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Abstract 

Background: Due to the nature of information generation in health care, clinical documents contain 

duplicate and sometimes conflicting information. Recent implementation of health information exchange 

(HIE) mechanisms in which clinical summary documents are exchanged among disparate health care 

organizations can proliferate duplicate and conflicting information.  

Materials and Methods: To reduce information overload, a system to automatically consolidate 

information across multiple clinical summary documents was developed for an HIE network. The system 

receives any number of continuity of care documents (CCDs) and outputs a single, consolidated record. 

To test the system, a randomly sampled corpus of 522 CCDs representing 50 unique patients was 

extracted from a large HIE network. The automated methods were compared to manual consolidation of 

information for three key sections of the CCD: problems, allergies, and medications.  

Results: Manual consolidation of 11,631 entries was completed in approximately 150 hours. The same 

data were automatically consolidated in 3.3 minutes. The system successfully consolidated 99.1% of 

problems, 87.0% of allergies, and 91.7% of medications. Almost all of the inaccuracies were caused by 

issues involving the use of standardized terminologies within the documents to represent individual 

information entries. 

Conclusion: This study represents a novel, tested tool for de-duplication and consolidation of CDA 

documents, which is a major step toward improving information access and the interoperability among 

information systems. While more work is necessary, automated systems like the one evaluated in this 

study will be necessary to meet the informatics needs of providers and health systems in the future. 
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BACKGROUND AND SIGNIFICANCE 

Many factors diffuse health information among multiple, heterogeneous information systems, including 

variations in insurance coverage, visits to multiple providers, and increasing use of specialty care (1). 

Information fragmentation makes clinical workflow inefficient, creates barriers to care coordination, and 

leads to over-utilization of healthcare through duplicative testing or imaging (2, 3). 

Health Information Exchange (HIE) can connect fragmented, disparate health information systems and 

provide timely, relevant information to providers (4-6). The Medicare and Medicaid Electronic Health 

Record (EHR) Incentive Program regulations, known as “meaningful use,” from the U.S. Centers for 

Medicare and Medicaid Services (CMS) underscore the importance and encourage the use of HIE to 

support better care (7). Exchanging key clinical data, transmitting a summary care record, e-prescribing, 

integrating laboratory results, and immunization reporting are all different forms of HIE required to 

demonstrate the meaningful use of EHR systems (8).  

Health Level Seven (HL7) is an international standards development organization that creates standards 

for exchanging clinical and administrative data among healthcare information systems (9-11). The CMS 

EHR Incentive Program rules adopted the HL7 Consolidated CDA (C-CDA) Implementation Guide as 

“the sole standard for exchanging summary care records” (12). The C-CDA standard (13) is not a singular 

type of document or message but rather a framework of templates for multiple clinical documents, 

including the Continuity of Care Document or CCD, Clinical Oncology Treatment Plan and Summary, 

and Emergency Medical Services Patient Care Report. The C-CDA framework as a method to represent 

information is comparable to the concept of archetypes for representing data in EHR systems (14-16). Of 

the available CDA templates, the CCD is one of the more popular documents generated and exchanged by 

healthcare facilities (17-19). Its popularity stems, in part, from its early adoption by the eHealth Exchange 

(formerly known as the Nationwide Health Information Exchange) as the primary document for HIE 

across routine clinical use cases such as medication reconciliation (20) and care coordination (21). 

Although information sharing using CCDs is an improvement over fragmented data silos, the rapid and 

repeated exchange of CCDs for patients has created new challenges. Private as well as community-based 

HIE networks (22) now exchange multiple CCDs for the same patient from different sources, yet they 

may not decompose the discrete data in each document into a unified clinical summary. For example, 

within the U.S. Veterans Administration (VA), which is exchanging CCDs with hundreds of non-VA 

providers via dozens of community-based HIE networks (23), clinicians are provided access to a list of 

CCDs for a patient gathered from several non-VA sources. This requires VA clinicians to sift through 

multiple documents that include potentially duplicative or conflicting information. Similar reports and 



  

 

 

 

experiences have been reported in other HIE networks (24, 25). Without an efficient and effective method 

for de-duplicating redundant patient data, providers everywhere will be forced to review lengthy and 

redundant information spread across multiple documents. This will create further information overload 

and usability challenges for EHR systems, which are already criticized for not supporting clinical 

workflow (26, 27). 

