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Executive Summary-

INTRODUCTION 

The broad aim of this work is to evaluate from a systems design and human 

factors viewpoint, criteria for assessing vibration levels in ground trans

portation systems. Excessive levels can lead t:o unsafe operation as well as 

uncomfortable rides. 

Interest in the Department of Transportation in high speed ground trans

ports using tracked air-cushion or magnetically levitated vehicles as well as in 

slower speed rapid transit and slow speed personal rapid transit (PRT) systems, 

has led to the discovery of a complete lack of acceptable specifications for 

random vibration levels imposed on passengers. Modelling techniques for guide

way roughness, vehicle dynamics and acceptance criteria are essential to the de

sign of innovative systems. 

The work reported here is based on the automobile highway system and 

describes the measurement and data processing of measurements of both roughness 

of roadways and vibration response of an intermediate sedan. 

RESULTS ACHIEVED 

The results have shown that roadway roughness does not follow the simple 

models available in the literature. The use of a converted instrumented Chevrolet 

truck to measure roadway profiles has led to a large volume of typical roadway 

profiles. Power spectral analysis is described herein and power spectral density 

functions for several specific roadway sections are given. It is shown that the 

cross correlation between riding tracks appears to exhibit statistical 



characteristics similar to the tracks themselves. Simple roughness models do 

not predict the measured characteristics. 

Similar data analysis procedures were applied to measured acceleration 

responses (vertical and lateral) of a 1974 Buick Century Luxus model sedan. A 

complete set of acceleration power spectral density functions are given, corres-

ponding to 50 mph rides over each of the roadway sections used. The accel-

eration response shows marked peaks at frequencies around 1 cycle per second, 

due primarily to the body bounce mode of vehicle response. Peaks in response are 

also found around 8- 12 cycles per second, which appear to be caused by rear-axle 

and front wheel bounce modes. 

The data illustrate spectral composition of typical ride vibrations in the 

intermediate sedan. 

CONCLUSION 

This report compiles power spectral density data for roadway roughness and 

automobile ride vibration response which are helpful in the understanding and 

evaluation of criteria for ride acceptance. Better rotlghness models are needed 

than are currently available. 

UTILITY 

The data herein will likely be useful to automotive, railway and aerospace 

industry design engineers, State highway departments, and others interested in 

random vibration analysis. 



ABSTRACT 

The present study is designed to support an overall program for the 

evaluation and establishment of ride quality criteria in transportation 

systems. This report, which is restricted to the automobile, outlines the 

procedures and equipment employed to measure, record, and analyze automotive 

vibrations and highway or roadway roughness. Det~iled automobile vibration 

responses and corresponding roadway roughness have been measured and 

recorded here for 20 different roadway sections which are typical of those 

found in the Austin - Travis County, Texas, area. Our highway roughness 

models are also compared to some of the roughness models found in the 

literature. 

v 



ACKNOWLEDGMENTS 

We gratefully acknowledge the support of DOT Contract No. DOT-OS-30093, 

administered through the Council for Advanced Transportation Studies at 

The University of Texas at Austin. In addition, the help of Mr. H. Scholl 

at NASA Langley Research Center, who loaned the 3-axis accelerometer 

package, Mr. H. Dalrymple of the Center for Highway Research at The Uni

versity of Texas at Austin, and the State Department of Highways and Public 

Transportation has been indispensible. 

vi 



.-

TABLE OF CONTENTS 

ABSTRACT . . . . • 

ACKNOWLEDGMENTS 

TABLE OF CONTENTS 

LIST OF FIGURES 

CHAPTER 1 - INTRODUCTION 

CHAPTER 2 - DESCRIPTION OF MEASURING AND RECORDING 
SYSTEM FOR AUTOMOTIVE VIBRATIONS 

EQUIPMENT .. 

Accelerometer and Amplifier Set 
Data Recorder 
Inverter . 

CALIBRATION AND MEASUREMENT PROCEDURE 

Accelerometer - Recorder Calibration 
Installation • . 
Data Acquisition 
Data Reduction 

DISCUSSION 

CHAPTER 3 - DESCRIPTION OF MEASURING AND RECORDING 
SYSTEM FOR HIGHWAY ROUGHNESS MEASUREMENTS 

DATA ANALYSIS AND POWER SPECTRAL COMPUTATIONS • . 

Detrending . . . . . . . . • . 
Power Spectrum Calculations 
High Pass Filter Correction on 
Data Averaging . . . . . . . . 

