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Abstract

Non-small cell lung cancers (NSCLC) are commonly treated with a platinum-based chemotherapy 

such as cisplatin (CDDP) in combination with ionizing radiation (IR). Although clinical trials have 

demonstrated that the combination of CDDP and IR appear to be synergistic in terms of 

therapeutic efficacy, the mechanism of synergism remains largely uncharacterized. We investigated 

the role of the DNA damage response (DDR) in CDDP radiosensitization using two NSCLC cell 

lines. Using clonogenic survival assays, we determined that the cooperative cytotoxicity of CDDP 

and IR treatment is sequence dependent, requiring administration of CDDP prior to IR (CDDP-

IR). We identified and interrogated the unique time and agent-dependent activation of the DDR in 

NSCLC cells treated with cisplatin-IR combination therapy. Compared to treatment with CDDP or 

IR alone, CDDP-IR combination treatment led to persistence of γH2Ax foci, a marker of DNA 

double-strand breaks (DSB), for up to 24 hours after treatment. Interestingly, pharmacologic 

inhibition of DDR sensor kinases revealed the persistence of γ-H2Ax foci in CDDP-IR treated 

cells is independent of kinase activation. Taken together, our data suggest that delayed repair of 

DSBs in NSCLC cells treated with CDDP-IR contributes to CDDP radiosensitization and that 

alterations of the DDR pathways by inhibition of specific DDR kinases can augment CDDP-IR 

cytotoxicity by a complementary mechanism.
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1. Introduction

More than 200,000 people will be diagnosed with lung cancer in the United States this year, 

accounting for greater than 25% of all cancer deaths.1 Non-small cell lung carcinomas 

(NSCLC) are the most common lung cancers and are typically diagnosed at an advanced 

stage, having spread beyond the primary tumor site. Since at this stage curative surgical 

options are often limited,2 treatment of locally advanced disease typically includes 

administration of a platinum-containing drug, such as cisplatin cis-

diamminedichloroplatinum II; CDDP) and ionizing radiation [IR].3,4 Treatment with a 

combination of both CDDP and IR improves survival over either treatment alone, with the 

greatest survival observed with concomitant rather than sequential treatment. 5–8 However, 

cancer model systems developed to investigate combination CDDP-IR treatment have 

yielded varying results, including reports of potential antagonistic interactions that are 

inconsistent with the clinical data.9,10 Therefore, a better understanding for the observed 

CDDP-IR clinical synergy is important.

Covalent binding of CDDP to DNA forms intra- and inter-strand DNA adducts which distort 

the double helical configuration. The DNA-CDDP intra-strand adducts are repaired by the 

nucleotide excision repair (NER) pathway while inter-strand adducts are repaired by the 

homologous recombination repair (HRR) pathway, and hypersensitivity to CDDP is often 

observed in cells deficient in either NER or HRR11–14. IR causes DNA nucleotide 

modifications, single and double strand DNA breaks (DSBs), both directly and indirectly via 

formation of oxygen free radicals. DSBs are particularly toxic to the cell, as a single DSB 

has been demonstrated to trigger cell death.15 IR-induced DSBs are repaired predominantly 

by the non-homologous end-joining (NHEJ) pathway, and NHEJ deficient cancer cells are 

hypersensitive to IR.16,17 DNA damage caused by both CDDP and IR activates DNA 

damage response (DDR) cascades which coordinate a complex interaction of downstream 

pathways to determine cell fate, including coordination of DNA repair, cell cycle arrest and 

apoptosis. The DDR is initiated at the site of DNA damage by the early (sensor) protein 

kinases: ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR) and DNA-

PKcs. While there is some overlap, ATM is primarily involved in the DDR to DSBs, such as 

those created by IR. DNA DSBs can be characterized by the detection of γ-H2Ax foci; 

downstream effectors of the DDR pathway which have been observed to correlate directly to 

the number of DSBs and persistence of which correlates with cellular survival.18–20 ATR is 

important in the DDR to single strand breaks, which are felt to develop on CDDP-damaged 

DNA through replication stress.21 Impaired function of ATM or DNA-PKcs leads to 

radiosensitization while inhibition of ATR has been shown to sensitize some cells to 

CDDP.12,22–27

The cooperative interaction of CDDP and IR is dependent on CDDP repair, as cells deficient 

in NER or HRR show increased radiosensitization to CDDP.9,17,28,29 The presence of a 
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CDDP lesion on DNA inhibits NHEJ17,30,31 and we hypothesize that CDDP-IR synergy is 

determined by a CDDP lesion at close proximity to a DSB. However, despite the recognition 

of a likely role for DNA repair pathways in CDDP radiosensitization, little is known about 

the actual mechanism and role of the DDR in radiosensitization. This mechanism is of 

paramount importance, as drugs specifically targeting the DDR are currently under 

investigation in pre-clinical and early clinical trials. Here we investigate the impact of the 

DDR in CDDP-IR co-treatment in NSCLC. Our study supports a role for retained DSBs in 

CDDP radiosensitization and identifies a dissociation of DDR sensor kinase activation from 

sustained DSBs.

2. Materials and Methods

2.1. Materials

Compounds and reagents were purchased from Thermo-Fisher Scientific (Waltham, MA), 

unless otherwise stated.

