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Abstract 

Ebola virus infections cause hemorrhagic fever that often results in very high fatality 

rates. In addition to exploring vaccines, development of drugs is also essential for treating the 

disease and preventing the spread of the infection. The Ebola virus matrix protein VP40 exists in 

various conformational and oligomeric forms and is a potential pharmacological target for 

disrupting the virus life-cycle. Here we explored graphene-VP40 interactions using molecular 

dynamics simulations and graphene pelleting assays. We found that graphene sheets associate 

strongly with VP40 at various interfaces. We also found that the graphene is able to disrupt the 

C-terminal domain (CTD-CTD) interface of VP40 hexamers. This VP40 hexamer-hexamer 

interface is crucial in forming the Ebola viral matrix and disruption of this interface may provide 

a method to use graphene or similar nanoparticle based solutions as a disinfectant that can 

significantly reduce the spread of the disease and prevent an Ebola epidemic.  
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Introduction 

Ebola virus (EBOV) infections are caused by a lipid-enveloped filovirus, which can 

cause hemorrhagic fever that often results in very high fatality rates [1]. The most recent 

outbreak in Western Africa in 2014 was the worst Ebola epidemic in history [2]. Although now 

essentially contained, this terrible outbreak has underscored the threat of new pandemics that 

could spread globally and kill tens of thousands of people [3]. Vaccine developments and small 

molecule identification are currently being pursued [4] but FDA approved drugs or vaccines are 

still lacking [5] [6].  A recent FDA study with an investigational Ebola vaccine has allowed 

identification of the vaccine-triggered antibodies as well as novel immune system targets, 

demonstrating great promise for new vaccine designs [7].  In addition to exploring vaccines, drug 

development may also be essential for treating the infection. For this, both the drug targets as 

well as the attacking small molecules need to be explored. The Ebola virus protein VP40 

(eVP40) is a protein encoded by one of the seven genes that the Ebola virus carries. VP40 exists 

in various conformational and oligomeric states and is one of the potentially druggable Ebola 

proteins [8],[9]. The ability of VP40 to undergo conformational changes allows it to perform 

multiple functions[10],[11],[12] during the viral life-cycle[13]. Known conformational states of 

eVP40 include a butterfly shaped dimer that is involved in the transport of the protein to the 

membrane, a hexameric structure that is involved in forming the viral matrix, and an octamer 

ring structure that binds RNA and regulates viral transcription[13]. 

VP40 filaments constitute the major component of the viral matrix layer underneath the 

lipid envelope. The viral matrix provides the shape and stability of the virus particle and it has 

been shown that the expression of the VP40 protein in mammalian cells is sufficient for forming 

innocuous virus-like particles (VLPs)[14]. Following the hexamerization of the VP40 dimers at 

the cytosolic leaflet of the plasma membrane, filaments assemble through end-to-end interactions 

between the tail CTDs of the hexamers. The interfacial hydrophobic residues L203, I237, M241, 

M305, and I307 are suggested to be important in these interactions [13]. Specifically, 

mutagenesis studies have shown that VP40-M241R mutation causes obstruction in filament 

formation and results in defective membrane morphology of the budding VLPs. These results 

highlight the importance of CTD-CTD interfacial interactions in the Ebola virus life cycle. The 
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CTD interface involved in the hexamer-hexamer association can be a potential target for 

exploring small molecules that inhibit the formation of the viral matrix. Inspired by the studies 

that showed destruction of amyloid fibrils by graphene sheets [15], we sought to explore the 

graphene interactions with VP40 and the potential detrimental effects on the virus matrix.  

