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ARTICLE INFO ABSTRACT

Available online 16 February 2016 The repair of DNA damage is a complex process that relies on particular pathways to remedy specific types of
damage to DNA. The range of insults to DNA includes small, modest changes in structure including mismatched

Keywords: bases and simple methylation events to oxidized bases, intra- and interstrand DNA crosslinks, DNA double strand

DNA damf*ge breaks and protein-DNA adducts. Pathways required for the repair of these lesions include mismatch repair, base

DNA repair excision repair, nucleotide excision repair, and the homology directed repair/Fanconi anemia pathway. Each of

Ezgicaetrion these pathways contributes to genetic stability, and mutations in genes encoding proteins involved in these path-

ways have been demonstrated to promote genetic instability and cancer. In fact, it has been suggested that all
cancers display defects in DNA repair. It has also been demonstrated that the ability of cancer cells to repair ther-
apeutically induced DNA damage impacts therapeutic efficacy. This has led to targeting DNA repair pathways and
proteins to develop anti-cancer agents that will increase sensitivity to traditional chemotherapeutics. While ini-
tial studies languished and were plagued by a lack of specificity and a defined mechanism of action, more recent
approaches to exploit synthetic lethal interaction and develop high affinity chemical inhibitors have proven con-
siderably more effective. In this review we will highlight recent advances and discuss previous failures in

targeting DNA repair to pave the way for future DNA repair targeted agents and their use in cancer therapy.
© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. DNA damage and repair pathways

DNA damage can arise from many sources, both endogenous and ex-
ogenous. Independent of the source, responding to this damage is
crucial for the life of the individual cell and also for the life of the organ-
ism. In many cases these seemingly similar goals do not coincide and the
cell is “sacrificed,” presumably for the greater good of the life of the or-
ganism. Interestingly, the transformation to a cancer cell imparts certain
advantages to the cells at the expense of the organism but also results in
vulnerabilities that can be exploited for treatment. In addition to the ac-
quired changes in cancer cells that drive transformation and progres-
sion, the inherent biology of the underlying cell of origin also can
impact the response to therapy. In lung epithelial cells for example,
one could envision a robust network of DNA repair pathways to accom-
modate the vast array of genotoxic agents to which cells are exposed in
the normal course of breathing,. In the decision between cell death or re-
pair and cell maintenance, DNA repair prevails to maintain organ func-
tion. Cancers derived from lung epithelial or alveolar cells are endowed
with that same innate DNA repair capacity which can limit the effective-
ness of agents used to treat the cancer. Germ cells, on the other hand,
could be envisioned to be much less tolerant of DNA damage and to
maintain the propagation of intact, non-mutated, genetic information,
cell death predominates the response to genotoxic stress. Thus germ
cell tumors display hypersensitivity to chemotherapeutics that act via
the induction of DNA damage.

For those cell types where repairing the damage is advantageous, in-
tricate multiprotein pathways have evolved to handle the array of dam-
age that is encountered. For the purpose of this review we will focus on
DNA damage, both endogenous and exogenous and the response and
repair of this damage that impacts cancer treatment (Fig. 1). Early clas-
sification of DNA repair pathways focused on direct reversal versus ex-
cision repair, the former employing damage-specific chemical reversal
of the lesion. This is apparent in DNA photolyase and methyl guanine
methyl transferase which reverse ultraviolet-induced cyclopyrimidine
dimers and 0®-methyl guanine modifications respectively. One could
also classify the non-homologous end joining (NHE]) double strand
break repair pathway as direct reversal in that the break can be repaired
without the addition or loss of nucleotides, though in the context of
more complex damage, excision and synthesis steps are needed to en-
sure repair activity. The excision repair pathways, nucleotide excision
repair (NER), base excision repair (BER), and mismatch repair (MMR)
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each can respond to and repair a variety of lesions. NER is specific for re-
pair of bulky adduct DNA damage while BER is responsible for removing
base damage consisting of small oxidative and alkyl adducts. The MMR
pathway also has a wide reach and is capable of repairing single base
mismatches and a variety of small insertions and deletions to the ge-
nome. Homologous recombination (HR) repair or homology directed
repair (HDR) is a major player in the response to DNA damage and par-
ticipates in the tolerance of many types of lesions where the damage is
not necessarily removed, but tolerated by using homologous template
sequences to synthesize the sequence complementary to the damaged
area of the genome. Homology directed repair (HDR) can also remove
DNA damage depending on the specific adduct(s) encountered and
the cadre of proteins assembled. In addition, both NHE] and HDR play
a crucial role in DSB repair required for CRISPR-Cas9 mediated genome
engineering. The repair of DNA interstrand adducts that crosslink the
two strands of DNA double helix are particularly problematic and em-
ploy the Fanconi anemia (FA) pathway in collaboration with HDR.
These lesions often present absolute blocks to traditional DNA replica-
tion machinery and an intricate assembly of proteins in the FA pathway
initiate the response and repair to this type of damage.

These pathways responsible for the actual repair of the damaged
DNA are all impacted by the larger DNA damage response (DDR) that
regulates a number of cellular processes that position the cell to either
initiate a repair response or to initiate a cell death response. These how-
ever are not mutually exclusive and represent a dynamic process that
includes a series of decision points that can impact the fate of the cell
and ultimately the organism. With DNA repair playing crucial roles in
the development, progression and response to therapy for a wide
array of cancers it is not surprising that there are increased efforts to val-
idate DNA damage response and repair proteins as therapeutic targets
and develop agents against these targets.

Synthetic lethal approaches to cancer therapy have provided novel
mechanisms to specifically target cancer cells while sparing non-
cancer cells and thereby reducing toxicity associated with treatment.
More recently, the synthetic lethality approach has been exploited
with the use of PARP inhibitors for the treatment of BRCA deficient ovar-
ian cancer. Cancer cells are characterized by genetic instability driven by
deficiencies in DNA repair and/or DNA recombination genes. This defi-
ciency renders them vulnerable to agents whose effect is part of the syn-
thetic lethal interaction. Synthetically lethal therapeutics known to
target the specific gene product that resembles the phenotype caused
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Fig. 1. DNA damage response and repair. DNA damaged induced by the indicated insults are indicated by the magenta boxes. Pathways involved in responding to and repairing the damage

along with current proteins being targeted are indicated.
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by a mutation and also exploits inherent differences between cancer
cells and normal cells, which is often not feasible with conventional che-
motherapeutic drugs. For example, the PARP1 enzyme is involved in
repairing single-strand breaks while BRCA is important for repairing
double-strand breaks in DNA. The inhibition of PARP1 is selectively le-
thal to BRCA deficient cancers due to accumulation of single-strand
breaks which are converted to double strand breaks during DNA repli-
cation which are not repairable in BRCA mutant or deficient cells. In
this review we summarize recent development in targeting DNA repair
with a focus on events of the past and how they may influence the fu-
ture of DNA repair targeted therapy.

2. Development and deployment of Poly-(ADP-ribose) polymerase
inhibitors

2.1. Poly(ADP-ribose) polymerases (PARPs) and their inhibition

PARPs are a family of nuclear proteins whose actions include DNA
damage recognition via binding to single strand breaks (SSBs) and syn-
thesis of poly(ADP-ribose) (pADPr) chains on glutamate, aspartate and
lysine residues of target proteins. The PARP family consists of 17 iso-
forms that are classified on the basis of their functional multi-domain
architecture and cellular localization (Krishnakumar & Kraus, 2010).
PARP1 is the most well studied and dominant protein within this family,
although PARP2 may play a similar but smaller and partially redundant
role (Yelamos et al,, 2008). PARP1 has been shown to either directly or
indirectly influence the repair of DNA via multiple pathways including
BER, HR, NER, NHE] and MMR. With nicotinamide adenine dinucleotide
(NAD™) as a substrate, PARP1 synthesizes pADPr chains, thereby
modifying its target protein. Target proteins include: PARP itself
(automodification), numerous DNA repair proteins, histone H1, and a
series of other transcription factors (Javle & Curtin, 2011).

While not directly participating in DNA repair reactions, both PARP1
and pADPr chains can recruit repair proteins that ultimately act on and
repair the damaged DNA. pADPr chain formation also allows for the re-
lease of PARP from where it is bound to damaged DNA. Such release of
PARP from damaged DNA has also been reported to influence repair,
thereby allowing already recruited repair proteins to access the dam-
aged site. pADPr modification of histones also facilitates repair protein
access by relaxing chromatin structure. Interestingly, under conditions
of excessive DNA damage, extensive PARP activity results in cellular
NAD™ depletion which has been reported to induce cell death, though
the exact mechanism of cell death remains to be determined
(Chiarugi, 2002; Andrabi et al., 2014; Del et al., 2014b). This phenome-
non also appears to be cell type specific and the impact of PARP-induced
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NAD™ depletion and energy metabolism in cancer cells treated with
PARP inhibitors (PARPi) is likely considerably more complex than orig-
inally thought (Rouleau et al., 2010; Bixel & Hays, 2015).

Inhibition of PARP reduces the synthesis of pADPr chains and pre-
vents the recruitment of additional repair factors. Additionally,
inhibiting PARP would prevent release from the site of DNA damage,
thus trapping PARP on damaged DNA and preventing access for other
repair proteins. In fact, the ability to trap PARP on DNA and, not neces-
sarily, the inhibition of catalytic activity, has been correlated with
in vitro cytotoxicity and likely clinical efficacy of PARP inhibitors
(Murai et al., 2012). The prevention of pADPr chain synthesis and re-
lease of PARP from damaged DNA lead to accumulation of SSBs that
could be converted to single-sided DSB during DNA replication (Murai
etal, 2012; Liu et al,, 2014; Bixel & Hays, 2015). The ability to survive
this insult relies on an active, intact HRR pathway. However, in the ab-
sence of intact DSB repair pathway, the persistent DSB is toxic and even-
tually leads to cell death (Fig. 2). Although this is the most dominant
theory applied to the mechanism of PARPi's in the setting of a nonfunc-
tional DSB repair pathway (e.g. germline BRCA1/2 mutation (BRCAmut)
associated malignancy), there are other models proposing alternative
mechanisms, as it is known that PARPs play important roles in other bi-
ological processes like transcriptional regulation, chromatin modifica-
tion, mitotic-spindle formation, intracellular trafficking and energy
metabolism (Patel et al., 2011; Murai et al., 2012; Li & Yu, 2013;
Sonnenblick et al., 2015).