2.2. Antibodies

Antibodies were obtained from the following commercial sources: anti-H2AxSer139 

(Millipore; clone JBW301), anti-P53BP1Ser25 (Novus Biologicals; NB100-1803), 

anti-53BP1 (ThermoFisher Scientific; PA1-16565), anti-pChk1S345, anti-pChk2T68, anti-

Chk1, anti-Chk2, anti-ATM (Cell Signaling Technology; 2348S, 2661S, 2G1D5, 1C12 and 

D2E2 respectively), anti-pATMS1981 (Rockland, NC9306342), anti-β-actin (Life 

Technologies, clone AC-15) and anti-vinculin (Abcam, clone ab18058).

2.3. Cell culture and treatment

Two NSCLC cell lines, A549 (CCL-185) and H460 (HTB-177), were obtained from the 

American Type Culture Collection and verified via STR testing (Manassas, VA). H460 and 

A549 cells were grown as previously described and incubated at 37°C in a humidified 5% 

CO2 atmosphere30. Cisplatin (Sigma) was added at the indicated concentrations to complete 

medium for 2 hours at 37°C. Following incubation with CDDP, cells were washed three 

times with PBS and replaced with fresh media lacking CDDP. Media was replaced with PBS 

prior to IR or mock IR treatments. For experiments using NU7441 (Tocris Bioscience), 

KU-55933 (Tocris Bioscience) or VE-821 (MedChem Express), cells were incubated with 

vehicle (DMSO) and/or the respective inhibitors at the concentrations listed (total of 0.1% 

DMSO) for 2 hours prior to treatment with IR. Incubation with the drug was continued until 

cell processing (0.5 or 24 hours) or for 24 hours after IR treatment (clonogenic survival 

assays).

IR treatments (Figures 1–5) were performed on ice using an HP Faxitron series X-ray 

generator (Faxitron Bioptics LLC). X-rays were filtered through a 0.5 mm aluminum filter at 

160 kV resulting in a dose rate of 2.5 Gy/min. IR treatments (Figure 6) were performed in 

ice using a Precision X-RAD 320 X-ray generator (Precision X-Ray). X-rays were filtered 

using a 0.5mm aluminum filter at 160kV delivering 0.737 Gy/min. The devices undergo 

routine maintenance with dosimetry testing.
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2.4. Cell viability analysis

Cell viability was assessed by a clonogenic survival assay as previously published.17,32 

Briefly, cells were plated and treated as described. Following treatment, cells were removed 

from the plates with trypsin, suspended in complete media, and plated in triplicate. Plates 

were incubated at 37°C for 10–14 days, stained and fixed with a solution of 6% 

glutaraldehyde and 0.5% crystal violet in PBS, washed and colonies containing at least 50 

cells were counted manually.

2.5. Immunofluorescence Microscopy

Immunofluorescence microscopy was performed as previously published33 with the 

following alterations. Cells were grown on chambered slides and mock-treated or treated 

with CDDP followed by either mock-IR or IR (1.5 Gy) treatment on ice. At the indicated 

times, cells were washed with PBS and fixed with 4% paraformaldehyde for 15 minutes. 

Permeabilizing solution (20 mM HEPES, 50 mM NaCl, 3 mM MgCl2, 300 mM sucrose and 

0.5% Triton X-100) was added for 7 minutes followed by blocking with 5% goat serum 

(Jackson ImmunoResearch Laboratories). Slides were incubated with primary antibody to γ-

H2Ax and 53BP1 overnight at 4°C. Bound antibody was detected using goat anti-mouse 

AlexaFluor 488 and anti-rabbit AlexaFluor594 (Life Technologies). Cell nuclei were 

counterstained using DAPI and the slides were mounted using ProlongGold anti-fade (Life 

Technologies). Fluorescence microscopy images were randomly obtained by identifying cell 

nuclei using DAPI filter. Images of foci were obtained under the FITC filter. Images were 

obtained and merged using a Nikon Eclipse 80i fluorescence microscope with camera using 

the 100× objective with oil immersion and NIS-Elements AR3.0 software (Nikon 

Instruments Inc.). Quantification of γ-H2Ax foci was performed using Image J software 

(NIH) and ITCN plugin (Image-based Tool for Counting Nuclei; Center for Bio-image 

Informatics, UC Santa Barbara).34 Briefly, each DAPI stained nucleus was defined as a 

region of interest (ROI). Uniform parameters defined the foci diameter, minimal distance 

and filter threshold for each merged FITC image and the number of foci per ROI was 

quantified using the ITCN plugin. Results are presented as percentage of cells with > 10 

foci/nucleus or as the average number of foci per nucleus as indicated.

2.6. Flow cytometric analysis of γ-H2Ax

Flow cytometry was performed as previously described30 with the following alterations. 

Cells treated with CDDP, IR or both were collected by trypsinization at the indicated times, 

fixed with 4% paraformaldehyde and permeabilized with 70% ethanol. Cells were hydrated 

in PBS containing 1% BSA and 0.1% Triton X-100 and then incubated with antibody to γ-

H2Ax overnight at 4°C,19 followed by detection by goat anti-mouse Alexa-Fluor 488. Cells 

were incubated in the dark with RNase A and PI stain for 30 minutes at room temperature 

followed by 1.5 hours at 4°C. Individual cellular absorbances were analyzed by ultraviolet 

and 488 nm lasers using a BD FACSCalibur flow cytometer. Data were analyzed using 

WinMDI software (Scripps Research Institute) for γ-H2Ax positivity. Processing, staining 

and analysis for cell cycle was performed as published.30
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2.7. Protein Extraction and Western Blotting