Graphene sheets are composed of sp2 hybridized conjugated carbon atoms and are one 

atom-thick [16]. Because of their mechanical stability, well-understood surface chemistry, and 

excellent optical and thermal properties, they are extensively studied for use in nanotechnology 

and are promising for a wide range of biomedical applications such as gene delivery, cellular 

imaging, and tumor therapy [17]. Many theoretical, experimental, and computational studies 

have explored the interaction of graphene sheets with cell membranes and proteins[18] [19] [20] 

[21] [22] [23] [24-26] [27, 28]. The molecular mechanism behind the antibacterial activity of 

graphene sheets on Escherichia coli was investigated with molecular dynamics (MD) simulations 

and experiments. It was found that the graphene treatment significantly reduced bacterial activity 

by disrupting the inner and outer cell membranes, highlighting the potential cytotoxicity and 

antibacterial properties of graphene sheets [27]. In another study, Luan et al. observed that 

graphene sheets can recognize and break hydrophobic protein-protein interactions in an HIV-1 

integrase dimer [17]. Also, membrane disruption by graphene in healthy cells can hinder 

metabolism and cause cell death. Graphene oxide was found to be less toxic compared to pristine 

graphene sheets [29]. Combined molecular dynamics simulations and experimental studies 

showed inhibition of Aβ peptide amyloid fibrillization by graphene sheets, opening up the 

possibility of nanotherapy for Alzheimer’s and protein-aggregation related diseases [13].  In 

another study, the nonporous graphene sheets were observed to desalinate a membrane [30]. 

Graphene sheets can also be used in membrane distillation and reverse osmosis [31]. Similarly, 

the adsorption mechanisms of serum proteins and graphene sheets were examined with 

experimental and molecular dynamics studies and it was found that both enthalpy and 

hydrophobic interactions contributed to the adsorption process [29]. 

We performed molecular dynamics simulations and graphene pelleting assays to explore 

the interactions between the Ebola matrix protein VP40 and graphene sheets. We explored 

whether graphene can insert into various interfaces in the VP40 filaments that make up the viral 

matrix. The CTD-CTD interface through which two hexamers connect end-to-end is a potential 

target as it features mostly hydrophobic residues. As such, experiments have highlighted the 
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importance of the hydrophobic residues L203, I237, M241, M305, and I307 in stabilizing the 

oligomerization interface [13]. We also investigated the dimer interface but found little 

penetration of the graphene.  Our MD simulations of graphene interactions show that graphene 

sheets can insert through the matrix filament’s CTD-CTD interfacial region connecting two 

hexamers and separate them. This suggests a potential antiviral activity of graphene. Graphene 

cytotoxicity can limit its use in nanotherapy to treat diseases directly. However, if graphene can 

break apart the viral matrix filaments and disrupt the virion, it can be used as a disinfectant that 

can significantly reduce the spread of the disease and prevent an Ebola epidemic.  

 

2. Methods 

Molecular Dynamics Simulations 

The Ebola virus matrix is composed of filaments that are formed by VP40 hexamers 

connected end-to-end via their tail CTDs, as shown in Fig. 1. To use molecular dynamics 

simulations to investigate the ability of graphene to disrupt the structure of VP40 oligomers, 

VP40-graphene systems with no membrane were set-up with graphene placed close to various 

interfaces. The 30×40 Å2 graphene sheet was built using the Carbon Nanostructure Builder 

Plugin in VMD [32]. The system for graphene insertion through the hexamer-hexamer interface 

(CTD-CTD) included just the two CTDs in order to lower the size of the system. This system 

consisted of 53,320 atoms in a periodic box of 85×99×67 Å3. We ran three different simulations 

related to the hexamer CTD-CTD interface: the graphene sheet placed on the side of the interface 

that would face the cell membrane, the graphene sheet on the side opposite to the membrane that 

faces the inside of the cell, and a control simulation of the CTD-CTD complex without the 

graphene.  Similar systems were set up for the graphene insertion through the dimer interface. 

All MD simulations were performed using NAMD 2.11 [33] with the CHARMM36 force field 

[34]. Periodic boundary conditions were employed in all simulations. The long range 

electrostatic interactions were treated using the particle mesh Ewald (PME) method [35]. To 

constrain the covalent bonds involving hydrogen atoms, the SHAKE algorithm [36] was used. 

