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Abstract

Composite fibrous electrospun membranes based on poly(DL-lactide) (PLA) and poly(ε-

caprolactone) (PCL) were engineered to include borate bioactive glass (BBG) for the potential 

purposes of guided bone regeneration (GBR). The fibers were characterized using scanning and 

transmission electron microscopies, which respectively confirmed the submicron fibrous 

arrangement of the membranes and the successful incorporation of BBG particles. Selected 

mechanical properties of the membranes were evaluated using the suture pullout test. The addition 

of BBG at 10 wt.% led to similar stiffness, but more importantly, it led to a significantly stronger 

(2.37±0.51 N*mm) membrane when compared to the commercially available Epiguide® 

(1.06±0.24 N*mm) under hydrated conditions. Stability (shrinkage) was determined after 

incubation in a phosphate buffer solution from 24 h up to 9 days. The dimensional stability of the 

PLA:PCL-based membranes with or without BBG incorporation (10.07-16.08%) was similar to 

that of Epiguide® (14.28%). Cell proliferation assays demonstrated a higher rate of pre-osteoblasts 

proliferation on BBG-containing membranes (6.4-fold) over BBG-free membranes (4-5.8-fold) 

and EpiGuide® (4.5-fold), following 7 days of in vitro culture. Collectively, our results 

demonstrated the ability to synthesize, via electrospinning, stable, polymer-based submicron 

fibrous BBG-containing membranes capable of sustaining osteoblastic attachment and 

proliferation—a promising attribute in guided bone regeneration.

Introduction

Periodontitis, a chronic inflammatory disease affecting the gingiva, periodontal ligament, 

cementum, and underlying alveolar bone, is the leading cause of tooth loss in adults. Indeed, 

according to the literature, the prevalence of varying degrees of periodontitis in the United 
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States has been estimated to affect 47.2 percent of the adult population, or 64.7 million 

American adults.1

Current treatment strategies for patients suffering from moderate-to-severe periodontal 

destruction often result in some form of periodontal repair; however, the goal should be the 

de novo regeneration of lost periodontal tissues, including the formation of gingiva, alveolar 

bone, a functionally-oriented periodontal ligament (PDL), and cementum.1-2 Regeneration 

of periodontal defects has been achieved following the principle of tissue exclusion, termed 

guided tissue regeneration (GTR), when planned around root surfaces, or guided bone 

regeneration (GBR), when discussing bone defects at potential implant sites. Regenerative 

procedures typically involve utilization of a barrier membrane to prevent more rapidly 

growing epithelial tissue from migrating into the defect, allowing adequate time for the 

formation of PDL, cementum, and bone.1-6

Existing GTR/GBR membranes are often composed of synthetic polymers, which may be 

non-resorbable (i.e., polytetrafluoroethylene, PTFE) or resorbable (e.g., poly(lactide), PLA, 

and poly(ε-caprolactone), PCL). Additionally, membranes may be composed of natural 

polymers (e.g., collagen) combined or not combined with synthetic ones.7-14 Even though 

several studies have shown that non-resorbable membranes are capable of demonstrating 

structural stability while providing an adequate environment for periodontal regeneration,15 

the need for a secondary surgery for membrane removal still represents a significant 

drawback. On the other hand, intrinsic problems with the available resorbable polymer-

based synthetic membranes include poor membrane stability and bone regenerative capacity. 

These problems may be due to the relatively rapid degradation, shrinkage, and collapse of 

the membrane, which, in turn, might limit new bone formation.14

Electrospinning is a process by which micro/nanofibers can be formed from a viscous 

polymer solution exposed to an electric field.14,16 Although widely used in tissue 

engineering applications,14 biocompatible PLA electrospun meshes have displayed a high 

degree of shrinkage.17-18 Importantly, Xu et al. demonstrated that combining PLA and PCL 

at certain ratios may control overall shrinkage,19 which might enable its application as a 

GTR/GBR membrane.

In recent years, the incorporation of a wide variety of bioceramics into polymer-based 

scaffolds has demonstrated great potential toward the development of bioactive membranes 

for periodontal regeneration. Co-electrospinning hydroxyapatite with collagen and/or 

synthetic polymers led to improved bioactivity, greater cell adhesion, and proliferation.20-22 

Another promising material that has been used in conjunction with polymer scaffolds is 

bioactive glass, which has the potential to induce bone formation, osteogenic proliferation, 

and activation of gene expression.23-26 Regrettably, one of the shortcomings of bioactive 

glass is its slow degradation. Interestingly, the partial or full replacement of silica with 

borate allows for greater control over the degradation rate, which is essential for bone 

regeneration.27

In the present work, borate bioactive glass (BBG) containing PLA:PCL polymer membranes 

was prepared via electrospinning. Morphological, chemical, and mechanical properties of 
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the membranes were studied in detail. In addition, membrane stability (i.e., shrinkage) over 

time was evaluated as a function of PCL incorporation. Lastly, preosteoblasts were cultured 

on the membranes to assess whether the addition of BBG could increase in vitro cell 

proliferation potentially for purposes of guided bone regeneration.