2.2. PARP Inhibitors (PARPi)

PARPi are an emerging class of therapeutics with promising activity
in ovarian, breast and other cancers. PARPi's work by competing with
the substrate NAD" at PARP's enzymatically active site, limiting PARP's
ability to catalyze the formation of pADPr chains (Zaremba & Curtin,
2007). In December 2014, olaparib (AZD-2281) was the first PARPi to
be granted FDA approval, specifically as monotherapy for women with
ovarian cancer who have had at least three line of prior chemotherapy
and who carry a BRCAmut. This U.S. decision followed The European
Medicines Agency's approval of olaparib as maintenance monotherapy
after platinum treatment in the setting of recurrent platinum sensitive
epithelial ovarian cancer in women who carry a BRCAmut. Additionally,
olaparib is being investigated in several clinical trials as a monotherapy
or in combination for the treatment of several solid tumors breast, pan-
creatic, prostate, and colorectal cancer.

The well-established involvement of PARP1 in the recognition and
repair of DNA damage, as well as the success of olaparib has triggered
a number of drug discovery programs aimed at the development of
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Fig. 2. Role of PARP inhibitors in DNA repair and synthetic lethality. PARP1 (red) binding to an endogenously induced SSB results in activation and auto ADP-ribosylation (gold triangles)
which promotes efficient BER. In the presence of PARPi's DNA replication (red arrows) generates a DSB with in HR proficient cells can be repaired to allow replication re-start and maintain

cell viability while in HR deficient cells, the DSB persists resulting in cell death.
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PARP1/2/3 IC5q = 5/1/30 nM
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Fig. 3. Structures and activities of several PARP inhibitors.

additional PARPi. PARPi are adopted two nicotinamide-mimic motifs to
compete with nicotinamide portion of NAD™ either as a conventional
embedded primary amide (veliparib (ABT-888), niraparib (MK-4827)
and NMS-P118) or as an amide enclosed in a cyclic ring (olaparib
(AZD-2281), talazoparib (BMN 673) and rucaparib (AG-014699))
(Fig. 3).

Talazoparib (BMN 673) is a highly potent PARP1/2 inhibitor with
demonstrated in vitro selectivity for cells with BRCA1/2 or PTEN muta-
tions (Cardnell et al., 2013), and it has been shown to be nearly a hun-
dred fold more active at trapping PARP-DNA complexes than olaparib
and rucaparib, the latter two exhibiting similar trapping potencies
(Murai et al.,, 2014). Furthermore, talazoparib is enjoying early clinical
successes, appearing more selectively cytotoxic with a longer half-life
and better bioavailability as compared with other PARPi under develop-
ment. The X-ray co-crystal structure of talazoparib with hPARP1 re-
vealed an extensive hydrogen bonding network between the
carboxamide moiety of the inhibitor with the backbone CO and NH of
Gly863 and the hydroxyl group of Ser904 (Fig. 4). The tricyclic scaffold
of talazoparib forms m-m stacking interactions with Tyr907 in PARP1,
and the basic nitrogen of the triazole and tricyclic ring form a tight hy-
drogen bonding network to structural water molecules. These addition-
al interactions contribute to the increased potency while also indirectly
impacting the pharmacokinetic parameters.

Many current PARPiI clinical candidates are nonselective inhibitors of
multiple isoforms within the PARP family (Krishnakumar & Kraus,
2010; Yelamos et al,, 2011). The finding of variable cellular and clinical
activity profiles of different, non-selective PARPi may be explained by
their polypharmacological profiles. For example, olaparib, rucaparib

Fig. 4. Molecular interactions of talazoparib (BMN 673) (yellow) with hPARP1 (green and
gray) (PDB code: 4UND). Interaction with amino acid side chains and structured water
molecules are indicated with the dashed magenta lines and distances indicated in A.

and veliparib each have wide ranging kinase inhibitory activities
(Antolin & Mestres, 2014; Passeri et al., 2015). More recently, Papeo
et al. developed a potent PARP1 selective inhibitor, NMS-P118 (Fig. 3)
(Papeo et al., 2015). NMS-P118 has an excellent absorption, distribu-
tion, metabolism, and excretion profile and high in vivo efficacy as a sin-
gle agent in triple negative breast cancer with a BRCAT mutation and
also in combination with temozolomide in BRCA2 deficient pancreatic
cancer xenograft models. Interestingly, the discovery of a naturally oc-
curring (—)-gossypol as a protein-protein interaction inhibitor of the
PARP1 BRCAT1 C terminus (BRCT) domain affords new opportunities
for the development of highly potent and specific PARP1 inhibitors
available (Na et al,, 2015).

2.3. Preclinical and clinical successes of PARPi for ovarian and other cancers

BRCAmut are associated with increased risks of breast, ovarian, and
other cancers. In fact, while the baseline population risk of ovarian can-
cer is 1.3%, this lifetime risk increases to 15-40% in women with a
BRCAmut (Chen & Parmigiani, 2007; Siegel et al., 2014). If a cell is defi-
cient in or has nonfunctional BRCA1/2 protein products, it is unable to
localize RAD51 to double strand DNA breaks, and without the localiza-
tion of RAD51, HR cannot occur effectively. The alternative DNA repair
pathways a HR deficient cell is forced to use can be error prone, leading
to DNA damage accumulation and malignancy (Venkitaraman, 2014). It
is thought that at least 30% of epithelial ovarian and related cancers are
associated with defects in the HR pathway (the most common of which
are BRCAmut related), and with almost 22,000 cases diagnosed and
more than 14,000 deaths in the United States in 2014, therapies that ex-
ploit HR deficiencies have great potential to be impactful in the treat-
ment of this largely lethal malignancy (Pennington et al., 2014; Siegel
et al,, 2014). In unaffected cells, BRCA1/2 proteins are essential for the
repair double-strand breaks (DSBs) and stalled replication forks by the
HRR pathway. However, cells with deficient or non-functional BRCA1/
2 treated with PARPi's are forced to rely on error-prone repair pathways
(eg. non-conservative mechanism such as NHEJ or single-strand anneal-
ing) to process DNA lesions. This results in high levels of mutations and
genetic instability, leads to the cell-cycle arrest and apoptosis.

Applying the concept of synthetic lethality, preclinical PARPi studies
demonstrated that PARPi were able to selectively target HRR deficient
cells (specifically BRCA mutated cells) (Farmer et al., 2005; Lord et al.,
2015). Phase I data from various PARPi (olaparib, niraparib and
rucaparib) as monotherapy in patients with BRCAmut demonstrated
impressive response rates, at least 28% using Response Evaluation
Criteria in Solid Tumors (RECIST) (Fong et al., 2010; Sandhu et al.,
2013). Data from phase II trials of women with BRCAmut ovarian cancer
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using olaparib at a dose of 400 mg orally twice daily demonstrated
RECIST response rates of 31-41% (Audeh et al., 2010; Gelmon et al.,
2011; Kaufman et al,, 2015). The phase II trial by Kaufman et al. demon-
strated a 31% response rate (RECIST) and an additional 40% stable dis-
ease rate (at more than 8 weeks) in their study subset of 193 women
with platinum-resistant ovarian cancer (Kaufman et al., 2015). This
trial was fundamental in the FDA approval of olaparib (Bixel & Hays,
2015). Phase I and II data also indicate a greater likelihood of response
in women with platinum-sensitive disease (Fong et al., 2010; Gelmon
et al., 2011). Additionally, olaparib has been studied in combination
with various targeted agents and cytotoxic chemotherapies including
cediranib, pegylated liposomal doxorubicin (PLD), carboplatin and pac-
litaxel, and tolerability and improvements in progression free survival
(PFS) have been demonstrated (Liu et al., 2013; Del et al., 2014a,
2014b; Oza et al., 2015). The authors await results of several studies
that will further describe the effectiveness of various PARPi, potentially
identify the subgroup(s) of women that will receive maximal benefit
from PARPi, and determine when to give PARPi in the sequence of
ovarian cancer treatment (concomitantly with primary cytotoxic che-
motherapy versus maintenance therapy versus recurrent disease).
These include ARIEL2/3 (NCT01891344, NCT01968213), SOLO-1,-2,-3
(NCT01844986, NCT01874353, NCT02282020), NOVA (NCT01847274)
and GOG 9923 (NCT00989651).

PARPi are generally well-tolerated oral agents. Typically reported
treatment related adverse events (mainly grade 1 and 2) include nau-
sea, vomiting, anorexia and fatigue. Myelosuppression is also a relative-
ly common toxicity, appearing to be dose dependent and successfully
managed with dose reduction (Audeh et al., 2010; Fong et al., 2010;
Gelmon et al., 2011; Sandhu et al., 2013; Kaufman et al., 2015).
Myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML)
are rare but serious adverse events that have been reported in the set-
ting of olaparib treatment. Overall, MDS/AML have been reported in
less than 1% of patients treated with olaparib, and it is difficult to deter-
mine causality as this data only includes a heavily pretreated population
(AstraZeneca, 2015). More recently, a phase II study of olaparib in pa-
tients with metastatic, hormone resistant prostate cancer showed
promising results. Next-generation sequencing was used to identify ho-
mologous deletions, mutations or both in a series of DNA repair genes in
tumor samples. Patients whose tumors harbor these genetic alterations
had a response rate of 33%, which is much higher than expected for this
patient population (Mateo et al., 2015). This study, in addition to
confirming a potential role for PARPi outside of ovarian cancer highlight
the importance of assessing individual DNA repair pathways to identify
patient populations most likely to response to therapy.