Minimization of the system was followed by the production run. The simulation time step was 

set to 2 fs for all productions runs. A Nose-Hoover Langevin-piston [37] method was used with a 

piston period of 50 fs and a decay of 25 fs to control the pressure. The temperature was 

controlled using Langevin temperature coupling with a friction coefficient of 1 ps-1. 
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For calculations of hydrogen bonds, the cut-off distance and cut-off angle were 3.5 Å and 

30o respectively. The calculation of the time-evolving surface contact area between CTDs as they 

separate from each other used the following: 
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where SC1 and SC2 represent the solvent accessible surface areas of the individual CTDs labelled 

as C1 and C2 respectively, and SC1C2 is the solvent accessible surface area of C1 and C2 taken 

together. The solvent accessible area of graphene and the CTDs (SC1-GRA and SC2-GRA 

respectively) were also calculated in a similar manner. 

 

Experiments 

Protein Expression and Purification: 

Full length 6xHis-VP40 in pET46 was transformed into Rosetta BL21 DE3 cells 

(Novagen, Madison, Wisconsin). One colony was picked from the transformation plate and 

grown at 37°C at 200 rpm until an OD600 of 0.4-0.6. VP40 expression was induced with 1 mM 

IPTG for 5 hours at room temperature. Protein was purified using a Ni NTA affinity resin 

(Thermo Scientific, Waltham, MA). Eluted protein was further purified using size exclusion 

chromatography (HiLoad 16/600 Superdex 200 pg column on an AKTA Prime Plus system (GE 

Healthcare Life Sciences, Pittsburgh, PA)) to separate the VP40 dimer and oligomer. VP40 

dimer protein was concentrated and stored in 10 mM Tris, pH 8.0 containing 300 mM NaCl.  

Protein concentration was determined with a Pierce BCA Protein Assay Kit according to the 

manufacturer’s instructions (Thermo Scientific). 

 

Graphene Pelleting Assay 

Nano Graphene Oxide Solution (GO), 125 ml (1g/L) was purchased from Graphene 

Supermarket (Calverton, NY).  1 mL GO solution was pelleted through centrifugation (16,873 

rcf for 10 minutes), the supernatant was removed and the pellet was resuspended in reaction 

buffer (10 mM Tris, 150 mM NaCl).  2 µM VP40 was prepared without GO or with 0.2 mg or 

1.0 mg GO in a 200 uL reaction for 30 minutes at room temperature. After this time, the solution 
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was centrifuged to pellet the GO. The top 180 uL of the supernatant was removed and the pellet 

was resuspended in 160 uL for a total of 180 uL.  Samples were run on SDS PAGE to visualize 

protein localization.  ImageJ was used to determine the protein band density from each sample 

supernatant (SN) and pellet (P). 

 

 

3. Results 

Characteristics of the CTD-CTD Oligomerization Interface: 

The oligomerization interface that connects two hexamers end-to-end occurs via tail 

CTDs, as shown in Fig. 1. Figure 1 shows that at the interface, the CTD from one hexamer is 

inverted compared to the CTD from the other hexamer. The CTD interface contains hydrophobic 

residues L203, I237, M241, M305, and I307 that stabilize the interface. These CTD-CTD 

interactions are a critical part of the Ebola virus matrix structure [38]. For example, an M241R 

mutation results in the disruption of VP40 filaments and hinders virus budding [13]. The non-

specific hydrophobic interactions at this hexamer CTD-CTD interface are thought to provide 

flexibility to the filaments, which can explain the pleomorphic nature of the filovirus virion [13] 

[39] [40]. Therefore, without the graphene insertion, this CTD-CTD interface is flexible but 

stable.  

 

      

 

Figure 1. a) A section of an Ebola virus VP40 filament composed of three hexamers connected 

end-to-end via tail CTDs. The CTD-CTD oligomerization interface is highlighted in red. 

Hydrophobic residues (M241 and I307) stabilizing the hexamer-hexamer oligomerization 

interface are highlighted. b) The time evolution of the center of mass distance between the two 

a) b) 
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CTDs, and the Cα-Cα distance between the two residue pairs of M241 and I307 from the MD 

simulation of the hexamer CTD interface without a graphene sheet showing the stability of the 

interface. 

 

As a control, we first performed a 100-ns MD simulation of the interface CTDs without 

graphene. Figure 1 illustrates the time evolution of the center of mass distance (dcm) between the 

two CTDs C1 and C2 (Fig. 1), as well as the Cα-Cα distance between the important residues of 

M241 from one hexamer and I307 from the other hexamer. Since each CTD contains the same 

residues, there are two pairs of M241-I307 distances, and Fig. 1b includes plots for both pairs. 