Materials and Methods

Materials

Poly(DL-lactide) (PLA, inherent viscosity 0.55–0.75 dL/g in CHCl3) and poly(ε-

caprolactone) (PCL, inherent viscosity 1.29 dL/g in CHCl3) were purchased from Lactel 

Absorbable Polymers (Durect Corporation, Birmingham, AL, USA). BBG micron-sized 

particles with an average diameter of 1.2 μm were donated from the Mo-Sci Corporation 

(Cat.#1550P, Batch #101, Rolla, MO, USA). 1,1,1,3,3,3-hexafluoro-2-propanol (HFP) was 

used as the solvent (Sigma-Aldrich, St. Louis, MO, USA). EpiGuide®, a commercially 

available PLA-based resorbable periodontal membrane, was purchased from RIEMSER 

Pharma GmbH (Research Triangle Park, NC, USA) and used for comparative purposes.

Preparation of electrospun membranes

PLA and PCL were individually dissolved under stirring conditions in HFP to obtain 200 

mg/mL and 100 mg/mL solutions, respectively. A 50:50 (v/v) polymer blend was obtained 

by mixing equal amounts of pure PLA and PCL solution into a fresh vial via pipetting. BBG 

was added to the PLA:PCL blend at two distinct concentrations (i.e., 5 and 10 wt.%, relative 

to the total polymer mass). A two-step method was used to obtain the BBG-containing 

PLA:PCL membranes. In brief, after the PLA:PCL blend preparation, BBG particles were 

added and sonicated (90 min) to ensure good particle dispersion.28 Table I provides the 

optimized electrospinning parameters for the distinct membranes processed. The membranes 

were electrospun using a system consisting of a high-voltage source (ES50P-10W/DAM, 

Gamma High-Voltage Research Inc., Ormond Beach, FL, USA), a syringe pump (Legato 

200, KD Scientific Apparatus, Holliston, MA, USA), and a grounded stainless steel 

collecting drum (ϕ = 4 cm) connected to a high-speed mechanical stirrer (BDC6015, 

Caframo, Georgian Bluffs, ON, Canada).28 The distinct solutions were individually loaded 

into a plastic syringe fitted with a 27-gauge stainless steel needle and electrospun directly 

onto an aluminum foil-covered rotating mandrel. The fibers were collected at room 

temperature (RT). Samples were kept at RT for 2 days in a vacuum desiccator to remove any 

residual solvent.28

Membrane morphological and chemical characterizations

The fiber morphology and diameter of the resultant electrospun membranes was examined 

via scanning electron microscopy (SEM, JSM-5310LV, JEOL, Tokyo, Japan). Fiber 

morphology was imaged at 5 keV after mounting and sputter coating with Au. The mean 

fiber diameter (n=90) from three different images at the same magnification was calculated 

using ImageJ 1.40G software (National Institutes of Health, Bethesda, MD, USA).28 

Transmission electron microscopy (TEM, FEI Tecnai G20, FEI Co., Hillsboro, OR, USA) 

was also used to investigate the incorporation and distribution of BBG on electrospun 

PLA:PCL fibers. In brief, fibers composed of distinct electrospun fibrous membranes were 
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individually collected directly onto carbon-coated TEM grids during electrospinning. 

Additionally, energy-dispersive X-ray spectroscopy (EDS, EDAX/Ametek, Berwyn, PA, 

USA) was performed to assess the elemental composition of each electrospun membrane 

and the BBG used.