To combat information overload, we developed a system to consolidate and de-duplicate multiple CCDs 

for a single patient. The system was designed for use by an HIE network, and we previously described its 

design and a preliminary evaluation using simulated data (28). Encouraged by the preliminary results, we 

continued to evolve the system. In this article, we describe improvements made to the system and present 

the results of an evaluation using real-world CCDs sampled from a large, community-based HIE network. 

OBJECTIVES 

The purpose of this study is to evaluate the accuracy of a system designed to consolidate or de-duplicate 

disparate information contained in multiple CCDs for the same patient exchanged within a production 

HIE network. We further seek to identify the main causes of inaccurate consolidation and investigate the 

differences in data representation across a set of real-world CCDs. 

MATERIALS AND METHODS 

To evaluate the system that consolidates information across multiple CCDs for the same patient, we 

compared the output of information reconciliation by the system with that of manual reconciliation for a 

sample of real-world CCDs while also measuring system performance. For instances where the system 

was unable to reconcile two data entries, we classified the errors to identify areas for future system 

development and research. Our study was approved by the Institutional Review Board at Indiana 

University (1503069512) and conducted as a component of the primary author’s doctoral dissertation 

research. 

System Description 

The system consists of three major components: 1) a Consolidation Engine that receives multiple CDA 

documents for a single patient through an application programming interface (API) and executes a series 

of rules to de-duplicate data across input documents then merge the information into a single, superset 

CDA document for the patient; 2) an Audit component that identifies and logs system events; and 3) a 

configuration component that enables implementers to configure the rules executed by the system. The 

system uses a RESTful API and web application to enable users to configure the desired rule sets they 

wish to enable during the consolidation process. Multiple CDA documents are input into the 



  

 

 

 

Consolidation Engine, and the system outputs a de-duplicated, merged CDA document after executing the 

configured rules enabled by the user or calling application. The output represents the union of the input 

documents. During execution, audit information is captured into a NoSQL database. Figure 1 abstractly 

depicts the system. A more complete description of the system is provided elsewhere (28). 

 

Figure 1. Abstract depiction of the system. Given an input of multiple CDA documents (Dn) for the 

same patient, the system finds all unique data entries. These entries, which represent the union of 

the data across the set of documents, are output as a single, consolidated CDA document. 

The system de-duplicates information by comparing data entries (e.g., code, code system, healthcare 

provider name) across the same section (e.g., Problems, Medications, Allergies) of the input CDA 

documents. Semantically equivalent entries (e.g., exact text match, same ICD code) are reduced to a 

single entry in the appropriate section of the output CDA document. Unique entries are retained in the 

output CDA document. The output of the system represents a single, consolidated superset of the input 

CDA documents. 

Since originally describing the system, the rules engine was enhanced to more closely examine the data 

elements in CDA documents. For example, “nullflavor” and “negationInd” are attributes that can alter the 

meaning of a data element, so we enhanced several rules to de-duplicate data while considering these 

attributes. In addition to the semantic standards recommended for use in CDA documents (e.g., ICD, 

SNOMED, RxNorm), translation codes may be used to indicate multiple, alternative semantic 

representations for a single entry. The system now uses translation codes, when present, to identify 

semantic equivalence by comparing entries to available codes included in the set of input CDA 

documents. 

Study Design 



  

 

 

 

To evaluate the system, we used a corpus of CCDs exchanged by health systems participating in a large 

HIE network. First, we consolidated the corpus and de-duplicated the information manually. Next, we ran 

the corpus through the system for automated consolidation and de-duplication of information.  

We then compared the results between the manual and automated approaches. During this comparison, 

we classified errors (missed opportunities for de-duplication) to better understand how we might refine 

the system going forward. 

Methods for Data Acquisition 

Our corpus of real-world CCDs were sampled from the Indiana Network for Patient Care (INPC), one of 

the nation’s largest and longest tenured HIE networks. The INPC includes more than 60 hospitals 

representing multiple health systems as well as community hospitals, large physician practices, 

independent radiology centers, and other health care organizations. The INPC is managed by the Indiana 

Health Information Exchange (IHIE), which serves over 25,000 physicians, and its data repository 

includes over 10 million patients (29, 30). 

