
Four Dimensional Image Registration For Intravital Microscopy

Chichen Fu

Purdue University

West Lafayette, Indiana

Neeraj Gadgil

Purdue University

West Lafayette, Indiana

Khalid K. Tahboub

Purdue University

West Lafayette, Indiana

Paul Salama

Indiana University-Purdue

University

Indianapolis, Indiana

Kenneth W. Dunn

Indiana University

Indianapolis, Indiana

Edward J. Delp

Purdue University

West Lafayette, Indiana

Abstract

Increasingly the behavior of living systems is being eval-

uated using intravital microscopy since it provides subcel-

lular resolution of biological processes in an intact living

organism. Intravital microscopy images are frequently con-

founded by motion resulting from animal respiration and

heartbeat. In this paper we describe an image registration

method capable of correcting motion artifacts in three di-

mensional fluorescence microscopy images collected over

time. Our method uses 3D B-Spline non-rigid registra-

tion using a coarse-to-fine strategy to register stacks of

images collected at different time intervals and 4D rigid

registration to register 3D volumes over time. The results

show that our proposed method has the ability of correct-

ing global motion artifacts of sample tissues in four dimen-

sional space, thereby revealing the motility of individual

cells in the tissue.

1. Introduction

Recent advances in intravital microscopy allow imag-

ing biological processes as they occur in living animals

[1, 2, 3]. Intravital microscopy has been particularly use-

ful for studies of the immune system [4, 5]. An effective

immune response depends upon the behavior of immune

cells, whose actions result in a defensive response against

pathogens such as bacteria or viruses. Intravital microscopy

is uniquely capable of characterizing the migration, activity

and interactions of immune cells, making it a powerful tool

for understanding the immune function. Studies of immune

cell motility typically involve acquiring images of a 3D vol-

ume of tissue collected over time. Cell tracking is then used

to characterize and quantify the motility of fluorescently-

labeled immune cells in the tissue volume. The ability to

characterize cell motility within a volume of tissue in a liv-

ing animal is frequently compromised by global movement

of the tissue resulting from animal respiration and heart-

beat. Global motion artifacts must be corrected before cell

tracking using image registration [6].

For microscopy, image registration focuses on aligning

images from different focal slices and images or volumes

taken from different times. In general, the most frequently

used registration techniques can be divided into two cate-

gories. Intensity-based registration and feature-based regis-

tration [6, 7].

Feature-based methods comprise the use of image fea-

tures used for feature correspondence matching and the es-

timation of an affine transformation matrix that corresponds

to the distortion [6, 7]. The main difficulties of feature-

based registration include choosing the features and match-

ing them across the images. Specifically, for images that

contain highly active live cells that are traveling in 3D

space, feature selection and matching can be challenging.

Feature-based methods have better performance when sim-

ilar structures are present in the scene.

A point-based 3D registration method that cancels 3D

global translations and rotation around the z-axis in mi-

croscopy images with live cells is described in [8]. It uses

threshold-based features, a feature matching method de-

scribed in [9], and least-squares estimation of the affine

transformation. This method is computationally fast be-

cause it uses partial information within the images but fails

when there are significant scene changes. In [10], 4D mi-

croscopy images are registered by (i) matching Z directional

image slices at different time volumes to find Z direction

translation and (ii) using 2D landmark-based feature match-

ing to align temporal volumes in the X and Y directions.

Intensity-based registration methods are often associated

with deformation models, affine transformations, search

methods, and similarity metrics. Many rigid and non-rigid

intensity-based registration methods have been developed
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using deformation models, search methods, and similarity

metrics. In [11], a non-rigid registration method that min-

imizes residual complexity is described. Many similarity

metrics such as sum of squared difference (SSD), gradient

differences (GD), gradient correlation (GC), pattern inten-

sity (PI), and mutual information (MI) [12, 13] have been

used. GD and GC are gradient based methods that work

well on the images with significant gradient information.

MI is an entropy related method that has been effectively

used on MRI and PET images, PI requires high contrast of

input images to achieve high performance [12], and SSD

can work effectively under more relaxed constraints and

with less computational cost.

A voxel-based rigid registration method is described

in [14] that uses modified Marquardt-Levenberg optimiza-

tion with a coarse-to-fine strategy to register 2D images

or 3D volumes. This method produces promising results

with functional magnetic resonance imaging (fMRI) and

intramodality positron emission tomography (PET) data,

which are different from microscopy images in that fMRI

and PET images usually contain well defined structures.