In summary, PARPi are a new class of therapeutics with well-
demonstrated effectiveness against ovarian cancers with BRCAmut as-
sociated deficiencies in the HRR pathway. They are generally well toler-
ated oral agents, and olaparib is FDA approved for treatment after at
least 3 prior chemotherapies for women with ovarian cancer who
carry a BRCAmut. Research is ongoing to further advance our under-
standing of these agents, develop more specific and active agents and
to define the population(s) of most benefit, with the ultimate goal of im-
proving treatment and survival for patients with ovarian, breast and
other cancers.

3. Nucleotide Excision Repair inhibitors and combination Pt-therapy

The NER pathway is an incredibly versatile pathway and remedies
DNA bulky adduct damage. There are over 30 polypeptides that partic-
ipate in the repair pathway and extensive genetic and biochemical
analyses have led to thorough understanding of the necessary steps
and the proteins that carry out those steps (Woods & Turchi, 2013).
The pathway can be broken down into 4 essential steps; recognition,
incision/excision, resynthesis and ligation. There are two modes
employed to identify bulky adduct damage. Either sensor proteins are
employed to scan the genomic DNA and recognize distortions

and chemical modifications in the DNA, termed global genomic NER
(GG-NER) (Maillard et al., 2007), or recognition is coupled to transcrip-
tion, transcription-coupled NER (TC-NER) (Sancar & Reardon, 2004).
The two recognition pathways converge for verification of the damage
which involves additional components including TFIIH, RPA and XPA,
each of them essential for NER. The incision/excision step relies on
two structure specific endonucleases, XPG and ERCC1/XPF, which hy-
drolyze phosphodiester bonds of the damaged strand of the DNA 3’
and 5’ to the DNA adduct, respectively. Their activity also relies on the
formation of the single-strand and double-strand junctions carried out
by the XPD and XPB helicases, which are part of the TFIIH component.
Resynthesis and ligation conclude the process resulting in an accurately
repaired duplex DNA.

As many cancer therapeutics including the widely prescribed
platinum-based agents cisplatin, carboplatin, and oxaliplatin impart
their clinical efficacy via the induction of DNA damage, and the
NER pathway plays a considerable role in modulating the activity of
these therapies. With the realization of the importance of NER in mod-
ulation therapy, targeting the NER pathway has been pursued. Early
agents shown to augment the activity of platinum-based therapeutics
included DNA replication inhibitors that were argued to block the re-
synthesis step, though there is no convincing demonstration of this
mechanism. Additivity and synergy observed with these agents were
likely multi-factorial (Katz et al., 1990; Frankfurt et al., 1993). The fail-
ures of many of these agents to progress in clinical evaluation to either
reverse resistance to platinum therapy or increase sensitivity to plati-
num therapy cast doubt clinically on the utility of inhibiting NER for
cancer therapy.

Recently however, with the concept of synthetic lethality and utility
of PARP inhibitors there has been renewed interest in targeting DNA re-
pair. In NER, the focus has been on the DNA verification proteins RPA
and XPA, and the structure specific nuclease ERCC1-XPF interaction.
The potential utility of targeting ERCC1/XPF stems from a series of stud-
ies that inversely correlated ERCC1 expression with survival in a series
of lung cancer studies. While the specificity of ERCC1 detection is in
question, the biologic rationale remains solid (Niedernhofer et al.,
2007; Bhagwat et al., 2009). More recently, it has been demonstrated
that genetic manipulation of ERCC1 and XPF levels can influence sensi-
tivity of cisplatin (Arora et al., 2010). The identification of FO6/NERI0O2
(NSC130813) in an in silico screen that blocked the ERCC1-XPF interac-
tion further solidifies this target (Jordheim et al., 2013). FO6 displays
modest in vitro affinity for XPF (30 pM) but has the expected biologic
activities and can reduce the XPF-ERCC1 interaction in cells. The syner-
gy observed with cisplatin and mitomycin C is interesting, though the
single agent activity is likely a result of an off-target effect as ERCC1
and XPF deficient cells are viable. The alternative is that the presence
of FO6 induces the accumulation of ERCC1 and XPF monomers and
these monomers are toxic to cells. However, this is unlikely to occur
as coordinate regulation of proteins levels has not been observed. De-
spite the unknown mechanism for single agent activity of FO6, the in-
crease in sensitivity to cisplatin and MMC are consistent with
inhibition of the ERCC1-XPF interaction. In addition, FO6 showed a syn-
ergistic interaction with olaparib in BRCA1-deficient breast cancer cells;
however, the role of ERCC1-XPF in this synergy needs further valida-
tion. More recently, several catechol and hydroxyl-imide/pyridine/
pyrimidinones have been identified as ERCC1-XPF inhibitors from
both in silico and high throughput screenings (Fig. 5) (Chapman et al.,
2015; McNeil et al., 2015). Sub or low micromolar potency was ob-
served in a biochemical endonuclease assay against XPF-ERCC1 with
limited activity against FEN-1 and DNase 1. E-X PPI2 significantly re-
duced the level of ERCC1-XPF heterodimers in ovarian cancer cells,
inhibited NER with an IC5o of 20 pM and enhances melanoma cell sensi-
tivity to cisplatin. Catechol scaffold containing E-X AS7 binds to ERCC1-
XPF through metal-based interaction, inhibits NER in low micromolar
concentrations (ICso = 2 uM) and specifically increases the cisplatin
sensitivity of NER-proficient human and mouse cells without having
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Fig. 5. Structures and activity of NER inhibitors.

any effect on NER-deficient cell lines. Clearly more potent and specific
inhibitors are needed to advance this class of molecules into the clinic
as bona fide NER inhibitors. Another essential role of NER is in the inter-
action between ERCC1 and XPA. Barakat et al. performed an in silico
screen targeting the ERCC1-XPA interface and identified NERIO1 as an
inhibitor of this interaction. NERIO1 significantly sensitized human
colon cancer cells to UV irradiation but displayed a weaker effect on cis-
platin sensitivity (Barakat et al., 2012a, 2012b). A similar modest
potency > 50 uM, undetermined specificity and cisplatin sensitivity sug-
gest further development is required to obtain lead molecules from in
these in silico hits.

The identification of XPA inhibitors has also been pursued focusing
not on the protein-protein interactions required for NER, but the neces-
sary and important protein-DNA interactions. An in silico screen identi-
fied three hits that were validated using a series of in vitro DNA binding
assays. The X-80 compound (Fig. 5) identified in the original screen
displayed reasonable potency in fluorescence polarization DNA binding
assays (Neher et al., 2010). More recent development of this class of
compounds has identified a series of analogs that display a >50-fold in-
crease in potency and excellent specificity (data not shown). The ulti-
mate utility of XPA-DNA binding inhibitors will however require an
extensive cellular and in vivo analysis in combination with clinically ap-
proved agents that act via the induction of DNA damage.

The identification of molecules capable of inhibiting protein-protein
interaction has also focused on the major single stranded DNA binding
protein in humans, RPA (replication protein A). RPA plays an integral
role in both NER and HR pathways apart from its essential role in DNA
replication, DNA damage checkpoint activation and DNA repair

(Haring et al., 2008). RPA is overexpressed in a number of cancers in-
cluding lung, ovarian, breast, colon and esophageal (Jekimovs et al.,
2014). RPA is a heterotrimeric complex consisting of 70 kDa (RPA70),
32 kDa (RPA32) and 14 kDa (RPA14) subunits (Fig. 6). The 70 kDa sub-
unit contains the two major high affinity ssDNA binding domains A
and B, as well as C and F. Domains D and E are located in the 32-kDa
and 14-kDa subunit, respectively (Fan & Pavletich, 2012). RPA consists
of a series of oligonucleotide/oligosaccharide binding folds (OB-folds)
(domains A-F) many of which are engaged with DNA during the
course of its participation in DNA metabolism. The F-domain located
on the N-terminus of the 70 kDa subunit (RPA70N) of RPA does not
bind with high affinity to ssDNA; however, it participates in a series of
protein-protein interactions. The interaction of RPA70N with proteins
involved in the DNA damage response pathway such as ATRIP, Rad 9
of the 9-1-1 damage recognition complex, p53 and MRE11 has generat-
ed considerable interest in targeting this domain. The first compound
identified as an inhibitor of the F-domain of RPA70, NSC15520
(Fumaropimaric acid, FPA), was discovered in an in vitro high through-
put screen (HTS). The compound displays reasonable potency at 10 pM
and has been shown to disrupt both RPA70N-Rad9 and RPA70N-p53
interactions (Glanzer et al., 2011, 2013). NSC15520 did not inhibit
the DNA binding activity of RPA, suggesting some degree of specificity
for the N-terminal F domain and not the main DNA binding
domains A and B which are located in the central region of RPA70. No
cellular data was presented possibly as a function of the highly
charged nature of the compound limiting its membrane permeability
and cellular uptake. A second compound, HAMNO [(1Z)-1-[(2-
hydroxyanilino)methylidene|naphthalen-2-one], that selectively
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Fig. 6. Schematic representation of the RPA heterotrimeric subunits (70, 32 and 14 kDa) and OB-fold domains (A-F). The DNA interaction sites are indicated by the red bars, subunit
interaction sites by gold bars and domains associated with binding other proteins by the black bars.

blocks the activity of DBD-F was also identified by Oakley et al. through
HTS (Glanzer et al,, 2014). HAMNO shows a synergistic interaction with
etoposide, enhances DNA replication stress in cancer cells and slows
down tumor growth in a xenograft tumor model. The in vitro activity
of HAMNO in blocking DBD-F function is weak, with concentrations
greater than 50 UM required to observe significant inhibition. However,
cellular activity, while consistent with inhibition of RPA activity occurs
at considerably lower concentrations. These interesting findings suggest
a few possibilities, including cellular metabolism of HAMNO results in
the generation of a more potent metabolite or inconsistency in cellular
effect and RPA inhibition might be due to off-target effects of HAMNO.
A more detailed study of the specificity and cellular activity of
HAMNO are needed to ultimately determine the target and activity of
this interesting compound. Recently, Stephen Fesik's group from Van-
derbilt University exploited a fragment based NMR screening approach
in the discovery of sub-micromolar or low micromolar stapled helix
peptides and small molecules as inhibitors of the RPA70-N-terminal do-
main (Frank et al., 2014; Waterson et al., 2015). The increased potency
will undoubtedly facilitate development of cellular inhibitors, though
cellular activity or specificity is not documented to date.