Staff at IHIE provided 176,169 CCDs the network received between 07/12/2014 to 11/06/2015 (484 days) 

as a component of Stage 2 meaningful use compliance. In other words, these were CCDs sent from a 

hospital or outpatient facilities following a transition of care and which represented a single encounter. 

We then grouped the CCDs into folders based on patient identifiers provided in each CCD. This allowed 

identification of unique patients with multiple CCDs for sampling; it did not make sense to include 

patients with only one CCD.  

After grouping CCDs, we identified a total of 30,370 unique patients for which there were at least two 

CCDs; overall there were 86,184 unique CCDs. Before sampling CCDs, we categorized patients into 

classes based on the number of CCDs (2 to 36) in the folder. This enabled sampling from classes with 

proportionately more unique patients to balance selection. From each class, we randomly sampled 

patients to construct a corpus representing 50 total unique patients. The final corpus included 522 CCDs 

for 50 unique patients with a range of 2 to 36 CCDs per patient. The CCDs per patient range from 2 to 36 

with mean of 2.84 and standard deviation of 10.9. 

Manual Consolidation and De-Duplication 

The entire corpus of 522 CCDs was manually reviewed by the author MH, entry by entry, for three key 

sections of the CDA standard: Problems, Allergies, and Medications. These sections were targeted 

because they contain key information necessary to perform important clinical tasks, such as medication 

reconciliation, drug-drug interaction checking, and drug-allergy checking. As each section was reviewed, 



  

 

 

 

data duplication across the set of CCDs for a given patient was recorded for analysis. A manually 

constructed, consolidated CCD along with metadata (e.g., number of CCDs, number of entries, time to 

review) was saved to the patient’s folder for analysis. 

Automated Consolidation and De-Duplication 

Using a test harness, or simple user interface designed to enable testing of the system, each batch of 

CCDs for the 50 unique patients was input into the system for automated consolidation and data de-

duplication. The system outputs a final, consolidated CCD along with runtime statistics. The same 

metadata (e.g., number of CCDs, number of entries, time to process the batch) were saved to the patient’s 

folder along with the consolidated CCD for analysis. 

Methods for Data Analysis 

To measure the accuracy of the system, we compared the results of the manual consolidation to that of the 

automated consolidation using the system. We considered the manual consolidation process as the ‘gold 

standard,’ because manual review is how clinicians must today reconcile information across CCDs when 

reviewing a list of patient documents. By comparing the manual results to those of the system, we 

measured how well the system could correctly identify that two or more data entries were semantically 

equivalent across the batch of input CCDs and could therefore be reduced to a single entry in the final, 

consolidated CCD. For instance, if there were seven duplications identified during the manual review, and 

5 detected by the system during the automated process, we would conclude that the accuracy of the 

system is 71%. The accuracy of the manual consolidation is 100% as it is considered as the ‘gold 

standard’. 

The comparison between manual and automated consolidation was performed for each unique patient. We 

further recorded the number of entries across each batch of CCDs before and after consolidation, 

including the number of entries per each of the three sections targeted by the system. 

In addition to counting entries and calculating accuracy rates, MH further examined and classified each 

mismatch between the manual and automated consolidation. For example, if the number of final entries in 

the allergy section was different between the final, consolidated CCDs for the manual and automated 

runs, then MH examined and classified which entries were not consolidated. The errors and their 

classifications were recorded for summary and presentation. 

Finally, we examined the overall performance of the system. System performance was evaluated based on 

the total time necessary to process the 522 input CCDs. We examined the average time to process a CCD 

as well as the minimum, maximum, and average file sizes.  



  

 

 

 

Results 

Table 1 summarizes the result of consolidation on the 522 CCDs. We observed significant duplication of 

information across the sample of CCDs as both manual and automated consolidation reduced the number 

of individual entries by over 9000 (80%). The medication section contained the highest number of unique 

entries while the problem and allergy sections repeated items more frequently. 

