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Counting unreported abortions:  
A binomial-thinned zero-inflated Poisson model  

Vidhura S. Tennekoon1 

Abstract 

BACKGROUND 
Self-reported counts of intentional abortions in demographic surveys are significantly 
lower than the actual counts. To estimate the extent of misreporting, previous research 
has required either a gold standard or a validation sample. However, in most cases, a 
gold standard or a validation sample is not available. 

 

OBJECTIVE 
Our main intention here is to show that a researcher has an alternative tool to estimate 
the extent of underreporting in a given dataset, particularly when neither a valid gold 
standard nor a validation sample is available.  

 

METHODS 
We adopt a binomial-thinned zero-inflated Poisson model and apply it to a sample 
dataset, the National Survey of Family Growth (NSFG), for which an alternative 
estimate of the average reporting rate (38%) is available. We show how this model 
could be used to estimate the reporting probabilities of intentional abortions by each 
individual in addition to the overall average reporting rate.  

 

RESULTS 
Our model estimates the average reporting rate in the NSFG during 2006‒2013 as 
35.3% (SE 8.2%). Individual reporting probabilities vary significantly. 

 

CONCLUSIONS 
Our estimate of the average reporting rate of the dataset used is qualitatively and 
statistically similar to the available alternative estimate.  

 

CONTRIBUTION 
The model we propose can be used to predict the reporting probability of abortions of 
each individual, which in turn can be used to correct the bias due to underreporting in 
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any model in which the number of abortions is used as the dependent variable or as one 
of the covariates. 

 
 
 

1. Introduction 

In most demographic surveys, the number of intentional abortions is significantly 
underreported. For example, in the National Survey of Family Growth (NSFG), a 
survey of US women, only 38% of intentional abortions done during the years 2006-
2013 are reported according to the estimates of the National Center for Health Statistics 
(NCHS). This estimate assumes that the data collected from abortion-service providers 
through a separate survey is accurate. Reporting rates of intentional abortions at the 
previous waves of the NSFG also have been estimated to be in the range of 35%‒48%. 
Other major surveys of US women, such as the National Surveys of Young Women 
(NSYW) and the National Longitudinal Surveys of Work Experience of Youth (NLSY), 
too suffer from this limitation (Jones and Forrest 1992). Underreporting of this 
magnitude strictly limits the usefulness of self-reported abortion data. The NSFG warns 
that “NSFG data on abortion should not be used for substantive research” (USDHHS 
2014: 35).  

When intentional abortions are underreported, the total number of reported 
pregnancies is also automatically underreported, even if other pregnancy outcomes are 
accurately reported.2 It hinders the accurate estimation of pregnancy timing, 
contraceptive efficiency, and many other impact-assessment studies in which the 
number of abortions or pregnancies could potentially be the dependent variable. 
Nevertheless, in many studies, self-reported abortion counts are analyzed to make 
strong conclusions while ignoring the impact of underreporting. For example, in 
Grindlay and Grossman (2013), cross-sectional data from the Department of Defense’s 
survey of health-related behaviors among active-duty military personnel in 2005 and 
2008 are analyzed to conclude that the rate of unwanted pregnancies (per 1000 women 
of reproductive age) has increased from 97 to 105 during the two years, notwithstanding 
the declared national goal of the government to reduce unwanted pregnancies. They 
also estimate that the unintended-pregnancy rate in the US military is 50% higher than 
that rate of the general US population, despite many formal and informal restrictions on 
sexual relationships faced by women (and men) in the military. Both of these 

                                                           
2 The total number of abortions reported in 2006‒2013 NSFG data is 3,288 while the total number of 
pregnancies is 30,035. If we assume that the reporting rate of intentional abortions is 38% the true number of 
abortions should be 8,653. If we also assume that the other pregnancy outcomes are reported correctly, the 
total number of pregnancies should be 35,400 which suggest that only 84.8% of pregnancies are reported.  
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observations could potentially be artifacts of differential reporting rates, across time 
periods in the first case and among the two groups in second case, due to the differences 
in the extent of perceived “social undesirability” of abortion. Another recent study, 
Tapales and Finer (2015), relies on the assumption that the reporting rates of intentional 
abortions of different subgroups do not vary across time periods. 

Some researchers attempt to correct the bias due to underreported abortions before 
producing a related estimate. Lindberg (2011), another study on the unintended-
pregnancy rate in the US military that analyzes data from the same survey as Grindlay 
and Grossman (2013), assumes that everyone in their sample reports only a fixed 
percentage of intentional abortions and therefore a fixed percentage of true pregnancies. 
The unreported pregnancies are assumed to be 11.9% of the number of reported cases 
based on two previous studies that estimate the reporting rates of intentional abortions 
in the NSFG in comparison to provider surveys. In addition to ignoring the differences 
in reporting rates across various subgroups, this study simply ignores that the average 
reporting rate could vary significantly across different surveys.  

If the reporting rates of intentional abortions are known, preferably at the 
individual level, it is possible to correct for any potential bias due to underreporting in 
many studies. When the reporting rate at a particular survey is not known, researchers 
in most cases simply ignore misreporting, as in Grindlay and Grossman (2013), or use 
an estimate from a previous study, which may or may not be based on the same survey, 
as in Lindberg (2011). The estimation of reporting rates in a given dataset usually 
requires a reliable external source that can be treated as a gold standard. Data collected 
from abortion-service providers (Jones and Forrest 1992; Fu et al. 1998; Finer and 
Zolna 2014), Medicaid claims (Jagannathan 2001), and medical records (Udry et al. 
1996) have been used for comparisons, ignoring that these reference datasets too could 
be vulnerable to underreporting (Henshaw 1998). Some researchers have attempted to 
estimate underreported abortion counts without assuming a gold standard 
(Yan, Kreuter, and Tourangeau 2012, for example), but their approaches still require a 
validation sample. Researchers have attempted to estimate underreported count data 
using validation samples in various other settings too. In Amoros, Martin, and Laumon 
(2006) a validation sample is used to estimate the extent of underreporting of road-crash 
casualties in France. Dvorzak and Wagner (2016) use a binomially-thinned Poisson 
model to capture the extent of underreporting in the number of cervical-cancer deaths 
and use a validation sample to identify the model through a Bayesian approach.  

The challenges faced by demographers due to underreported count data are 
documented in several studies. Some examples are incidents of sexual violence (Gross 
et al. 2006), concurrent sexual partnerships (Adimora, Schoenbach, and Doherty 2007), 
and birth counts in Chinese census data, which lead to underestimated fertility rates 
(Goodkind 2004) and implausible sex ratios (Goodkind 2011). Among the other areas 
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where underreported counts have been found and a model similar to the one we use 
could be used are in estimating the frequency of absenteeism in workplaces, the 
reporting of industrial injuries, the violations of safety regulations in nuclear power 
plants, criminal victimizations, needlestick injuries at hospitals, and earthquakes and 
cyclones (see Cameron and Trivedi 2013: 488 for details). 

The binomially-thinned zero-inflated Poisson model we adopt here can be used to 
estimate not only the average reporting rates but also the reporting probabilities of each 
individual without using any gold standard or a validation sample. As we show here, 
this model, which combines the features of the zero-inflated Poisson model (Lambert 
1992) and the binomial-thinned Poisson model (Winkelmann and Zimmermann 1993), 
predicts the average reporting rate of abortion counts in NSFG data with remarkable 
closeness to the available estimates. Cameron and Trivedi (2013) has a detailed 
discussion about these models as well as their applications.  

Our model is closely related to the binomially-thinned zero-inflated negative 
binomial model (ZI-NB2-Logit model) proposed by Papadopoulos (2014) to estimate 
underreported crime self-reports in England and Wales. They generalize the binomially-
thinned negative binomial model (NB2-Logit model, using their terminology) 
developed in Winkelmann and Zimmermann (1993) by allowing zero-inflation. 

The method we propose can be used in many related studies where the accuracy of 
an estimate is jeopardized by the underreported abortion counts. The model can be used 
directly when the interest is on the impact of some factor in determining the number of 
intentional abortions, or the number of pregnancies, by simply including a variable 
capturing that factor as a covariate. When the abortion count should enter as a covariate, 
the estimated reporting rates can be used to correct for any bias due to underreporting.3  

In section two, we discuss other studies that estimate reporting rates of abortion 
rates in various surveys. In section three, we present our model. Our data is explained in 
section four, and the results are presented and analyzed in section five. Section six 
concludes. 