While much of the effort has been placed on identification of pro-
tein—protein interaction inhibitors, many of the proteins required for
NER have essential interactions with DNA. Development of inhibitors
of protein-DNA interactions presents its own hurdles to overcome,
but successful development of agents capable of blocking these essen-
tial macromolecular interaction hold considerable promise and can
open up an entirely new class of ‘druggable’ targets for therapeutic
intervention.

The RPA protein also is involved in essential interaction with DNA to
support NER catalyzed repair of bulky adduct DNA damage. The OB-fold
in DNA binding domains A and B are responsible for high affinity bind-
ing of RPA to single stranded DNA and duplex damaged DNA. Toward
identifying inhibitors of the RPA-DNA interactions we established HTS
approach (Andrews & Turchi, 2004) and screened the NCI diversity set
of chemical compounds. This proof-of-concept study identified inhibi-
tors capable of blocking the RPA-DNA interaction and inhibition of
NER catalyzed repair of cisplatin damaged DNA. Further development
of the HTS and analysis of a larger, more diverse library resulted in the
identification of TDRL-505 (Shuck & Turchi, 2010). TDRL-505 prevents
cell cycle progression, induces cytotoxicity, and increases the efficacy

of the chemotherapeutic DNA damaging agents cisplatin and etoposide
in vitro. In vitro studies and molecular docking delineated the TDRL-505
binding in the high-affinity ssDNA binding domains A and B of RPA70
(Fig. 7). Further synthetic structural modification of TDRL-505 generat-
ed several analogs and TDRL-551 was identified as the most potent
compound of the series (Mishra et al., 2015). TDRL-551 blocks the
RPA-DNA interaction, displays modest single agent activity in lung
and ovarian cancer cell lines and also synergizes with cisplatin and
etoposide. The mechanism of RPA inhibition we determined to be the
direct, reversible interaction with the central OB-folds in domains A
and B of RPA70. In vivo analysis of TDRL-551 revealed minimal toxicity
alone and in combination with cisplatin and robust anticancer activity
in a NSCLC human xenograft model. Favorable pharmacokinetics and a
defined mechanism of action position this class of compounds for con-
tinued therapeutic development. Currently, we are performing system-
atic structural modification of TDRL-551 in our laboratory to develop
highly potent RPA inhibitors for preclinical settings.

The initial screen of the NCI diversity set also identified NSC73101
as an RPA inhibitor. The structural analog analysis identified the

Domain A

Fig. 7. Surface representation of RPA70 A and B domains (PDB code: 1FGU) with TDRL-
505. TDRL-505 docked in domain A (cyan), domain B (wheat), and the interdomain
region (green). AG suggests higher affinity of TDRL-505 for domain B and the
interdomain region, whereas modest affinity for domain A.
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tetrachloro-trimethylbicycloheptane-2-carboxylic acid as the active
moiety and further structure activity relationship (SAR) and biochemi-
cal analysis revealed an irreversible mechanism of inhibition involving
covalent modification of RPA. More reactive isoborneol haloacetate
MCI13E and MCI13F exhibited potent single agent activity consistent
with blocking RPA's role in DNA replication (Neher et al,, 2011).
MCI13E decreased cell viability, induced apoptosis and showed a syner-
gistic interaction with cisplatin in lung cancer cells. Further SAR is need-
ed to increase the drug-like properties of this class of compounds and in
light of recent single agent anticancer activity portend a bright future for
these agents (data not shown).

Trabectedin (Ecteinascidin 743 or ET-743) showed high efficacy
against the TC-NER sub-pathway but it does not bind to any of the pro-
teins of NER pathway. ET-743 uniquely binds to DNA in the minor
groove by forming a covalent bond at the exocyclic N2 position of gua-
nine, which probably recruits NER proteins. ET-743 was recently ap-
proved for the treatment of soft tissue sarcomas, ovarian cancer and is
currently in clinical trials for the treatment of breast, prostate, and pedi-
atric sarcomas (Goldstein et al., 2014). Another compound, F11782, is a
topoisomerase I and II inhibitor but is also found to inhibit NER's
helicase or incision steps, with more preference given to the incision
step (Kruczynski et al., 2004).

The complexity of the NER pathway, while daunting at the molecular
level, presents a plethora of opportunity to impact therapeutic response
in the context of cancer treatment. Exploiting the structural analysis of
many of these proteins and their interactions with DNA and other pro-
teins holds the potential to fine tune the pathway and its response
to chemotherapy induced DNA damage toward maximizing efficacy,
overcoming resistance and reducing the toxicities associated with
chemotherapy.

4. Targeting DNA double strand break repair and radiation therapy

Radiation therapy continues to be a mainstay in the treatment of a
variety of cancers. Exposure to ionizing radiation (IR) results in a variety
of DNA lesions that include DNA termini modifications, SSBs, DSBs and
base damage (Pastwa et al., 2003). DSBs are thought to be the most del-
eterious to cell survival and the main mechanism driving therapeutic ef-
ficacy (Povirk, 2006). The inability or reduced ability to repair DNA DSBs
results in increased sensitivity to IR (Jeggo & Lavin, 2009). Furthermore,
cells that have increased DSB repair activity, as observed in many can-
cers, display resistance to standardized radiation therapy and in many
cases, resistance to radiation therapy is an adaptive response linked to
hyperactive DSB repair mechanisms (Begg et al., 2011). IR therapy is
often given in combination with chemotherapy, where many of the
agents in the combination also induce DNA damage. Synergistic interac-
tions between IR and DNA damaging agents have been observed and the
mechanism linked to an inability to repair the IR-induced DSBs. For ex-
ample, it has been shown that combination platinum-IR therapy results
in the inability to repair DSBs by the NHE] pathway (Boeckman et al.,
2005; Sears & Turchi, 2012). Developing drugs aimed at modulating
DNA DSB repair activity is likely to have a profound impact on the effi-
cacy of radiation therapy. These observations have made targeting pro-
teins in the DNA DSB repair pathways a popular approach for potential
cancer treatments.

4.1. Repair of DNA Double Strand Breaks

Human cells have two major pathways responsible for the repair of
DNA DSBs: HDR and NHE]J. HDR is involved in DSB repair exclusively
during S and G2 phases of the cell cycle due to the requirement for a ho-
mologous DNA sequence or sister chromatid as a template for the repair
process (Chapman et al., 2012). While HDR is restricted to a subset of
cell cycle phases, NHE] is active throughout the cell cycle and is the pre-
dominant pathway for the repair of IR induced DSB in higher eukary-
otes, particularly those induced by ionizing radiation (Jeggo & Lavin,
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Fig. 8. NHEJ pathway. Following a IR-induced DSB, the Ku dimer (green/light blue) engage
the DNA terminus. Association and activation of DNA-PKcs (yellow) result in target
protein phosphorylation of Artemis (orange) and autophosphorylation. Termini
processing by Artemis and pol X family polymerases (not shown) is followed by ligation
via DNA ligase IV/XRCC4 and XLF complex.

2009). There are four specific steps in NHEJ: DNA termini recognition,
bridging of the DNA ends (also known as formation of the synaptic
complex), DNA end processing and DNA ligation. The specifics of the
pathway are outlined in Fig. 8. An IR-induced DNA DSB recruits the het-
erodimeric Ku (Ku70 and Ku80) complex to the DNA terminus, which
upon binding to DNA recruits the DNA-dependent protein kinase cata-
lytic subunit (DNA-PKcs). DNA-PKcs forms a heterotrimeric complex
with Ku and its serine/threonine protein kinase activity is activated
once bound to the DNA terminus. DNA-PK coordinates NHE] through
autophosphorylation and phosphorylation of other target proteins,
leading to DNA end processing by nucleases (Artemis), polymerases
(Pol X family), PNK, and TDP. Following end processing, the Ligase IV/
XRCC4/XLF complex is recruited to DNA termini and catalyzes ligation
of the DNA DSB.

4.2. DNA-PK and Ku70/80 Inhibitors:
Inhibition of termini recognition and end bridging

Many attempts have been made to target DNA-PK, a crucial compo-
nent of the NHEJ pathway, with molecules showing varying degrees of
success via targeting the ATP binding site of the kinase domain. Early
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Fig. 9. Structures and activity of DNA-PK, PNKP and Ligase IV inhibitors.

attempts to inhibit DNA-PK kinase activity with molecules like
Wortmannin and LY294002 (Fig. 9) resulted in potent radiosensitization.
Wortmannin, a furanosteroid metabolite of the fungi Penicillium
funiculosum, is a potent, non-specific and non-competitive inhibitor of
PI3 kinases, which also exhibits equipotent activity for DNA-PK, ATM
and polo-like kinases. Wortmannin inhibits DNA-PK irreversibly by
covalent modification of Lys802, an amino acid residue in the active
site of DNA-PK critical for the phosphate transfer reaction. LY294002,
a morpholine derivative of the flavonoid, is also a non-specific, compet-
itive inhibitor that binds reversibly to the kinase domain of DNA-PK.
Rapid metabolic clearance, instability, in vivo toxicity and off-target ef-
fects of wortmannin and LY294002 made further preclinical and clinical
evaluation impractical (Collis et al., 2005; Davidson et al., 2013). Howev-
er, LY294002 has been extensively utilized by KuDOS Pharmaceuticals
Ltd. (UK) and Thmaid et al. as a lead compound for further modifications
to improve specificity and efficacy to reduce off-target toxicities (Leahy
et al,, 2004; Clapham et al., 2011; Ihmaid et al., 2012; Munck et al.,
2012; Andrs et al., 2015).