With respect to accuracy, the system agreed with manual consolidation by 95% overall, and agreement 

was at least 80% within each section of the CCD. Accuracy was strongest in the problem section (99%) 

followed by the medication section (92%). Accuracy was weakest in the allergy section (87%). 

 Problem 

Section 

Allergy 

Section 

Medication 

Section 

Overall 

Manual Consolidation 

No. Entries in Input CCDs (N=522) 6,531 1,845 3,255 11,631 

No. Entries in Consolidated CCDs (N=50) 659 150 1,390 2,199 

Reduction (%) 89.9% 91.9% 57.3% 81.1% 

No. Duplications 5,872 1,695 1,865 9,432 

Automated Consolidation 

No. Entries in Input CCDs (N=522) 6,531 1,845 3,255 11,631 

No. Entries in Consolidated CCDs (N=50) 711 370 1,545 2,626 

Reduction (%) 89.1% 79.9% 52.5% 77.4% 

No. Duplications 5,820 1,475 1,710 9,005 

Accuracy (# Automated Duplicates / # 

Manual Duplicates) 

99.1% 87% 91.7% 95.5% 

Table 1. Total number of entries in each section of all CCDs. 

Manual consolidation of 11,631 entries required approximately 150 hours of effort, whereas automated 

consolidation occurred in 3.3 minutes (average 0.38 seconds for each CCD). The size on disc for the input 



  

 

 

 

of 522 CCDs was 265 MB. After consolidation, the output 50 CCDs required 26.2 MB of disc storage, 

representing a 90% decrease.  

Inaccuracy in system deduplication 

Despite high rates of consolidation and de-duplication, the system did not perfectly reconcile all duplicate 

entries. Automated consolidation detected less duplication than manual methods. We did not observe any 

false positives where two entries were classified as duplicates by the system but were found in manual 

review to be unique. This was expected, because the system is designed to prioritize specificity.  

Two types of false negatives were observed where the system did not classify two entries as duplicates 

but human review found them to be duplicates. The first group of false negatives occurred when the 

system was not able to compare data elements because the values were free text instead of coded entries. 

All of the mismatches in the problem and allergy sections were due to the use of the free-text section of 

the CCD rather than a semantic terminology code. The system bases its comparison of entries based on 

structured, encoded concepts, and it relies on standards such as SNOMED, RxNorm, or ICD. Yet 

sometimes coded entries are missing as in Figure 2 where an allergy entry does not include any code.  

Instead there is simply a reference to the free-text section. Figure 3 on the other hand, presents another 

allergy entry that is accurately de-duplicated by the system, because it includes two different codes for 

“Codeine” to which a patient is allergic. 

 

Figure 2. An allergy entry without code for substance to which patient is allergic to. 



  

 

 

 

 

Figure 3. An allergy entry with two codes for Codeine to which patient is allergic. 

The second type of false negative occurs when an alternative coding scheme is used in lieu of a primary 

coding standard. This type of false negative was observed in the medication section of the CCDs and 

accounted for all of the mismatches between the manual and automated consolidations. Although the 

meaningful use regulations stipulate that RxNorm should be used to identify medication entries, the HL7 

CCDA standard allows for a nullFlavor value of “OTH” to represent that, instead of a primary coding 

scheme, an alternative (or other) coding scheme is used to identify the medication entry. We observed 

several instances where the OTH value was used and a translation code (e.g., Multum Drug ID) was 

provided as the only way to identify the medication entry. An example is shown in Figure 4. In these 

instances, the system keeps both entries because the alternative code is not necessarily unique and 

therefore unreliable. For instance, the mediation “24 HR diltiazem Hydrochloride Extended Release 

Capsule” has two dosages of 240 MG and 180 MG. The Multum Drug ID for both dosages is the same 

(D00045), while the RxNorm codes are distinct (830837 and 830845). Although these medications can be 

correctly de-duplicated using their RxNorm codes, de-duplicating using only Multum Drug IDs might be 

difficult and lead to false positives. Therefore the system does not de-duplicate using translation codes for 

OTH entries where there is no primary coding scheme.  

 

Figure 4. A medication without RxNorm code. 