Following treatment, cells were scraped and resuspended in RIPA buffer with protease and 

phosphatase inhibitors (Leupeptin 5μg/ml, Pepstatin A 1μL/ml, PMSF 1mM, EDTA 5mM, 

sodium orthovandate mM, sodium fluoride 10mM, β-glycerophosphate 10mM) on ice. Cells 

were lysed by passing 5 times through a 20 gauge syringe, then centrifuged and the 

supernatant recovered. Protein concentrations were determined using the Pierce BCA 

Protein Assay Kit (Life Technologies) according to the manufacturer instructions. Proteins 

were separated by electrophoresis on 4–12% Bis-Tris or 3–8% Tris-Acetate gels using a 

Criterion gel apparatus (BioRad Laboratories). Gels were blotted onto PVDF membranes 

using the Transblot Turbo Transfer system (BioRad) and blocked with 5% BSA in TBS-T. 

The membrane was incubated with primary antibodies, detected by peroxidase-coupled 

secondary antibodies (BioRad) and developed using enhanced chemiluminescence 

(BioRad). The chemiluminescence signals were quantified by densitometry (ImageJ) and 

normalized by housekeeping proteins (β-actin or vinculin), which generated arbitrary units.

2.8. Statistical Analysis

Data from at least 3 independent experiments are expressed as the means +/− SD or SEM. 

For statistical comparisons between two groups, student’s t-test was used, and between 

multiple groups, one- or two-way ANOVA was used. A p-value of < 0.05 was considered 

statistically significant.

3. Results

3.1. Cisplatin radiosensitization of NSCLC cells is sequence dependent

To identify NSCLC models that recapitulate clinical combination therapy, we identified the 

temporal and dose interactions between CDDP and IR in two well-characterized NSCLC 

cell lines of different histologic types, H460 and A549. Using clonogenic survival assays, we 

determined the toxicity of CDDP (LD50) to be similar between the two cell lines (4.5 μM, 

H460; 3.9 μM, A549, Supplemental Figure S1). Based on these results, H460 and A549 cells 

were treated with CDDP at 4μM for 2 hours at the indicated times, either preceding or 

following treatment with 1 Gy IR (Figure 1A). Treatment with CDDP prior to IR decreased 

cell survival, with the greatest cytotoxicity occurring when CDDP was administered 6 hours 

prior to IR in both H460 and A549 cells (Figure 1B and C). Importantly, treatment with 

CDDP following IR (3 hours later) resulted in no additional cytotoxicity compared to 

treatment with CDDP alone (Figure 1B and C). This indicates that CDDP–induced 

radiosensitization of H460 and A549 is sequence dependent, requiring treatment with CDDP 

prior to IR, effectively recapitulating the clinical observation in NSCLC.

3.2. Combination CDDP-IR treatment both induces and delays the resolution of γ-H2Ax 
foci

Having established a clinically relevant combination treatment model for NSCLC, we 

sought to understand the mechanism of CDDP-induced radiosensitization. We investigated 

how CDDP treatment impacts the DDR when given in combination with IR (CDDP-IR). We 

first ch aracterized the effect of CDDP-IR treatment on DNA damage by determination of 
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H2Ax phosphorylation (γ-H2Ax) foci formation and morphology by immunofluorescence 

microscopy. Treatment of H460 cells with CDDP (4 μM), IR (1.5 Gy), or CDDP-IR each 

resulted in nuclear H2Ax phosphorylation at 30 minutes (Figure 2A). Consistent with 

previously published data, the morphologic appearance of the γ-H2Ax foci was dependent 

on the type of DNA damage induced by each treatment.35 IR treatment alone of H460 cells 

resulted in the development of large, distinct, punctate nuclear foci of γ-H2Ax staining. In 

contrast, CDDP treatment resulted in smaller, less distinct foci with more diffuse nuclear 

staining. Interestingly, treatment with CDDP-IR led to a nuclear γ-H2Ax pattern with 

characteristics of both CDDP and IR treatment when imaged 30 minutes post-IR. However, 

by 24 hours post-IR, treatment with CDDP-IR resulted in a persistence of foci which had a 

morphologic appearance of larger, more distinct foci, most similar to those formed early 

after IR treatment (Figure 2A). Similar morphologic changes were observed in A549 cells 

(Supplemental Figure S2).

Quantification of our immunofluorescence results revealed an increase in γ-H2Ax positive 

H460 cells 30 minutes after treatment with IR alone and combination CDDP-IR (Figure 2B). 

Treatment with CDDP-IR did not result in an increase in γ-H2Ax positive cells or higher γ-

H2Ax foci per cell when compared to those cells treated with IR alone when measured at 30 

minutes (Figure 2B and C). However, cells treated with CDDP-IR displayed persistent γ-

H2Ax foci at 24 hours when compared to those treated with IR alone, which by 24 hours 

displayed γ-H2Ax foci at background levels (Figure 2B). These results were mirrored in 

A549 cells, which also show ed similar numbers of γ-H2Ax positive cells early after 

treatment with IR and CDDP-IR and persistence of γ-H2Ax foci in only CDDP-IR treated 

cells (Supplemental Figure S2). Measurement of γ-H2Ax positive cells by flow cytometry 

confirmed 24 hour persistence of γ-H2Ax positive H460 cells in those treated with CDDP-

IR, but not in those treated with IR alone (Supplemental Figure S3). We also show that 

CDDP-IR treatment causes persistent 53BP1 foci at 30 minutes (data not shown) and at 24 

hours (Figure 2D). The 53bp1 foci co-localize with γ-H2Ax foci, further supporting the 

formation of persistent DSBs with combination cisplatin-IR treatment.