NU7026 and NU7441 (KU-57788) were developed from the
LY294002 scaffold. Both compounds display high selectivity for DNA-
PK compared to PI3K (~55 and ~355-fold, respectively) and are inactive
against both ATM and ATR (>100 uM). NU7026 showed potent
radiosensitization activity and potentiation of cell death with various
chemotherapeutic agents (Willmore et al., 2004; Peddi et al., 2010). De-
spite promising in vitro and in vivo results, pharmacokinetic studies re-
vealed that NU7026 has a poor aqueous solubility and exhibits rapid
clearance due to multiple oxidations and glucuronidation, predomi-
nantly at C-2 position of the morpholine ring (Nutley et al., 2005).
NU7441 enhanced the cytotoxicity of IR and etoposide in SW620,
LoVo, and V3-YAC colon cancer cells but not in DNA-PK deficient V3
cells, assuring that potentiation of DNA damage and cell death was
primarily due to DNA-PK inhibition (Zhao et al., 2006). However, the
limited aqueous solubility, poor oral bioavailability and marginal poten-
tiation of radiation and chemotherapy sensitivity restricted further clin-
ical evaluation of NU7441. KU-0060648 emerged by further SAR
analysis of NU7441 as a highly potent cell-permeable dual DNA-PK
and PI3K inhibitor with better oral bioavailability and pharmacokinetic
profiles (Munck et al., 2012). Although NHE] is considered to be the
main pathway for repair of IR-induced DSBs, relatively little success
has been observed with inhibitors targeting the main proteins in this

pathway. However, future development of highly specific DNA-PK in-
hibitors with good ADME profiles will likely be achieved by developing
novel chemical entities based on the recently reported X-ray crystal
structure of DNA-PK (Sibanda et al., 2010). Three DNA-PK related inhib-
itors MSC2490484A, CC-122 and CC-115 (DNA-PK and mTOR dual in-
hibitor) are currently being investigated in phase I clinical trial either
for solid tumors, non-Hodgkin lymphoma, multiple myeloma or hema-
tologic malignancies (Goodwin & Knudsen, 2014).

While considerable effort has been placed on inhibition of the kinase
active site, it has not escaped our notice that inhibition of the regulatory
Ku subunits could also result in reduced DNA-PK activity and NHE]. This
is consistent with the existing data demonstrating that shRNA depletion
of Ku70 or Ku80 showed cytotoxicity and radiosensitization in pancre-
atic cancer cells (Li et al., 2012b). Despite the crucial role of Ku early in
the NHE] pathway (DNA termini recognition and end bridging), no
small molecule inhibitors have been published to date. However, our
group has developed a class of compounds that abolish the Ku-DNA
end binding activity in vitro. In vivo studies confirm decreased Ku foci
formation in the presence of the inhibitors as well as decreased NHE]
mediated re-circularization of a plasmid molecule (unpublished data).
Further development of Ku and DNA-PK inhibitors hold considerable
potential to impact cancer therapy.

4.3. Inhibition of DNA-end processing

The processing step in NHE] continues to be an active area of study as
the list of nucleic acid enzymes involved in the pathway expands. How-
ever, there has not been a concerted effort to validate these proteins as
potential targets. Radiation therapy is known to produce DSBs with var-
ious compound lesions at the termini that must be processed before re-
pair can be completed. Targeting NHE] processing enzymes in an effort
to increase radiosensitivity seems a worthwhile endeavor. Artemis, the
DNA-PK dependent endonuclease, has confirmed activity in the NHE]
pathway and interestingly, Artemis deficient cells show extreme
radiosensitization (Rooney et al., 2003). However, no inhibitors have
been identified, likely a result of the difficulty in purifying the proteins
and the complex assay requirements (Pawelczak & Turchi, 2010).
Interestingly, strides have been made to target human polynucleotide
kinase/phosphatase (hPNKP), the enzyme responsible for phosphoryla-
tion of 5’-hydroxyl termini and dephosphorylation of 3’-phosphate
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termini, which are frequently altered at DNA termini from IR treatment
and repair of which is required for NHE] (Karimi-Busheri et al., 2007).
A12B4C3 (Fig. 9) was found to be a noncompetitive inhibitor that regu-
lates the phosphatase activity of hPNKP by disrupting the secondary
structure, resulting in radiosensitization in lung and breast cell culture
models (Freschaufet al., 2009). While not a particularly potent inhibitor
with no assessment of clinical efficacy, this work raises interesting pos-
sibilities for hPNKP as a target for developing useful radiosensitizer
molecules.

4.4. DNA ligase inhibitors: inhibition of DNA ligation

The ligation step of NHE] is an attractive target for inhibition, as DNA
Ligase IV has an essential function in the pathway. Early attempts to in-
hibit the ligase resulted in the development of compound L189 (Fig. 9),
a molecule with poor specificity that showed equipotent inhibitory ac-
tivity against Ligase I, Ill and IV (Chen et al., 2008). Recently the inhibitor
SCR7 (an L189 derivative) was identified as a more specific inhibitor of
NHEJ, potentially in a Ligase IV dependent manner, leading to the accu-
mulation of DSBs and subsequent cytotoxicity (Srivastava et al., 2012).
However, a higher concentration (ICso = 20-150 pM) is required to ob-
serve a significant effect in radio- and chemo-sensitization assays, mak-
ing this less likely to be therapeutically useful. Furthermore, SCR7 has
been used at lower concentrations (1 pM) to increase HDR efficiencies
(through direct inhibition of NHE]) for CRISPR mediated genome
engineering techniques, but cellular toxicity was observed with concen-
trations above 1 uM, suggesting that cell-dependent toxicity or off-
target effects may be occurring with the inhibitor (Chu et al., 2015;
Maruyama et al., 2015). Further optimization continues to be necessary
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to pursue a potential therapeutically relevant inhibitor of Ligase IV,
which remain in the pre-clinical stage.

5. DNA damage response (DDR) kinase and pathway inhibitors

The DNA damage response is initiated by recognition of specific DNA
damage and determines the cellular response to DNA damaging thera-
pies. The initial response to DNA damage includes activation by phos-
phorylation of one of three PIKKs ATM, ATR or DNA-PKcs. While there
is significant overlap between the pathways, the specific PIKK and
downstream pathways activated are largely determined by the type of
DNA damage, with DNA DSBs able to activate all three (Woods &
Turchi, 2013). Additionally, the MRN complex (Mre11-Rad50-Nbs1)
plays a role in detection of DNA DSBs through activation of ATM. A for-
ward chemical genetic screen identified Mirin (Fig. 10), a molecule that
inhibits MRN dependent activation of ATM and blocks the Mre11 exo-
nuclease activity (Dupre et al., 2008). Expansion studies on this
molecule resulted in a class of inhibitors that selectively block the differ-
ential nuclease activities of Mre11, resulting in a deeper understanding
of the mechanisms of Mre11 (Shibata et al., 2014). This research re-
vealed that inhibition of endonuclease activity pushes the cell to NHE]
rather than HDR, and blocking the exonuclease activity results in a re-
pair defect. These studies demonstrate the potential impact, both mech-
anistically and therapeutically, of targeting the damage response
pathway.

Targeting of the early DDR kinases has focused largely on the three
PIKKs. DNA-PK phosphorylation, while able to activate the DDR, particu-
larly in ATM-deficient cell lines, largely results in activation of DSB repair
through NHE] and the impact of DNA-PK inhibition is discussed above.
We will discuss in some detail small molecular inhibitors of ATM, ATR

N/
N
KU-59403
ATM ICso =3 nM

NH; O NH, 0-N
)\(U\ W@\\ °
N7 NH z X
N |N \ l NH [ ]\
OCHj x-N / N
O\,/NH | SN —
g P NH
N A

S0,CHg

CP466722
ATM IC5o =410 nM

VE-821 (Vertex)
ATR IC5y =26 nM

oG NHCH

SO,CH(CHg),
VE-822 (VX-970) (Vertex)

NH,

AZD6738 (AstraZeneca)

ATRICg, =19 M ATRICso =1nM

N-
H
N //N ENH
N = 0

N-y/ |
Br/g/ N \O N/ F
NH,
HO

UCN-01
Chk1 IC5o =11 nM
Chk2 IC5y =~1 M

LY2606368 (Eli Lilly)
Chk1/2 ICsy =<1 nM
Chk2 ICs = 4.7 nM

MK-8776 (Merck)
Chk1 1Cg =3 nM
Chk2 IG5y = 1.5 uM

CCT241533
Chki IC5o =0.19 uM
Chk2 ICgo =3 nM

Fig. 10. Structures and activity of MRN, ATM, ATR and Chk1/2 inhibitors.
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and the major downstream damage signaling protein of ATR, Chk1.
While there has been some interest in targeting Chk2, the major down-
stream DDR effector of ATM, development has largely been hampered by
a lack of specificity and limited combination cytotoxicity of Chk2
targeting compounds (Anderson et al., 2011; Duong et al.,, 2013).

