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Abstract— PSO has been used to demonstrate the near‐real‐
time optimization of frequency allocations and spatial positions for 
receiver assets in highly complex Electronic Warfare (EW) 
environments.  The PSO algorithm computes optimal or near‐
optimal solutions so rapidly that multiple assets can be exploited 
in real‐time and re‐optimized on the fly as the situation changes.  
The allocation of assets in 3D space requires a blend of human 
intelligence and computational optimization.  This paper advances 
the research on the tough problem of how humans interface to the 
swarm for directing the solution.  The human intelligence places 
new pheromone-inspired spheres of influence to direct the final 
solution.  The swarm can then react to the new input from the 
human intelligence.  Our results indicate that this method can 
maintain the speed goal of less than 1 second, even with multiple 
spheres of pheromone influence in the solution space. 
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I.INTRODUCTION 
This paper introduces a method for optimizing the 

placement of limited receiver assets in 3D space, utilizing 
particle swarm optimization (PSO).  The transmitters and 
receivers are used to simulate an Electronic Warfare (EW) 
battlefield where the optimized limited receiver assets need to 
be spatially positioned and frequency agile to enable either 
communication to, or jamming of, the transmitters.  A graphical 
user interface (GUI) is developed to illustrate the placement of 
receivers in relation to randomized transmitter locations in 
regards to signal strength, communication priority, receiver 
placement spread, distance from the transmitter cluster, 
placement outside of keep away zones, and attraction to or 
deflection from pheromone zones. The PSO is also used to 
optimize the allocation of frequencies to receiver assets, which 
will not be covered in this paper.  

This work is a continuation of [7], where a baseline 2D GUI 
was implemented to optimize receiver asset placements based 
on signal strength, communication priority, receiver placement 
spread, and distance from the transmitter cluster.  This 
extension introduces the use of the Qt Data Visualization 
package to present transmitter and receiver placement against a 
3D scatter plot and a 3D surface plot using real terrain elevation 

data from NASA’s Shuttle Radar Topography Mission 
(SRTM). New pheromone and keep away zones in 3D are 
introduced, providing the capability for a user to establish zones 
that either attract or repel receiver placements.  Developing the 
fitness functions for the pheromone zones is ongoing and 
examined in this paper. 

II.PARTICLE SWARM OPTIMIZATION 

A. PSO Function 
The use of optimization is appealing in the sense of 

providing a series of solutions for a decision problem. Certain 
problems, such as “travelling salesman” problems, require an 
exhaustive search through every possible combination of 
parameters or a heuristic to find the best solution and is not 
expected to be calculated in deterministic polynomial time. This 
computation grows exponentially with increasing number of 
parameters; and the problem space itself can be highly 
nonlinear. Optimization algorithms, such as gradient descent, 
can provide accurate estimations of solutions to the decision 
problems, but have the pitfall of converging on a neighborhood 
best solution and possibly miss a global best solution. 

PSO is a form of evolutionary computation which provides 
the capability to decrease the time required to calculate both 
neighborhood best and global best solutions to decision 
problems. PSO is based on the swarm behavior of social groups, 
such as schools of fish or flocks of birds, hunting for food and 
avoiding predators.  Particles are randomized in placement and 
velocity, and are flown in N-dimensional hyperspace, where N 
is the number of parameters to be optimized. The particle, 
neighborhood, or global bests among each particle can be 
applied to a weighted fitness function of the PSO algorithm for 
each iteration.  The PSO algorithm uses a simple weighted 
inertia and velocity to fly the particles through hyperspace for 
each iteration and converges on neighborhood or global best 
solutions [1].   

B. Fitness Function 
PSO is dependent on the complexity of the weighted fitness 

function used to determine optimal fitness of a solution. The 
fitness function does not need to be a direct calculation of an 
exact solution to a given component of the problem, but does 
need to be representative of a continuing trend which scores the 
general goodness of the component in hyperspace [4].  A linear 
combination of weighted fitness functions for each component 
can be used to generate an overall fitness, which is further used 
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to calculate the goodness of the particular solution.  Equation 
(1) illustrates this, where F is the overall fitness, C are the 
fitness components, and W are the weights [6]. 