Mechanical suture pullout strength

Membrane tear resistance (n=4-6/group) was assessed using a suture pullout test under dry 

and wet conditions (i.e., PBS incubation for 24h at 37°C), since the mechanical behavior 

after hydration is of significant importance in predicting the in vivo clinical performance of 

the membrane.14,28 The samples were cut (40 mm × 10 mm) and the thickness was 

measured (Mitutoyo Digimatic Caliper; Mitutoyo Corporation, Tokyo, Japan) at three 

distinct positions. The samples' measurements were averaged and entered into the testing 

machine (Expert 5601®, ADMET, Norwood, MA, USA) software (Quattro®).29 The 

electrospun membranes were compared to EpiGuide®. A monofilament 2-0 suture (PDS II, 

Ethicon Z-317H) was placed 5 mm from the top edge and 5 mm from each side. The suture 

was affixed to the testing machine clamp but left unknotted. Testing was carried out at a 

crosshead speed of 1 mm/min.30 Three distinct mechanical properties (i.e., peak load, 

stiffness, and energy to break) were recorded or determined from the load-position curves.

In vitro dimensional stability

The electrospun membranes (n=3), as well as EpiGuide®, were cut into squares (10 × 10 

mm2) and incubated at 37°C in PBS (2 mL) for up to 9 days. The samples were washed with 

distilled water and dried at RT for 24 h prior to surface area measurement. Dimensional 

stability (i.e., shrinkage) ratios of the electrospun membranes before and after incubation 

were used to obtain shrinkage rates of the samples.

In vitro osteoblast culture and cell proliferation assay

Five groups of electrospun membranes (i.e., pure PLA, pure PCL, PLA:PCL with no BBG, 

PLA:PCL+5 wt.%BBG, PLA:PCL+10 wt.%BBG), and EpiGuide® were studied. The fibers 

were electrospun onto glass cover slips (ϕ=12 mm) using modification of the 

aforementioned procedure. Samples (n=4) were exposed to UV light for 15 min and placed 

into wells of 24-well plates. Glass cover slips were stabilized with plastic cell crowns 

(CellCrown™, Scaffdex, Tampere, Finland) to prevent them from floating in culture wells. 

Additionally, samples were disinfected by adding 2 mL of 70% ethanol for 30 min, rinsed 

once with 2 mL of sterile 0.9% PBS, and soaked with 0.5 mL of minimum essential medium 

(MEM) supplemented with 10% fetal bovine serum, 1% L-glutamine, and a 1% antibiotic 

and formulation (penicillin G sodium, streptomycin sulfate) medium for 30 min.

Mouse-calvaria-derived pre-osteoblasts (ATCC, CRL-2593, American Type Culture 

Collection, Rockville, MD, USA) previously cultured in MEM were harvested and seeded at 

passage 15 on each of the experimental membranes at a density of 10,000 cells per well in a 

total volume of 300 μL of complete media. The cultures were kept at a constant temperature 

of 37°C, 5% CO2 in a humidified atmosphere.31 Replacement of the culture medium was 

performed every other day. Cell proliferation was assessed using the PMS-MTS one solution 

viability kit (Promega Corporation, Madison, WI, USA) after 3, 5, and 7 days. The assay's 
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functionality is mostly due to the measurement of NADH+H+ production, causing reductive 

cleavage of tetrazolium salt to the soluble formazan.31 A total 60 μL of the assay reagent 

was added to each sample containing 300 μL of MEM. Following 2 h of incubation at 37oC 

and 5% CO2 in a humidified atmosphere, 100 μL from each 24-wells plate was transferred 

into wells of a 96-wells plate in triplicate and absorbance was determined at 490 nm. The 

MC3T3-E1 cells, seeded directly onto 24-wells plates, served as a high control. As a 

background, optical density measured at 650 nm was used for samples, per the 

manufacturer's recommendations. Four samples per time point were used to determine the 

number of cells attached to the electrospun fibers, as well as to EpiGuide®. Two additional 

samples per group and per time point were included in the cell experiment to qualitatively 

observe the morphology of the cells via SEM. The cells cultured on glass substrates were 

used as a positive control.31 Briefly, following removal of the samples from the culture 

medium, the samples were fixed in buffered 4% formaldehyde (Sigma) and washed with 

PBS to remove unbound cells. Next, the samples were dehydrated using ascending ethanol 

gradients (30, 50, 70, 90, and 100%) and soaked in ethanol/hexamethyldisilazane (HMDS) 

gradients (Sigma). Then, the membranes were incubated in 100% HMDS and allowed to 

airdry. Finally, the samples were mounted on aluminum stubs, sputter-coated with Au, and 

imaged using SEM.29

Statistical analyses

Kruskal-Wallis and Student-Newman-Keuls statistical analyses were performed for fiber 

diameter. Two-way ANOVA was used to test the effects of the group (i.e., Epiguide®, PLA, 

PCL, PLA:PCL, PLA:PCL+5wt.%BBG, and PLA:PCL+10wt.%BBG) and hydration status 

(i.e., dry vs. wet), and their interaction on the distinct mechanical properties were evaluated. 