ATM is activated following DSBs and plays a major role in the DDR to
DSBs caused by IR. It impacts cell cycle regulation and cytotoxicity by
phosphorylation of its major downstream factors, Chk2 and p53. Cells
deficient in ATM are hypersensitive to radiation and radiomimetic
drugs, making this an ideal target for radiosensitization (Li et al.,
2001). Caffeine and wortmannin were two of the earliest compounds
shown to inhibit ATM and resulted in increased sensitivity to IR and
other chemotherapeutic agents. However, lack of specificity with caf-
feine inhibiting both ATM and ATR, and wortmannin inhibiting ATM,
PI3K and DNA-PKcs, in addition to low potency and high in vivo toxicity
has restricted further development of these compounds. KuDOS Phar-
maceuticals (acquired by AstraZeneca, 2015) developed the first potent
and selective ATM inhibitor, KU-55933, identified during screening of
small molecule library based on the LY294002 (non-specific DNA-PK in-
hibitor) scaffold (Fig. 10). KU-55933 is a highly selective inhibitor over
the related PIKKs (DNA-PK, PI3K/PI4K, ATR and mTOR; ICsq in the sub-
micromolar range) and sensitizes tumor cells to ionizing radiation and
radiomimetic drugs, including camptothecin, doxorubicin and
etoposide. Importantly, patients without functional ATM expression
showed no radiosensitization, confirming that the ATM kinase is specif-
ically targeted by KU-55933 and related compounds (Hickson et al.,
2004; Weber & Ryan, 2015). Further SAR analysis of KU-55933 to im-
prove the pharmacokinetic properties led to the development of
the more potent KU-60019. KU-60019 is 10-fold more effective than
KU-55933 at blocking the radiation-induced DDR, highly radiosensitizes
the human glioma cells and might be useful in adjuvant therapy for pa-
tients with mutant p53 brain cancers (Biddlestone-Thorpe et al., 2013).
Furthermore, KU-60019 alone (without radiation) inhibits glioma
cell migration, invasion and growth suggesting that ATM might be
controlling growth and motility via pro-survival signaling pathways,
such as AKT and MEK/ERK. Despite the impressive in vitro results of
KU-60019, poor bioavailability limited utility for in vivo studies
(Golding et al., 2009; Biddlestone-Thorpe et al., 2013). Another class
of compound, CP466722, was identified as a highly selective and rapidly
reversible ATM inhibitor by Rainey et al. in collaboration with Pfizer. Al-
though CP466722 showed a distinct radiosensitizing effect, no further
in vivo data of this compound has been reported. The most recent
ATM inhibitor, KU-59403, showed improved potency and significantly
enhanced in vitro cytotoxicity as a sensitizer to radiation as well as to
camptothecin, etoposide and doxorubicin. Colon cancer xenograft
models revealed increased cytotoxicity of camptothecin and irinotecan
in combination with KU-59403 as well as improved pharmacokinetics
and bioavailability as compared to other ATM inhibitors (Batey et al.,
2013). These recent developments are encouraging and support the fu-
ture clinical development of ATM inhibitors; however, at this time no
clinical trials are underway.

ATR is a DDR kinase activated early after treatment with a number of
DNA damaging agents, including chemotherapeutic drugs, ultraviolet
light and ionizing radiation. This signaling molecule is primarily activat-
ed by SSBs and responds to DNA replication stress and is therefore ac-
tive in the S and G2 phases of the cell cycle. Although the role of ATR
and Chk1 in chemotherapeutic and UV-induced DNA damage is better
studied, a number of recent publications have investigated their roles
in toxicity to single and double-strand breaks, such as those caused by
ionizing radiation. Pharmacologic inhibition of both ATR and its down-
stream effector, Chk1l, has demonstrated differential effects of
radiosensitization in certain cancer types and mutational profiles. For
instance, treatment with the ATR inhibitors VE-821 and VE-822
in vitro, results in radiosensitization to ionizing radiation in p53 mutant
pancreatic cells (Prevo et al., 2012; Fokas et al., 2014). In vitro studies
support a role for ATR in promoting HDR, and radiosensitization to

ATR and Chk1 inhibitors is felt to be due to two mechanisms. First, inhi-
bition of ATR and Chk1 leads to cell cycle arrest and increases replication
stress, leading to an increase in DNA DSBs at the sites of DNA damage,
such as those caused by gemcitabine. Secondly, ATR and Chk1 inhibition
leads to a decrease in HDR, which is particularly cytotoxic in combina-
tion with ionizing radiation, in those cells already deficient in ATM or
p53, both of which are commonly mutated in solid-organ tumors
(Wang et al., 2004; Prevo et al., 2012; Fokas et al., 2014). VE-821, devel-
oped by Vertex Pharmaceuticals is a potent, selective ATR inhibitor
that also exhibits increased single-agent toxicity against radiotherapy
resistant hypoxic tumor cells (Fig. 10). VE-822 (VX-970), an optimized
analog of VE-821 with improved potency, solubility, safety and pharma-
cokinetic properties is currently under phase I clinical trials for the treat-
ment of advanced solid tumor and relapsed or refractory small cell lung
cancer in combination with several DNA damaging agents (Weber &
Ryan, 2015). Another selective ATR inhibitor in phase I clinical trial is
AZD6738 (an analog of AZ20) to access the safety, tolerability and dos-
ing profile as a monotherapy and in combination with chemoradiation
therapy in patients with solid tumors. AZD6738 induces ATM kinase-
dependent DNA damage signaling and remarkably enhances the cyto-
toxicity of cisplatin in ATM-deficient lung cancer xenograft models.
AZD6738 is an orally active and bioavailable single agent anti-tumor
agent which showed a constant increase in YH2AX pan-nuclear staining
in tumor tissue but only a temporary increase in bone marrow and gut
tissues suggesting a favorable therapeutic index for ATR inhibitors
(Foote et al., 2013; Vendetti et al., 2015).

The checkpoint kinase 1 (Chk1) plays a critical role in DNA replica-
tion, the regulation of cell cycle progression and survival following the
induction of DSBs and acts as one of the guardians to maintain genomic
integrity of cells. Chk1 inhibitors are used in vitro in combination with
chemotherapeutic and radiation treatment and a number of these are
currently being investigated in clinical trials. Early compounds included
UCN-01, a derivative of staurosporine, a serine/threonine kinase inhibi-
tor which targets a number of cyclin-dependent kinases that regulate
G1 checkpoint control (Fig. 10). Although well tolerated, a further clin-
ical development was terminated in the first stage of the study due to
lack of response, pharmacokinetic and toxicity issues (Li et al., 2012a).
AZD7762, a Chk1/2 inhibitor revealed a promising pre-clinical profile
and has been evaluated in two separate phase I clinical trials but further
studies were halted due to cardiac toxicity. A clinical trial in combina-
tion with gemcitabine was recently completed which excluded patients
with heart failure or significant cardiac disease (Seto et al., 2013).
LY2603618 is a highly potent and selective Chk1 inhibitor, developed
by Array biopharma in collaboration with ICOS (ICOS acquired by Eli
Lilly in 2007). LY2603618 in combination with the chemotherapeutic
drugs pemetrexed and cisplatin, showed increased antitumor effects
in non-small cell lung culture models in vitro and in mouse xenograft
models. Clinical trials of LY2603618 in combination with pemetrexed
or cisplatin + pemetrexed in solid organ tumors showed favorable
pharmacologic profiles, with a number of patients achieving stable
disease or a partial response to therapy. However cardiac toxicity,
myelosuppression and low tolerance were observed in phase I trials
for the treatment of solid tumors in combination with pemetrexed
(Weiss et al., 2013; Calvo et al., 2014; Doi et al., 2015) and Lilly has
stopped further development of LY2603618. A derivative, LY2606368,
is an ATP-competitive inhibitor with sub-nanomolar ICs, in vitro and
in vivo data revealed DNA damage response modulation and xenograft
tumor growth inhibition as a single agent and in combination
(Lainchbury et al., 2012). This agent is currently under investigation in
a number of phase I trials is also being evaluated in a phase II trial for
the treatment of certain ovarian, breast and prostate cancers (King
etal, 2015). However, LY2606368 is only administered intravenously,
likely a result of its poor oral bioavailability. The highly selective
Chk1l (over Chk2) inhibitor, MK-8776 (SCH-900776), has been
studied in vitro in leukemias, NSCLC, ovarian and pancreatic cells and
results in enhanced sensitivity of chemotherapeutic drugs and to
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chemoradiation therapy. MK-8776 has been well-tolerated in phase I
trials in the treatment of solid tumors and leukemias, with a phase II
study currently underway for the treatment of acute myeloid leukemia
(Engelke et al., 2013; Grabauskiene et al., 2013; Daud et al,, 2015). The
role of Chk2 inhibitors as anticancer agents remains controversial be-
cause the highly selective Chk2 inhibitor, VRX0466617, has failed to po-
tentiate cisplatin and doxorubicin cytotoxic effects in tumor cells
(Carlessi et al., 2007, 2010). Other selective agents including PV1019
and CCT241533 were found to potentiate the cytotoxicity of genotoxic
agents and PARP inhibitors, respectively. Both compounds exhibited
mild antitumor activity and radioprotective effects in mouse thymo-
cytes (Garrett & Collins, 2011). GDC-0425 and GDC-0575 developed
by Array Biopharma-Genentech as highly selective and orally bioavail-
able Chk1 inhibitors are currently under phase I clinical trials in combi-
nation with gemcitabine in patients with refractory solid tumors or
lymphoma. Specific molecular interactions of selective Chk1l (MK-
8776) and Chk2 (CCT241533) inhibitors are outlined in the Fig. 11 and
the differences in the binding region of Chk1 in comparison to Chk2
can be exploited for further selectivity (Caldwell et al., 2011; Labroli
etal, 2011).

Clinical studies of the highly potent Chk1/2 inhibitors XL844 (Exelixis)
and PF-00477736 (Pfizer) have been prematurely discontinued without
stating specific reason (McNeely et al., 2014). In addition, although out-
side the scope of this article, a number of agents not directly involved in
DNA damage repair or DDR have been demonstrated to sensitize to radi-
ation therapy indirectly by inhibition of HDR. Many of these are currently
being evaluated in clinical trials, including inhibitors of histone
deacetylase (CHR-3996, CHF-2845, 45C-202, JNJ-26481585, ITF2357 and
AR-42) and HSP90 (including IPI-504, AUY922, STA-9090, AT13387,
SNX-5422 and 17-AAG).

The link between DNA repair and ionizing radiation has been firmly
established and work to date suggests that targeting the DNA DSB repair
pathways has considerable potential for increasing radio- and
chemosensitization in the clinic. Clearly, the search for potent and spe-
cific inhibitors to target the cellular response to DNA DSBs is still re-
quired. It is encouraging that studies continue to evolve to identify
new radiosensitizer agents like mibefradil dihydrochloride that was re-
cently identified as a DSB repair inhibitor and a radiosensitizer (Goglia
et al., 2015). Additionally, the synthetic lethality approach to target

inhibition of two DNA repair pathways simultaneously is expanding.
This is evidenced by the molecule YU238259 that shows synergy to ion-
izing radiation and potentiates chemotoxicity through inhibition of HDR
and shows increased synergy in a BRCA-2 null background (Stachelek
etal, 2015). However, in spite of strong pre-clinical data showing highly
specific and potent inhibitors, relatively few have been further assessed
in clinical trials, many of which have been closed due to toxicities or lack
of clinical efficacy.