𝐹𝐹 = ∑ 𝐶𝐶(𝑖𝑖) × 𝑊𝑊(𝑖𝑖)𝑖𝑖𝜖𝜖𝜖𝜖  (1) 

Weights are attributed to each fitness component in an 
attempt to balance the overall fitness of the solution.  
Improperly weighted fitness components will result in the 
dominance of fitness components, which becomes apparent in 
the comparison of nonlinear fitness functions. In the case of 
nonlinear fitness functions, linearity can be assumed for a given 
range or a linear approximation may be used.  Weights are used 
to reduce the dominance of the nonlinear fitness functions and 
require a balance to ensure that components do not fall out of 
influence.  Methods are used to gather statistics, such as mean, 
variance and standard deviation, on the output of fitness 
components, yet much of the weights are selected through trial 
and error.  Optimal weights are determined based on minimal 
variance across repeated solution calculations.  Our previous 
paper [7] discusses the fitness components implemented for 
priority, power, spread, and distance.  We will continue the 
discussion with the contributions made to terrain adjustments 
and human in the swarm. 

III.HUMAN IN THE SWARM 
Human in the Swarm allows a user to input restrictions and 

modifications between iterations of optimized solutions. These 
restrictions and modifications can be changed to allow dynamic 
motivation of assets in regards to the final optimization. These 
restrictions may be areas where it is desirable to Keep Away 
from or Stay In zones for assets to remain. We consider two 
types of human in the swarm implementations during the 
optimization process: “keep away” zones and pheromone 
placements. 

A. Keep Away Region 
Keep away zones are simple penalties that are applied to a 

solution that crosses into the region, covered in [7].  There are 
two types of zones: linear and circular.  The linear boundary is 
simply a line that we do not want the assets to cross. This 
implementation could be an example of a line between 
friendlies and enemies; we don’t want the assets to go across 
this line into enemy territory. Linear boundaries are determined 
by defining the x-axis position for the line to be drawn.  

Similar to the linear boundary, the circular boundary is 
circular region that we want the assets to stay out of. This allows 
for the assets to keep a defined distance away from the central 
area, where the transmitters are randomly populated. The 
circular region is defined by a radius and is drawn at the origin 
of the plot.  

For each receiver found within the keep away zone, the 
overall fitness is multiplied by 0.5.  This ensures that a strict 
penalty is placed on keep away regions.  The penalty is 
calculated by first determining the type of boundary. If the 
boundary is linear, the penalty is determined by verifying that 
the location of the particle is less than the “enemy line”. If the 
boundary is circular, the penalty is determined by verifying that 
the distance from the origin is less than the radius of influence.  

Preventing the assets from staying above the terrain is 
handled by using a large keep away zone.  Solutions that 
generate assets below the elevation of the terrain matrix at the 
(x,y) coordinate will be heavily penalized by a scale of 0.5 for 
each particle found beneath the zone.  This also allows the use 
of setting upper elevation limits for flying assets, by asserting 
that assets do not pass below a certain elevation above ground.  

Although these zones are shown to work, their 
implementation is limited.  Only one zone can be drawn at a 
time by the human and the placement of the zones is restricted 
to specific directions.  The next section describes the treatment 
of pheromone zones, which uses a similar penalty system to 
determine keep away and stay in zones. 

B. Pheromones 
Pheromones are chemical secretions made by members of 

the same species that are used to communicate a social 
response, such as sex, danger, territory, or food.  Typically, the 
animal or insect, such as an ant, will secrete a “good” 
pheromone in the finding of food, or a “bad” pheromone in a 
dangerous situation.  The “good” pheromones would attract 
ants to follow a trail, whereas the “bad” pheromones would alert 
the ants to avoid or attack an enemy. Over time, pheromones 
will evaporate, allowing cleanup of expired signals and 
requiring the continuous spread by society members to provide 
a network of good areas and bad areas.   
Figure 1  Concept of human-defined zones 