 
 

2. Reporting rates of abortion counts in various surveys 

Various researchers have attempted to estimate the extent of underreporting of abortion 
counts in surveys of US women at least since Jones and Forrest (1992), which is a 
detailed study that covers multiple waves of three major surveys: the 1976, 1982, and 
1988 cycles of the NSFG; the 1976 and 1979 NSYW; and the NLSY. Their estimations 
of reporting rates are based on external data collected by the Alan Guttmacher Institute 

                                                           
3 When the estimated reporting rates are used in this manner in an econometric model, the additional 
randomness introduced by these estimates should be reflected in the standard errors. 
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(AGI) from abortion-service providers. While the NSFG dataset includes all 
pregnancies of the respondents aged 15–44, the Jones and Forrest (1992) analysis is 
limited to the pregnancies during the most recent years (3‒4 years, depending on the 
NSFG cycle), for which more-accurate data is available. The estimates of reporting 
rates during each of the 11 calendar years covered in the three NSFG cycles vary from 
25% to 60%, while the average reporting rate during all these years was 35%. Reporting 
rates in the two waves of NSYW, which covers a sample of adolescents, have been 
estimated at 59% and 42%, respectively. The overall reporting rate in NLSY has been 
estimated at 40%. The authors caution the readers about the measurement error ignored 
in their “gold standard,” which potentially causes these estimates to be upward biased. 

Fu and colleagues (1998) extend the analysis of Jones and Forrest (1992) to the 
1995 cycle of the NSFG following the same methodology. During the four years that 
this cycle covers, the reporting rate is estimated to be within 42%‒47%. This cycle of 
the NSFG also introduced an audio computer-assisted, self-administered survey to 
improve the reporting accuracy of sensitive topics. Fu and colleagues (1998) show that 
the reporting rates increased to 57%‒60% when this procedure was used. The next 
study of this series, Jones and Kost (2007), repeat the same procedure and find that the 
reporting rate in 2002 cycle of the NSFG is 47%.  

The studies comparing survey responses with provider data are the main sources of 
reporting-rate estimates of abortion counts in US demographic surveys. However, these 
are likely to be overestimates, as the provider data they use for comparison also suffers 
from underreporting problems. As Henshaw (1998) estimates, the reporting rate of this 
provider data in 1996 is only 96%‒97%, which suggests that the reporting rates 
estimated based on the provider data could potentially be 3%‒4% higher than the actual 
rates. This finding emphases the need for a reliable gold standard to compare the 
accuracy of self-reported abortion counts with.  

Some researchers have used medical records and insurance-claim data for 
comparison, but these studies are based on relatively small samples. Udry and 
colleagues (1996), for example, compare self-reported abortion counts of 104 women 
aged 27‒30 with their medical records to find that 19% of them do not report one or 
more of their abortions. Jagannathan (2001) uses Medicaid claim data as her gold 
standard to find that only 29% of abortions are self-reported. Her study is based on a 
sample of 1,236 mothers on welfare. Yan, Kreuter, and Tourangeau (2012), the only 
team of researchers who use a model-based approach to estimate the average reporting 
error of abortion counts in the NSFG, conclude that their technique fails to correctly 
estimate the average reporting rate of abortions after finding an implausibly low error 
rate in the range of 1%‒3%. 

While the reporting rate of abortion counts in major US surveys, as estimated in 
most previous research, is within 25%‒60%, there is significant variation across 
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different surveys and different cycles of the same survey. The variation in reporting 
rates across different demographic groups is even larger. The reporting rate of Whites 
was higher than the reporting rate of non-Whites in all datasets analyzed by previous 
researchers. Underreporting rates were relatively lower for married women. These 
comparisons, however, are based on the unconditional means and may illustrate the 
impact of one or more other factors. The impact of other variables on the reporting 
probability is ambiguous. In the 1982 NSFG dataset, the reporting rate increases with 
age, but in the 1988 dataset, there is no clear pattern (Jones and Forrest 1992). As the 
same study shows, the reporting rate decreases with age in the NLSY dataset. Two 
other studies (Fu et al. 1998; Jones and Kost 2007) show a U-shaped relationship 
between the age and the reporting rate. So not only do we notice variation in reporting 
rates across different demographic groups in a given dataset, but we also observe 
differences in this pattern of variation across different datasets. Therefore, making 
inferences about the reporting rate of abortions by respondents in one dataset using the 
estimates from another does not guarantee a better result and may even lead to a worse 
outcome. 

The reporting rate of White women, as shown in all previous research, is 
consistently higher than the reporting rate of non-White women. Black women in 
particular have a lower reporting rate. In addition, the reporting rate of Hispanic women 
is significantly lower than the reporting rate of non-Hispanic women. Though the 
causality of the relationship between the racial identification of a woman and the 
reporting rate of abortions is not obvious, this empirical observation has been reported 
consistently by several researchers. Since we use this relationship to impose sign 
restrictions when identifying our model parameters, the relevant empirical observations 
are detailed below. 

As estimated by Jones and Forest (1992), the reporting rate of White women in the 
1982 NSFG is 21% higher than the rate of non-White women. In the 1998 NSFG, the 
reporting rate of White women is 38%, while it is only 27% for non-White women. Fu 
and colleagues (1998) shows that the reporting rate of White women is 12%‒17% 
higher than the rate of non-White women. In Jones and Kost (2007), the estimated 
reporting rate of Hispanic women is only 29%, a statistically different rate from the 
number for non-Hispanic White women (61%). The reporting rate for non-Hispanic 
Black women (42%) too is significantly below the rate for non-Hispanic White women. 
A multivariate logistic regression analysis of Udry and colleagues (1996) demonstrates 
that, out of the variables that they examined, race was the strongest predictor of 
abortion underreporting. Based on their analyses, non-White women are 3.3 times as 
likely as Whites to underreport their intentional abortions. This view is also confirmed 
by Jagannathan (2001). In all four of her logistic regression models, the coefficients of 
Black and Hispanic variables are significantly negative against the excluded Whites. 
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Jagannathan (2001) suggests three possible reasons for the observed relationship 
between the racial identification of a woman and her reporting rate of abortions: 

 
a) The interaction of race and abortion attitudes, 
b) Interracial differences in other attitudes that affect underreporting, which 

are not controlled for, and 
c) Interracial differences in the degree of mistrust on the survey process. 

 
Based on the above arguments and empirical findings, we assume that the 

coefficients of Black and Hispanic dummy variables in our model should be negative. 
 
 

3. The model 

3.1 Poisson models 

The Poisson regression model, derived from the single-parameter Poisson probability 
distribution, is the most basic option for modelling a count variable (𝑌), which can only 
take a nonnegative integer value (𝑦). It is a single index model in which the covariates 
(𝑋) are usually linked with the Poisson mean (𝜆𝑡) using an exponential function to 
impose non-negativity:  

 

Pr(𝑌 = 𝑦) = (𝜆𝑡)𝑦𝑒−𝜆𝑡

𝑦!
 where 𝜆 = exp (𝑋𝛽). (1) 

 
The two terms 𝜆 and 𝑡 represent the mean number of counts during a unit period of 

exposure and the length of exposure, respectively, while 𝛽 is a vector of parameters that 
can be estimated using MLE or another suitable estimation technique when 𝑌 can be 
observed without any measurement error. In most applied work, the exposure period 
does not vary across observations and therefore is normalized to unity. The exposure 
term does not appear explicitly in those models. In our application, 𝑡 shows significant 
variation, and we use this variation to strengthen the identification of our model.  

There are some well-known limitations of the above basic model. The first is its 
equi-dispersion assumption, the variance being equal to the mean. In practice, most real 
data shows over-dispersion, a variance larger than the mean. The negative binomial 
model is a generalization of the basic Poisson model that includes one additional over-
dispersion parameter. The second issue is that many real-count variables have more 
zeros than the number produced by a Poisson process, conditional on its mean. When a 
part of these zeros is excluded, these distributions better represent a Poisson 
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distribution. This has motivated several variants of zero-inflated Poisson models. We 
focus on the two-part model presented in Lambert (1992), which assumes that the final 
observed outcome is the result of a two-staged process.  