Roadway PSD Calculations 

DISCUSSION OF THE ROAD PROFILE MEASUREMENTS 

CHAPTER 4 - CONCLUSION 

REFERENCES . • . . . . 

v 

vi 

vii 

viii 

1 

2 

2 

2 
2 
5 

5 

5 
7 

11 
11 

14 

19 

22 

23 
25 
26 
27 

28 

36 

37 

APPENDIX A- Vehicle RMS and PSD Vibration Spectra from Measured Data 38 

APPENDIX B- Roadway RMS and PSD Roughness Spectra from Measured Data 60 

vii 



LIST OF FIGURES 

Figure 1. NASA Portable Accelerometer and 

Figure 2. Transducers Mounted on Three Mutually 
Perpendicular Axes 

Figure 3. Teac R-200 DR/FM Data Recorder 

Figure 4. Powercon 12ESW25 Inverter . . 

Set . .. . 

Figure 5. Static Calibration Curve for Transverse Axis 

6. Static Calibration Curve for Vertical Axis (Bias On) 

Figure 7. Council for Advanced Transportation Studies 
Ride Quality Test Vehicle ..•. 

Figure 8. Installation of Powercon Inverter 

9. Installation of Teac Data Recorder 

10. Installation of NASA Accelerometer Set 

Figure 11. Center for Highway Research Test Sites 

Figure 12. Typical Test Section 

Figure 13. Analog-to-Digital Data Conversion System 

14. Vertical and Lateral PSD for CFHR Test Section 5 

Figure 15. Vertical and Lateral PSD for CFHR Test Section 13 

Figure 16. Vertical and Lateral PSD for CFHR Test Section 38 

17. Surface Dynamics Profilometer 

18. Profilometer Block Diagram 

Figure 19. Roadway Elevation Profile for Section No. 2 

Figure 20. Roadway PSD Roughness Spectra Section 2 from 
Measured Data .. . ..... 

Figure 21. Cross-Power Density (Sections 2, 3 and 5) 

3 

3 

4 

4 

6 

6 

8 

8 

10 

10 

12 

13 

13 

15 

16 

17 

20 

21 

24 

29 

31 



CHAPTER 1 

INTRODUCTION 

Increasingly in recent years the importance of passenger comfort in public 

and private transportation has come to the attention of the vehicle designer. It 

has become such a significant factor in the automotive industry that many compa

nies advertise the fine ride quality of their automobiles. Now, with fuel 

shortages imminent and congestion of the inner city growing, public transportation 

planners are seeking an economical system that will lure the individual away from 

his private automobile by providing an equivalent or better ride quality in a 

faster or more efficient vehicle. To date, however, there is insufficient design 

information to define ride quality in engineering terms useful to the designer. 

In general, rid~ quality is a measure of the subjective response of an 

individual to his transportation environment. Numerous attempts have been made 

to correlate ride quality with some objective measure of the transportation 

environment, in particular, the vibration. One approach is to correlate a 

measure of subjective response with a controlled laboratory vibrational environ

ment; the multidimensional and stochastic nature of vehicle environment and motion 

is, however, difficult to simulate. Another approach is to correlate subjective 

response with the measured ride vibrations of an automobile in the field. 

This report concentrates on the latter approach. It is concerned with the 

equipment and techniques used in measuring and recording the vibrations of 

automobiles in the field, along with the roadway or highway roughness, the analog

to-digital conversion of these data, and the reduction of the data to meaningful 

engineering measures of automotive vibration. 

1 



CHAPTER 2 

SYSTEM FOR MEASURING AND RECORDING AUTOMOTIVE VIBRATIONS 

EQUIPMENT 

One system for measuring and recording vibrations in automobiles consists 

of a portable triaxial accelerometer and amplifier set, a four channel FM data 

recorded, and an inverter to provide AC power for the recorder. The measuring 

system components are described in this section and the resulting power spectral 

density measured data on automotive vibrations in the field are presented. 

Accelerometer and Amplifier Set 

The portable accelerometer and amplifier set (Fig. 1) was developed and 

1 
fabricated by NASA at the Langley Research Center and is on loan to the CATS 

Ride Quality Group. Three linear transducers are used to measure accelerations 

on mutually perpendicular axes (Fig. 2). The transducers have a frequency 

range of 0 to 25 Hz and a linear acceleration amplitude range of 0.01 to 1.0 g. 

A battery pack in the unit supplies transducer and amplifier power. The 

transducers and other electronics are mounted on a thick aluminum base plate 

with spike-legs for penetrating carpets so that undamped vibrations can be 

measured. The cover is equipped with an outlet for each axis and a handle. 

The unit is very portable and weighs only 20.0 pounds (2.765 newtons). 