 
Our new research adopts the concept of pheromones as a 

means to guide the receiver assets by the human by dropping 
pheromone zones in 3D space.  Fig. 1 illustrates this concept. 
The user has the capability to mark the cylindrical pheromone 
as either “attract” or “avoid”. By specifying “attract”, the assets 
will attempt to remain in the applied zone; by “avoid”, the assets 
will attempt to avoid the applied zone.  The user can specify the 
type of zone as either “direct” or “radiant”. “Direct zones” lure 
the assets towards or away from the zones, but once inside or 
outside the radius of influence, a penalty is no longer applied.  
This specification is optimal for a situation where placement 
anywhere in the zone is deemed safe or dangerous, with no 
consideration for the specific position inside the zone.  
“Radiant” pheromones provide “beacons” that are continuous 
penalties applied to the assets based on distance from the center 
of the pheromone and do not take a radius of influence into 
consideration.  Rather, radiant pheromones rely on the strength 
of the pheromone to dictate how strongly the receivers should 
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move towards or away from the origin of ambience, determined 
by strength levels defined by the user.  
Figure 2  Optimized solution with a “direct” 25 km radius pheromone placed 
at an expected optimization point as a “keep away” zone (yellow sphere). 

 
Fig. 2 illustrates the 3D output of a solution with the use of 

a “direct” 25 km radius pheromone set as a “keep away” zone.  
The radius of influence is not plotted in this 3D plot and will be 
available in future versions of the program.  The yellow sphere 
represents the placed pheromone, the red spheres indicate the 
randomized placement of the transmitters and the blue spheres 
indicate the optimized solution of the receiver assets.  The 
expected optimization without the pheromone would be the 
three blue receivers formed as a line or orthogonal pyramid, 
rather than a slanted pyramid. The top blue transceiver is 
fighting to stay out of the “keep away” zone.  
Figure 3  Optimized solution with a “direct” 5 km radius pheromone placed at 
an expected optimization point as a “stay in” zone. 

 
Fig. 3 illustrates the same pheromone being defined as a 

“stay in” zone and a reduction of radius to 5 km.  It is shown 
that the receiver placements are currently confined within the 5 
km radius of the pheromone placement and are vertically 
spreading to maintain a proper spread fitness.  

C. Fitness Calculation Method 
Two methods are being tested for the optimal fitness 

calculations and penalty assignments.  The first method uses 
similar methods as the “keep away” zones by multiplying a 
penalty to the overall fitness.  The second method is to apply 
the fitness of the pheromone regions as a weighted linear 
component of the overall fitness.  Each method is under 
continuing research to validate the proper application of the 
pheromone fitness. 
  
 𝐹𝐹𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝛽𝛽∏ ∏ 𝑓𝑓1(𝑝𝑝, 𝑎𝑎)𝐴𝐴

𝑎𝑎=1
𝑃𝑃
𝑝𝑝=1  (2) 

Application of a stiff penalty by the pheromones through 
multiplication showed that receivers would either stay in or stay 
away from their respected defined zones, as shown in (2).  The 
function 𝑓𝑓1 indicates the penalty to be multiplied across P 
pheromones for A assets and β weight.  Penalty infliction was a 
good method for ensuring that areas marked as dangerous 
would be avoided, but the zones dominated other fitness 
components such as spread, power, and priority.  One example 
is when too small of a pheromone radius is used, the small 
radius produced a cluster of tightly packed receivers.  Further 
tuning of the penalty to assign, as well as the weight of the 
component, will need to be made. 

  
 𝐹𝐹𝑃𝑃ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝛽𝛽 ∑ ∑ 𝑓𝑓2(𝑝𝑝, 𝑎𝑎)𝐴𝐴

𝑎𝑎=1
𝑃𝑃
𝑝𝑝=1  (3) 

In the application of the weighted linear component, the 
fitness of the pheromones is dependent on a sum of functions 
across all receivers and all pheromone zones. So far, this 
method has shown to be more ideal than penalty infliction. 
Equation (3) provides the fitness component 𝑓𝑓2 for P total 
pheromones across A total assets, with β weight applied. Each 
function is dependent on the strength, distance, radius of 
influence, and type of pheromone zone. For each function, it is 
determined if the pheromone is attracting or deflecting, as well 
as the distance from the center of the pheromone.  Figures 2 and 
3 were generated based off of (3).  