3.3. NSCLC cells treated with CDDP-IR are able to bypass CDDP-induced G2 arrest

DNA damage caused by both CDDP and IR are known to induce cell cycle checkpoint 

activation and cell cycle arrest in the G2 phase.30,36–38 Because cell cycle regulation is 

essential for determination of cell fate and is a measure of the DDR independent of γ-H2Ax, 

we determined the effect of treatment on our NSCLC model system. As expected, H460 

cells treated with IR (1.5 Gy) alone showed a prominent G2 arrest at 6 hours and the 

majority of cells were able to progress through mitosis by 24 hours. Treatment with CDDP 

(4μM) alone caused a later G2/M arrest at 24 hours, as has been described.30,37,38 

Surprisingly, though a G2 arrest was observed 6 hours following CDDP-IR treatment 

(consistent with that observed in cells treated with IR alone), most cells treated with CDDP-

IR were able to complete mitosis and were in G1 phase at 24 hours, behaving in a similar 

fashion to those treated with IR alone (Figure 3A and B). These findings confirm that 

persistence of γ-H2Ax foci in CDDP-IR treated NSCLC cells is not due to increased DNA 

content associated with G2 phase arrest and that these cells treated with CDDP-IR can 

effectively bypass the CDDP-induced G2 arrest.
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3.4. Induction of early but not late γ-H2Ax foci is dependent on ATM activation in IR-treated 
H460 cells

To investigate the mechanism of the DDR pathway activation and its role in persistence of γ-

H2Ax foci in CDDP-IR treated NSCLC cells, we assessed DDR kinase activation following 

treatment. B ecause of the important roles they play in initiating the DDR, phosphorylation 

of the early (sensor) kinase ATM (pATM) and activation by phosphorylation of the 

downstream effector proteins Chk2 (pChk2) and Chk1 (pChk1) were measured. We first 

selected a higher IR treatment dose (6 Gy), since pilot data in H460 cells showed that co-

treatment with CDDP (4μM) and lower IR doses (1.5 Gy) caused only mild changes in 

measured DDR as measured by Western blotting for phosphorylated ATM and Chk2 in 

H460 cells (Supplemental Figure S4). As expected, treatment with IR and CDDP-IR caused 

an increase in the phosphorylation of ATM and Chk2. We also observed a time-dependent 

decrease in their phosphorylation (Figure 4A). Treatment with CDDP at this dose did not 

significantly alter ATM or Chk2 phosphorylation, but, as expected, did show a mild increase 

in Chk1 phosphorylation at 6 and 24 hours (Figure 4A). The analyses of combination 

CDDP-IR treatment at 6 and 24 hours post-treatment showed no significant differences in 

the magnitude, timing, or duration of ATM or Chk2 phosphorylation when compared to 

treatment with IR alone (Figure 4A). Gamma-H2Ax expression, as measured by Western 

blot densitometry, was increased in CDDP, IR and CDDP-IR treated cells when compared to 

untreated control cells (Figure 4A). There was a statistically significant increase in γ-H2Ax 

expression in IR and CDDP-IR treated cells 30 minutes after IR treatment, which was 

reduced by 6 hours (p<0.001, Figure 4B). Measurement of the kinetics of 53BP1 

phosphorylation (a specific marker of DNA DSBs) was increased 30 minutes after both IR 

and CDDP-IR treatment and remained elevated at 6 hours only in CDDP-IR treated cells 

(Figure 4C), suggesting a possible persistence of DSBs in CDDP-IR treated cells but not in 

cells treated with IR alone.

In order to further interrogate the role of the DDR in CDDP-IR toxicity, we manipulated the 

DDR pathways via pharmacologic inhibition. KU-55933 is a highly specific and potent ATP 

competitive inhibitor of ATM.25 Treatment of H460 cells with 10 μM KU-55933 was chosen 

for these assays, as this dosage has been previously shown to cause radiosensitization in 

H460 and A549 cells.10,39 As expected, treatment with KU-55933 resulted in inhibition of 

ATM phosphorylation as measured by Western blot analysis as well as decreased 

phosphorylation of the ATM-activated DDR protein, Chk2 (Figure 5A). Treatment with 

KU-55933 resulted in an altered early (30 minutes post-IR) DDR in cells treated with 

CDDP-IR and IR alone, but not in those treated with CDDP alone (Figure 5A). KU-55933 

also decreased early IR and CDDP-IR induced pChk1, which is consistent with ATM-

dependent activation of Chk1 early after IR treatment (Figure 5A). Treatment with 

KU-55933 also decreased 53BP1 phosphorylation early (30 minutes) following IR in cells 

treated with either CDDP-IR or with IR alone (Figure 5A and B). However, treatment with 

KU-55933 resulted in increased phosphorylation of Chk1 in all treated cells at 24 hours, 

which suggests late activation of the ATR pathway.

