerank scores vs sub-
mitter mean votes per post on Digg

Correlation Coefficient
Reputation Mixture Model 0.591

Pagerank 0.484
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Figure 5.7: Digg Dataset: Fraction of User Ranks Predicted Correctly by
Reputation algorithm and Pagerank[36]

were able to correctly recommend at least one responder more than half the

time (weak coverage) while maintaining a load of 10 − 25. This means that

of every 10− 25 recommendations one user responded to the question. Given

the bulletin board structure of YA, it is certain that responders rarely see

every available question. In a live recommender test, it seems reasonable to

assume a much higher percentage of responses from recommended responders

because we can assume the responder sees the question and knows it has been

recommended based on her expertise. Also, with a live test it would be possible

to measure the questioner’s satisfaction with any given response, leading to a

more accurate measure of the recommender performance regarding questioner

satisfaction.

134



The results show that the generative model and mixture model ap-

proaches outperform the information retrieval algorithm by a wide margin.

Also, the multi-component approach that combines authority and behavioral

models consistently outperforms the generative model, though by a smaller

margin. Particularly in the case of the Wrestling dataset, the mixture model

shows an improvement of 30% for coverage and 20% for weak coverage over the

generative model. This results suggests that, while behavioral modeling is not

essential for all forums, such as those where information seeking is emphasized,

it is essential for forums with a strong social component.

5.2.4 Authority Estimation for User Generated Content: Digg [37]

Further experiments were run to test the extent to which reputation

and authority identification algorithms developed for Q&A forums can be ex-

tended to other user generated content website. Digg [17] is one of the most

popular content aggregators on the web, and maintains a rich, active user

community and contains the necessary components for trust estimation in a

content-oriented social network including: user generated content, a voting

and aggregation system, and a mechanism to link users into a social network.

Digg social network and endorsement data was obtained with permission from

Lerman et al. [102].

The dataset represents one month of front page activity in 2009. For

each user submitted link (story) that made it to the front page the data pro-

vides the identity of the story poster, and the identity each user who ‘diggs’
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the link. Additionally, for each of these users there exists asymmetric link

data, indicating that a user is ‘following’ another, thus forming a social net-

work. Each user has access to the activity of the users she follows, so that

when a user diggs a link, all users who follow her are able to see this informa-

tion. A significant portion of the votes on Digg come from this process, where

users find content which their friends have endorsed, a process described as

a ‘cascade effect’ [102]. These endorsements are driven by a mixture of two

classes of motivators: similarity-based and social influence-based. Similarity-

based motivation occurs when a user follows a content creator because of a

preference for content by that content creator, whereas social influence-based

motivation occurs when a user endorses content from a creator because of a

social relationship with that creator. Because these motivations are mixed, it

is difficult to identify users who submit preferred content from those who are

merely socially influential.

The aim of the experiments is to test whether a mixture model based ap-

proach that attempts to model social interaction dynamics can identify users

relying unfairly on their social network influence to boost their reputation.

This is compared to a pagerank [30] based approach that does not take into

account any information about possible social motivations of voter endorse-

ments (diggs). As a measure of content quality, the mean number of votes

received by a user once their story is promoted to the front page is used, as a

large majority of votes for a front-page story come from the website’s broader

audience, making it difficult to rely on social affiliations. As input to the pre-
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dictor, the data used for each content creator/poster, is the voting data for

each story they have posted until it receives 30 votes. This information is used

to calculate the reputation of each user using the mixture-model based algo-

rithm. Following this, the correlation of the reputation scores observed with

the mean number of votes received per story for each poster is calculated, and

compare this value to a näıve pagerank based approach.

Table 1 shows the correlation coefficient values of the reputation and

pagerank scores of each story submitter with the total votes received by his/her

stories. The correlation is high in both cases, but higher for the reputation

algorithm. Table 2 compares the averaged reputation and pagerank scores

(obtained by dividing reputation/pagerank scores with number of submissions)

with the mean votes received per submission. This to likely to be a better

measure of a content creator’s quality than the aggregate number of votes, as

a user can be really inconsistent in quality but still receive a large number

of votes in total if she submits a large number of stories. However, in this

case, the correlation is weaker. But the reputation algorithm still outperforms

pagerank in terms of correlation.