D. Direct Pheromones 
For “direct” pheromones, the distance of the receiver is 

compared to the radius of influence for that particular 
pheromone.  If the receiver is inside the radius for attracting or 
outside the radius for deflecting, the function will add the 
strength of the pheromone, which is normally a value of 1, to 
the fitness component.  If the receiver is outside the radius for 
attracting or inside the radius for deflecting, the function will 
add a reduced fitness to the fitness component scaled by a 
second order polynomial function of distance. This allows for a 
penalty to be applied for assets located on the wrong side of the 
radius, and constant fitness for assets on the correct side of the 
radius. The coefficients for the second order polynomial 
equation are calculated to ensure that there is a steady decrease 
from the radius edge to the maximum distance from 1 to 0 on 
attracting pheromones, and a decrease from the radius edge to 
the center on deflecting pheromones.  The penalty for deflecting 
is shown in (4) and the coefficients for the polynomial are 
shown in (5), (6) and (7).  The strength is the individual strength 
assigned to the pheromone.   The penalty applies only to the 
polynomial and is used to scale it down between 0.25 and 0.  D 
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is the distance from the radius to the asset.  𝐷𝐷𝑒𝑒𝑎𝑎𝑚𝑚  for attracting 
is the expected maximum distance at 200

√2
≅ 283 𝑘𝑘𝑘𝑘 and for 

deflecting is the radius.  The direct attracting function negates 
the polynomial portion and sets c to 0 to reverse the effect.  For 
any value that falls outside of 𝐷𝐷𝑒𝑒𝑎𝑎𝑚𝑚, the fitness is floored to 0.  

 𝐹𝐹𝐷𝐷𝑖𝑖𝑒𝑒𝑒𝑒𝐷𝐷𝐷𝐷 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ × 𝑝𝑝𝑠𝑠𝑠𝑠𝑎𝑎𝑝𝑝𝑠𝑠𝑝𝑝 × (𝑎𝑎𝐷𝐷2 + 𝑏𝑏𝐷𝐷 + 𝑐𝑐) (4)  

 𝑎𝑎 = − (1+𝑏𝑏×𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚)
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
2  (5)  

 b= − 2
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

 (6)  

 c= 1 (7)  

E. Radiant Pheromones 
For “radiant” pheromones, several functions were 

considered for measuring the fitness of a particular solution.  
Initially, an inverse relation of the distance was considered for 
either applying a penalty or increasing the fitness.  This resulted 
in the fitness function becoming unstable and difficult to 
manage, particularly for multiple numbers of pheromones.  An 
alternative was to model the distance based on the step response 
of a first order system, which would nominally produce fitness 
values between 0 and 1 within the 200 x 200 km2 space. For the 
attracting pheromone, the fitness value in (8) would gradually 
reduce from 1 to 0 as the distance increases.  For the deflecting 
pheromone, the fitness value in (9) would gradually increase 
from 0 to 1 as the distance increases.  

 𝐹𝐹𝑅𝑅𝑎𝑎𝑅𝑅𝑖𝑖𝑎𝑎𝑒𝑒𝐷𝐷,𝐴𝐴𝐷𝐷𝐷𝐷𝑒𝑒𝑎𝑎𝐷𝐷𝐷𝐷 = 𝑠𝑠− 𝑚𝑚𝜏𝜏  (8) 

 𝐹𝐹𝑅𝑅𝑎𝑎𝑅𝑅𝑖𝑖𝑎𝑎𝑒𝑒𝐷𝐷,𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷 = 1 − 𝑠𝑠− 𝑚𝑚𝜏𝜏  (9) 

Equations 8 and 9 show the theoretical fitness functions for 
the radiant pheromones, where x is the positive distance from 
the asset to the pheromone and τ is a time constant equal to 5 
times the maximum distance. Maximum distance is 
approximated at 283 km for the diagonal across the x-y plane, 
so the function has a limited range of consideration.  

Due to the computational complexity of implementing a 
sum of the exponential functions across all pheromones and 
receivers, the time intensity of this sort of function would result 
in diminished performance of the program.  As a trade-off 
between computational complexity and precision, a 4th order 
polynomial approximation of the step response resulted in an 
ideal fitness function for the “radiant” pheromones. Equation 10 
provides the appropriate formula used for evaluating the fitness 
of the distance between the pheromones and assets, where the 
coefficients differ depending on attracting or deflecting. 