We wished to further investigate the role of ATM inhibition on the CDDP-IR induced DDR, 

ag ain evaluating γ-H2Ax foci development over time by immunofluorescence microscopy 
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following treatment with CDDP, IR or CDDP-IR in the presence of KU-55933. Because of a 

redundant kinase role in IR-induced H2Ax phosphorylation,21 we also treated cells with the 

DNA-PK inhibitor, NU7441, at a dose previously shown to inhibit DSB repair.30,33 The 

ATM inhibitor, KU-55933, impaired γ-H2Ax foci formation in H460 cells early after IR 

treatment alone (Figure 5C and D, ATMi). ATM inhibition also resulted in fewer γ-H2Ax 

foci in CDDP-IR treated cells (Figure 5D), with the remaining nuclear γ-H2Ax expression 

more closely resembling cells treated with CDDP alone, illustrating smaller, less distinct 

foci (Figure 5C). Those treated with CDDP alone showed no alteration in γ-H2Ax 

appearance or in the number of γ-H2Ax positive cells when treated with KU-55933 (Figure 

5C and D). These results confirm specificity of ATM to early γ-H2Ax foci development by 

IR-induced DSBs. When imaged at 24 hours, the ATM inhibitor, KU-55933, did not inhibit 

persistent γ-H2Ax foci in cells treated with CDDP and CDDP-IR (Figure 5C and D). 

Treatment with the DNA-PK inhibitor, NU7441, did not significantly alter the early or late 

γ-H2Ax response to treatment with CDDP, IR or CDDP-IR (Figure 5C and E). Inhibition of 

both ATM (KU-55933) and DNA-PK (NU7441) resulted in a statistically significant 

decrease in early but not late γ-H2Ax foci in IR and CDDP-IR treated H460 cells (Figure 5F, 

p<0.05). Similar results were obtained by quantifying average foci per nucleus 

(Supplemental Figure S5) and in A549 cells (not shown). Together, the data indicate that 

ATM is essential to the early DDR to CDDP-IR treatment, with induces H2Ax 

phosphorylation in response to DSBs. However, persistence of γ-H2Ax foci in CDDP-IR 

treated cells is not dependent on ATM or DNA-PK activation.

3.5. ATR sensitization to CDDP and combination CDDP-IR treatment is independent of 
early DDR

ATR has been shown to be particularly active in the DDR to CDDP treatment,21 and our 

Western blot data suggest a potential role for ATR in the late damage response, particularly 

in cells treated with an ATM inhibitor (Figure 5A). Therefore, we assessed the effect of ATR 

inhibition using the ATR inhibitor, VE-821. Pre-treatment with VE-821 two hours prior to 

IR and for 24 hours after IR treatment was performed at 10 μM, as has been recently studied 

and shown to modify the chemotherapeutic response to CDDP.40 Treatment with VE-821 at 

this dose was highly specific to inhibition of ATR, as the level of Chk1 phosphorylation, but 

not pATM or pChk2, was decreased early (30 minutes) after treatment with CDDP, IR and 

CDDP-IR (Figure 6A). Additionally, treatment with VE-821 did not alter 53BP1 

phosphorylation in IR and CDDP-IR treated H460 cells, which demonstrates that ATR 

inhibition by VE-821 did not alter the early DDR to IR-induced DSBs (Figure 6A). A late 

increase in ATM and Chk2 phosphorylation was observed in all cells 24 hours after 

treatment with VE-821, along with a decrease in total Chk1, which suggests late activation 

of the ATM-dependent DDR pathways following ATR inhibition (Figure 6A).

In order to evaluate for alterations in response to VE-821 in H460 and A549 cells, we next 

investigated the effects of ATR inhibition of γ-H2Ax formation, as measured by 

immunofluorescence. Treatment with VE-821 did not inhibit γ-H2Ax formation in IR-

treated cells, but decreased the number of nuclei positive for γ-H2Ax in CDDP treated cells 

at the early (30 minutes) time point (Figure 6B and C). However, early γ-H2Ax foci were 

still present with ATR inhibition in CDDP-IR treated cells, although the appearance was 
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now punctate, with an appearance similar to cells treated with IR alone (Figure 6B). There 

was an increase in γ-H2Ax foci formation at 24 hours after treatment with CDDP and IR 

which did not reach statistical significance (Figures 6C and D); however, this effect was also 

observed in control cells treated with VE-821 at 24 hours, indicating that this effect is likely 

due to single-agent toxicity from VE-821. This suggests considerable cross-talk of DNA 

damage response pathways in H2Ax phosphorylation, as was also suggested by our Western 

blot analysis (Figure 6A). These results were confirmed in A549 NSCLC cells, with similar 

effects of ATR inhibition by VE-821 on γ-H2Ax nuclear staining observed in this NSCLC 

cell line (Supplemental Figure S6).

We next sought to determine the effect of VE-821 on NSCLC survival using clonogenic 

survival assays. Treatment of H460 cells with VE-821 resulted in dose-dependent single-

agent toxicity (data not shown) and the LD10 dose (0.5 μM) was chosen for these assays. 

Treatment with VE-821 resulted in a dramatic sensitization of H460 cells, with 8 and 5.7 

fold reduction in survival observed with VE-821 treatment over CDDP treatment alone 

(Figure 6E). Further cytotoxicity was observed in cells treated with CDDP-IR, with an 8.3 

and 5.8 fold reduction in survival observed (Figure 6E). These results were independent of 

CDDP dose, as these effects were observed in H460 cells treated with 4 μM (LD50), 2μM 

(Figure 6E) and 0.5μM (data not shown) doses of CDDP as well. Evaluated independently, 

the decreased survival observed with the addition of VE-821 to IR treatment was not 

statistically significant, but combining the results of the six experiments resulted in a modest 

but statistically significant decrease in survival (p<0.05). However, in A549 cells, no 

increased cytotoxicity was observed with the addition of VE-821 across a number of 

different CDDP and VE-821 doses (data not shown). As both of these cells lines are p53 

wild-type, and published data suggest that p53 mutational status can impact ATRi 

sensitization to chemotherapeutics,41,42 we assessed the effect of ATR inhibition on CDDP-

IR sensitization in the p53 mutant NSCLC cell line, H1299. Interestingly, treatment of 

H1299 with VE-821 in combination with CDDP, IR and CDDP-IR gave results similar to 

those observed in A549 cells over a range of doses of VE-821 and CDDP (data note shown). 