To compare how well the two algorithms rank users by quality, we sorted

scores provided by each of them in descending order, and compared that to a

ranking of posters by mean number of votes received. The comparison is shown

in Figure (5.7). The y-axis of the graph shows the fraction of users in common

between the ranking of users by mean vote per submission, and the ranking

generated by the algorithm. The reputation algorithm identified two of the
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top five ranked contributors, while the pagerank algorithm could not identify

any. However, both algorithms could identify only two of the top ten. This

is responsible for the initial drop in performance of the reputation algorithm

from a peak. Following this the reputation algorithm consistently outperforms

pagerank. This experiment was intended to demonstrate that the algorithms

developed as part of this research, for the task of expertise identification, can

be extended to non-reactive COSNs as well, for identifying quality content.
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Chapter 6

Conclusion

The common aspects of Q&A forums and online professional social

networks were established in Chapter 1. In both kinds of online communities,

users make a claim to possessing expertise in various domains, either by an-

swering questions related to the domain, or via their profile content. These

claims are then validated through endorsements from their peer group. Both

kinds of forums serve as a platform for people searching for expertise: for ex-

ample, a programmer looking for an answer to a question, or an organization

looking for an expert. As more and more people come to rely on these forums

for information, it is important that the dynamics that govern these forums

be understood, so that authoritative users can be identified and encouraged

to participate. Enabling experts to easily find questions of interest to them,

so that they are not overloaded with irrelevant questions and lose interest, is

another task addressed by this research.

This research was motivated by the following hypothesis:

In an online community of experts, mutual expressions of ab-

solute and relative preference can be aggregated to yield effective

estimates of an expert’s topics of interest, and his/her credibility
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as an authority in these topics, both inside the community and in

the real world.

This hypothesis was investigated for two kinds of online communities: Q&A

forums and professional social networks. Two kinds of probabilistic models,

generative models for topic identification, and tournament models for prefer-

ences expressed in absolute and relative form, were investigated to validate

this hypothesis. This chapter summarizes the work presented till now to an-

swer each of the research questions outlined in Chapter 1, enumerating this

work’s contributions.

6.1 Research Question 1: Responder Preference Aggre-

gation for Topic Identification

The first research question that this work addressed is:

RQ1: How should information about experts’ preferences among

different questions, based on training data, be used to make more

precise question recommendations to them in the future?

An expert’s preferences are expressed via the questions she chooses to answer,

as opposed to the ones she ignores. The aim of RQ1 was to focus on incorpo-

rating information provided by expert preferences, to provide her with more

accurate question recommendations. This problem was addressed by this work

in Chapter 3, via the development of probabilistic generative models that ex-
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plicitly modeled the expert’s response choices as part of the content generation

process.

An important challenge addressed as RQ1 was to identify the metrics

that should be used to validate the model. Historically, the expert finding

problem has focused on the questioner’s satisfaction, ignoring the experts’ in-

terests. This is not a viable choice for voluntary forums that rely on expert

goodwill. However, this shift has not been reflected in the metrics used to

evaluate retrieval quality on such forums. A contribution of this research was

to identify this gap, and investigate metrics that measure expert satisfaction

along with the questioner’s. The experimental results presented in Chapter 3

demonstrate that generative models incorporating responder preferences out-

perform traditional models that do not incorporate these preferences, thus

providing an answer to RQ1.

6.2 Research Question 2: User Preference Aggregation
for Authority Identification via Tournament Models

The second research question addressed is given below:

RQ2: How should information about users’ absolute and rela-

tive preference for other users be aggregated to identify authorita-

tive users in a online forum or social network?

This problem was addressed in Chapter 4, by positing that the outcome of a

user interaction depends probabilistically on their relative authority. This was
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equivalent to assuming that the interaction graph was generated by an under-

lying Bradley-Terry process [28]. This reduced the problem of estimating user

authority to that of finding the underlying parameters of the Bradley-Terry

model. The work also showed that this result would be equivalent to finding

the fair bets score [48] for each player in the graph’s tournament matrix. The

relationship to Bradley-Terry models also enabled the development of a new

ranking model, the average winnings model, more suited to ranking competing

responders in Q&A forums. Both the fair bets model and the average winnings

model were evaluated for ranking users by estimated authority on real world

social network data.

The fair bets model was evaluated on the professional OSN LinkedIn

[46] (Section 5.2.1), where it outperformed the PageRank model, treated as the

standard preference aggregation approach. The average winnings model was

evaluated on data from the Q&A forum StackExchange [78] (Section 5.2.2).

The second evaluation was done by testing the performance of the algorithm

for the task of identifying who would provide the ‘best answer’ provided all

the responders were known in advance. This was assumed to be a fair metric

of user authority: as all responders voluntarily chose to provide answers to the

question, so it can reasonably be believed that they saw the question as a fair

test of their skills. Using this metric, the average winning model was shown

to outperform currently used measures of authority such as PageRank.
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6.3 Research Question 3: Combining Multiple Endorse-
ment Graphs for Authority Identification

The third research question was:

RQ3: How can multiple signals of user preference in professional

social networks be combined to yield an effective consensus ranking

of members by external authority?