6. Targeting homology directed repair and Rad51 in cancer

HDR is a major mechanism to ensure the accurate repair of a variety
of DNA lesions including double strand breaks, single strand DNA gaps
and intra- and inter-strand crosslinks (San Filippo et al., 2008). In addi-
tion HDR is critical for reestablishing replication forks at the sites of
damage and proper chromosome segregation during meiosis. The ca-
nonical HDR pathway requires numerous factors and many of their bio-
chemical functions have been elucidated. Central to HDR is Rad51, the
eukaryotic ortholog to E.coli RecA, and its function as a DNA strand ex-
change protein. The role of Rad51 involves replacing RPA bound to
ssDNA and the formation of a RAD51-ssDNA filament termed a presyn-
aptic filament (Fig. 12). The binding of Rad51 stretches the DNA facili-
tating a fast and efficient homology search. The invasion between the
Rad51-ssDNA and homologous duplex DNA leads to a heteroduplex
DNA and formation of a Holliday junction. Dissociation of Rad51 accom-
panies the synthesis step and ultimately allows the final ligation.

Consistent with the central role in HDR there is considerable evidence
that Rad51 plays a significant role in cancer development and response to
therapy. Rad51 binding to ssDNA is facilitated by a series of proteins in-
cluding the Rad51paralogs Rad51C and Rad51D. Germline mutations in
either Rad51C or D were reported to increase a woman's susceptibility
for the development of epithelial ovarian cancer, suggesting that accurate
regulation of RAD51 activity is critical to maintaining genetic stability
(Song et al., 2015). While Rad51 mutations have not been identified in
cancer, increased expression of Rad51 has been reported in nearly
every cancer assessed (Raderschall et al., 2002; Klein, 2008). Elevated
Rad51 mRNA expression by at least 2 fold as compared to normal tissue
samples has been described in invasive ductal carcinoma of the breast,
non-small cell lung cancer, bladder cancer, glioblastoma multiforme,

Fig. 11. Molecular interaction of Chk inhibitors. A) Molecular interactions of MK-8776 with hChk1: MK-8776 is docked using predecessor X-ray crystal structure (PDB code: 30T3) to
delineate the key interactions. The N-1 moiety and exocyclic NH, of the pyrazolo[1,5-a]pyrimidine binds to the Cys87 and water molecule in the hinge region, pyrazole moiety
interacts with an array of ordered water molecules in the Chk1 specificity domain, piperidine amine makes several key interactions with acidic residues (Glu91 and Glu134) and a
conserved water molecule and pyrazolo[1,5-a]pyrimidine moiety is surrounded by hydrophobic residues Leu136 and Leu137 (black dots). B) Molecular interactions of CCT241533
with hChk2 (PDB Code: 2XBJ): A planar and pseudotetracyclic structure formed due to intramolecular hydrogen bonding in between the phenolic hydroxyl and the quinazoline N-1,
the phenolic hydroxyl binds to Met304 in the hinge region, quinazoline exocyclic amine makes contact with Glu308, pyrrolidine amine forms a charge-assisted hydrogen interaction
with Asn352, two methoxy substituents occupying the solvent exposed region and quinazoline moiety is surrounded by hydrophobic residues Val234, Leu354, Ala247, Leu301 and
Leu303 (some of them shown in black dots). Intermolecular and Intramolecular hydrogen bonds showed in magenta and orange dotted lines, respectively and distances indicated in A.
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Fig. 12. Rad51 catalyzed homologous recombination repair. A leading strand replication
block (purple box) stalls fork progression leading to the generation of single stranded
DNA and binding of RPA (green trimer). Rad51 (red) replacement of RPA and
association of BRCA2 (magenta) precedes homology driven recombination to by-pass
the lesion and fork restart.

sarcomas, prostate and pancreatic cancers (Oncomine database search).
In addition, numerous cancer cell lines display increased Rad51 foci inde-
pendent of exogenous DNA damage further supporting evidence of ab-
normalities of Rad51 regulation in cancer (Raderschall et al., 2002;
Mathews et al., 2011). The increase in expression and foci formation
could be the result of the increased DNA replication stress experienced
by the rapidly dividing cancer cells. Rad51 expression is associated with
worse prognosis in multiple malignancies (Qiao et al., 2005; Mitra et al.,
2009). Colon cancer patients with strong Rad51 tumor expression have
a median survival of 11 months as compared to 76 months in patients
with weak expression (Tennstedt et al., 2013). Of note, increased Rad51
expression in cancer is not a consequence of gene amplification but rath-
er results from increased transcription of the Rad51 gene.

The negative correlation between Rad51 expression and prognosis is
paradoxical but clearly suggests that “more” is not necessarily “better”.
One could envision increased expression would correlate with in-
creased repair and maintenance of genetic stability. Current evidence
however does not support these assumptions and suggests tight regula-
tion of DNA repair proteins including Rad51 is needed for HDR to main-
tain its role in preserving genomic integrity with either too much or too
little protein and activity being detrimental. Recent in vivo data incrim-
inates Rad51 in promoting the formation of RNA-DNA hybrids which
represent a potent source of altering genome structure and inducing
chromosome instability (Wahba et al., 2013). In addition, increased
Rad51 in multiple myeloma and esophageal adenocarcinoma was asso-
ciated with elevated HR activity while knockdown of Rad51 prevented
the acquisition of genomic changes (Shammas et al., 2009; Pal et al.,
2011). Rad51 inhibition was shown to reduce breast cancer migration
suggesting it contributes to metastases as well (Wiegmans et al.,
2014). These data were quite surprising demonstrating that a protein
that has been long recognized as a DNA repair protein can in fact have
genotoxic effects and be implicated in both DNA damage and promotion
of genomic alterations.

Rad51 has also been shown to contribute to a therapy resistant phe-
notype in cancer specifically with therapeutics that induce DNA damage
(Takenaka et al., 2007). Fewer Rad51 foci in breast cancer patients cor-
related with better responses to anthracycline based chemotherapy

(Graeser et al., 2010). Lower Rad51 expression or Rad51 inhibition
have been shown to sensitize cancer cells to cisplatin, doxorubicin and
ionizing radiation (Hannay et al., 2007; Liu et al., 2011). In addition to
its role in HDR, Rad51 seems to play an independent role in the repair
of DNA inter-strand crosslinks and a separation of function mutation
has been identified. Cells expressing a Rad51 T131P mutant were
found to be HDR proficient but inter-strand crosslink repair defective.
This suggests that a unique Rad51 activity or interaction is required
for FA-dependent interstrand crosslink repair that is not required for ca-
nonical HDR (Wang et al., 2015).

6.1. Targeting Rad51: prior failure and future successes

The role of Rad51 in the repair and tolerance of chemotherapy and
radiation induced DNA damage provides an excellent rationale for
Rad51 as a therapeutic target in cancer treatment. This is further sup-
ported by the increased expression of Rad51 in many cancers and the
reliance of higher Rad51 activity to combat the replication stress ob-
served in cancers. Inhibition of Rad51 in this context could provide a
therapeutic window where inhibition of Rad51 in non-cancerous cells
would have less influence and therefore reduced toxicity. Earlier at-
tempts at targeting Rad51 were unsuccessful mainly due to the fact
the drugs used were not specific Rad51 inhibitors. For example,
amuvatinib (MP-470) was labeled as a Rad51 inhibitor when in fact it
was a multi-targeted tyrosine kinase inhibitor that happened to reduce
Rad51 expression in tumor cell lines by an unknown mechanism (Zhao
etal, 2011). The clinical development of amuvatinib was halted when
phase 2 data indicated a failure to achieve its primary endpoint. The
lack of efficacy of amuvatinib was a reflection of its unclear mechanism
of action rather than evidence against targeting Rad51.

A number of more specific Rad51 inhibitors are currently in the early
phases of drug development; however, further optimization is likely to
be needed prior to their progress into clinical trials. Two different strat-
egies are currently being employed in targeting Rad51 with promising
pre-clinical results. The first strategy exploits the overexpression of
Rad51 in cancer by further stimulating the formation of toxic Rad51
complexes on undamaged chromatin using chemical agents such as
RS-1 (Fig. 13). This strategy could potentially prove selective to cancer
cells with increased baseline Rad51 expression thereby sparing normal
cells. RS-1 acts as an allosteric effector of active hRad51 filament forma-
tion on ssDNA that stimulates DNA binding and recombination activities
of hRad51 by locking its active conformation without affecting active
site ATP hydrolysis. RS-1 has so far been demonstrated to have single
agent activity in tumor cell lines that display increased Rad51 expres-
sion and its activity is dependent on Rad51 and the Rad54B/Rad54L
translocase (Mason et al., 2015). In addition, RS-1 has in vivo anti-
cancer activity in a xenograft animal model (Mason et al., 2014). The
second strategy for targeting Rad51 is inhibition of DNA strand ex-
change activity via disrupting Rad51's ability to bind ssDNA. B02 is
one of the compounds identified that specifically inhibit human Rad51
binding to DNA. Targeting Rad51 using BO2 has been shown to inhibit
HDR and increase cancer sensitivity to DNA damaging agents including
ionizing radiation, cisplatin, mitomycin C, doxorubicin, and etoposide
(Alagpulinsa et al., 2014). Halenaquinone inhibits Rad51-dsDNA bind-
ing specifically, but not Rad51-ssDNA binding (Takaku et al., 2011)
(Fig. 13). In human cells, halenaquinone significantly decreased the IR
induced Rad51 foci formation probably by inhibiting the ternary com-
plex formation which promotes the DNA homologous pairing step
during the HR process. DIDS is another potent competitive Rad51
inhibitor that directly binds to Rad51 and disassembles Rad51 from
ssDNA (Ishida et al., 2009). However, further effect of DIDS on the
DNA repair and HR was not evaluated due to high human cell toxicity.
Chloromaleimide derivative RI-1 irreversibly binds to the thiol group
on the C319 residue of human Rad51. In order to overcome off-target
covalent interactions and improve compound stability in the cells, RI-
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Fig. 13. Structures and activity of Rad51 stimulator (RS-1) and inhibitors.