A non-rigid registration method that utilizes multi-

channel temporal 2D and 3D microscopy images of cell nu-

clei to address global rigid and local non-rigid motion arti-

facts of cell nuclei is described in [15]. Another rigid regis-

tration method for canceling motion artifacts of biological

objects based on frequency domain techniques is described

in [16]. Yet another non-rigid registration method [17] that

cancels motion artifacts of subcellular particles in live cell

nuclei in temporal 2D and 3D microscopy images by us-

ing the extensions of an optic flow method. However, these

techniques [15, 16, 17] are mainly used to register images

that contain single cellular structure. An thin plate spline

non-rigid registration method that registers images contain-

ing many live cells is described in [18], but it can only can-

cel the motion artifacts between successive z stack images.

One of the objectives of our work in general is to track

live cells while preserving functional motion. In general,

non-rigid registration techniques have the ability to correct

local object motion, but may “over register” and distort bi-

ological functional motion. Rigid registration techniques

alternatively can preserve the cell motion and also cancel

global motion artifacts. The images used in this paper con-

sists of a time series of four-channel (spectral channels red,

green, blue, and yellow) 3D fluorescence microscopy vol-

umes of immune cells collected from a mouse kidney. To be

clear, our dataset consists of 4 spectral channels, each spec-

tral channel is a 3D volume and the 3D volumes for each

spectral channel are acquired over time at regular time in-

tervals. We have 61 time samples where each time sample

consists of 4 spectral channels. For each spectral channel

we have 11 focal slices in the z direction (depth) where each

focal slice is 512 × 512 pixels. The focal slices are acquired

serially. Three spectral channels of the dataset contain im-

mune cells that are moving in 3D space over time and the

other spectral channel contains relatively stable blood flow

through a tubular shaped structure. The cells are highly ac-

tive over time and motion artifacts can be observed. Since

the biological functional motion of the cells is valuable, cell

motion over time should be preserved after registration. As

we describe below, we consider our registration problem as

a combination of two registration problems, a 3D non-rigid

registration and 4D rigid registration. The 3D non-rigid reg-

istration focuses on canceling motion artifacts between fo-

cal slices at different time volumes and the 4D rigid regis-

tration focuses on canceling motion artifacts between time

volumes.

2. Proposed Method
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Figure 1. Block diagram of our proposed method

Figure 1 shows the block diagram of our proposed

method. Our method consists of 1D cubic convolution inter-

polation, 3D non-rigid registration, 3D Gaussian blur, adap-

tive histogram equalization, and 4D rigid registration.

Throughout the paper, we use the following notation

to represent the images, F
zq
tn,bm

, where zq , tn, bm repre-

sent focal slices (z dimension), time samples, and spec-

tral channels, respectively, where q ∈ {1, 2, . . . , 11}, n ∈
{1, 2, . . . , 61}, and m ∈ {1, 2, 3, 4}. The four channels

3D volume at the nth time sample in F
zq
tn,bm

is denoted

by Ftn . For example, F z5
t1,b2

is the 512 × 512 pixel im-

age representing the second spectral channel at the first time

sample and the 5th focal slice within the volume. Ft1 con-

tains 3D volumes from the four spectral channels collected

at the first time sample with each volume consisting of 11

slices of 512 × 512 pixel images. Similarly, I
zq
tn,bm

, H
zq
tn,bm

,

Q
zq
tn,bm

denote the result of 1D cubic convolution interpola-

tion, the result of 3D non-rigid registration, and the final

4D registration output, such that q ∈ {1, 2, . . . , 41}, n ∈
{1, 2, . . . , 61}, and m ∈ {1, 2, 3, 4} (see Figure 1). The re-

sult of the 3D Gaussian blur and adaptive histogram equal-

ization is denoted by A
zq
tn

, such that q ∈ {1, 2, . . . , 41},

and n ∈ {1, 2, . . . , 61}. A
zq
tn

is a grayscale image. Please

note that the total number of focal slices (as indicated by

q) for I
zq
tn,bm

, H
zq
tn,bm

, Q
zq
tn,bm

is 41 compared to 11 for
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F
zq
tn,bm

since we use interpolation as described below. We

mentioned above we register our images using 3D non-rigid

registration and 4D rigid registration. Ftn is up-sampled in

the z direction to increase the resolution, the results is Itn .

3D non-rigid registration is then used to register z slices for

each channel of a 3D volume at different time samples. The

result is Htn is first transformed to grayscale images and

then enhanced by using a 3D Gaussian blur and adaptive

histogram equalization. 4D registration is used to estimate

rigid body affine transformations for aligning Atn . The es-

timated affine transformations are then used to map Htn to

the final result, Qtn , which are aligned in both time and the

z direction.