A natural log transformation of the outcomes was used for analysis. Two-way ANOVA 

analyses were used for dimensional stability assessment and cell proliferation. Statistical 

significance was set at p<.05.

Results

Membrane morphological (SEM/TEM) and chemical characterizations

The mean fiber diameter of the synthesized electrospun membranes ranged from 0.09 to 

1.95 μm as follows: PLA (1.25±0.12μm), PCL (0.49±0.31μm), PLA:PCL (0.92±0.13μm), 

PLA:PCL+5wt.%BBG (0.61±0.11μm), and PLA:PCL+10wt.%BBG (0.52±0.12μm) 

(Figures 1 and 2). The PLA fibers (Figure 1A) were thicker when compared to the PCL 

fibers (Figure 1B). The mean diameter of the PLA:PCL fibers was between that of pure PLA 

and pure PCL fibers (Figure 1C). The commercially available PLA membrane (i.e., 

EpiGuide®) demonstrated varying fiber diameters and pore sizes that were generally larger 

than those found in the electrospun membranes (Figure 1D). There was no significant 

difference in the mean diameter of 5wt.%- and 10wt.%0-BBG-incorporated PLA:PCL fibers 

(Figures 2C-2F). Incorporation of BBG decreased the mean fiber diameter when compared 

to pure PLA, PCL, and PLA:PCL fibers (p<0.05). BBG particles could be visualized as 

swollen areas, as well as crystal structures on the otherwise smooth PLA:PCL fibers 

(Figures 2C-2F). It is worth mentioning that a greater amount of BBG particles was 
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observed on the surface of the PLA:PCL+10 wt.%BBG (Figure 2E) than PLA:PCL+5 wt.

%BBG fibers (Figure 2C).

Energy-dispersive X-ray spectroscopy (EDS) was used to assess the elemental composition 

of the electrospun membranes and the BBG micron-sized particles (Figure 3). PLA, PCL, 

and PLA:PCL demonstrated similar spectra-containing traces of carbon, oxygen, and 

fluorine. BBG particles displayed oxygen, sodium, magnesium, phosphorus, potassium, and 

calcium peaks. PLA:PCL+5wt.%BBG and PLA:PCL+10wt.%BBG samples both showed 

the characteristic polymer-related peaks in addition to those present in the BBG particles. 

TEM was done to further confirm the successful incorporation of BBG on PLA:PCL 

blended fibers. The PLA (Figure 4A), PCL (Figure 4B), and PLA:PCL (Figure 4C) fibers 

were smooth. On the other hand, the incorporation of BBG made the fibers apparently 

rougher and uneven. Similar to the SEM images, BBG particles were more on the surface of 

the PLA:PCL+10 wt.%BBG fibers (Figure 4E) as compared to that of the PLA:PCL+5 wt.

%BBG fibers (Figure 4D).

Mechanical suture pullout strength

Under dry conditions, electrospun PLA had significantly (p<0.05) higher pullout strength 

(i.e., peak load, Table II and Figure 5A) than all the other electrospun membranes and 

EpiGuide®. Meanwhile, the dry pullout strength of PCL, PLA:PCL, and PLA:PCL, with 

distinct amounts of incorporated BBG particles, were statistically similar (p>0.05). Notably, 

the PLA:PCL+10wt.%BBG membranes were significantly stronger than EpiGuide® 

(p<0.05) (Table II and Figure 5A). However, under wet conditions, the BBG-incorporated 

membranes presented similar strength when compared to the clinical reference (i.e., 

EpiGuide®). PLA:PCL electrospun membranes performed better than EpiGuide® under both 

dry and wet conditions. Overall, the addition of BBG particles did not improve membrane 

strength when compared to Epiguide®, except when BBG particles were added at 10 wt.% 

and tested under dry conditions.

Membranes based on the PLA:PCL blend demonstrated significantly lower stiffness values 

when compared to the PLA (Table II). The addition of BBG did not compromise this 

property, and more importantly, the obtained values were statistically similar to Epiguide®. 

As far as the influence of hydration is concerned, PLA:PCL+10wt.%BBG and Epiguide® 

revealed statistically similar stiffness values after 24 h of immersion in PBS (Table II). 

Lastly, concerning the energy to break, under dry conditions, the pure PLA and PLA:PCL

+10wt.%BBG displayed the highest values (not statistically significant), followed by 

PLA:PCL, pure PCL, Epiguide®, and PLA:PCL+5wt.%BBG. After hydration, a significant 

decrease in the energy to break was seen for PLA:PCL+10wt.%BBG when compared to the 

PLA membranes but it remained significantly higher than Epiguide® (Table II and Figure 

5B).