2 was developed. RI-2 reversibly binds to the same site on Rad51 as does
RI-1 but with a 6-fold decrease in potency.

An alternative to inhibition of the protein—-DNA interaction site is to
block the protein-protein interaction sites (Budke et al., 2012, 2013).
The inhibitor IBR2 disrupts the Rad51-BRC interaction, Rad51
multimerization, and enhances proteasome-mediated RAD51 protein
degradation. The cellular effect of IBR2 included an increase in the sen-
sitivity of MCF7 breast cancer cells to IR (Zhu et al., 2013). Further SAR
analysis of IBR2 generated the stereo selective inhibitor IBR20
(Fig. 13). This compound has been demonstrated to disrupt Rad51
multimer formation, inhibit HDR and display cytotoxic activity in a vari-
ety of cancer cell lines with low micromolar ICsqs (Zhu et al., 2015).
While clearly in the developmental stages, each of the strategies cur-
rently under investigation could be an effective addition to cancer
therapy.

7. Base Excision Repair

BER represents an attractive target for cancer therapy as many of the
proteins involved in the BER pathway have been shown to be dysregu-
lated in a wide variety of cancers (Wallace, 2014). The relatively small
number of proteins required and the convergence of the pathway
after the creation of the AP-site represents a limited number of proteins
to target. Similar to other excision repair pathways, BER is initiated by a
recognition event where the modified base is recognized by a DNA
glycosylase. There are a variety of different glycosylases that recognize
the array of possible base modifications. Following recognition and hy-
drolysis of the glycosidic bond, the resulting abasic site is recognized by
APE1 and a nick made in the phosphodiester bond 5’ of the abasic site
resulting in 3’ OH and 5’ deoxyribose-phosphate (dRP) termini. Herein,
the pathway can diverge and repair can be completed via long-patch or
short patch repair. Long-patch BER (LP-BER) occurs by the excision of at
least two nucleotides and DNA synthesis catalyzed by pol 3 or by pol 6/.
In long patch repair, DNA pol > performs displacement synthesis and

the resulting flap is cut by FEN1 prior to ligation. Alternatively, short
patch BER (SP-BER) occurs by the excision of one nucleotide. In short
patch repair, the 5’ lyase activity of DNA pol 3 cleaves the 5’ dRP and
adds a single base prior to ligation. However, if the dRP cannot be effec-
tively removed the BER pathway proceeds via the long-patch mecha-
nism. The reconstitution of LP-BER has demonstrated an absolute
requirement for the endonuclease activity of FEN1 but for SP-BER it is
not required at all. Ligation is accomplished by DNA ligase I or DNA li-
gase Il in complex with XRCC1 (Svilar et al., 2010). Beyond the role of
PARP in BER, efforts to target BER have focused largely on APE1, the
human AP-endonuclease and DNA polymerase (3.

7.1. AP-endonuclease inhibitors

Overexpression or altered level of AP-endonuclease, APE1 in several
cancers has been shown to increase the resistance of tumor cells to
treatment with various chemotherapeutic agents emphasizing APE1
as an important target for cancer therapy (Kaur et al,, 2014). APE1 is ar-
guably the most studied, and a large number of APE1 inhibitors have
been reported and expertly reviewed in 2012 (Al-Safi et al., 2012).
E3330 and its analogs hold clinical therapeutic potential as a specific in-
hibitor of APE1 redox activity but do not affect APE1 DNA repair activity
(Kelley et al., 2012) (Fig. 14). While the redox function of APE1 is also an
active area of investigation as a therapeutic target, we will focus mainly
on the repair-specific agents identified since 2012. CRT0044876 is the
first potent and selective APE1 inhibitor and enhanced the cytotoxicity
of several DNA damaging agents in vitro but failed to have further suc-
cess due to poor cellular activity and toxicity issues (Madhusudan
et al,, 2005). To identify novel agents capable of inhibiting APE1, multi-
ple approaches have been employed. An in silico screening was used to
focus on the endonuclease region of APE1 and resulted in the discovery
of a series of APE1 inhibitors with varying potency (Mohammed et al.,
2011). Similarly, a HTS approach was also used and resulted in the iden-
tification of a large number of hits that was subsequently culled to
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Fig. 14. Structures and activity of BER inhibitors.

identify cellular activity (Dorjsuren et al., 2012; Abbotts et al., 2014).
Srinivasan et al. found several unique nanomolar to sub-micromolar
APET1 inhibitors based upon molecular modeling and virtual screening
strategy (Srinivasan et al., 2012). NSC332395 is the most active
compound of the quinoline series and potentiated the toxicity of a
DNA damaging agent, though in vivo activity remains to be determined.
A systematic medicinal chemistry approach driven by the NIH generat-
ed N-(3-(benzo[d]thiazol-2-yl)-6-isopropyl-4,5,6,7-tetrahydrothieno
[2,3-c]pyridin-2-yl)acetamide and N-(3-(benzo[d]thiazol-2-yl)-5,6-
dihydro-4H-thieno[2,3-c|pyrrol-2-yl)acetamide (1) revealed potent
APE1 inhibitors with favorable in vitro ADME profile and also showed
good plasma and brain exposure in mice (Fig. 14). Both compounds
also potentiated the cytotoxicity of methylmethane sulfonate (MMS)
and temozolomide (TMZ) (Rai et al., 2012).

Furthermore, gossypol is a natural product BH3 mimetic that was
shown to directly interact with the BH domains in the Bcl-2 family of
proteins (Kitada et al., 2003). APE1 also contains a BH domain and it
was subsequently demonstrated that gossypol could bind directly to
APE1 and inhibit both repair and redox functions (Qian et al., 2014).
The inhibitor is potent with an ICsg of ~35 nM though a high degree of
specificity is unlikely. The AT-101 isomer of gossypol was subsequently
found to potentiate the cytotoxicity of cisplatin and etoposide in lung
cancer models (Ren et al., 2015). The ability to attribute any clinical ef-
fect of APE inhibition is questionable considering long history of this
agent and the lack of specificity.

7.2. DNA Pol 3 inhibitors
Expanding beyond APE1, numerous recent reports have identified

putative inhibitors of DNA pol 3 (Barakat et al., 2012a). Pol 3 plays a
significant role in chemotherapeutic agent resistance, because its

expression and altered level reduces the efficacy of DNA damaging
drugs. An in silico screening identified NSC-666715 as a putative pol
inhibitor and subsequent follow up work demonstrated direct inhibi-
tion of pol B (Jaiswal et al., 2009, 2015) (Fig. 14). Inhibition of both
long patch and short patch BER was demonstrated but NSC-666715
did not inhibit other proteins in the BER pathways suggesting that the
effect of BER was exclusively through pol 3. However, there is no spec-
ificity analyses reported against other DNA polymerases. The demon-
stration that NSC-666715 sensitized cells to TMZ is also consistent
with inhibition of BER and pol . A similar approach was utilized to
identify the specific pol 3 inhibitor NSC-124854. NSC-124854 effectively
increases the sensitivity of colon cancer cells to TMZ in both in vitro and
in vivo models (Jaiswal et al., 2011) (Fig. 14). A series of peptides based
on TT-232, a somatostatin structural analog were assessed as pol 3 in-
hibitors. Peptide 2 was identified to be the most effective and displayed
minimal inhibition against a panel of mammalian DNA polymerases
(Kuriyama et al., 2013). Modest activity (ICso ~ 11 uM) was observed
in vitro; however, a 200 pM concentration was used in many experi-
ments suggesting that cellular effects observed including synergy with
MMS may be due to off-target effect.

Very recent studies have identified a derivative of the irreversible
pol B inhibitor 2-phosphato-1,4-dioxobutane (DOB) (Arian et al.,
2014). Compound 3 and pro-inhibitor 4 exhibit irreversible inactivation
of DNA pol 3 inhibiting both lyase and displacement synthesis activity.
These data suggests that both long patch and short patch BER would
be targeted by these agents. Finally, a focus on natural products and de-
rivatives has identified formosusin A [ (6Z,8E,10E)-variotin] as a pol 3 in-
hibitor where three closely related isomers displayed no inhibitory
activity (Mizushina et al.,, 2014). Importantly, formosusin A was
shown to be specific for pol 3 and despite a relatively weak affinity
(ICsp = ~35 uM), displayed no detectable inhibitory activity against a
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panel of other DNA polymerases. Cellular activity was not reported and
clearly SAR analysis will be needed to increase potency and efficacy.

8. Conclusions and future directions

The 2015 Nobel Prize in Chemistry was awarded to three DNA repair
researchers Paul Modrich, Aziz Sancar and Thomas Lindahl, who de-
tailed the molecular mechanisms of MMR, NER and BER, respectively.
The advances in our understanding of these pathways have been instru-
mental in developing novel agents to block or, in some cases, enhance
repair activity. The cadre of proteins and enzymes that respond to and
repair DNA damage holds considerable potential to impact human
health. From re-establishing genomic integrity to identifying useful syn-
thetic lethal interactions to enhance the sensitivity to widely prescribed
chemotherapeutics, the impact of DNA repair cannot be underscored.
The complexity of the cellular response to DNA damage however must
be considered at every stage of development, from initial target identi-
fication to design of clinical trials and deployment in the clinic. Ignoring
the biology behind the development holds dire consequence and can re-
sult in significant delays and abandoning potentially useful agents. The
high cost and extended times associated with drug development neces-
sitates a detailed understanding of the biology behind the drug develop-
ment to allow effective pre-clinical and clinical investigations on drug
combinations which capitalize on well-defined functions in DNA dam-
age repair and response. We are poised for a rapid expansion of DNA re-
pair targeted agents that move from the lab to the clinic. These will have
the potential to treat a variety of conditions and capitalize on the nu-
merous discoveries and ultimately will positively impact on human
health.
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