2.1. Interpolation and 3D Non-Rigid Registration

To smooth our data, cubic convolution interpolation is

used as a pre-processing step [19]. We up sample F
zq
tn,bm

in

the z direction by a factor of 4 to obtain I
zq
tn,bm

. Up sam-

pling is done by inserting three data points between every

two adjacent pixels in an image to produce 41 interpolated

images for each spectral channel and time sample.

3D non-rigid registration is then used in the z direction

to align the focal slices at each time sample. We use the

non-rigid method described in our previous work [20, 21]

because this method can effectively eliminate 3D non-rigid

motion artifacts between focal slices. This technique ini-

tially starts with a rigid registration step and then uses

localized non-rigid registration. The four spectral chan-

nels are transformed to grayscale images using the spec-

tral channel weights described in [20, 21]. First, rigid

registration is used to reduce global motion artifacts be-

tween images. This rigid registration uses Limited Mem-

ory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) Quasi-

Newton optimization [22] to estimate the rigid body affine

transformation. A localized non-rigid B-spline registration

is then done on the results of the rigid registration described

above to cancel the local non-rigid motion artifacts[20, 21].

In order to cancel the local non-rigid motion artifacts,

images are deformed by establishing meshes of control

points. A transformation is estimated to account for the

movement of deformation fields using B-splines with L-

BFGS Quasi-Newton optimization. A grid of control points

is used in our method with 64 pixels spacings in X and Y

directions.

2.2. Four Dimensional Rigid Registration

Having corrected motion artifacts between different fo-

cal planes, we use rigid registration to correct global trans-

lations and rotations. The input to this step is a set of multi-

channel temporal 3D non-rigid registered volumes Htn .

The multi-channel dataset used in this paper contained four

channels: red, green, blue, and yellow. First, we transform

the images in each time volume to composite grayscale im-

ages using a weighted sum:

Gtn =
4

∑

i=1

H̄tn,bi
∑

4

j=1
H̄tn,bj

Htn,bi (1)

where Htn,bi , i ∈ {1, 2, 3, 4} are the nth red channel, green

channel, blue channel, and yellow channel 3D volumes, re-

spectively. H̄tn,bi , i ∈ {1, 2, 3, 4} are the averaged pixel

values of these channel volumes, respectively and Gtn is

the nth composite grayscale volume.

Biological structures are usually poorly defined in mi-

croscopy images. In order to create better defined struc-

tures, to improve registration performance, the grayscale

images are 3D Gaussian blurred. Since our registration

method is image intensity-based, low intensity and low con-

trast of the original images tend to cause the optimization

method to be trapped in local minima, consequently produc-

ing incorrect affine transformation in intensity-based regis-

tration. To address this we enhance the grayscale images

using adaptive histogram equalization (AHE) after the 3D

Gaussian blur.

Affine transformations are then used between adjacent

time volumes to minimize motion artifacts. The affine trans-

formations are restricted to translations and rotations since

we only focus on canceling rigid body motion artifacts at

this stage. Denoting the translations and rotations in the

X, Y, and Z directions, by (tx, ty, tz, θx, θy, θz) respec-

tively, the corresponding translation and rotation matrices

are given in Equations (2 - 6):

Rx =









1 0 0 0
0 cos(θx) − sin(θx) 0
0 sin(θx) cos(θx) 0
0 0 0 1









(2)

Ry =









cos(θy) 0 sin(θy) 0
0 1 0 0

− sin(θy) 0 cos(θy) 0
0 0 0 1









(3)

Rz =









cos(θz) sin(θz) 0 0
− sin(θz) cos(θz) 0 0

0 0 1 0
0 0 0 1









(4)

T =









1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1









(5)

M = RxRyRzT (6)

where Rx,Ry,Rz denote the rotation matrices around the X,

Y, and Z axis respectively, T the translation matrix, and M

the final affine transformation.
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Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-

Newton optimization was used to estimate the parameters

m(tx, ty, tz, θx, θy, θz) by minimizing the sum of the

squared differences (SSD) between different time volumes

[23, 24, 25, 26]. The optimal transformation is given by

Equation (7):

Mn = min
M

′

∑

x,y,z

[f(M
′

, Atn)(x, y, z)

−Atn−1
(x, y, z)]2

(7)

where Atn is the nth moving volume to be registered, Atn−1

the reference volume, f(M
′

, Atn) the mapping that trans-

forms current volume Atn by using transformation matrix

M
′

, and (x, y, z) are pixel coordinates.