Data Recorder 

A Teac R200 DR/FM data recorder (Fig. 3) from The University of Texas at 

Austin Department of Mechanical Engineering was used to record the amplified 

output of the accelerometers. Data were recorded in the FM mode on three channels 

2 



Figure 1. NASA Portable Accelerometer and Amplifier Set 

Figure 2. Transducers Mounted on Three Mutually Perpendicular Axes 
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Figure 3. Teac R-200 DR/FM Data Recorder 

Figure 4. Powercon 12ESW25 Inverter 
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while commentary was recorded in the DR mode on the fourth. Each channel is 

equipped with a VU meter, input and output zeroing, and level controls; also 

provided are jacks for input and output. The tape deck required a 115 volt, 

50-60 Hz power source. 

Inverter 

The Powercon l2ESW 25 inverter (Fig. 4) on loan from the Center for Highway 

Research (CFHR) at The University of Texas at Austin was wired into the vehicle 

electrical system to provide a mobile source of power for the data recorder. 

There was some question as to the effects of the inverter on the performance of 

the recorder. This was resolved by recording a 100 Hz sine wave on channell 

while the recorder was powered by the inverter and then recording the same signal 

on channel 2 while the recorder was plugged into an ordinary wall outlet. The 

two outputs were then compared on a dual trace oscilloscope while the recorder 

was plugged into a wall outlet. No difference in the traces could be observed. 

CALIBRATION AND MEASUREMENT PROCEDURE 

Accelerometer - Recorder Calibration 

since the NASA accelerometer is sensitive down to 0 Hz., an output can be 

generated by the static gravitational field of the earth. However, this I g 

signal is "biased out" electronically in the vertical axis, and thus all axes 

give 0.0 v output from a 0.0 g dynamic acceleration. Static calibration curves 

are shown in Figures 5 and 6. The tape recorder was set up with one channel for 

each axis - vertical, transverse, and longitudinal - and the fourth for commentary. 

Throughout the testing, the channel-axis correspondence was maintained. 

5 
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Figure 5. Static Calibration Curve for Transverse Axis 

9 

Figure 6. Static Calibration Curve for Vertical Axis (Bias On) 
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Calibration was begun by warming up the accelerometer set and the recorder 

in the record mode. The accelerometer was set on a level surface in such a way 

as to generate an output for a 0.0 g static acceleration field, and the respective 

tape inputs were zeroed. The accelerometer was then rotated and set on a level 

surface in such a way as to generate an output for a 1 g static acceleration 

field. The respective input level controls were then adjusted to give a reading 

of 100% modulation. These signals were then recorded for approximately 25 reel 

revolutions prior to the recordings for a test section as a reference for the 

A-to-D converter and for output calibration. 

The tape deck was placed in the "playback" mode and an unmodu1ated portion 

of tape was played back while the output levels were zeroed. Then as the pre

recorded 1.0 g signals were played the levels were adjusted to give an output of 

1 volt, as measured with a digital volt meter, which corresponds to approximately 

90% modulation. 

Although accelerations as high as 1.0 g were not expected in testing, the 

above procedure assures that the tape record/playback amplifiers will not be 

overloaded and clip and that the tape will not saturate and distort the recorded 

signal. 

Installation 

A 1965 Ford Galaxy 500 2-door hardtop provided by The University of 

Texas College of Engineering Industrial Associates was the vehicle used for 

preliminary tests (Fig. 7). The front suspension is conventional A-frame/coil/ 

spring with antirol1 bar and the rear suspension is trailing arms with coil 

7 



Figure 7. Council for Advanced Transportation Studies 
Ride Quality Test Vehicle 

Figure 8. Installation of Powercon Inverter 
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springs and a locating arm to the live axle. The vehicle is equipped with 

radial tires. Its electrical system has a l2-volt, negative grounded battery 

and alternator with an external electromechanical voltage regulator. 

Later tests were conducted in a 1974 Buick Century LUXUS, a heavier 4-

door sedan equipped with automatic transmission, air conditioner, and non-radial 

belted tires. The instrumentation installation was similar to that illustrated 

for the Ford and is not shown. 

The Powercon inverter was installed in the trunk of the test vehicle 

(Fig. 8) so that vibration noise would not distract raters. It was connected to 

the vehicle electrical system via a cable attached to the "hot" side of the 

battery and another cable was grounded to the chassis. Because of possible 

damage to the battery the inverter was turned on only when the engine was running. 

The AC output was connected via an extension cord running under the back seat to 

the tape recorder. 

The Teac data recorder was installed on a leveling board on the left side of 

the rear seat (Fig. 9), leaving room for two passengers in the rear and one in 

the front seat. 