 𝐹𝐹𝑅𝑅𝑎𝑎𝑅𝑅𝑖𝑖𝑒𝑒𝑒𝑒𝐷𝐷 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ × [𝑎𝑎𝑥𝑥4 + 𝑏𝑏𝑥𝑥3 + 𝑐𝑐𝑥𝑥2 + 𝑑𝑑𝑥𝑥 + 𝑠𝑠] (10)  

Due to the modelling of an arbitrary step response, the 
fitness of the “radiant” pheromones can be summed quickly 
without introducing an imbalance in the overall fitness function.  
The result of the fitness component for the “radiant” 
pheromones can be divided by the number of pheromones and 
assets to ensure that the result is a normalized value between 0 
and 1. Furthermore, a strength can be applied to each 
pheromone to indicate if certain pheromones are to provide a 
stronger or weaker influence. 

IV.GRAPHICAL USER INTERFACE 
A GUI interface was constructed using Qt, a cross-platform 

framework for User Interface development in C++. There is a 
2D and 3D representation of the PSO data. The 2D plot shows 
locations of the receivers and transmitters in a restricted 200 x 
200 km2 space, the fitness of our function over generations, and 
a display of signals in the frequency domain. The 3D plot, as 
shown in figures 2 and 3, illustrate a 200 x 200 x 20 km3 space 
of the same receivers and transmitters. 

A. 2D Interface 
The 2D Interface has 4 main points of interest: Allocation 

Plot, Fitness, Frequency Graph, and Run Options.  
Figure 4  2D GUI 

 
The representation of the 2D GUI (Figure 4) provides the 

user feedback on location of receivers/assets, fitness value, 
frequency representation of the assets, adjust parameter values, 
move around transceivers with the Play and Stop buttons, 
modify pheromones locations and properties with the 
pheromones button, and give text feedback in the Text Output 
section. The GUI also has two menu options: “Visual and 
Loading” and “Options”. The Visual and Loading menu allows 
the user to load terrain values and display 3D surface and point 
graphs of the receivers/transmitters. The Options menu allows 
the user to change various initialization parameters.  

The Allocation Plot is a representation of the assets, 
transceivers, and Keep Away Penalties and updates 
dynamically when the PSO is running. Each transmitter also has 
a weight priority, where the higher priority transmitters (yellow 
5) are more important than the lower priority transmitters (blue 
1). The Fitness graph shows the current fitness of our PSO 
function, as well as the number of generations the fitness 
function iterated during optimization. The Frequency Graphs 
display the transceiver frequencies (in MHz) and power (in 
dBm). It highlights bands of frequencies that the assets 
optimized to along with the transmitters and receivers 
associated. Run Options allows the user to adjust weights, 
randomized the signals, use Play to simulate random movement 
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of the transceivers, and gives options for giving properties and 
properties to pheromones. 

B. Migration from 2D to 3D 
This project originally contained a 2D GUI. Modifications 

were made to move the project to a 3D space. This was 
accomplish through the use of Qt's Data Visualization's Plugin. 
This plugin allowed for the plotting of 3D objects using 3D 
coordinates. The ability to import terrain data was added to 
allow the plotting of the data as a 3D surface. Receivers, 
transmitters, and pheromones were loaded as custom mesh 
objects to the surface plot. The user is able to load new terrain 
files and change perspectives of the 3D plots. 

V.RESULTS 
The Swarm/Human Blended program described in this 

paper convergences in approximately one second with three (3) 
receivers and thirty (30) transmitters without compiler 
optimizations. With the introduction of pheromones, this 
convergence takes a little over a second and increases over 
added pheromones and receivers.  With full compiler 
optimizations set by compiler flags, the time of convergence is 
reduced to several hundred milliseconds.  

VI.CONCLUSIONS AND FUTURE WORK 
This research has advanced the human / swarm blended 

intelligence using the pheromone concept, allowing 3D human 
directed optimization of the swarm.  The PSO algorithm 
continues to converge rapidly (less than 1 second) after the 
human input.  The combination of Keep Away and Stay In 
zones for assets allows for flexibility in the human interface, 
without a heavy burden on the human. 

The future work will include refining and testing the 
pheromone zones, exploring various human input techniques in 
3D, and putting the transmitters and receiver assets in motion, 
and interacting over time. Parallelization of the fitness functions 
will also be evaluated for enhancing the performance of the 
optimization. 
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