The first stage of the Lambert (1992) model (not following his notation) is a 
Bernoulli zero-generation process where the outcome is equal to 0 with probability 𝜑. 
When the outcome of this Bernoulli process is 1, which happens with probability (1 −
𝜑), it triggers a Poisson random-number generation process to produce a nonnegative 
integer outcome. The final observed outcome includes zeros generated through both 
mechanisms and positive integers generated by the Poisson process.  

 

Pr(𝑌 = 𝑦|𝑦 > 0) = (1 − 𝜑) (𝜆𝑡)𝑦𝑒−𝜆𝑡

𝑦!
 (2) 

 
Pr(𝑌 = 0) = 𝜑 + (1 − 𝜑)𝑒−𝜆𝑡 (3) 
 
The Poisson mean is linked with the covariate vector (𝑋) using an exponential 

function, while the Bernoulli mean is linked with the covariates (𝑍) using an inverse 
logit function such that 𝜆 = exp (𝑋𝛽) and 𝜑 = exp(𝑍𝛿)

1+exp (𝑍𝛿)
, where 𝛿 is the vector of 

coefficients of the zero-inflation process. The two covariate vectors, 𝑋 and 𝑍, can be 
identical, overlapping, or disjointed. This model takes account of the existence of both 
excess zeros and over-dispersion.  

Underreporting is one of the mechanisms that generates excess zeros. If the only 
way that an observation could be underreported is through a Bernoulli process that 
randomly assigns a 0 to a true positive value, we can use the above zero-inflated 
Poisson (ZIP) model to fully explain the underreporting mechanism. In the case of self-
reported counts of an outcome, this requires each respondent to either report her count 
with perfect accuracy or report a zero count irrespective of her true count. In reality, 
however, respondents may report a number lower than their true counts, but not always 
a zero. Therefore, misreporting has to be modeled in a different manner. The binomial 
thinning process closely mimics the true underreporting process of count data 
(Winkelmann and Zimmermann 1993) and assumes that the observed outcome is a 
“Poisson-stopped sum of Bernoulli random variables” (Fader and Hardie 2000). More 
specifically, if the true variable, generated through a Poisson process, is 𝑌∗ and the 
observed variable is 𝑌, they are related as 𝑌 = ∑ 𝐼𝑖𝑌∗

𝑖=1  where 𝐼𝑖  is a Bernoulli random 
variable that takes the value of 1 with probability π. The parameter π can be interpreted 
as the reporting rate. This relationship is expressed using the binomial thinning operator 
∘ as 

 



Demographic Research: Volume 36, Article 2 

http://www.demographic-research.org 49 

𝑌 =  𝜋 ∘  𝑌∗ = 𝜋 ∘  (𝜆𝑡)𝑦𝑒−𝜆𝑡

𝑦!
 (4) 

 
It can be shown that the binomial thinning of a Poisson distributed random 

variable produces another Poisson distributed random variable such that  
 
𝜋 ∘  𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑡) = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜋𝜆𝑡).  (5) 
 
In a regression framework, the most commonly used “Poisson logit model” 

(Winkelmann and Zimmermann 1993) links π with covariates using an inverse logit 
function while the Poisson mean, 𝜆𝑡, is linked using an exponential function as in (1).  

 
 

3.2 Underreported abortions 

The outcome we are interested in is the total number of intentional abortions done by 
women in their reproductive age. We have these numbers reported by a cross-sectional 
sample of US women aged 15‒45 years but with potential measurement error. In this 
sample, an observed zero count could mean one of several things. First, if a woman 
never had sex, there’s no way that she could get pregnant (we ignore the possibility of 
artificial insemination by a woman who never had sex). They have zero counts of 
intentional abortions as well as zero counts of other types of pregnancies. Second, not 
all women who have sex get pregnant; some have fertility issues, and some do not want 
to get pregnant for various social, economic, medical, and personal reasons. They avoid 
pregnancies through contraceptives. This second group also has zero intentional 
abortions and zero pregnancies. Women in the third group have sex and get pregnant, 
but an intentional abortion is never a choice for them because either they have social, 
religious, or ethical concerns or they well plan their pregnancies. They also have zero 
intentional abortions but nonnegative counts of pregnancies. The last group does have 
some intentional abortions but they report their abortion counts as zeros. If a woman in 
this fourth category doesn’t have any pregnancy outcome except these unreported 
intentional abortions, her total pregnancy count too is incorrectly recorded as zero. At 
the same time, a reported positive abortion count indicates that the woman has had sex, 
been pregnant, and had some abortions. However, the actual count of abortions could be 
higher than the number reported. 

If we can correctly identify the subset of women who have ever been pregnant, we 
can isolate the first two groups and analyze the rest of the observations. But when the 
number of intentional abortions is inaccurate, so is the total number of pregnancies. 
Therefore, we have no way to isolate the second group. However, if all self-reported 
virgins are truthful, we can isolate the first group. While self-reported virginity too is 
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prone to misreporting (Tennekoon and Rosenman 2014), we do not expect that to be a 
serious issue in this sample. On that basis, we assume that the true number of 
pregnancies, and therefore the true number of intentional abortions, is zero if a woman 
reports that she never had vaginal intercourse.4 

Our main target is to estimate the reporting rate of intentional abortions. A woman 
is exposed to pregnancy from the first day that she has vaginal intercourse or her 
menarche, whichever happens later. The window that she is exposed to an intentional 
abortion begins approximately a month later. Ignoring that relatively short delay, we 
measure exposure from the date that she first had sex after her menarche until the date 
she was interviewed (𝑡). If 𝑡 = 0, there is no way that a woman could have any 
pregnancy, and therefore, the count of intentional abortions should be zero. The actual 
number of intentional abortions of a woman (𝑖) that we do not observe (𝑌𝑖∗), assumed to 
be determined by a ZIP process as in Lambert (1992), is a function of her exposure (𝑡𝑖); 
the probability of being in the group of women that includes those who decide not to be 
pregnant, are infertile, or are strictly against abortion (𝜑𝑖); and the expected number of 
intentional abortions during a unit period (𝜆𝑖). If the probability of reporting each 
intentional abortion by a woman is 𝜋𝑖, the observed outcome can be expressed as 

 

Pr(𝑌𝑖 = 𝑦𝑖|𝑦𝑖 > 0) = (1 − 𝜑𝑖)
(𝜋𝑖𝜆𝑖𝑡𝑖)

𝑦𝑖𝑒−𝜋𝑖𝜆𝑖𝑡𝑖

𝑦𝑖!
;  (6) 

and 
 
Pr(𝑌𝑖 = 0) = 𝜑𝑖 + (1 − 𝜑𝑖)𝑒−𝜋𝑖𝜆𝑖𝑡𝑖. (7) 
 
The log-likelihood function takes the following form: 

𝐿𝑛𝐿 = ∑ ln[𝜑𝑖 + (1 − 𝜑𝑖) exp(−𝜋𝑖𝜆𝑖𝑡𝑖)] + ∑ [𝑌𝑖>0𝑌𝑖=0 ln(1 − 𝜑𝑖) − 𝜋𝑖𝜆𝑖𝑡𝑖 +
𝑌𝑖ln (𝜋𝑖𝜆𝑖𝑡𝑖) − ln(𝑌𝑖!)]. (8) 

 
In a regression framework, each of the two Bernoulli means are linked with the 

covariates using the inverse logit function, and the Poisson mean is linked using the 
exponential function, as done usually, so that 𝜑𝑖 = 𝑒𝑥𝑝 (𝑍𝑖𝛿)/(1 + 𝑒𝑥𝑝(𝑍𝑖𝛿)), 𝜋𝑖 =
𝑒𝑥𝑝 (𝑅𝑖𝛾)/(1 + 𝑒𝑥𝑝(𝑅𝑖𝛾)) and 𝜆𝑖 =  𝑒𝑥𝑝(𝑋𝑖𝛽). We finally have a triple-index model 
with three vectors of parameters, 𝛿, 𝛾 , and 𝛽, to be estimated. The exposure variable, 
𝑡𝑖, acts as an offset parameter on the index 𝑋𝑖𝛽. This is because 𝜆𝑖𝑡𝑖 = 𝑒𝑥𝑝 (𝑋𝑖𝛽 +
ln(𝑡𝑖)). It can easily be handled within the log-likelihood function in (8) by including 

                                                           
4 A robustness check to find the sensitivity of our results to any measurement error in self-reported virginity 
that we present and discuss later supports this assumption. 
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ln(𝑡𝑖) as an additional covariate of vector 𝑋𝑖, of which the coefficient is restricted to 1. 
If 𝑡𝑖 = 0 for any observation, that observation does not contribute to the value of the 
above log-likelihood function. Therefore, ignoring the observations with zero exposure 
does not affect the maximum likelihood solution.  