Often user preferences on an OSN are often expressed in many different modes.

For example, a user may send another user an invitation, an action that can

be interpreted as an endorsement. Another action that might count as an en-

dorsement is viewing another person’s profile multiple times. On the Twitter

[82] social network, ‘following’ a user profile, or ‘retweeting’ one of their mes-

sages is often interpreted as an endorsement of the user. Often these actions

have complementary meanings, and their graphs contain complementary in-

formation. This work makes the distinction between assymetric actions such

as ‘following’ or viewing a profile, which are more aspirational in nature, and

an invitation to connect, which is more likely between peers. Each of these

actions can be represented as a separate endorsement or preference graph.

This work presents an approach to combining information from multi-

ple such complementary graphs, using a mutually re-enforcing process, where

the authority scores on one graph are used as the random restart vector of the

other graph, and vice versa. A scalable analogue to this process is also pre-

sented, by showing that this process is equivalent to calculating the PageRank
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vector of a specially constructed composite matrix. This result is then ex-

tended to generate a new set of bimodal co-ranking models using different

underlying tournament models such as fair bets, average winning, etc. The

bimodal fair bets algorithm is evaluated on the LinkedIn social network, where

it outperforms existing approaches by a wide margin.

6.4 Summary

As online communities gain prominence as information sources, to en-

sure their credibility and reliability, it is essential to develop mechanisms that

identify authoritative individuals and encourage their participation. The past

few years have seen a lot of interest in the problem of identifying influential

users in social networks [68, 92, 138]. The idea of influence is usually defined

operationally in most of this research: that is, influence is defined in terms of

the procedure to measure it. As a result, this work is not in a position to pro-

vide a principled understanding of phenomena such as the frequent disconnect

between online and offline reputation [93], and the ‘million follower fallacy’

[41], where users with millions of online followers, have almost no influence

when an alternate measure is used.

This research takes a different approach, by starting with a conceptual

definition, of authority, defined as an intrinsic quality of a node that governs

its interactions on an OSN. This understanding is empirically validated via

experiments on real world social networks, and Q&A communities. In this

model, the influence of a node in an OSN graph is seen as an emergent property
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of the node’s authority, and its interactions with other nodes. This model

paves the way to a better understanding of the nature of influence in online

networks, and how it can be manipulated via increased activity, or by using

social norms to one’s advantage. This mapping of online influence to authority

is an essential tool for clarity in a world where online information is being used

more and more to make judgements about the real world.

6.5 Future Work

This section describes some interesting problems and directions for fur-

ther development of the research presented here.

Online Evaluation of Question Recommendation: The evaluation of

topic identification and question recommendation models introduced in this

work has been offline, due to the logistic difficulties in setting up a large scale

online evaluation. The nature of offline evaluation means that the hypothesis

that lower responder load would lead to greater expert participation, while

intuitively reasonable, has not been empirically verified. An online evaluation

that verifies the efficacy of the algorithms presented here would be an impor-

tant extension of this work.

Improved models of indegree-outdegree ratio: Authority strength of

a node, as defined in this work, can be divided into two components: the

mean strength of an incoming edge, and the indegree to outdegree ratio. This
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work presents a basic analysis of how indegree grows with outdegree in an

OSN graph, and approximates the relationship as the indegree growing expo-

nentially with the outdegree. Further analysis, either theoretical, as has been

done for Web graphs [14, 21], simulation-based, or empirical, may result in

better models for the ratio, and as a result better estimates of authority.

Using authority identification to inform ‘gamification’ in Q&A Fo-

rums: Online Q&A forums such as Stack Exchange [80] rely on ‘gamification’

[52] inspired approaches, such as badges, etc., to incentivize user participation.

Stack Exchange offers around eighty badges to users, based on various criteria

[79]. Currently the design and usage of badges is more of an art form, though

there have been recent attempts to rigorously study their impact on users [7].

Assuming that Q&A forums are interested in incentivizing authoritative users,

it would be interesting to study the degree to which such users are successful

in attaining different badges, and which badges are the best predictors of au-

thority.

Extending co-ranking to affiliation networks: The co-ranking model

presented in this work is restricted to scenarios where there is an exact one-

to-one correspondence between nodes across multiple graphs. An important

extension of the work would be to more general cases of bipartite and multi-

partite graphs such as affiliation networks [98]. Affiliation networks in social

network analysis are bipartite graphs, where one set of nodes consist of indi-
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viduals, while the second set consists of organizations or groups. Co-ranking

across such graphs would enable authority estimation algorithms to take into

account information such as organizations/institutions belonged to, events at-

tended, etc., which will result in a more comprehensive ranking.
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