When estimating the parameters of the affine transfor-

mation, we separate the process into two steps. First we

estimate (tx, ty, θz) and (θx, θy, tz) separately with initial

values of (0, 0, 0). Second, we use the result from the

previous step as an initial point of the final stage to ob-

tain (tx, ty, tz, θx, θy, θz). We have observed that using this

strategy produces better results than doing the estimation in

one step. Let Mi be the transformation estimated using the

current time volume Ati and previous time volume Ati−1
,

and let Tn be the final affine transformation needed to cor-

rect motion artifacts between time volumes At1 and Atn .

Tn is given by:

Tn = M1 ×M2 × · · · ×Mn (8)

After the affine transformations of all the time volumes

are estimated, the final registration outcomes are obtained

by Equation 9:

Qtn = f(Tn, Htn) (9)

where Qtn is the nth registered time volume. 3D cubic in-

terpolation is used to transform pixels with non-integer co-

ordinates in the function f(·). The registered volume’s fi-

nal size is the sum of the size of original volume and the

maximum distance between original pixel locations and the

transformed pixel coordinates in each direction.

2.3. 3D Motion Vector Estimation - Validation

Validation of microscopy image registration can be

daunting since ground-truth information is difficult to ob-

tain on large image volumes. Block-matching is used to

estimate motion vectors between the reference time vol-

ume and current time volume. This is somewhat simi-

lar to block matching techniques used in video compres-

sion. The current time volume and reference time volume

are equally divided into blocks (sub-volumes). Each block

in the current volume is matched with the corresponding

adjacent blocks in the reference volume. Motion vectors

are created to record the motion of corresponding blocks

in the reference volume and the current volume that are

matched. 3D time volumes are divided into sub-volumes

with the size of i × j × k. A search window with the size

of (2p+ 1)× (2p+ 1)× pz is created by setting the search

range in the x,y, and z directions to (p, p, pz).
To find the matching blocks and 3D motion vector v =

(i, j, k), the sum of absolute difference between reference

block and current searching block is used:

v = min
a,b,c

∑

m,n,l

|Qtn(x+m+ a, y + n+ b, z + l + c)

−Qtn−1
(x+m, y + n, z + l)|

(10)

where Qtn(x + m + a, y + n + b, z + l + c) is the

current searching block in time volume Qtn centered at

(x + a, y + b, z + c), Qtn−1
(x + m, y + n, z + l) is the

reference block centered at (x, y, z) in time volume Qtn−1
,

and (a, b, c) is the motion vector to be estimated. After the

motion vectors are obtained, we create a 3D spherical his-

togram of the motion vectors with 36× 36 bins to quantify

the motion results.

3. Experimental Results

The images used in the experiments consists of a time se-

ries of four-channel (spectral channels red, green, blue, and

yellow) 3D fluorescence microscopy volumes of immune

cells collected from a mouse kidney. To be clear, our dataset

consists of 4 spectral channels, each spectral channel is a

3D volume and the 3D volumes for each spectral channel

are acquired over time at regular time intervals Samples of

the four spectral channels are shown in Figure 2.

(a) (b)

(c) (d)

Figure 2. Grayscale versions of the four different spectral channels

of the 6th focal slice of the 1st time volume of the original dataset.

(a) Green channel, (b) Yellow channel, (c) Red channel, (d) Blue

channel.
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As shown in Figure 3, 1D cubic convolution interpola-

tion is used to interpolate images in the z direction with

the up-sampling factor of 4 in each 3D volume. Figure 3

(a) shows the YZ view of the green channel of an origi-

nal 3D volume and the result of interpolation is shown in 3

(b). Note that the resulting 3D volume contains 4 times the

number of images of the original.

(a)

(b)

Figure 3. YZ view of the green channel of the original and the

interpolated sample images. (a) Original, (b) Interpolated.

(a) (b)

(c) (d)

Figure 4. Sample images of our 3D non-rigid registration. (a) MIP

of the sample original volume projected on XY plane, (b) MIP

of the sample result of 3D non-rigid registration projected on XY

plane, (c) MIP of the sample original volume projected on YZ

plane, (d) MIP of the sample result of 3D non-rigid registration

projected on YZ plane.

(a) (b) (c)

Figure 5. Sample results of pre-processing methods. (a) Compos-

ite grayscale original image, (b) 3D Gaussian blur, (c) Adaptive

histogram equalization.

To evaluate the results of our registration method, we

use maximum intensity projection (MIP) to project one 3D

volume onto an image and many 3D volumes onto one 3D

volume[20, 21]. The MIP of one 3D volume is obtained by

selecting the maximum of all intensity values in one dimen-

sion (e.g. the z-direction or the time series) at each pixel

location. The MIP of a 3D volume is used to show motion

artifacts between focal slices, whereas the MIP of many 3D

volumes representing different time samples is used to show

motion artifacts between these volumes.