This model is identified using the variation in 𝜋𝑖 and cannot be identified when 𝜋𝑖 
is a constant. This is because ln (𝜋𝑖) is indistinguishable from the constant term in the 
linear index 𝑋𝑖𝛽 (Cameron and Trivedi 2013). Even when 𝜋𝑖 has sufficient variability, 
we face another subtle identification issue (Papadopoulos and Santos Silva 2012). That 
is, the parameter vector [𝛽, 𝛾] is indistinguishable from the parameter vector [𝛽 +
𝛾,−𝛾] when the same regressors are used in both processes (i.e., 𝑋𝑖 = 𝑅𝑖) since  

 
𝑒𝑥𝑝 (𝑅𝑖𝛾)

1+𝑒𝑥𝑝(𝑅𝑖𝛾) 
𝑒𝑥𝑝 (𝑋𝑖𝛽) = 𝑒𝑥𝑝 (−𝑅𝑖𝛾)

1+𝑒𝑥𝑝(−𝑅𝑖𝛾) 
𝑒𝑥𝑝 (𝑅𝑖𝛾 + 𝑋𝑖𝛽). (9) 

 
This issue can be avoided by sign restrictions on at least one of the covariates in 𝑅𝑖 

based on prior information or by including at least one variable that does not belong to 
𝑋𝑖 in vector 𝑅𝑖. Even when 𝑅𝑖 includes one or more variable that does not belong to 𝑋𝑖, 
there are two maxima, but the global maximum is distinguishable from the other since 
the log-likelihood values are different (Staub and Winkelmann 2013). 

In our application, 𝜋𝑖 is well known for its variation, and we also have prior 
information to impose some sign restrictions as explained in the previous section. 
Therefore, we do not need to rely on functional form assumptions alone for identifying 
our model. Once the parameters of the model are estimated using maximum likelihood, 
the average reporting rate of intentional abortions in this dataset can be estimated as 
𝐸(𝜋�𝑖) = 1

𝑁
 ∑ exp (𝑅𝑖𝛾�)/(1 + 𝑒𝑥𝑝(𝑅𝑖𝛾�))𝑁

𝑖=1 . The average reporting rate of a given 
subgroup (for comparison with previous research) can be calculated by averaging the 
predicted reporting rates for observations belonging to that subgroup, in a similar 
manner. This is because  

 

𝐸(𝜋�𝑖|𝐺𝑖 = 1) = 𝐸(𝐺𝑖𝜋�𝑖|𝐺𝑖=1)
𝐸(𝐺𝑖)

= ∑ 𝐺𝑖[exp (𝑅𝑖𝛾�)/(1+𝑒𝑥𝑝(𝑅𝑖𝛾�))]𝑁
𝑖=1

∑ 𝐺𝑖𝑁
𝑖=1

  (10) 

= 1
𝑁𝐺
∑ 𝑒𝑥𝑝 (𝑅𝑖𝛾�)

(1+𝑒𝑥𝑝(𝑅𝑖𝛾�))
𝑁𝐺
𝑖=1   

 
Here, 𝐺𝑖 is a dichotomous variable which takes the value 1 for all women belonging to a 
given subgroup and 0 otherwise. 𝑁𝐺 is the total number of women in that subgroup. 
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4. Data and estimation 

For this study, we use data from the two most recent cycles of the NSFG, which is a 
cross-sectional survey of men and women aged 15-44 years who are US residents. It 
has collected information on family life, marriage and divorce, pregnancy, infertility, 
the use of contraception, and men’s and women’s health since 1973. Our data sample 
covers the most recent data releases on female respondents (as at January 1, 2015), 
which includes the survey years 2006‒2013. The 2006‒2010 release surveys 12,279 
respondents, while the most recent 2011‒2013 release collects data from additional 
5,601 women. The two data releases of this multi-stage probability-based sample 
survey are not different in their structure or survey design. In both cycles, Blacks, 
Hispanics and teens are oversampled. The reporting rate of abortions in each of these 
cycles also has been estimated to be equal (USDHHS 2014). The interviews have been 
conducted by trained female interviewers using laptop computers. We only use the 
variables available in public-use files at no cost to the researcher.  

Out of the total of 17,813 respondents in our complete dataset, 2,393 (13.4%) 
report never having sex. Our focus in this study is the remaining 15,420 women who 
have had sex. Among them, 4,394 (28.5%) have never been pregnant, while others 
report 1 to 20 pregnancies. Only less than 15% of these women self-report ever having 
an intentional abortion. The number of reported abortions ranges from 1 to 16. The 
exposure variable combines information contained in three other variables. First, the 
start of the exposure window was calculated as the first time a woman had sex or her 
menarche, whichever happened later. Exposure is the number of years elapsed from that 
point until the survey was done. 

Most of the variables in this dataset represent the status of these women when they 
were surveyed. For example, income, marital status, and religious affiliation show their 
current status. The number of abortions, collected retrospectively, is related to the 
decisions they made in the past, and the current status may not explain why they made a 
decision several years ago. Therefore, we have to choose our variables carefully. Also, 
most of the variables that would potentially cause a woman to be in the zero-abortions 
group are also likely to affect their number of intentional abortions if they belong to the 
potential-abortions group. We include age (as a categorical variable), race, Hispanic 
origin, years of education, a dummy for having some college education (years of 
education being more than 12 years), religious affiliation, sexual orientation, number of 
formal marriages, number of cohabiting unions, a dummy for ever being employed, a 
dummy for ever seeking help to get pregnant, a dummy for ever receiving treatment for 
infertility, a dummy for ever using a contraceptive, a dummy that is equal to 1 if the 
respondent has never had a job, and two additional dummies to capture cohort effects 
(born in 1980s and 1990s) as the covariates of the equation that explains excess zeros. 
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These variables capture the factors causing a woman not to be pregnant and also the 
factors that motivate her not to abort a pregnancy if she gets pregnant. The current 
religious affiliation and the sexual orientation may have changed during a woman’s 
lifetime prior to the survey, but we assume those changes to be low-frequency events. 

Most of these variables are likely to affect the number of abortions too, if a woman 
gets pregnant. Therefore, all these variables except the two dummies identifying the 
birth cohort enter the equation explaining the Poisson mean. In addition, we include the 
number of live births and the number of times an emergency contraceptive pill was used 
in that equation. The exposure variable also enters this equation in its log form with its 
coefficient restricted to 1. Unlike the decision to get pregnant or have an abortion, the 
decision to report an abortion is a contemporary decision. Our main interest is in 
estimating the parameters of this equation. We include the variables identified by 
previous researchers as affecting the reporting probability of abortions in this equation. 
They include race, Hispanic origin, the age categories we used in the other two 
equations, the number of years of education, a dummy for having some college 
education, marital status, religious affiliation, and income categories. Summary 
statistics of these variables (unweighted) are presented in Tables 1 and 2. 