DISCUSSION 



  

 

 

 

Using a random sample of real-world CDA documents exchanged within a large HIE network, we 

assessed the accuracy and performance of a web service designed to consolidate and de-duplicate CDA 

documents generated by EHR systems for the same patient. When compared to manual consolidation 

(gold standard), the automated system achieved reasonable rates of accuracy. Furthermore, system 

performance was reasonable with a 0.38 seconds per document processing rate. These results provide 

greater evidence of feasibility beyond our earlier pilot involving synthetic data (31), paving the way for 

the system to be further refined and implemented within an HIE network. 

As policies such as meaningful use continue to push health information systems to generate and exchange 

CDA-based documents, the need for consolidation tools like the one tested will increase. CDA documents 

represent snapshots in time of care delivered to a patient, and as patients traverse multiple providers for 

acute and chronic care the number of CDA-based documents containing fragments of their complete, 

longitudinal medical record will grow. Both HIE networks and EHR systems need efficient methods for 

consolidating information to support use by providers who utilize various clinical workflows or to capture 

“new” or “updated” information into a repository for storage. The high levels of duplication observed 

across a relatively small subset of CDA documents sent from enterprise EHR systems, especially in the 

problem list and allergy sections of the CCD, underscores this need. Therefore the findings presented here 

are useful to both those who may wish to develop or implement similar tools in their health systems or 

HIE networks. 

Building upon our prior work, this study identified three key lessons for consolidating information across 

disparate CDA-based documents. First, adherence to technical standards is critical to success. Second, 

mismatches between the coded and free-text sections of a CDA document present unique human factors 

challenges for consolidation engines. Finally, consolidation engines can identify conflicting information 

in CDA documents but resolving conflicts remain a challenge. 

Adherence to standards critical to success 

When health information systems adhere to syntactic and semantic standards, computers can efficiently 

reconcile data from disparate messages or documents. In this study, we observed that nearly all of the 

issues encountered by the system were due to missing semantic coding within a structured data element. 

When a data entry lacked semantic encoding, it was challenging to compare that element to the others 

included in the set of CCDs under examination. In these cases, the system attempted to leverage local 

identifiers as well as perform string comparisons on concept names. Yet these methods are imprecise, 

requiring perfect alignment of text entries. Therefore the system had no alternative but to output 

duplicates in the final, consolidated CCD.  



  

 

 

 

One approach for the future might be to explore the use of fuzzy matching algorithms and word 

stemming, techniques used in natural language processing (32-35). While such approaches should be 

explored, alternatives to semantic encoding are unlikely to be as accurate given the robust and mature 

nature of available standards (36). 

While inaccuracies in de-duplicating concepts were caused primarily by a lack of semantic 

interoperability, overall we observed strong adherence to both syntactic and semantic standards. None of 

the CCDs were rejected by the system for failing to conform to the HL7 CDA specifications. This is 

notable, because there has been suspicion within the health IT industry that real-world messages 

emanating from commercial EHR systems may not conform as much as expected given ‘meaningful use’ 

certification criteria. Furthermore, the majority of structured data elements within the CCDs contained 

appropriately encoded concepts using terminology standards such as SNOMED, LOINC and RxNorm. 

These are the terminology standards required for ‘meaningful use’ certification (37), and it was pleasant 

to find their use among CDA-based documents generated by real-world, enterprise EHR systems. A prior 

analysis by Dixon et al. (38) of real-world messages in the INPC demonstrated low adoption of semantic 

standards. Thus when standards were used the system encountered few problems parsing the data and 

consolidating them across multiple documents.  

Semantic mismatches present human factors challenges 

A smaller cause of inaccuracy but worth noting is the case where two concepts were identified as unique 

based on their semantic encoding but for which the unstructured, “human readable” sections of the CCD 

contains the exact same value. In these cases, the consolidation engine appropriately kept both entries for 

the final CCD. While correct in its determination, this behavior could cause a human factors challenge for 

providers who view the output CCD (39). When the two unstructured entries are rendered in a user 

interface, the provider may interpret them as being duplicate information. Noticing duplication would be a 

minor inconvenience in what is otherwise a significantly scaled down, consolidated document. Therefore, 

this type of error may be useful for consolidation engines to flag in order to raise awareness with data 

producers. Ideally data sources will begin to more appropriately distinguish entries using both the 

structured and unstructured sections of CDA documents. 