The center of mass distance between the two CTDs remains slightly below 25 Å throughout the 

simulation, showing that the interface is quite stable. Similarly, the Cα-Cα distance between 

M241 and I307 also remains stable at ~ 8 Å. In addition to the hydrophobic interactions, the 

CTD interface has a few hydrogen bonds. As with dcm and dM241-I307 distances, in this same MD 

simulation without graphene, there were no significant changes in the number of the interfacial 

contacts and hydrogen bonds.  

 

 

Graphene Insertion through the CTD-CTD interface 

To explore the graphene-VP40 interaction and possible insertion of the graphene through 

the oligomerization interface, we performed MD simulations of the CTDs with graphene placed 

slightly above the interface on the side that would face the cell membrane, as shown in Fig. 2a. 

The hydrophobic core formed by the important stabilizing residues M241 and I307 is buried 

deep in the interface and not exposed to graphene at the beginning of the simulation. Therefore, 

the graphene sheet has to first make its way through the initial contacts of A229 and P234 before 

it can break the important hydrophobic contacts between M241 and I307. With the highly 

hydrophobic nature of graphene, it is entropically driven towards making contacts with the 

protein, mostly the hydrophobic residues, but basic as well as aromatic residues are also known 

to interact strongly with graphene [41]. Indeed, with the right orientation, the graphene sheet is 

found to insert through A229/P234 contacts relatively easily, but further insertion is hindered by 

the strong hydrophobic core (Fig. 2b).   
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Fig. 2. MD snapshots of the graphene insertion through the hexamer CTD-CTD interface. a-b) 

Initial breaking of A229/P234 and c-d) graphene disrupting the M241-I307 pair and inserting 

farther into the interface. 

 

Since the rate-limiting step is to break the hydrophobic core involving residues M241 and 

I307, we started new simulations from the conformation in Fig. 2c in which the graphene sheet is 

already past A229/P234 but not in the M241/I307 core. Vertical reorientation of the graphene 

sheet at this conformation can expedite the insertion process to complete in a reasonable 

computational time. Figure 2c shows the initial graphene-protein complex in which the graphene 

is within 3.5 Å of the first M241-I307 pair. The M241/I307 core is found to remain intact for 

another 120 ns, after which the graphene is able to disrupt this pair and insert farther into the 

interface (Fig. 2d) 

As the graphene sheet is inserted through the CTDs interface, the center of mass distance 

between the two CTDs increases by 5 Å as shown in Fig. 3a (C1-C2 curve). The center of mass 

distance between C1 and graphene decreases by ~5 Å, whereas the distance between C2 and 

graphene decreases by ~15 Å. As shown in Fig. 3b, both pairs of the hydrophobic residue 

interactions between M241-I307 that stabilize the CTD-interface were broken after 120 ns. 

These two pairs of hydrophobic residues are labeled as I and II in Fig. 3b as was done in Fig. 1b.  
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As these residues move farther apart, the contact area between the CTDs decreases (Fig. 3c, red 

curve) from 400 Å2  to below 100 Å2, whereas the contact areas between the graphene and the 

CTDs increases. In general, the CTD C2 is found to have more robust contacts with the graphene 

compared to C1 (blue curve graphene-C2 ~1400 Å2 vs. green curve graphene-C1 ~600 Å2). This 

is also displayed by the van der Waals (VDW) contact energy between the CTDs and graphene 

(Fig. 3d).  

 

 

Fig. 3.  Time evolution of various structural/energy parameters during the graphene sheet 

insertion. a) Center of mass distance between the two CTDs (C1-C2), C1-graphene (C1-GRA) 

and C2-graphene (C2-GRA). b) Distance between the hydrophobic residues M241-I307 (pair I 

and pair II).  c) Contact area between C1, C2, and graphene (same color scheme as in a).  d) van 

der Waals (VDW) interaction energies between the CTDs and the graphene sheet. 