In vitro dimensional stability

Two-way ANOVA was used to test the effects of the dimensional stability (shrinkage, %) in 

each group, time, and their interaction (Table III). Overall, PLA demonstrated the highest 

dimensional variation among groups and time. PLA:PCL demonstrated the least dimensional 
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variation during the 24 h to 4-day period compared to those following 9 days of incubation. 

The addition of BBG particles led to a decrease in dimensional stability. PLA:PCL 

membranes behaved similarly to EpiGuide®; that is, they demonstrated an increasing 

shrinkage from day 1 to day 9.

Cell proliferation

Cell proliferation on PLA:PCL+10 wt.%BBG samples was significantly higher when 

compared to PLA, PCL, and PLA:PCL at day 5 (Table IV). No significant differences in 

proliferation were noted between the 5 and 10 wt.%-BBG-containing membranes at all time 

points. Only at day 7 did the addition of BBG particles reveal an increase in cell 

proliferation over that seen on EpiGuide®. Generally, cell proliferation among groups was 

greatest at day 7, with diminished proliferation compared to days 5 and 3, respectively. 

Although the addition of BBG particles did not demonstrate a significant improvement in 

cell proliferation at days 3 and 5, it did show a slight enhancement over EpiGuide® by day 

7. SEM images (Figure 6A-D) demonstrated a fairly well spread-out positioning of the 

MC3T3-E1 preosteoblasts over the surface of the electrospun membranes with extensions of 

pseudopodia surrounding the center of the cells.

Discussion

The electrospinning technique has been employed in tissue engineering and is useful for 

synthesizing novel biomaterials, with favorable mechanical and biological properties that 

provide adequate surface architecture to promote cell attachment and proliferation.30-36 The 

electrospun collagen fiber diameter has been shown to range from 100 to 500 nm.21 In our 

study, the incorporation of BBG particles at a concentration of 5 and 10 wt.% to the 

PLA:PCL blend led to a considerable reduction in mean fiber diameter when compared to 

pure PLA:PCL (Figures 2C-2F), closely resembling the diameter of collagen fibers in bone 

tissue.22 According to Jeong et al., possible changes in solution viscosity due to the 

incorporation of inorganic particles (e.g., hydroxyapatite nanoparticles) may significantly 

contribute to the decrease in fiber diameter.35

Considering that the clinical application of periodontal membranes generally requires 

suturing or tacking for stabilization into the specific location,14,30 a suture pullout strength 

test was used to determine the membranes' resistance to tearing under tensile forces.30 

Although incorporation of a relatively high concentration of BBG (i.e., 10wt.%) led to a 

substantial improvement in the energy to break (i.e., the area under the load vs. displacement 

curve) of the PLA:PCL+10wt.%BBG electrospun membrane under dry conditions, most 

probably due to the reinforcing effects of the BBG particles, a significant decrease in this 

property was seen after immersion in PBS (37°C, 24 h). Based on the hydrophilic nature of 

the BBG particles, as well as the SEM findings that revealed a substantial amount of BBG 

particles at the membrane's surface, one can assume that the membrane experienced an 

increased PBS absorption/uptake. This can provide a localized plasticizing effect due to 

absorbed water, which is hydrogen-bonded to hydrophilic BBG surfaces at the regions of 

high BBG particles' density or BBG aggregates in the hydrophobic PLA:PCL fibers (formed 

as a result of incomplete dispersion of BBG particles), which, in turn, can affect mechanical 
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strength. In a previous study conducted by our group using nano-hydroxyapatite (nano-

HAp)-incorporated electrospun fibrous scaffolds, we have observed a more pronounced 

fiber breakage, which resulted in a decrease in mechanical strength due to the surface 

erosion of embedded particles or as the nano-HAp content in fiber increases. One or both of 

these effects could be the reasons for the reported energy to break drastic drop (Table II) in 

the case of PLA:PCL incorporated with 10wt.%BBG in wet conditions as compared to the 

other groups. Notably, for the clinical success of regenerative therapy, it is paramount that a 

balance between stiffness and elasticity be achieved in the synthesis of novel 

membranes.14,28 It is well known that membranes should be stiff enough to bear the 

compressive forces exerted by the overlying soft tissue and mastication,28 until proper 

maturation of the blood clot builds underneath the membrane. Meanwhile, a very stiff 

membrane would not allow for good clinical manageability or utilization, since, often times, 

one has to cut and shape the membrane to adapt to the morphologically distinct periodontal 

defects.14,28,37-38 Most importantly, the overall properties of the electrospun membrane 

incorporated with BBG at 10wt.% presented comparable or superior mechanical properties 

to that of a clinically available PLA-based membrane.