Overall, these findings support that CDDP radiosensitization and the observed persistence of 

CDDP-IR induced DSBs is not directly dependent on ATR activation.

4. Discussion

Treatment of NSCLC with CDDP and IR remains a mainstay of therapy, but even with 

adherence to the best identified treatment regimens, survival remains low.3,4,43 Clarifying 

the cooperative interaction between CDDP and IR in NSCLC is essential to optimize current 

treatment regimens and to determine mechanisms which can be exploited to augment cancer 

toxicity. Our data support radiosensitization by CDDP in H460 and A549 NSCLC cells, 

which effectively recapitulates the clinical response to concomitant CDDP and IR 

treatment.5–8 The temporal nature of this interaction suggests that CDDP treatment primes 

the cell to IR-induced toxicity. Supporting our data are several studies which suggest a clear 

role for CDDP impairing DNA DSB repair. For instance, a deficiency in repair of CDDP 

lesions on DNA augments CDDP radiosensitization.17,28,29 Additionally, treatment of 

NHEJ-deficient cells with CDDP-IR show increased toxicity, but no longer show a 

synergistic interaction, highlighting the importance of NHEJ catalyzed DSB repair to the 
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cooperative cytotoxicity of CDDP-IR co-treatment.17,28 We attribute this CDDP 

radiosensitization to an increase in CDDP residence time on the DNA such that upon 

treatment with IR there are increased opportunities for complex DNA damage. Additional 

support for CDDP inhibition of NHEJ-dependent DSB repair includes findings that CDDP 

lesions are able to inhibit translocation of Ku at DNA ends and are also able to inhibit DNA-

PK activation.44,45 Furthermore, the presence of a CDDP lesion impairs NHEJ-dependent 

repair of adjacent DNA termini, suggesting CDDP inhibition of NHEJ-dependent repair of 

an adjacent IR-induced DSB as a potential mechanism for CDDP radiosensitization.17,30,31

Although typically a measure of DSBs, H2Ax phosphorylation has been described in 

response to other DNA damaging agents, including CDDP, and the differences in γ-H2Ax 

foci morphology we observed 30 minutes following CDDP and IR treatment are consistent 

with previously published work.19,35 Our study showed no difference at 30 minutes in the 

number of cells expressing γ-H2Ax foci or in the number of foci formed in NSCLC cells 

treated with IR alone compared to cells treated with CDDP-IR. This would seemingly 

contradict the findings of Sak et al, who described a decrease in γ-H2Ax foci formation in 

peripheral blood lymphocytes obtained from patients treated with CDDP and then exposed 

to IR in vitro.46 Our model uses NSCLC cells treated with clinically relevant doses of 

CDDP-IR. It is not surprising that the DDR induced by CDDP-IR differs between peripheral 

blood lymphocytes and clonally proliferating H460 and A549 NSCLC cells, which display 

the unchecked proliferation and cell cycle regulation characteristic of malignant cells. It is 

interesting that treatment of NSCLC cells with CDDP-IR in our treatment model caused 

abrogation of the CDDP-induced G2 arrest. While the mechanism behind is not fully 

defined, this is likely caused by the different kinetics of IR- and CDDP-induced DDR on cell 

cycle progression. As other agents that are able to abrogate chemotherapeutic-induced G2 

arrest have demonstrated increased cytotoxicity, we suspect that this likely contributes to the 

increased cytotoxicity of CDDP-IR treatment.

The temporal difference in γ-H2Ax foci morphology observed in H460 and A549 at 30 

minutes and 24 hours after CDDP-IR treatment is novel. Importantly, we are the first to 

describe persistence of γ-H2Ax foci only in those treated with CDDP-IR as compared to IR 

alone. This finding is critical, as persistence of γ-H2Ax positivity 24-hours following CDDP 

treatment correlates to reduced overall survival following CDDP and IR treatment.19,47,48 

Measurement of γ-H2Ax via Western blot did not reveal a significant difference in intensity 

between cells treated with IR and CDDP-IR at 24 hours. This is consistent with publications 

showing that the relative intensity of γ-H2Ax as measured by Western blot does not correlate 

to the functional importance of γ-H2Ax when treated with DNA damaging agents.35 

However, phosphorylation of 53BP1, a specific marker of DNA DSBs, was prolonged in 

CDDP-IR treated cells as compared to IR alone (Figure 4C), which would support a 

mechanism by which CDDP-IR treatment leads to persistence of DNA DSBs. Further 

supporting this mechanism is the finding that γ-H2Ax foci observed in CDDP-IR treated 

NSCLC cells at 24 hours displayed a punctate appearance, similar to those observed 30 

minutes after IR treatment alone, and our observation that these persistent, punctate γ-H2Ax 

foci overlay with 53BP1 foci (Figure 2D). At least two possible mechanisms could explain 

this phenomenon. First, as the presence of a CDDP-DNA lesion in close proximity to a DSB 

impairs NHEJ-dependent DSB repair,30 it is possible that each of these γ-H2Ax foci 
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represents an unresolved CDDP-DSB lesion. While the number of γ-H2Ax foci persisting at 