 
Table 1: Summary statistics for continuous and count variables 

Variable Mean Std. Dev. Weighted 
Mean 

Weighted 
Std. Dev 

Number of abortions reported 0.21 0.63 0.19 0.61 
Age (years) 30.12 7.81 31.11 7.98 
Education (Number of years) 13.19 2.66 13.50 2.69 
Number of live births 1.38 1.41 1.44 1.44 
Number of emergency contraceptives 0.28 1.22 0.26 1.57 
Number of cohabiting unions 0.94 1.23 0.94 1.59 
Exposure (Number of years) 13.97 7.71 14.82 7.92 

 
The parameters of the model were estimated using the “ml” command in Stata 

(StataCorp 2015), and the reporting rates were calculated using Mata. A sample 
Stata/Mata code that explains the estimation procedure using simulated data is given in 
the appendix. The data extract used to produce the empirical results and the Stata/Mata 
code is available as an electronic supplement. Since the NSFG is a multi-stage 
probability-based sample survey, sample weights were used in all estimations. Standard 
errors were calculated using both the empirical Hessian estimator and the 
Huber/White/sandwich estimator. The latter is robust to certain types of model 
misspecification. 
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Table 2: Summary statistics for categorical variables 
Variable Mean Weighted Mean 
Age   
  15‒19 years 0.10 0.08 
  20‒24 years 0.18 0.17 
 25‒29 years 0.21 0.19 
 30‒34 years 0.19 0.17 
 35‒45 years 0.32 0.39 

Birth cohort   
 Born in 1980s 0.38 0.35 
 Born in 1990s 0.10 0.09 

Race   
 White 0.65 0.73 
 Black 0.23 0.16 
 Other 0.12 0.11 
Hispanic origin 0.23 0.18 

Religion   
 None 0.20 0.20 
 Catholic 0.24 0.24 
 Protestant 0.48 0.48 
 Other 0.07 0.08 
Marital status   
 Never married 0.37 0.29 
 Married 0.37 0.46 
 Previously married 0.12 0.10 
 Cohabiting 0.14 0.14 
Poverty level income   

 Below 100% 0.29 0.24 
 100‒199% 0.24 0.23 
 200‒299% 0.17 0.17 
 300‒399% 0.13 0.16 
 400‒499% 0.08 0.10 
 Above 500% 0.09 0.10 

Education   
 More than 12 years 0.52 0.57 
Sexual orientation   
 Heterosexual 0.92 0.98 
 Homosexual  0.01 0.00 
 Bisexual 0.07 0.02 
Pregnancy intention   
 Never used contraceptive 0.01 0.01 
 Ever sought help to get pregnant 0.08 0.09 
 Ever used infertility services 0.12 0.13 
Never worked 0.02 0.02 

 
 

5. Results 

5.1 The true count of abortions 

The coefficient estimates of the factors affecting the true count of abortions are reported 
in Tables 3 and 4. Younger cohorts are more likely to be in the zero-abortions group 
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than the older ones. Since the women born in the 1990s and 1980s are less likely to 
abstain from sex compared to the older cohorts, this may reflect their increased 
knowledge about reproductive health, their awareness about contraceptives in 
particular. It may also show the increased ability of women to negotiate with their 
sexual partners, which in turn helps in avoiding unintended pregnancies.  

 
 

Table 3: Excess zeros 
Variable Estimate Std. Err. I  Std. Err. II  
Age (Baseline: 35‒45 years)      
 15‒19 years ‒1.432 0.785 * 1.103  
 20‒24 years ‒0.014 0.283  0.436  
 25‒29 years ‒0.174 0.232  0.328  
 30‒34 years 0.262 0.155 * 0.270  
Birth cohort      
 Born in 1980s 0.304 0.164 * 0.223  
 Born in 1990s 1.281 0.355 *** 0.427 *** 
Hispanic origin 0.024 0.171  0.280  
Race (Baseline: White)      
 Black ‒0.860 0.160 *** 0.265 ** 
 Other ‒0.213 0.224  0.453  
Education      
 Education (years) 0.079 0.039 ** 0.062  
 More than 12 years ‒0.940 0.189 *** 0.312 *** 
Religion (Baseline: No religion)      
 Catholic 0.406 0.210 * 0.351  
 Protestant 0.819 0.164 *** 0.274 *** 
 Other 0.928 0.211 *** 0.356 *** 
Pregnancy intention      
 Never used contraceptive ‒5.892 27.113  4.931  
 Ever sought help to get pregnant 0.380 0.370  0.603  
 Ever used infertility services ‒0.089 0.292  0.492  
Sexual orientation (Baseline: Heterosexual)      
 Homosexual ‒0.676 2.552  2.812  
 Bisexual ‒0.734 0.495  0.610  
Number of formal marriages ‒0.951 0.064 *** 0.109 *** 
Number of cohabiting unions 0.425 0.096 *** 0.178 ** 
Never worked 0.940 0.418 ** 1.000  
Constant ‒0.058 0.525  0.793  
Number of observations 15,401     
Log likelihood ‒6958.20     

 
* p<0.1,**p<0.05,***p<0.01 
Std. Err. I is based on the empirical Hessian estimator and Std. Err. II is based on the Huber/White/sandwich estimator. The latter is 
robust to certain types of model misspecification. 
 

Within each (decennial) cohort, age increases the probability of being in the zero-
abortions group, and it also increases the count of abortions. In other words, the fraction 
of women with zero abortions among the younger age groups is smaller than among the 
older, but the mean number of abortions of those younger women who would consider 
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having an abortion during a given period is smaller compared to older women. This 
suggests some selection behavior as these women age; those who abstain from 
intentional abortions during the early ages continue to do so, while those who had any 
abortions when young have more. 

 
Table 4: The count of abortions  
Variable Estimate Std. Err. I  Std. Err. II  
Age (Baseline: 35–45 years)      
 15‒19 years ‒1.924 0.709 *** 1.140 * 
 20‒24 years ‒0.567 0.361  0.617  
 25‒29 years ‒0.525 0.280 * 0.574  
 30‒34 years 0.400 0.251  0.477  
Number of live births 0.017 0.018  0.026  
Number of emergency contraceptives 0.040 0.003 *** 0.005 *** 
Hispanic origin 1.035 0.388 *** 0.660  
Race (Baseline: White)      
 Black 1.083 0.329 *** 0.576 * 
 Other 0.204 0.281  0.672  
Education      
 Education (years) ‒0.196 0.058 *** 0.088 ** 
 Education: More than 12 years ‒0.744 0.426 * 1.139  
Religion (Baseline: No religion)      
 Catholic ‒0.728 0.236 *** 0.371 ** 
 Protestant 0.100 0.215  0.339  
 Other ‒0.350 0.299  0.487  
Pregnancy intention      
 Never used contraceptive ‒1.941 0.532 *** 0.655 *** 
 Ever sought help to get pregnant ‒0.179 0.209  0.307  
 Ever used infertility services ‒0.174 0.160  0.193  
Sexual orientation (Baseline: Heterosexual)      
 Homosexual ‒0.849 0.983  1.094  
 Bisexual ‒0.287 0.181  0.190  
Number of formal marriages ‒0.002 0.010  0.012  
Number of cohabiting unions 0.088 0.056  0.117  
Never worked 0.699 0.276 ** 0.636  
Constant 0.894 1.097  1.759  
Ln(Exposure): Restricted 1.000     
Number of observations 15,401     
Log likelihood ‒6958.20     
 
* p<0.1,**p<0.05,***p<0.01 
Std. Err. I is based on the empirical Hessian estimator and Std. Err. II is based on the Huber/White/sandwich estimator. The latter is 
robust to certain types of model misspecification. 

 
The total number of emergency contraceptives (such as morning-after pills) has a 

positive effect on the count of abortions. This variable is a proxy for the tendency for 
unsafe sex, which increases the chances of intentional abortions by a woman. The 
coefficient of the total number of live births, used to measure the marginal value of an 
additional child, has the positive sign as expected but is statistically insignificant. Since 
these two variables explain the characteristics of a woman who would potentially have 
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an abortion rather than the selection to the same group, they were only used in the 
equation explaining the mean count of abortions. 

Blacks are less likely to be in the zero-abortion group and are also likely to have 
more intentional abortions than Whites. Those belonging to other race categories than 
Blacks and Whites also show a behavior similar to Blacks, but the magnitudes are not 
as high. Hispanics do not differ significantly from non-Hispanics in their probability to 
be in the zero-abortion group, but their mean number of abortions is larger. The 
coefficients for being in the zero-abortion group are positive for all religious categories 
(Catholic, Protestant, and other) compared to the group without a religious identity. The 
coefficients of Catholics and the other religious categories are negative on the count of 
true abortions, but only the coefficient for being Catholic is statistically significant. The 
coefficient for being Protestant is positive but small and statistically insignificant. 

Education negatively affects the mean number of abortions, probably showing that 
educated women are more likely to plan their pregnancies. The effect is stronger for 
women with some college education. However, those with a college education are less 
likely to be a part of the zero-abortion group, probably showing their increased 
exposure to sexual activity. Women who were never employed, on the other hand, have 
positive and significant effects on both outcomes. Perhaps this group is less exposed to 
sex and therefore to pregnancy. However, if they are exposed, they have less incentive 
to have an abortion since their cost of having an additional child is not as high as the 
same cost for a working woman. 