Considering the intended clinical application in regenerative periodontics as GTR/GBR 

membranes, we assessed in vitro their dimensional stability over time. Worth mentioning, 

based on the collected data, one could also consider the potential incorporation of BBG 

particles into the PCL membrane, as the PCL fibrous membranes showed (numerically) 

better dimensional stability by day 9, even though they were not statistically different from 

the PLA:PCL blend membrane. Taken together, the better mechanical properties displayed 

by the PLA:PCL blend membrane when compared to the pure PCL further supports 

incorporation of the BBG particles into the blend polymer system. Further studies are 

necessary to investigate the role of BBG particles when incorporated into the PCL 

membrane in terms of fiber dimension, mechanical property, dimensional stability, and cell-

membrane interaction.

In recent years, numerous research groups have focused on the development of membranes 

for GTR/GBR applications that are capable of not only hindering epithelial tissue infiltration 

into the periodontal defect, but more importantly, promoting faster bone growth through the 

wise addition of calcium phosphates and bioactive glass particles.14 One might possibly 

argue about the actual amount of BBG incorporated into the electrospun PLA:PCL fibers. It 

is worth mentioning that we employed a similar particle dispersion strategy to that 

previously reported by our group when synthesizing polymer fibers incorporated with 

hydroxyapatite (n-HAp) particles. According to our previous data, based on 

thermogravimetric (TGA) analysis, the theoretical addition of 10wt.% of HAp particles into 

the polymer solution led to the actual incorporation of 10.6± 2.6wt.%, indicating good 

dispersion of n-HAp in the fibers and overall success of the processing approach.28 Further 

research should be performed to better understand the dissolution rate and overall 

degradation of the BBG particles used herein when incorporated into electrospun polymer 

fibers after long-term storage in a clinically relevant physiological environment. 

Nonetheless, silicate and borate-based bioactive glasses are extensively investigated for 

biomedical applications to enhance bone repair/regeneration. Although both are 
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osteoconductive, borate-based bioactive glasses degrade faster and convert to calcium 

phosphate at a remarkably rapid rate that bonds with the surrounding tissue.39 Particles of 

borate bioglass, designated as 45S5B1, were almost completely converted to hydroxyapatite 

in less than 4 days when immersed in a 0.02 M K2HPO4 solution with a starting pH value of 

7.0 at 37°C.40,41

In this study, cell proliferation revealed being influenced by time and the group of 

membranes used. While the cells are fairly well-defined for the electrospun membranes, it is 

more difficult to distinguish cell borders on the EpiGuide® membranes (Figure 5E). This 

may be due to cell in-growth along the pores, and within the pores of Epiguide®, which are 

visually larger than the pores of electrospun membranes. The distribution and surface-

coverage of the pre-osteoblasts on electrospun membranes appear to be similar, regardless of 

the presence of BBG particles. Hence, there was an increased proliferation of pre-osteoblasts 

on the surface of BBG-incorporated membranes by day 7. Notably, borate glass particles 

with diameters of 212–355 μm have been shown to support the attachment, growth, and in 

vitro osteogenic differentiation of mesenchymal stem cells.42 This increased cell 

proliferation might also be due to the increased surface roughness of the BBG-incorporated 

fibers when compared to the smooth PCL, PLA, and PLA:PCL fibers. A study by Fu et al. 

demonstrated that, when osteogenic MLO-A5 cells were cultured on borate bioglass 

scaffolds, a reduced cell viability was observed due to the high concentration of boron ions 

released into the media, even though these scaffolds supported soft tissue infiltration in vivo. 

Nonetheless, we did not observe any meaningful reduction in cell attachment, which might 

be correlated to the relatively small percentage of BBG used, which was not sufficiently 

high to induce cell toxicity. One should note that the scope of the cell-related work 

presented in this study was restricted. Future studies using these novel BBG-incorporated 

membranes should investigate cell-membrane compatibility using other cell types (e.g., 

periodontal ligament fibroblasts). Furthermore, the effects of BBG incorporation should be 

studied in detailed at the molecular level to clarify their role in pre-osteoblasts' cell functions 

and differentiation before in vivo testing using GTR/GBR periodontal defect models.