The NASA accelerometer set was installed on the front floor directly in 

front of the passenger seat (Fig. 10). The set was equipped with threaded spike 

feet which penetrated the carpet and padding and permitted leveling. Outputs from 

the accelerometers of interest were connected via coaxial cable under the front 

seat to appropriate channels in the recorder. 

9 



Figure 9. Installation of Teac Data Recorder 

Figure 10. Installation of NASA Accelerometer Set 

10 



Data Acquisition 

The Center for Highway Research (CFHR) has 28 test sections in the Travis 

County area (Fig. 11) each approximately 1200 feet in length. The CFHR has 

measured the profiles of these roads and these are available on digital tapes; 

these sections have also been surveyed with a Mays Road meter and serviceability 

indices have been computed for each section (2,3). The measuring technique 

employed here is described in Chapter 3 of this report. 

The test vehicle was prepared and taken to one of the above test sites 

(Fig. 12 shows test section 2). The starting and ending points of each section 

had been previously marked by CFHR and these were noted prior to making a test 

run. The vehicle was returned to a point approximately 1/2 mile before the 

starting point of the test section and accelerated to 50 mph. The speed was held 

constant over the test section while the vehicle accelerations were recorded in 

analog form during the test run. This procedure was repeated for as many tests 

as required, with the driver attempting to traverse the section in as near the 

original wheel tracks as possible. Frequent checks on the repeatability of the 

measurements were made by rerunning a test after a few days interval. A total 

of twenty different test sites, which were known to represent the range of high

way or roadway conditions, were studied. 

Data Reduction 

The analog data from the test runs had to be reduced to digital form for 

use with the CFHR Power-4 program, which computes power spectral density (PSD) 

and other vibration information. This was accomplished via a system at the Texas 

Highway Department made available through the CFHR. This system consisted of a 

11 
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Figure 12. Typical Test Section 
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Figure 13. Analog - to - Digital Data Conversion System 
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Hewlett-Packard 2115 Central Processing Unit, 8,192 words of core memory, two 

direct memory access channels, an H-P 8003 pulse generator, a Raytheon multiverter, 
~ 

a high-speed tape reader, an ASR 35 teletypewriter, a Positive Logic Duplex 

Register for Special purpose interface, two tape units, and an Interface and 

Patch Logic Module (Fig. 13). 

The analog data were digitized with the H-P 502 analog-to-digital program 

and the digital data were made compatible with the UT computer system through the 

5 
H-P 500 program. with some minor modifications by the user these data were 

ready for use with the CFHR Power-4 Program. PSD's from these data could be 

compared with predicted data and with data from other test sections to verify 

predictions, repeatability, and in general to test the feasibility of the 

system. Typical PSD's from test roads are shown in Figures 14, 15, and 16. The 

repeatability of the data was found to be within plotting accuracy for two test 

runs made over the same section of highway on different days. A discussion of 

the analytical procedure for calculating PSD's from measured and recorded data 

is presented in Chapter 3. Computed PSD information and vehicle vibration RMS 

responses measured over the twenty test sites are presented in Appendix A. Only 

vertical and lateral vibration data are presented since no significant longitudinal 

accelerations occurred during the test conditions. 

DISCUSSION 

Since these techniques evolved during the developmental stages, some problems 

had to be solved. Analysis of PSD plots indicated that the accelerometer package 

should be secured to the floor of the vehicle. However, this had to be accomplished 

14 



I-' 
U1 

10-3 

10-4 

N 10- 5 
::c .... 
........ 

N 
S 10-6 

0:::: 

~ 10-7 
a 
c.. 

10-8 

10-9 

10-10 -4~-__ .----""'---r---...--_ t I I I 

Vertical 

t 1 1 10. 100. 
FREQlIE~lCY (HZ) 

10-3 .., 

0-4 I 
1 l 

N 10- 5 
:I: 
........ 

c:"'..1 6 810-
0:::: 

~ 10-7 
a 
c.. 

10-8 

10-9 
Lateral 

I 
\ 
~, 

10-10 
i'--~--~I--~~I--~~I 

I 1 1 1Q 100. 
FREQUENCY (HZ) 

figure 14. Vertical and Lateral PSD for CFHR Test Section 5 



10-3 10-3 

10-4 ] 10-4 
I: 

"I 

~ 10- 5 ~ ~ 10-
5 i U I, , 

" , i! 