Those who never used a contraceptive tend to have a lower number of abortions. 
This group may include women who do not want to interfere with the natural processes 
of pregnancy and childbirth due to religious or ethical concerns, making them less 
likely to have an abortion, as well as some other women who want to have more 
children simply because their utility from an additional child does not diminish 
substantially after having a few children. Both coefficients for being homosexual and 
bisexual were insignificant, perhaps due to a lack of variation in data. The number of 
cohabiting unions increases the probability of being in the zero-abortion group. The 
number of formal marriages, however, decreases the chance of zero abortions. The 
coefficients of the usage of infertility services and the usage of any help to get pregnant 
were both insignificant. 

 
 

5.2 The reporting rates 

The focus of our study is the reporting rate of abortions and the factors affecting that 
rate, not the factors affecting the true number of abortions. In Table 5, we report the 
coefficient estimates of the factors potentially affecting the reporting rate. The reporting 
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rate is relatively high for the younger age groups and drops as these women become 
older. Blacks have lower reporting rates than Whites, and Hispanics have lower rates 
than non-Hispanics. Other racial groups also have lower reporting rates than Whites. 
The reporting rate increases with the level of education, with a step increase when a 
woman has some college education. Married, previously married (divorced, separated, 
or widowed), and cohabiting women are all less likely to report abortions than never-
married women. Catholics are more likely to report an abortion than a person with no 
religious affiliation, but Protestants and those in other religious categories do not differ 
significantly in their reporting rates of abortions than non-religious women. The effect 
of income on reporting is somewhat ambiguous. In general, those in middle income 
categories are more likely to report abortions than those in lower and higher income 
categories. 

 
Table 5: Reporting of abortions  

Variable Estimate Std. Err. I  Std. Err. II  
Age (Baseline: 35–45 years)      
 15‒19 years 2.454 0.942 *** 1.565  
 20‒24 years 1.500 0.420 *** 0.802 * 
 25‒29 years 0.897 0.345 *** 0.792  
 30‒34 years ‒0.252 0.301  0.539  
Hispanic origin ‒1.194 0.437 *** 0.786  
Race (Baseline: White)      
 Black ‒1.064 0.357 *** 0.665  
 Other ‒0.238 0.361  0.826  
Education      
 Education (years) 0.330 0.063 *** 0.104 *** 
 Education: More than 12 years 0.462 0.520  1.357  
Religion (Baseline: No religion)      
 Catholic 0.692 0.309 ** 0.531  
 Protestant ‒0.164 0.266  0.408  
 Other ‒1.475 0.373 *** 0.668 ** 
Marital status (Baseline: Never married)       
 Married ‒0.598 0.110 *** 0.164 *** 
 Previously married ‒0.256 0.111 ** 0.175  
 Cohabiting ‒0.362 0.099 *** 0.146 ** 
Income (Baseline: Below 100%)      
 100‒199% ‒0.009 0.079  0.110  
 200‒299% 0.205 0.091 ** 0.137  
 300‒399% 0.192 0.106 * 0.157  
 400‒499% 0.284 0.126 ** 0.206  
 Above 500% ‒0.039 0.146  0.284  
Constant ‒5.586 1.073 *** 1.204 *** 
Number of observations 15,401     
Log likelihood ‒6958.20     

 
* p<0.1,**p<0.05,***p<0.01 
Std. Err. I is based on the empirical Hessian estimator and Std. Err. II is based on the Huber/White/sandwich estimator. The latter is 
robust to certain types of model misspecification. 
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Overall, the reporting rate of abortions by the respondents of the NSFG during the 
years 2006‒2013 is estimated to be 35.28% by our baseline model. While the average 
reporting rate is at this level, the estimated reporting rate varies significantly across 
individuals. In Figure 1, we show the distribution of the estimated reporting probability 
of different age groups and for the full sample. In Table 6, we present estimated 
reporting rates of different demographic groups together with the standard errors 
linearized using the delta method. The estimated average reporting rate from our 
baseline model is slightly lower than the estimate of USDHH based on comparisons 
with provider data but statistically indistinguishable from their estimate of 38% with the 
level of precision we have. Our estimate makes more sense when we adjust USDHH 
estimates by eliminating the upward bias due to 3%‒4% underreporting in provider data 
(Henshaw 1998). 

 
Figure 1: Distribution of estimated reporting probabilities within different age 

groups and in full sample 
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Table 6: Estimated reporting rates of different subgroups (%) 
Group   Estimate Std. Err. I  Std. Err. II  
All observations 35.28 8.23 *** 15.23 *** 
Age group      
 15‒19 years 53.11 11.45 *** 17.16 *** 
 20‒24 years 48.71 10.49 *** 15.88 *** 
 25‒29 years 39.06 10.21 *** 15.50 *** 
 30‒34 years 22.15 11.15 *** 16.75 *** 
 35‒45 years 27.67 9.34 *** 14.39 *** 
Race      
 White 40.91 6.43 *** 16.33 *** 
 Black 20.48 10.55 *** 11.80 *** 
 Other 33.15 11.79 *** 15.96 *** 
Hispanic origin 19.10 10.84 *** 17.62 *** 
Education      
 Below 12 years 17.59 11.18 *** 16.79 *** 
 12 years 22.75 10.26 *** 15.56 *** 
 Above 12 years 48.96 6.52 *** 11.64 *** 
Religion      
 No religion 37.16 10.26 *** 15.57 *** 
 Catholic 37.97 10.02 *** 15.25 *** 
 Protestant 28.27 7.48 *** 12.29 *** 
 Other 65.96 12.21 *** 18.21 *** 
Marital status       
 Never married 43.48 8.09 *** 12.92 *** 
 Married 32.17 8.58 *** 13.47 *** 
 Previously married 24.58 11.80 *** 17.64 *** 
 Cohabiting 31.00 11.39 *** 17.08 *** 
Poverty level income      
 below 100% 24.50 9.90 *** 15.11 *** 
 100‒199% 29.08 10.21 *** 15.50 *** 
 200‒299% 39.68 10.79 *** 16.27 *** 
 300‒399% 45.63 11.16 *** 16.77 *** 
 400‒499% 50.55 11.92 *** 17.81 *** 
 Above 500% 50.01 11.85 *** 17.71 *** 

 
* p<0.1,**p<0.05,***p<0.01 against the null hypothesis that there is no underreporting, i.e., the reporting rate is 100%. 
The standard errors were calculated using the delta method based on the ML parameter estimates. Std. Err. I is based on the 
empirical Hessian estimator and Std. Err. II is based on the Huber/White/sandwich estimator. The latter is robust to certain types of 
model misspecification. 

 
 
The coefficient estimates of the variables that we included in the reporting 

equation are useful to identify the potential factors that would affect the reporting rate 
of abortions. However, they are not directly comparable to the unconditional average 
reporting rates of different subgroups estimated by previous researchers. The estimated 
unconditional average reporting rates that we report in Table 6 facilitate this 
comparison. As estimated in all previous research (Jones and Forest 1992; Udry et al. 
1996; Fu et al. 1998; Jones and Kost 2007), Whites have a higher reporting rate of 
40.9%, while the reporting rate of Blacks is only 20.5%. Other racial groups report 
33.2% of their abortions. The reporting rate of Hispanics is only 19.1%. Unconditional 
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means show that the reporting rate drops with age until 35 years but increases 
thereafter. The average reporting rate in the teen category (15‒19 years) is as high as 
53.1%. It drops gradually to reach 22.2% when the age is 30‒34 years before picking up 
again when the age is 35‒45 years. 

As in Fu et al. (1998), the unconditional reporting rate increases with income even 
though the causal effect of income shows no clear direction according to our estimates. 
The reporting rate increases gradually from 24.5% for people below poverty income to 
over 50% for people having an income four times or more than the poverty income. 
Those who have less than 12 years of formal education report only 17.6% of their 
pregnancies according to our estimates, while that rate is 22.8% among the women with 
12 years of education and as high as 49.0% among those who have more than 12 years 
of formal education.  