In Figure 4, we show the MIP of an original 3D vol-

ume and the MIP of the resulting 3D non-rigid registration.

As we described in Section 2.1, 3D non-rigid registration

is used to register focal slices within different 3D volumes.

Since focal slices within different 3D volumes of our origi-

nal dataset are well aligned initially, the impact of 3D non-

rigid registration [20] can be observed in Figure 4. Tem-

poral 3D microscopy data may not be well aligned in the z

direction because all focal planes cannot be imaged at the

same time instance. Therefore, 3D non-rigid registration

is necessary to reduce motion artifacts between focal slices

within different 3D volumes.

As shown in Figure 5 (a), the contrast of the four-channel

composite sample image is very low and the biological

structures are poorly defined. Therefore, a 3D Gaussian blur

filter with 17× 17× 9 rectangular window was used on the

results of the 3D non-rigid registration followed by adaptive

histogram equalization that employs 17× 17× 9 rectangu-

lar window. Figure 5 (b) and (c) show the sample result of

Gaussian blur and the sample result of adaptive histogram

equalization. It can be observed that the sample image is

enhanced.

Figure 6 (a) shows the MIPs projected on the XY plane

of the original volumes at various samples. Figure 6 (c)

shows the MIPs projected on the YZ plane. In Figure 6 (b)

and (d), the MIPs of the results of our proposed 4D rigid

registration method are shown. We also obtain the MIP of

the entire 61 time volumes and use the ImageJ 3D viewer

[27] to visualize it. Note that, this MIP is obtained by pro-

jecting a 4D volume on a 3D volume, whereas each of the

MIPs shown in Figure 6 is obtained by projecting a 3D vol-

ume on a 2D image. The XY and YZ views of the MIP

of the original time volumes are shown in Figure 7 (a) and

(c) respectively. Figure 7 (b) and (d) show respectively the

XY and YZ views of the MIP of the results of our proposed

4D rigid registration method. The MIP of original volumes

appear to be smeared due to the global translations and ro-

tations in time series. The MIP of registered volumes is

sharper. The motility of cells can be observed in this MIP

since it is a projection of the moving cells from different 3D

volumes onto one volume. Note that the motions of cells

are preserved during the registration process.

As shown in Figure 6 and Figure 7, our method success-

fully addressed the motion artifacts in our dataset and effec-

tively cancel the motion artifacts in 4D space.
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(a)

(b)

(c)

(d)

Figure 6. MIPs of the original time volumes and registered time volumes at time sample 1,11,21,31,41,51, and 61. (a) MIP of the original

volumes projected on XY plane, (b) MIP of the result of 4D rigid registered volumes projected on XY plane, (c) MIP of the original

volumes projected on YZ plane, (d) MIP of the result of 4D rigid registered volumes projected on YZ plane.

Time

point #

Average

SSD

per pixel

before

registration

Average

SSD

per pixel

after

registration

Improvement

percentage

(%)

11 7.88 6.59 16.41

21 9.45 8.71 7.84

31 10.29 8.54 16.94

41 12.52 8.79 29.76

51 9.36 7.98 14.79

61 8.76 7.08 19.12

Table 1. Average SSD per pixel of different sample time volumes

before and after registration and percentage of improvement.

The average sum of squared differences (SSD) per pixel

of the original and registered volumes are shown in Table 1.

The percentage improvement of the registered volumes as

compared to the original is also shown. It can be observed

that the average SSD per pixel decreases after 4D rigid reg-

istration indicating that the similarity between the reference

and moving volumes is increased.

In addition, three dimensional motion vector analysis is

used to validate the registration results as described in Sec-

tion 2.3. Three dimensional motion vectors are obtained be-

tween adjacent time volumes using (16, 16, 8) as block size

and (4, 4, 4) as search window. Three dimensional spheri-

cal histograms are shown in Figures 8 and 9 using 36 × 36

bins of directions, each bin has range of 10 degrees. Vari-

ous views of the three dimensional spherical histograms are

shown in Figures 8 and 9 to help visualize the results. We

observe that estimated motion are significantly reduced.

4. Conclusions

This paper described a registration method to register

4D microscopy data consisting of time-lapse 3D volumes.

We tested our method on multi-channel temporal 3D mi-

croscopy images that contains highly active cells. The re-

sults demonstrate that we can correct the motion artifacts

and preserve the original motion of biological structures. In

the future we will generalize our method to a 4D non-rigid

registration technique that can cancel the non-rigid motion

artifacts in temporal 3D images.
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