~ 10-6 
\ t C"-.I 6 
\ 810-

I-' 
CI"I 

0:::: 
0:::: 

~ 10-7 ~ 10-7 
0 0 
a... 0-

10-8 10-8 

10-9 10-9 

Vertical I Lateral 

10-10 , 10-10 
I I I 

. 1 1 10. 100. . 1 1 1CL 100 . 
FREQUENCY (HZ) FREQUENCY (HZ) 

15. Vertical and Lateral PSD for CFHR Test Section 13 



10-3 - 10-3 
/ 

10-4 -I / r 10-4 
I ~ I 

N 10- 5 
'I n 

N 10- 5 

~ 10-6 J ll~ 1/ ::c 
iJ i~; ......... ..... 

, , 
C'J 6 -.J 

810-
I 

~ 10-7 j ~ 10-7 
0 
0-

10-8 
10-8 

10-9 -I 
10-9 

Vertical 
I Lateral 

10-10 i 
I --, 10-10 I 

100. I I .1 1 10. .1 1 1Q 100. FREQUENCY (Hl) FREQUENCY (HZ) 

16. Vertical and Lateral PSD for CFHR Test Section 38 



with no damage to the vehicle. Also, since the speed of the vehicle is manually 

controlled, it is not precisely constant over the test section. The H-P 8003 

pulse generator produces a constant time-step pulse train, and thus data points 

may not correspond to equally spaced points on the roadway. 

The first problem was solved by securing the accelerometer package under 

the driver's seat. The second problem was solved by skillful driving since speed 

variations could be kept to within 5% of the nominal 50 mph 

sidered acceptable. 

which was con-

Test section beginning and end points are not exactly repeatable in the 

above technique and use of a photo cell trigger has been suggested to take care 

of this. However, it has been found that although the amplitudes of PSD's may 

vary slightly for runs over the same section, in general, repeatability was good. 

~~ examination of the complete set of data in Appendix A illustrates that the 

vertical and lateral acceleration components exhibit some similar tendencies 

at frequencies greater than 10 Hz but not at frequencies less than 2 Hz. This 

is not surprising in view of the high lateral compliance of pneumatic tires. 

The peaks around 1 Hz and 10 Hz in the vertical accelecations are certainly due 

to body bounce and wheel bounce modes of response respectively. Further dis

cussion of this appears in Ref. 12. Lateral and vertical acceleration powers 

are noted to be of comparable magnitude. 

To more completely define the automobile vibration characteristics measured 

in this program, roadway roughness measurements were obtained for each highway 

section on which vehicle vibrations were measured. A description of these 

measurements is presented in Chapter 3. 

18 



CHAPTER 3 

DESCRIPTION OF MEASURING AND RECORDING SYSTEM 

FOR HIGHWAY ROUGHNESS MEASUREMENTS 

While a large area of discrete roughness such as a rut can be con

sidered as a deterministic reduction in roadway elevation, the dominant 

roughneEs occurs as a random variation of elevation. The mean elevation I,; 

not important but the random variations about the mean for any given sc'cti ()!~ 

of roadway give rise to the need to treat the surface stochastically. Signifi 

cant measures of the profiles are the variance and the power density spectrum. 

Roughness profiles were measured with a Surface Dynamics Profilometer6 

(Fig.17). This is basically a Chevrolet carry-all truck with two sensing 

wheels one in each wheel track - which are spring loaded to contact the roadwa~> 

surface. This enables the system Lo be used at high speed (up to 60 mph). The 

instrumentation used consisted of an accelerometer located on the truck bnri\ 

immediately over each sensing wheel and a potentiometer to measure relative: 

displacement between body and sensinq wheel. The system block diaqram .is ~hovJ! 

in Figure 18. The accelerometer signal is twice intesrated, summed with the 

potentiometer signal to extract absolute motion of the sensor wheels, band-!Ja:::; 

filtered, and recorded on analog tape. A pulse generator connected to the Vf'l,,> 

transmission provides a distance count to eliminate speed variation effects ill 

the data. An automatic speed control is provided for driver convenience. The 

sensor wheels are made concentric with their shafts to wi thin 0.005" and a 

natural rubber tire is molded to the wheel rim. 

19 
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In making profile measurements, the short wavelength roughness is sensed 

primarily by the sensor wheel because of the isolation characteristic of the 

suspension system. The long wavelengths arising from hills and valleys are 

sensed primarily by the accelerometers. The double integration of the accelera-

tion signal thus saturates the recorder unless adequate high-pass filtering 

is provided. Four filters can be selected, depending on wavelength range and 

vehicle speed. At a 20-mph measurement speed, for example, the filter used 

introduces a 3 db attenuation at 0.6 rad/sec, corresponding to a 306-ft. wave

length. High-frequency cut off occurs at 1000 rad/sec. Since the high-pass 

filter characteristic is known it may be compensated for in the data 

The filtered profile, together with pulser output and photocell pulses to 

denote beginning and end of a test section, is recorded and subsequently digitized 

for s. The pulse generator output is fed to a counter which reduces the 

count to approximately 11.8 pulses per foot. 