Polymer-based membranes (i.e., PLA, PCL, and PLA:PCL) were fabricated via 

electrospinning. PLA:PCL membranes were also spun after the incorporation of distinct 

amounts of BBG particles into the polymer solution. The addition of PCL to PLA increased 

initial dimensional stability up to day 4 and increased overall stability over 9 days when 

compared to PLA alone. The addition of BBG did not significantly improve membrane 

strength when compared to Epiguide®, except for the addition of BBG at 10 wt.% under dry 

conditions, when testing was conducted for suture pull-out strength. The addition of PCL to 

PLA helped to control shrinkage of the electrospun membranes. Overall, the membranes 

presented a random submicron fibrous structure capable of supporting mouse-calvaria-

derived preosteoblastic cell growth and proliferation. BBG-containing membranes led to 

greater cell proliferation over BBG-free membranes and EpiGuide, following 7 days of 

culture.
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Conclusion

Clinical applications of BBG-containing electrospun membranes are vast and would include 

the fabrication of membranes containing additional biologic modifiers, such as bone 

morphogenic proteins (BMPs). Future research would need to be implemented using in vivo 

animal model, to understand the role of the proposed membranes on bone regeneration. 

Taken together, our results demonstrated the ability to fabricate, via electrospinning, stable, 

polymer-based nanofibrous BBG-membranes capable of promoting osteoblast attachment 

and proliferation, a promising attribute that supports their use in periodontal regenerative 

therapy.
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Figure 1. 
Representative SEM images of the morphological structure of (A) pure PLA, (B) pure PCL, 

(C) PLA:PCL electrospun membranes synthesized in this study and (D) commercially 

available periodontal membrane, EpiGuide®.

Rowe et al. Page 13

J Biomed Mater Res B Appl Biomater. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(A-B) Representative TEM images of the borate-based bioglass (BBG) particles. (C-D) 

Representative SEM images of the PLA:PCL electrospun membranes modified with 5 wt.

%BBG at 5000× (C) and 10000× (D) magnifications. (E-F) Representative SEM images of 

the PLA:PCL electrospun membranes modified with 10 wt.%BBG at 5000× (E) and 10000× 

(F) magnifications. The deposition of BBG on the PLA:PCL fibers are indicated by arrows 

in the lower magnification images.
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Figure 3. 
EDS spectra of electrospun membranes and BBG particles. (A) PLA; (B) PCL; (C) 

PLA:PCL; (D) BBG particles (inset shows a representative SEM image of the BBG 

particles); (E) PLA:PCL+5 wt.%BBG; and (F) PLA:PCL+10 wt.%BBG.
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Figure 4. 
Representative TEM images showing the morphology of the electrospun fibers synthesized 

in this study. A smooth fiber morphology can be seen in (A) pure PLA, (B) pure PCL, and 

(C) PLA:PCL fibers. The incorporation of BBG, regardless of the concentration (D) 

PLA:PCL+5wt.%BBG and (E) PLA:PCL+10 wt.%BBG led to morphologically rougher 

fibers. (D-E) Note the presence of BBG particles as black agglomerates along the axis of the 

BBG-incorporated fibers.
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Figure 5. 
Representative suture pullout strength load vs. displacement curves for all the electrospun 

membranes and Epiguide® under (A) dry and (B) wet conditions.
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Figure 6. 
Representative SEM images illustrating the MC3T3-E1 cell morphology after 7 days of 

culture: (a) PLA; (b) PCL; (c) PLA:PCL; (d) PLA:PCL+10 wt.%BBG; and (e) EpiGuide®.

Rowe et al. Page 18

J Biomed Mater Res B Appl Biomater. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rowe et al. Page 19

T
A

B
L

E
 I

E
le

ct
ro

sp
in

ni
ng

 C
on

di
ti

on
s 

U
se

d 
fo

r 
th

e 
F

ab
ri

ca
ti

on
 o

f 
P

ur
e 

P
L

A
, P

C
L

, a
nd

 B
le

nd
ed

 P
L

A
:P

C
L

 M
em

br
an

es
 w

it
h 

an
d 

w
it

ho
ut

 B
B

G
 

P
ar

ti
cl

es C
om

po
ne

nt
s

E
le

ct
ro

sp
in

ni
ng

 C
on

di
ti

on
s

P
L

A
P

C
L

P
L

A
:P

C
L

B
B

G
 (

w
t 

%
)

So
lu

ti
on

 C
on

ce
nt

ra
ti

on
V

ol
ta

ge
 (

kV
)

D
is

ta
nc

e 
(c

m
)

F
lo

w
 R

at
e 

(m
L

/h
)

(v
/v

)

Pu
re

-
-

-
20

0 
m

g/
m

L
 (

H
FP

)
20

18
1.