Conflicting data present consolidation challenges 

A final challenge to note is conflicting information across multiple CDA documents. Currently the system 

can detect conflicts across sections such as the problem or medication list. For example, one CCD may 

show that a patient is allergic to penicillin but the other CCD reports the patient has no known allergies. 

In this case the system generates the consolidated CCD with information that states patient is allergic to 



  

 

 

 

penicillin. However, the system is challenged to appropriately resolve such conflicts. The current rule sets 

are configured in these instances to allow, for example, an entry for the presence of an allergy and the 

notice of “no known allergies” as two distinct entries in the final allergy section. More sophisticated 

approaches are necessary to develop for resolving complex conflicts in the data observed across multiple 

CCDs. This is an area for future research by our team as well as others developing tools for consolidating 

and presenting data to providers drawn from multiple sources. 

Limitations and Future Development 

This study possesses three limitations that suggest future development and work on the consolidation of 

information in clinical documents. These limitations pertain to the methods used for comparison, 

semantic overlap across terminology standards, and overall scope of the consolidation system. 

This study treated the manual consolidation performed by the lead author (MH) as the gold standard. 

Humans, however, are not perfect and therefore using only one manual reviewer may have resulted in our 

methods missing some true or false matches. A single reviewer was used in this study due to limitations 

of time and budget; the work was performed as part of the lead author’s dissertation and did not have 

external funding. Future testing and refinement of the system will be necessary to improve its 

performance as well as accuracy. 

Although the system utilizes translation codes (along with the canonical standard codes to identify 

duplications), the de-duplication engine is not able to detect semantic overlaps when different semantic 

terminologies are present. For example, Lyme disease can be expressed as both a SNOMED CT concept 

(23502006) and as an ICD-10 CM concept (A.69.2). Approaches that leverage the UMLS Metathesuarus 

could be explored in future work to take advantage of already cross-linked ontologies. 

The Meaningful Use rules refer to the “adoption of solely the Consolidated CDA (C-CDA) standard for 

summary care records.” Yet the C-CDA implementation guide (13) includes 9 different clinical 

documents of which the CCD is only one. Moreover, this study focused on just three sections of a CCD 

(problems, medications, and allergies). Because the system is designed in a way to be extensible, future 

work remains to address all of the C-CDA variants as well as additional sections among the 17 possible 

sections including laboratory tests and procedures. There are also opportunities to enhance the system to 

consolidate HL7 FHIR (Fast Healthcare Interoperability Resources) based documents, an emerging 

standard that some suggest may one day supplant current CDA-based exchange of information. 

Conclusion 



  

 

 

 

The use and exchange of CDA-based documents are expected to increase as a larger number of health 

systems expand their HIE capacity in compliance with HIE policies. As such, providers will gain access 

to an increasing volume of patient medical records from multiple care settings and health systems. 

Duplication and conflict of patient information across medical records is therefore inevitable. The 

potential of having a document consolidation engine as a HIE service will provide clinicians information 

that is (1) easier to use and understand and (2) more searchable/findable due to its integration of 

homogenous information into one section. This study represents a novel, tested tool for de-duplication 

and consolidation of CDA documents, which is a major step toward improving information access and the 

interoperability among information systems. While more work is necessary, automated systems like the 

one evaluated in this study will be necessary to meet the informatics needs of providers and health 

systems in the future. 
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Abstract depiction of the system. Given an input of multiple CDA documents (Dn) for the same 
patient, the system finds all unique data entries. These entries, which represent the union of the 

data across the set of documents, are output as a single, consolidated CDA document. 

  



  

 

 

 

RECONCILING DISPARATE INFORMATION IN CONTINUITY OF CARE DOCUMENTS: PILOTING A 
SYSTEM TO CONSOLIDATE STRUCTURED CLINICAL DOCUMENTS 

 

Highlights 

 A system to automatically consolidate multiple CCD documents for a patient was developed 

and evaluated. 

 Compared to manual consolidation, the system successfully consolidated 99.1% of 

problems, 87.0% of allergies, and 91.7% of medications. 

 This novel tool is a major step toward reducing information overload and improving the 

interoperability among information systems.  

 