An H-P 2115A data processor is used for analog-to-digital conversion. Samples 

of right and left tracks are taken alternately, resulting in 5.9 samples 

per foot for each track. At the test speed of 20 mph, this is sufficient to 

prevent aliasing problems in the digitizing. 

DATA ANALYSIS AND POWER SPECTRAL COMPUTATIONS 

TheH-P 2ll5A processor produces l2-bit words written on digital tape in 

1500-word blocks at 556 ppi. Data analysis is carried out on a CDC 6600 

machine and a transformation program converts the H-P 5101 tape into CDC 6600 
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compatible data (60-bit words) ending with a sequence of right and left wheel 

track elevation data: 

For each test section approximately 4,096 samples were taken, corresponding 

to a 694-ft. total record length. A segment of a typical analog trace for both 

highway profiles, that is, for the right and left wheel trace~ is shown in 

Figure 19. 

Detrending 

The roadway statistics and vehicle response are assumed to be random, station-

ary, and ergodic. Because of the form of many test sections, not only the mean, 

but also the linear trend, is extracted in computing deviations. Detrending is 

accomplished by the operation 

~ x
old 

- x - 8(k - k) 

where the mean, 
1 N-l 

x, x 
N k~D k 

k 
1 

(N 1) - + 2 
N 

1 E kx
k

_
l 

- "2 N(N + 1) x 
k=l 

and /3 ::: 

1:. N(N 1 1)2 + 1) (2N + 1) - - N(N + 
6 4 
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The resulting sequence 

is analyzed for Hz power spectral composition. The auto covariance is obtained by 

C(r) = 

Power Spectrum Calculations 

1 N-l 
N E xk ' xk +r 

k=O 
(2) 

The power spectral density is then given by the discrete Fourier transform 

of C(r) : 

p(k) = 
1 N-l 

E 
N 

r=O 

C(r) e-j2TIrk/N (3) 

If the original sequence x
k 

is real, P(k) will be complex with a real and an 

imaginary part being symmetric and anti-symmetric, respectively, about the N/2 

point. 

Taking advantage of the Fast Fourier Transform AlgOrithm?, it is better to 

compute the FFT of x
k

. Using the property that the transform of a convoluted 

sequence is the product of the individual transforms with it, conjugate so that 

if 

X(k) 1 
N 

N-l 
E 

r=O 
x 

r 
-j2TIrk/N e . 

the power density is the magnitUde of X(k), that is, 

P(k) 
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where L = total record length, which is included to reconstitute dimensional units 

in the power function (L = 694 ft). 

The difficulties involved in reconstruction of finite data traces, which 

are inherently assumed to be periodic, are overcome by windowing. Here, a cosine 

taper window is employed, and then a sufficient number of zeros is added to the 

sequence to ensure that N is an integer power of two. 

The window used was 

where 

{ 

0 5 [1 - cos (n(k' - 1/2)/r] 

1:0 
0.5 [1 - cos b{N - k + 1/2)/r)) 

1 <k < r 

r <k <N-r 

N-r < k < N 

r was chosen as N/IO. 

High-Pass Filter Correction on Roadway PSD Calculations 

The transfer function of the high-pass filter used in the profilometer 

measurements to avoid saturation of the recording equipment is 

G(S) = 
+ (l+2?;;) (~) 

w 
n 

+ (1+2s) (~) + 1 
w 

n 

(6) 

(7) 

where s = 0.5 for all filters and where w can be chosen as 0.3, 0.6, or other 
n 

values, depending upon the requirements of the particular roadway being measured. 

To correct the power density measurements for the high-pass filter effect, each 
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power spectra density is multiplied by the square of the magnitude of the filter 

transfer function at the appropriate frequency: 

where 

Data Averaging 

w 

corrected 
Pk 

21Tk V 
m 

k L 

filtered 
Pk 

V velocity of profilometer during profile measurement, 
m 

L test section length. 

(8 ) 

Because of the finite length of the measured trace and the nonstationarity 

of actual profiles, data averaging is necessary. 

The sampling frequency occurred at about 5.9 cycles per foot and the incre-

mental discretion frequency was 0.00144 cpf. Averaging over d incremental bands 

yielding d degrees of freedom for each averaged power computation, the power 

spectral sequence 

p -- p -- Pn o k 

converts to the data smoothed sequence 

According to 1 
(2d+l 

k+d 
2: 

k-d Pk k d to N - 1 - d. 