0

-
Pu

re
-

-
10

0 
m

g/
m

L
 (

H
FP

)
10

18
1.

0

-
-

50
:5

0
-

50
:5

0 
(v

/v
, H

FP
)

10
15

1.
0

-
-

50
:5

0
5

11
15

1.
0

-
-

50
:5

0
10

J Biomed Mater Res B Appl Biomater. Author manuscript; available in PMC 2017 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rowe et al. Page 20

TABLE II
Mechanical Properties of the Synthesized Electrospun Membranes and EpiGuide®

Group Condition Peak Load (N) Mean ± SD Stiffness (N/mm) Mean ± SD Energy to Break (N mm) Mean ± 
SD

PLA

Dry

1.80 ± 0.46a 5.15 ± 0.87a 7.20 ± 1.87a

PCL 0.95 ± 0.20b 2.00 ± 0.69c 3.42 ± 0.96b

PLA:PCL 0.91 ± 0.30b 2.93 ± 0.93b 3.88 ± 0.82b

PLA + PCL + 5% BBG 0.63 ± 0.15b,c 3.07 ± 0.41b,c 0.62 ± 0.16d

PLA + PCL + 10% BBG 1.23 ± 0.47b,d 2.51 ± 0.70b,c 9.06 ± 1.27a

EpiGuide® 0.55 ± 0.16c 2.40 ± 0.74b,c 1.43 ± 0.37c

PLA

Wet

1.78 ± 0.90a 7.80 ± 1.87a 8.21 ± 0.66a

PCL 0.99 ± 0.16b 1.99 ± 0.57b,c 1.96 ± 0.28c

PLA:PCL 0.78 ± 0.05b 2.64 ± 0.55c 5.05 ± 1.10b

PLA + PCL + 5% BBG 0.41 ± 0.14c 1.96 ± 0.63d,c 1.38 ± 0.39d

PLA + PCL + 10% BBG 0.43 ± 0.09c 1.40 ± 0.19b 2.37 ± 0.51c

EpiGuide® 0.44 ± 0.06c 1.68 ± 0.37b 1.06 ± 0.24d

Different lowercase letters in the same column represent statistical differences between groups.

J Biomed Mater Res B Appl Biomater. Author manuscript; available in PMC 2017 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rowe et al. Page 21

TABLE III
Dimensional Stability Analysis (Shrinkage, %) After 24 h, 4 and 9 Days

Group 24 h 4 days 9 days

PLA 39.12 ± 6.29aB 38.84 ± 4.03aB 48.51 ± 4.83aA

PCL 5.44 ± 4.0bA 7.95 ± 4.51bA 7.48 ± 1.66bA

PLA:PCL 1.31 ± 2.37bA 1.96 ± 6.40bA 10.07 ± 11.39bA

PLA:PCL + 5 wt % BBG 5.78 ± 2.44bA 7.73 ± 5.20bA 10.77 ± 5.56bA

PLA:PCL+10 wt % BBG 6.23 ± 1.69bB 0.81 ± 8.0bB 16.08 ± 9.33bA

EpiGuide® 2.35 ± 1.32bB 4.66 ± 0.61bB 14.28 ± 1.06bA

Column corresponds to group comparisons at the specific time point (means with the same lowercase letter are not significantly different from each 
other). Row corresponds to time comparisons for each group (means with the same uppercase letter are not significantly different from each other).
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TABLE IV
MC3T3-E1 Cell Proliferation at Days 3, 5, and 7

Days

3 5 7

Group Mean (SD) Mean (SD) Mean (SD)

PLA 16.97 ± 3.59a,b 18.11 ± 4.42b,c 105.02 ± 13.05a,b

PCL 14.73 ± 1.82a,b 14.68 ± 3.28b,c 60.51 ± 14.94c

PLA:PCL 14.24 ± 1.04b 12.96 ± 1.83c 68.17 ± 20.87c

PLA:PCL + 5 wt % BBG 20.32 ± 2.66a 20.65 ± 5.17a,b 128.41 ± 19.23a

PLA:PCL + 10 wt % BBG 19.56 ± 5.14a,b 28.18 ± 10.18a 132.6 ± 10.04a

EpiGuide® 17.65 ± 3.93a,b 20.2 ± 2.8a,b 89.89 ± 9.85b,c

Different lowercase letters in the same column represent statistical differences between group and day.
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