24 hours is likely more than could be explained by the random distribution of complex 

CDDP-DSB lesions, the presence of a CDDP lesion could differentially influence the 

position of DSB distribution so that complex CDDP-DSB lesions are more frequent than 

would be expected by random distribution, leading to persistent γ-H2Ax foci at the site of 

unrepaired DSBs. This is supported by studies suggesting CDDP causes differential 

distribution of DSBs following treatment with IR and bleomycin49,50 and an increased 

number of IR-induced DSBs51, although this remains controversial.52 Additionally, H460 

cells treated with CDDP-IR were able to progress through the G2/M checkpoint prior to the 

G2 arrest induced by CDDP treatment alone (Figure 3). It is known that daughter cells 

inherit residual γ-H2Ax foci,48 but this alone does not explain γ-H2Ax persistence following 

CDDP-IR, as treatment with IR caused similar progression through the cell cycle as 

treatment with CDDP-IR, but with resolution of γ-H2Ax foci. Progression through the cell 

cycle without repair of the CDDP-DNA lesions could result in the development of complex 

CDDP-DSBs at the site of stalled replication forks or non-DSB cluster lesions (comprised of 

two or more DNA SSBs on opposing DNA strands) in close proximity to CDDP lesions, as 

has recently been suggested by Sahbani et al.52 These findings further support a potential 

mechanism by which cooperative cytotoxicity observed in CDDP-IR treated NSCLC cells is 

caused by persistence of DNA DSBs.

Our data show that persistence of γ-H2Ax foci in CDDP-IR treated NSCLC cells occurs 

independently of persistent or prolonged activation of the sensory and effector DDR kinases, 

including pATM, pChk1 and pChk2. However, activation of the sensor DDR kinases, ATM 

and ATR, is important in the early γ-H2Ax response to CDDP, IR and CDDP-IR treatments. 

As expected, inhibition of ATM (KU-55933) impairs IR-induced γ-H2Ax foci development 

and inhibition of ATR (VE-821) specifically impairs CDDP-induced γ-H2Ax staining. Here 

we show that both ATM and ATR inhibitors cause distinct alterations in γ-H2Ax nuclear 

staining patterns in CDDP-IR treated cells by inhibition of the early IR- or CDDP-specific 

staining patterns respectively. However, both KU-55933 and VE-821 failed to inhibit γ-

H2Ax foci persistence in CDDP-IR treated cells, again highlighting the importance of 

CDDP to IR sensitization and supporting cross-activation of DDR pathways.21 Synergy 

between VE-821 and CDDP has been previously reported23,24 and treatment with the ATR 

inhibitor VE-821 at a dose resulting in low single-agent toxicity resulted in selective synergy 

in H460 cells treated with CDDP and CDDP-IR with only a moderate decrease in survival in 

those treated with IR alone, consistent with an ATR-dependent DDR by CDDP.21 However, 

treatment of A549 and H1299 NSCLC cells with VE-821 did not result in synergy with 

CDDP or CDDP-IR. Variable responses of cancer cells to VE-821 have been described, and, 

at least in part, ascribed to differences in ATM-p53 activation.41,42 However, our model 

showed a lack of sensitization in a p53 wild-type (A549) and mutant (H1299) cell lines. 

Many additional factors have been shown to impact VE-821 chemo- and radiosensitization, 

including duration of VE-821 dosing, with longer treatment associated with decreased 

survival,53 and other measures of cytotoxicity such as MTT, have been used to support these 

findings. Our findings are consistent with the large variability in chemosensitization 

observed with ATR inhibitors, which are likely due to a combination of differences in cancer 

cell characteristics, treatment conditions and outcome measures in vitro. However, 

Sears et al. Page 11

DNA Repair (Amst). Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



persistence of γ-H2Ax foci in CDDP-IR treated cells is independent of sensitization by ATR 

inhibition, which further supports a mechanism by which CDDP radiosensitization is due to 

impaired DSB repair and independent of the impact of DDR activation by CDDP-IR 

treatment.

5. Conclusion

In conclusion, our data indicate that the cooperative cytotoxicity observed with CDDP and 

IR treatment is sequence dependent, requiring treatment with CDDP prior to IR. 

Combination treatment with CDDP followed by IR leads to persistence of γ-H2Ax foci at 24 

hours, which persist even with inhibitors of the DDR sensor kinases, ATM, ATR and DNA-

PK. This supports a mechanism by which CDDP-IR cytotoxicity is due to persistence of 

unrepaired DSBs. The further characterization of CDDP radiosensitization and the role of 

DDR sensor kinase inhibitors in NSCLC CDDP-IR cytotoxicity are important and timely. 