The frequency associated with Pk still remains at k times the sampling 

frequency. 
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While equation (9) smooths the data, total power is not conserved in the 

smoothing process. The errors are introduced by the failure to include points 

from k o to d and k(N-l-d) to k (N-l). with typical spectra this error is 

small, that is, 

Total Power Error 
1 

A=2d 

E (2d-A) (PA + PN-I-A) (2d+l) 

A typical result for the averaged power density of a section of highway is 

shown in Figure 20. The abscissa has been converted to Hz rather than cycles per 

foot in view of our interest in ride quality. The conversion is 

where V 

f(Hz) 
V 

test vehicle speed ~ ft/sec. 

Appendix B shows data for individual tracks for several roads, including 

rough, medium, and smooth, while Figure 21 shows a typical plot of cross-power 

result: 

Cross Power (10) 

DISCUSSION OF THE ROAD PROFILE MEASUREMENTS 

A review of the figures in Appendix B, which illustrate measured roadway 

power spectral density data, indicates significant variations between the 

primary and secondary highways within the Austin, Texas, area, as identified in 

Figure 11. An earlier roughness model which assumed the roadway random roughness 

to be proportional to (frequency)-2, that is8 , 
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is simply not borne out by the data. A piecewise linear or polynomial fit would 

appear to be more nearly representative of even the smoother highways. Based on 

10 9,11 d the data of La Barre et al , Dodds and Robson have suggeste a spectra 

representation of the form 

¢(n) 

¢(n) 

¢(n) 

-W 
(~) 1 
n 

0 

-W 
(~) 2 
n 

0 

n < n 
o 

n > n 
o 

where ¢(n ) is the "roughness coefficient" (value of the spectral density at the 
o 

discontinuity frequency n). On the basis of the data presented in Appendix B 
o 

the discontinuity between the two branches of the suggested form would be 

approximately a 20-ft. wavelength, as found in Reference 9. A classification of 

roads according to the constants ¢(n
o

) and WI' w
2 

yields constants which are in 

some cases significantly different, however, from those presented in Table I of 

Reference 9, even for the same quality of road. This lack of roadway PSD 

generalization suggests that one may wish to work directly with the computer 

stored power spectra data as measured and not attempt to develop idealized models 

of PSD roadway roughness from a limited sample of data. The vehicle response 

calculations would then proceed directly on the computer. One additional obser-

vation was made with the present data audit which appears to deserve further 

study. It is concerned with the findings of Reference 9 about the stated iso-

tropic character of the random roadway roughness. The present data indicate 

that although the power spectral densities taken from pairs of tracks for the 

different road surfaces are for all practical purposes roughly similar in 
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character, a measurable RMS roughness difference of at least 10 does exist 

between each track in the majority of cases (Table B-1). Our initial examination 

of cross-power spectra of the roadways is illustrated in Figure 21. The general 

form of the cross spectra is similar to the longitudinal spectra, as can be seen 

by comparing Figure 21 with its counterparts in Appendix B. Further examinations 

of coherency are being conducted. It appears at first glance that the assumption 

of an isotropic random roughness field is a simplifying assumption and that is 

borne out by our data. Further study is needed in this area since to assess the 

relationship between two roadway tracks the phase relationship must also be 

studied. In view of these findings, it seems desirable at this stage to obtain 

a more complete catalogue or correlation of measured highway and/or roadway PSD 

data for obtaining a better classification and modeling of the roughness. 

35 



CHAPTER 4 

CONCLUSION 

The CATS Ride Quality Group has assembled and checked the equipment 

necessary for the acquisition, reduction, and analysis of ride vibrations of an 

automobile in the field and for the collection of highway roughness profile data. 

Techniques have been developed for the optimum utilization of this equipment and 

they give accurate and repeatable results. Detailed automobile vibration responses 

and corresponding roadway roughnesses have been measured for twenty different 

roadway sections which are typical of those found in the Austin - Travis county 

area. A review of our typical roadway roughness data and the roughness models 

presented in the literature indicates that further modeling efforts and data 

sampling are necessary before an adequate roadway roughness model can be developed. 