The unconditional mean reporting rate among the married is 32.2%. The reporting 
rate is highest among those who have never been married (43.5%) while relatively low 
among those who have previously been married (24.6%). The reporting rate of 
cohabiting women (31.0%) is closer to the rate of married women. Catholics are more 
likely to report after controlling for other factors, but their unconditional reporting rate 
(38.0%) is only marginally higher than the rate of nonreligious women (37.2%). The 
reporting rate is 28.3% among Protestants and 66% among other religious categories. 
For each of these groups, the reporting rate is not significantly different from the overall 
average of 35.3%. We tested each of these estimates versus the null hypothesis that 
there is no underreporting. The null hypothesis is rejected with probabilities of over 
0.99 for each of the subgroups, in addition to the entire group. 

 
 

5.3 The robustness of results 

In general, models proposed in the literature that attempt to deal with underreported 
counts are identified through nonlinearities in the log-likelihood function, and therefore 
they are usually sensitive to different specifications. The model we propose is not an 
exception unless there are one or more available variables that determine the reporting 
process but not the count process. Therefore, we did a series of robustness checks by 
changing specifications. The estimated average reporting rates using these alternative 
specifications are presented in Table 7.  

 
  

http://www.demographic-research.org/


Tennekoon: Counting unreported abortions: A binomial-thinned zero-inflated Poisson model 

62 http://www.demographic-research.org 

Table 7: Estimated reporting rates from alternative specifications 
Model Reporting rate Std. Err. 1 Std. Err. 2 

Baseline model. Results are reported in Tables 3, 4, 5, and 6. 35.28 8.23 15.23 

Alternative maximum of the baseline model. 28.58 7.71 12.32 

Exposure period was counted from menarche ignoring the age at first sex. 35.67 8.03 15.21 

The number of live births was included in the reporting process. 34.94 8.68 17.89 

The two birth cohort dummies were included in the reporting process. 37.80 8.93 18.99 

Both the number of livebirths and the two birth cohort dummies were included in 
the reporting process. 

36.89 9.48 22.40 

‘Never worked’ dummy was excluded from both count and zero-inflation 
processes. 

35.95 8.42 15.30 

Income categories were added as covariates of the count process. 54.33 8.30 21.38 

Income categories were added as covariates of both the count and zero-
inflation processes. 

53.08 8.44 19.20 

Marital-status categories were added as covariates of both the count and zero-
inflation processes. 

49.95 11.85 33.20 

Income and marital-status categories were added as covariates of both the 
count and zero-inflation processes. 

67.85 4.71 9.60 

Income categories were excluded from the reporting process. 35.80 8.36 13.84 

The number of formal marriages and the number of cohabiting unions were not 
included. 

29.12 6.12 11.75 

Survey weights were not used. 25.82 11.44 25.45 

A negative binomial functional form was assumed. 27.68 7.47 12.14 

 
The standard errors were calculated using the delta method based on the ML parameter estimates. Std. Err. I is based on the 
empirical Hessian estimator and Std. Err. II is based on the Huber/White/sandwich estimator. The latter is robust to certain types of 
model misspecification. 

 
 
A more fundamental identification issue is distinguishing the global maximum of 

the log-likelihood function, since the result we have could correspond to the alternative 
local maximum. Therefore, we followed the suggestions in Papadopoulos and Santos 
Silva (2008) and used [𝛽 + 𝛾,−𝛾] as the initial values based on the estimated parameter 
vector [𝛽, 𝛾] of our baseline model to find the alternative maximum. The coefficient 𝛾 
of any variable included in the count process but not in the reporting process is assumed 
to be zero. The solution using these initial values results in a lower log-likelihood value, 
confirming that our baseline results, in fact, correspond to the global maximum. 
Moreover, according to this alternative solution, Whites are less likely to report 
abortions compared to other ethnic groups. The unconditional probabilities estimated 
using this alternative set of parameters suggest that the reporting rate of Whites is only 
21.8%, while the reporting rates of Blacks and other races are 42.5% and 39.3%, 
respectively. This is contrary to the findings of all previous studies, which 
unambiguously show that the reporting rate is higher among Whites. The estimated 
reporting rate is 28.6% if we use this alternative set of parameters. 
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In our baseline model, the exposure period was counted from the menarche of a 
respondent or the age at first sex as reported. This window could be too short if some 
respondents have had sex before the date reported. Moreover, there’s a possibility that 
some respondents are “fake virgins.” In order to check the robustness of our estimates 
to measurement error in self-reported age at first sex, we reconstructed the exposure 
variable ignoring the self-reported age at first sex and assuming that every woman is 
exposed to abortions since her menarche. The resultant average reporting rate is 35.7%, 
which is not very different from our baseline estimate. 

The number of live births a woman has had is a covariate of the count process in 
our baseline model, but we haven’t included that variable as a covariate of the reporting 
process. Similarly, we have two birth cohort dummies among the covariates explaining 
the zero-inflation process, which are not among the covariates explaining the reporting 
process. What if we include these variables as covariates of the reporting process? 
When the number of live births is added as a covariate of the reporting process, the 
average reporting rate is 34.9%. Inclusion of the two birth cohort dummies increases it 
to 37.8%. When all three variables were added, the estimated reporting rate is 36.9%. 

We have included marital status and income categories as covariates of the 
reporting process but not as covariates of the other two processes. The reason, as we 
explained above, is that only the current statuses of these variables are available. Unlike 
the changes in one’s religion, changes in marital status and income are neither low-
frequency events nor random events. During the exposure window for these women, on 
average, their income is likely to have increased, and those who were never married, a 
category that also excludes those who have been cohabiting, are likely to be in married, 
cohabiting, or previously married categories now. 

We use the ‘never worked’ dummy as a covariate of the count and zero-inflation 
processes to identify the impacts of more-conservative cultural traits and the differences 
in preferred work–family balance on the number of abortions. The inclusion of this 
variable may potentially generate biases in the estimates of other variables if any of 
those variables are correlated with the ‘never worked’ dummy. To check this, we run 
our model excluding this dummy from all processes. Our baseline results are robust to 
this change, and the average reporting rate estimated using this model, 35.9%, is very 
close to our baseline estimate. 

To explore the consequences of including the income and marital-status variables 
as covariates of the count process or the zero-inflation process, let’s assume that the 
never-married and low-income women are more likely to have abortions. Consequently, 
if we include marital-status dummies as covariates of the counting or zero-inflation 
processes, we would overestimate the impact of married women on the number of true 
abortions. For the same reason, we would also overestimate the impact of income. As 
our model jointly determines reporting behavior and the abortion count, bias in the 
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count process will also bias the estimates of the reporting probabilities. Alternative 
specifications show that the inclusion of these variables as covariates of the count and 
zero-inflation processes, in fact, would bias the estimated reporting probabilities 
upward. When the income categories are added to the count process, the estimated 
reporting rate increases by 19.1%. When income is added to both count and zero-
inflation processes, it increases by 17.8% and jumps to 53.1%. Similarly, adding 
marital-status categories in those two processes causes the reporting rate to increase by 
14.7%, and adding both income and marital status to the two processes in addition to 
the reporting process causes the estimated reporting rate to increase by 32.6% to 67.9%. 
This suggests that the income and marital-status categories should not be among the 
vectors of covariates explaining the count and zero-inflation processes. The results, 
however, are robust when income categories are excluded from the reporting process, 
and it indicates that the average reporting rate is 35.8%. 

Even though we do not include current marital status as a covariate of the count 
process or the zero-inflation process, we include two other variables related to marital 
relationships: the number of formal marriages and the number of cohabiting unions of a 
respondent. These two variables show the stability of a woman’s relationships during 
the entire period she has been sexually active, which is the same period she has been 
exposed to intentional abortions. Therefore, we believe that the inclusion of these two 
variables does not cause the same issues that we face when we include the current 
marital status or income. The results from a model excluding these variables show that 
a bias, if any, is likely to be in the opposite direction. When these variables are 
excluded, the estimated overall reporting rate decreases by 6.1%. As an additional 
robustness check, when we run our baseline model without using survey weights, the 
estimated average reporting rate is 25.8%, probably showing the effect of the lower 
reporting rates of Blacks and Hispanics (see Table 6) who are oversampled in this 
survey. Finally, we tested the model assuming a negative binomial functional form, 
which takes care of any residual over-dispersion not explained by the zero-inflation 
process. The estimated dispersion parameter (1.077 S.E. 0.108) is not statistically 
different from unity, suggesting that any residual over-dispersion not explained by our 
baseline model may not be a serious problem. The resultant average reporting rate, 
reported in Table 7, is 27.68%. Overall, these robustness checks suggest that the 
reporting rate should most likely be within the 28%‒38% range.  
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6. Conclusions 

In the United States, as a rule of thumb, less than one in two intentional abortions are 
reported in major surveys of women. Reporting rates in these surveys have typically 
been estimated by comparing with external data collected from service providers, which 
themselves underreport the correct number of abortions. Some researchers have 
compared with medical records and insurance claims, but these studies are based on 
small samples. In some other studies, the authors have attempted to use the discrepancy 
with a validation sample to identify the reporting rates. We demonstrate in this paper 
that the underreported counts of intentional abortions in surveys of women can be 
estimated with reasonable accuracy using a structural model. Not only does our 
approach eliminate the need for a gold standard or a validation sample, but it also helps 
to identify the factors causing underreporting.  