Selection of ATM and ATR inhibitors based on the specific type of DNA damaging 

treatment and identified genetic make-up of the tumor may lead to optimization of tumor-

specific cytotoxicity, particularly as ATR inhibitors are entering early clinical trials (Clinical 

Trials.gov: NCT02157792 and NCT02223923). Our results signal the need for further 

evaluation of VE-821 and similar drugs to identify specific tumor characteristics which 

would predict response to these therapies. Furthermore, it supports a potential role of small 

molecular inhibitors of proteins involved in NER and HRR, the primary pathways involved 

in repair of CDDP lesions on DNA, in potentiation of CDDP-IR cytotoxicity.
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Abbreviations

NSCLC non-small cell lung cancer

CDDP cisplatin

IR ionizing radiation

CDDP-IR combination treatment with cisplatin followed by ionizing radiation

DDR DNA damage response

DSB double strand break

NER nucleotide excision repair
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HRR homologous recombination repair

NHEJ non-homologous end-joining
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Highlights

• Combination cisplatin–radiation causes sequence dependent cytotoxicity in non-

small cell lung cancer

• Treatment with combination cisplatin-ionizing radiation results in persistent 

DNA double strand breaks

• Cells treated with ionizing radiation following cisplatin abrogate cisplatin 

mediated G2 arrest

• Persistence of DNA double strand breaks caused by cisplatin-radiation therapy 

is independent of early DNA damage response kinases
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Figure 1. Differential Radiosensitization is Dependent on Time from Cisplatin Treatment
A schematic shows the treatments and time-course used to determine survival with CDDP-

IR combination treatment (A). Clonogenic survival assays were used to determine cell 

survival in H460 (B) and A549 (C) NSCLC cells treated with CDDP (4 μM, 2 hours) at 

various time intervals from IR. Treatment with CDDP was 2, 6 or 24 hours before (−2, −6, 

−24) or 3 hours after (+3) IR treatment. N=3, mean +/− SD. *p<0.05, **p<0.001 compared 

to CDDP. ‡p<0.05, ‡‡p<0.001 compared to IR. #p<0.05, ##p<0.001 compared to +3
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Figure 2. Persistence of γ-H2Ax foci in Cisplatin-IR treated cells by Immunofluorescence
Representative fluorescence microscopy images for the indicated treatments and time-points 

(A), show differences in γH2Ax IF pattern. 100× magnification. Size bar = 5 μm. γ-H2Ax 

foci were quantified and the % cells with > 10 foci (B) and number of foci per nucleus (C) 

are plotted by time from IR for each of the treatments in H460 cells. N=3 biological 

replicates for each, +/− SEM. Differences are statistically significant in CDDP-IR treated 

cells when compared to CDDP (*) and IR (‡) using p<0.05. Representative fluorescence 

microscopy images show γ-H2Ax (green), 53BP1 (red) staining and an overlay of both in 

H460 cells 24-hours after treatment with combination CDDP-IR (D).
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Figure 3. Cisplatin-IR treated H460 cells are able to bypass cisplatin-induced G2-arrest
Representative histogram plots (A) and quantification of these results (B) in H460 cells 

treated with CDDP, IR or CDDP 2 hours prior to IR. N=3. Results are shown as percent cells 

in G2/M phase +/− SEM. *p<0.05, **p<0.01, #p<0.001.
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Figure 4. DNA damage response to DNA damaging agents over time
Representative immunoblots (A) show the DDR over time following treatment of H460 cells 

with CDDP, IR and CDDP-IR. Quantification of pATM (A), γ-H2Ax (B) and P53BP1 (C) 

expression by Western blot was controlled to vinculin expression and is shown as fold-

change over the untreated control +/− SEM. #p<0.001 compared to Time 0 for each 

treatment type.
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Figure 5. Effects of ATM inhibition on DNA damage response and γ-H2Ax foci formation
A representative immunoblot with vinculin used as a loading control (A) shows the impact 

of ATM inhibition following treatment with the ATM inhibitor, KU55933, on the DDR 

initiated by the treatments shown. Effect on the DDR is shown early (30 minutes) and late 

(24 hours) after IR/mock treatment with mean fold change in pATM expression shown 

above the immunoblot. Quantification of P53BP1 expression as a measure of treatment and 

time from IR is shown as fold-change over the untreated control (B). Representative 

fluorescence microscopy images of H460 cells are shown for the indicated treatments and 

time-points (C). Quantification of early and late γ-H2Ax-positive H460 cells treated with 

KU-55933 (ATMi; D), NU-7441 (DNA-PKi; E) and both inhibitors (F). 100× magnification. 

Size bar = 5 μm. *p<0.05, ‡ p<0.05 compared to untreated control.
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Figure 6. Impact of ATR inhibition on DNA damage response, γ-H2Ax foci formation and 
cytotoxicity
A representative immunoblot with vinculin used as a loading control (A) shows the impact 

of ATR inhibition (VE-821) on the early (0.5 hours) and late (24 hours) DDR to the 

indicated treatments in H460 cells. pATM fold change shown above the immunoblot (A). 

Representative fluorescence microscopy images of H460 cells are shown for the indicated 

treatments and time-points (B). 100× magnification, size bar = 5 μm. Quantification of γ-

H2Ax positive H460 cells (C) and number of γ-H2Ax foci per nucleus (D) are shown for 

H460 cells treated with VE-821 (ATRi, striped bars) early (0.5 hours) and late (24 hours) 

after the indicated treatments. *p<0.05, ‡ p<0.05 compared to untreated control. Survival of 

H460 cells, as measured by clonogenic survival assay, are shown for the indicated 

combination treatment groups in the presence (hashed bars) or absence (solid bars) of the 

ATR inhibitor, VE-821 (E). Cell survival is shown in H460 cells treated with 4μM and 2 μM 
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CDDP. Results are presented as average percent survival compared to control (vehicle) 

treatment +/− SEM. *p<0.05, **p<0.01, #p<0.001.
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