 

By 150 ns of MD simulation, the graphene is able to fully insert through the CTD-CTD 

interface. Figure 4a shows the amino acid residues that are in contact with the graphene sheet 

before and after the CTD-CTD interface separation. In addition to hydrophobic residues, polar 

and charged residues are also found to interact with the graphene sheet. We also monitored if the 

CTD-graphene interactions as the graphene inserts into the CTD-CTD interface affects the CTD 

secondary structure. Several recent studies have shown that protein-graphene interactions can 
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lead to secondary structural changes [26]. For example, an HIV-1 regulatory protein undergoes 

α-helix to β-sheet structural changes upon graphene association [18]. Similarly, VPR13-33 

adsorption on the graphene oxide surface caused the loss of secondary structure [42]. Strong 

dispersion interactions of the solvent-exposed basic residues and graphene can provide the major 

driving force [41] for protein structural changes. In our MD simulations, we did not observe any 

significant secondary structural changes of the CTD interacting with the graphene. 

 

 

Fig. 4: a) Amino acid residues within 3.5 Å of graphene at 0 ns and 250 ns (white-hydrophobic, 

green-polar, blue-basic, red-acidic) b) Representative images of SDS PAGE of VP40 protein in 

the supernatant (SN) or pellet (P) fractions of the sample without and with 0.2 mg or 1 mg 

graphene.  c) Quantification of VP40 in the pellet fraction for each condition.  Error bars are +/- 

standard error of the mean. Data represents three independent experiments with three replicates 

per experiment. 

 

Graphene-VP40 Interactions at other interfaces 

We also performed MD simulations to investigate if graphene can insert into other 

interfaces. In one simulation, we placed the graphene close to the same CTD hexamer interface 
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investigated above, but on the other side that would face the inside of the cell. In another 

simulation, we placed the graphene sheet close to the NTD-NTD interface in the VP40 dimer. In 

neither of these simulations did the graphene sheet insert into the interface. However, a strong 

association of VP40 with graphene is observed in all simulations, giving various forms of 

graphene-VP40 complexes. In order to confirm the formation of graphene-VP40 complexes, we 

performed a graphene pelleting assay with concentrated VP40 dimers and graphene oxide 

solution. In solution, graphene is easily pelleted with centrifugation but VP40 pellets weakly 

(Fig. 4b and c, Control unless bound to graphene. As shown in Fig. 4b, a significant protein band 

density is observed in the pellet (P) only when VP40 is co-incubated with graphene oxide.  We 

quantified the VP40 in the pellet fraction for each condition as displayed in Fig. 4c and found 

that VP40 pelleting increases with increasing graphene oxide concentrations.  When 1mg 

graphene is added, nearly all VP40 is bound to graphene oxide and observed in the pellet. These 

results show that graphene indeed associates strongly with VP40. 

 

Conclusion 

We investigated graphene-VP40 interactions using molecular dynamics simulations and 

graphene pelleting assays. We found that graphene sheets associate strongly with Ebola VP40 

oligomers. Similar to the observations in the HIV-1 integrase dimer[17] and Aβ amyloid fibrils 

[13], we found that graphene sheets can recognize and break hydrophobic protein-protein 

interactions in the Ebola matrix protein VP40. The graphene is able to insert through the CTD-

CTD interface connecting VP40 hexamers. This VP40 hexamer-hexamer oligomerization 

interface is crucial in forming the VP40 filaments that make up the Ebola virus matrix and 

breaking of the interface provides a method to disrupt the viral matrix. As with graphene’s 

antibacterial activity of disrupting the inner and outer cell membranes, further experiments are 

needed to confirm the potential antiviral activity of graphene in Ebola virus. Though graphene 

cytotoxicity can limit its use in nanotherapy to treat diseases directly, if graphene can break apart 

the viral matrix filaments and disrupt the virion, its antiviral activity can be exploited in 

disinfecting surfaces harboring the mature virions which can significantly reduce the spread of 

the disease and prevent an Ebola epidemic.  
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Research Highlights 

- VP40-graphene interactions were explored using molecular dynamics simulations 
- Graphene sheet was found to insert through the hexamer-hexamer C-terminal interface  
- Potential destruction of the viral matrix with graphene nanosheets is discussed 

 