At the present time, the most representative vehicle vibration response calcula

tions can best be obtained by storing the measured roughness data in numerical 

form in the computer and calculating the vehicle responses numerically from a 

representative mathematical model. The basic task of this study is to support 

a program to obtain objective measurements of an automotive transportation 

environment with which some measure of the subjective response of an individual 

can be correlated for the establishment of a ride quality criterion. 
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APPENDIX A 

Vehicle RMS and PSD Vibration Spectra 

From Measured Data 



TABLE A-l 

Measured RMS Vibration Response 

Section 
RMS RMS i< RMSV) 2 + (RMST)2 

Vertical Transverse 

1 .0419 .0218 .0472 

7 .0252 .0259 .0361 

2 .0634 .0273 .0690 

6 .0604 .0262 .0658 

3 .0461 .0214 .0508 

5 .0269 .0141 .0304 

37 .0638 .0245 .06834 

38 .0634 .0281 .0693 

39 .0545 .0320 .0632 

40 .0399 .0169 .0433 

41 .0558 .0226 .060221 

8 .0425 .0160 .0454 

11 .0371 .0154 .0402 

12 .0592 .0228 .0634 

13 .0712 .0300 .077 

10 .0337 .0145 .0367 

15 .0685 .0286 .07423 

36 .0354 .0132 .0377 
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APPENDIX B 

Roadway RMS and PSD Roughness Spectra 

From Measured Data 



TABLE E-l 

Measured RMS Roadway Roughness 

* Section RMS Values, Rt (in) 

00 -+ 2.54451 

1 10 -+ 2.49708 

40 -+ 2.49712 

00 -+ 5.03176 

2 10 -+ 4.95042 

40 -+ 4.95043 

co -+ 1. 29078 

3 10 -+ 1.20435 

40 -+ 1. 20441 

00-+ .782912 

5 10 -+ .766739 

40 -+ .766755 

co -+ .930339 

6 10 -+ .815072 

40 -+ .815170 

00 -+ .3162 

7 10 -+ .267700 

40 -+ .267746 

00 -+ .460479 

8 10 -+ .409978 

40 -+ .410034 

00 -+ .501549 

9 10 -+ .459483 

40 -+ .459509 

00 -+ 1.43430 

10 10 -+ 1.399804 

40 -+ 1.39805 

co -+ .831835 

11 10 -+ .814590 

40 -+ .637745 

1~ 
Integration Interval 00 -+ 0-217 Hz 

40 -+ 0-40 Hz 
10 -+ 0-10 Hz 

\ 
RMS Values, Lft 

00 -+ 2.20151 

10 -+ 2.14582 

40 -+ 2.14586 

00 -+ 5.93251 

10 -+ 5.86254 

40 -+ _5.86255 

co -+ 9.31236 

10 -+ 8.51657 

40 -+ 8.51722 

co -+ .811449 

10 -+ .795181 

40 -+ .795199 

00 -+ 1. 09136 

10 -+ 1.01809 

40 -+ 1. 01817 

00 -+ .2973 

10 ,-+ .23733 

40 -+ .2374 

00 -+ .606358 

10 -+ .536021 

40 -+ .536126 

co -+ .321946 

10 -+ .256218 

40 -+ .256272 

co -+ 1.33532 

10 -+ 1.30023 

40 -+ 1.30025 

00 -+ .596537 

10 -+ .572225 

40 -+ .436809 
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TABLE B-1 (continued) 

Section RMS Values, Rt (in) Rf1S Values, Lft (in) I 

co -+ .683545 co -+ .518989 

12 10 -+ .637709 10 -+ .436765 

40 -+ .637745 40 -+ .436809 

co -+ .690554- 00 -+ .93834-2 

13 10 -+ .64-1715 10 -+ .865738 

4-0 -+ .64-2024- 4-0 -+ .86594-6 

00 -+ .6854-4-6 00 -+ .683340 

15 10 -+ .6334-57 10 -+ .647062 

4-0 -+ .633882 4-0 -+ .64-7269 

I 
00 -+ 2.82102 00 -+ 3.09123 

35 10 -+ 2.77033 10 -+ 2.9874-5 

4-0 -+ 2.77036 40 -+ 2.98752 

00 -+ 1. 52378 00 -+ 1. 39521 

36 10 -+ 1. 49759 10 -+ 2.06604-

40 -+ 1.4-9759 40 -+ 1. 37792 

00 -+ 2.54854 00 -+ 3.25811 

37 10 -+ 2.52389 10 -+ 3.22824 

4-0 -+ 2.52395 40 -+ 3.22827 ._ .. 

00 -+ . 663817 00 -+ l.08llS 

38 10 -+ .614568 10 -+ 1. 00338 

40 -+ .614587 40 -+ 1. 00339 

00 -+ 1. 28777 00 -+ .586566 

39 10 -+ 1. 21211 10 -+ .521300 

40 -+ 1. 21217 40 -+ .521674 

00 -+ .824-179 00 -+ 1.48187 

40 10 -+ .745830 10 -+ 1. 374-19 

40 -+ .745870 40 -+ 1.374-24 

00 -+ .455754 00 -+ 1.22045 

41 10 -+ .352876 10 -+ 1.17878 

I 4-0 -+ .353109 40 -+ 1. 87886 
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