The binomial-thinned Poisson model that we use here to explain underreported 
counts is not new. As we discussed before, the binomially-thinned zero-inflated 
negative binomial model proposed recently by Papadopoulos (2014) is very similar to 
ours. However, these models have been used very infrequently. Our results show the 
power of these models when used in an appropriate context. When count data in a 
survey is suspected to be underreported and there’s no reason to believe that there is 
any overreporting, this model can effectively measure the extent of measurement error 
in counts, either with zero-inflation as here or without. When overreporting is 
suspected, a modified version of this model may be used in addition to several other 
count data models available. 

Previous research shows that reporting rates vary significantly across different 
subgroups. From a policy perspective, it is important to identify any causal factors that 
affect the reporting rate so that the designers of a survey can attempt to address any 
vulnerabilities. Differences in reporting rates between various demographic groups, 
estimated by previous researchers through raw comparisons, are useful for this purpose, 
but they only provide some suggestive evidence about the causal factors that might 
influence the reporting probabilities of respondents. Using our parameter estimates, we 
can estimate the unconditional mean reporting rates of each individual and various 
subgroups. As we show using NSFG data, comparisons of raw means of different 
subgroups may lead to wrong impressions about causality. Even without a causal 
interpretation, the model can be used to predict the reporting probabilities of each 
individual, which in turn can be used to correct the bias due to measurement error in a 
model in which the number of abortions is used as the dependent variable or as one of 
the covariates. When estimated reporting rates are used in a model, however, the 
standard errors should be adjusted to account for the additional randomness, which we 
leave for future research. 
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In our model, the reporting probability does not depend on the true count of 
abortions, unlike in the models presented in Winkelmann (1998). We did not 
investigate how our results would be affected if we allowed the reporting rate to depend 
on the true count of abortions.  

Our main intention here is to show that a researcher has an alternative tool to 
estimate the extent of underreporting in a given dataset, particularly when data from a 
reliable external source is not available for comparison. We did not, however, compare 
our Poisson model with the negative binomial model proposed by Papadopoulos 
(2014). That model is another alternative a researcher may want to consider in a setting 
similar to ours. 

As usual with any estimate based on structural modeling, the estimates produced 
can only be as precise as the assumptions made in the model. If the true data-generating 
process is different from what we assume, the results can be biased. In our study, we 
only used the covariates available free of charge in public-use data files. In the 
restricted data files, there are additional variables, such as geographic information 
linked with measures of the availability of abortion services, which may be used to 
strengthen the identification of model parameters. 
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Appendix 

The following Stata/Mata code demonstrates how to estimate the zero-inflated 
binomial-thinned Poisson model through maximum likelihood estimation method. 

 
//Creating a simulated dataset 
clear 
set seed 1000 
set obs 15000 
gen t=trunc(20*runiform())+1 
gen x1=rnormal() 
gen x2=rnormal() 
gen x3=rnormal() 
gen x4=rnormal() 
gen pi=invlogit(0.3+x1-x2) 
gen lambda=exp(-1+x1-2*x3) 
gen e=logit(runiform()) 
gen shi=(-0.6+x1-x3+e)>0 
gen pilamt=pi*lambda*t 
gen y1=rpoisson(pilamt) 
gen y=(1-shi)*y1 
 
//MLE procedure of the Zero Inflated Binomial Thinned 

Poisson Model 
program drop urzip1 
program urzip1 
version 14 
args lnf theta1 theta2 theta3 
tempvar lambda psi 
quietly gen double `lambda’ = 

exp(`theta1’)*invlogit(`theta2’) 
quietly gen double `psi’ = invlogit(`theta3’) 
quietly replace `lnf’ = ln(1-`psi’)-

`lambda’+$ML_y1*ln(`lambda’)-lnfactorial($ML_y1) if 
$ML_y1>0 

quietly replace `lnf’ = ln(`psi’+(1-`psi’)*(exp(-
`lambda’))) if $ML_y1==0 

end 
 
//Estimation 
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ml model lf urzip1 (Count:y = x1 x2 
x3,exposure(t))(Reporting:y= x1 x2 x3)(Positive:x1 x2 x3) 

ml max 
 
ml model lf urzip1 (Count:y = x1 x2 

x3,exposure(t))(Reporting:y= x1 x2 x3)(Positive:x1 x2 x3), 
vce(robust) 

ml max 
 
 
 
 
//Average reporting rate 
mata 
Z=st_data(.,(“x1”,”x2”,”x3”)) 
b=st_matrix(“e(b)”)’  
gamahat=b[5..7] 
gamaC=b[8]*J(15000,1,1) 
Zgama=Z*gamahat+gamaC 
pihat=invlogit(Zgama) 
V=st_matrix(“e(V)”)’  
Vhat=V[5..8,5..8] 
Ggama=(Z’*(pihat:*(J(15000,1,1)-

pihat))\sum(pihat:*(J(15000,1,1)-pihat)))/15000 
Vpi=Ggama’*Vhat*Ggama 
mean(pihat) 
sqrt(Vpi) 
end 
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Table A-1: Simulation results 
Variable True Value Estimate Std. Err. I  Std. Err. II  
Count process       
X1 1.000 1.005 0.016 *** 0.018 *** 
X2 0.000 -0.001 0.016  0.018  
X3 2.000 -2.005 0.010 *** 0.010 *** 
Constant 1.000 -1.010 0.046 *** 0.053 *** 
Ln(t) 1.000 1.000     
Reporting process       
X1 1.000 1.023 0.031 *** 0.033 *** 
X2 1.000 -1.024 0.026 *** 0.027 *** 
X3 0.000 0.005 0.027  0.026  
Constant 0.300 0.324 0.115 *** 0.132 ** 
Zero-Inflation process       
X1 1.000 1.040 0.036 *** 0.036 *** 
X2 0.000 0.007 0.026  0.026  
X3 -1.000 -1.080 0.039 *** 0.039 *** 
Constant -0.600 -0.669 0.038 *** 0.038 *** 
Average reporting rate 55.538 55.921 2.010 *** 2.310 *** 

 
* p<0.1,**p<0.05,***p<0.01 against the null hypothesis that the value is 0 for all coefficient estimates and against the null hypothesis 

that the reporting rate is 100% for the estimate of average reporting rate.  
Std. Err. I is based on the empirical Hessian estimator and Std. Err. II is based on the Huber/White/sandwich estimator. The latter is 

robust to certain types of model misspecification.  

 
The following Stata/Mata code was used to estimate the zero-inflated binomial-

thinned negative binomial model through maximum likelihood estimation method. 
 
//MLE procedure of the Zero Inflated Binomial Thinned 

Negative Binomial Model 
program drop urzinb 
program urzinb 
version 14 
args lnf theta1 theta2 theta3 theta4 
tempvar m p lambda psi 
qui gen double `m’ = 1/ln(`theta4’) 
qui gen double `lambda’ = 

exp(`theta1’)*invlogit(`theta2’)  
quietly gen double `psi’ = invlogit(`theta3’) 
qui gen double `p’ = 1/(1+ln(`theta4’)*`lambda’)  
quietly replace `lnf’ = ln(`psi’+(1-`psi’)*`p’^`m’) if 

$ML_y1==0 
quietly replace `lnf’ = ln(1-`psi’)+ 

lngamma(`m’+$ML_y1) - lngamma($ML_y1+1) - lngamma(`m’) + 
`m’*ln(`p’) + $ML_y1*ln(1-`p’) if $ML_y1>0 

end 
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