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Abstract

The basolateral and lateral amygdala nuclei complex (BLC) is implicated in a number of 

emotional responses including conditioned fear and social anxiety. Based on previous studies 

demonstrating that enhanced serotonin release in the BLC leads to increased anxiety and fear 

responses, we hypothesized that pharmacologically depleting serotonin in the BLC using 5,7-

dihydroxytryptamine (5,7-DHT) injections would lead to diminished anxiety and disrupted fear 

conditioning. To test this hypothesis, 5,7-DHT (a serotonin-depleting agent) was bilaterally 

injected into the BLC. Desipramine (a norepinephrine reuptake inhibitor) was systemically 

administered to prevent non-selective effects on norepinephrine. After 5 days, 5-7-DHT-treated 

rats showed increases in the duration of social interaction (SI) time, suggestive of reduced anxiety-

like behavior. We then used a cue-induced fear conditioning protocol with shock as the 

unconditioned stimulus and tone as the conditioned stimulus for rats pretreated with bilateral 5,7-

DHT, or vehicle, injections into the BLC. Compared to vehicle-treated rats, 5,7-DHT rats had 

reduced acquisition of fear during conditioning (measured by freezing time during tone), also had 

reduced fear retrieval/recall on subsequent testing days. Ex vivo analyses revealed that 5,7-DHT 

reduced local 5-HT concentrations in the BLC by ∼40% without altering local norepinephrine or 

dopamine concentrations. These data provide additional support for 5-HT playing a critical role in 

modulating anxiety-like behavior and fear-associated memories through its actions within the 

BLC.
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1. Introduction

Serotonin (5-HT) plays a critical role in regulating adaptive stress responses to aversive 

stimuli and is strongly implicated in stress-related anxiety disorders including post-traumatic 

stress disorder and panic disorder. Serotoninergic neurotransmission is a major therapeutic 

target for treating these disorders [see review (Hale et al., 2012)]. Yet, serotonin regulation 

of anxiety and fear-associated behaviors and associated autonomic and endocrine responses 

to stressful stimuli is complex in due to functional heterogeneity among subpopulations of 

serotonergic neurons and the large number of serotonin receptors; in addition, serotonin's 

effects on physiological and behavioral responses to aversive stimuli appear to depend on 

the brain region where it is released (Hale et al., 2013).

One area where serotonin plays an important role in modulating anxiety and fear responses 

is the basolateral amygdala complex (BLC; which includes the basolateral and lateral 

nuclei). The BLC is highly responsive to stressful stimuli (Brydges et al., 2013; Butler et al., 

2011; Henderson et al., 2012; Johnson et al., 2008; Singewald et al., 2003) and plays a 

critical role in fear conditioning, which is critical for survival [see reviews (Johansen et al., 

2011; Johansen et al., 2012)]. Serotonergic neurons located in the brainstem dorsal and 

median raphe nuclei project to the amygdala, hippocampus, and ventromedial prefrontal 

cortex (PFC). Within the BLC, extracellular levels of 5-HT increase rapidly during 

conditioned fear (Zanoveli et al., 2009) and following exposure to inescapable stress (Amat 

et al., 1998). Following inescapable stress the increase in extracellular 5-HT is prolonged 

relative to either escapable stress or restraint stress, and remains elevated 100% above 

escapable stress or restraint stress controls for 24 h. The persistent increases in extracellular 

5-HT concentrations within the amygdala following stress may contribute to a net loss of 

local GABA inhibition and subsequent increase in excitation of glutamatergic projection 

neurons. In support of this, serotonin acutely increases GABAergic tone in the BLC by 

exciting local GABAergic interneurons via the postsynaptic 5-HT2A receptors (Jiang et al., 

2009; McDonald and Mascagni, 2007; Rainnie, 1999), but stress downregulates the 5-HT2A 

receptor and reduces serotonin's effects on local GABAergic tone (Jiang et al., 2009). In 

general, increases in the excitability of amygdala glutamatergic projection neurons lead to 

enhanced fear conditioned behavior, so, stress-induced downregulation of 5-HT2A receptors, 

loss of GABAergic tone, and disinhibition of glutamatergic projection neurons should also 

enhance fear conditioning. This hypothesis is supported by work done by Bosker and 

Ravinder where a single systemic injection of serotonin reuptake inhibitor in rats increases 

extracellular 5-HT in the amygdala by ∼150% (Bosker et al., 2001) and also enhances 

acquisition of fear associated freezing responses, and increased fear conditioned freezing 

responses (Ravinder et al., 2013). In contrast, reduction of 5-HT tone in the amygdala using 

the serotonin neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) reduces conflict anxiety 

(Sommer et al., 2001), but little is known about how the depletion of 5-HT affects 

acquisition of fear conditioning.
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In the present article, we hypothesized that chronic reduction in serotonergic tone within the 

BLC region would severely disrupt both the acquisition of conditioned fear, as well as 

extinction and extinction recall responses. In order to reduce serotonin tone within the BLC, 

we used 5,7-DHT, which, although the mechanism is not entirely clear, reproducibly 

depletes local 5-HT by up to 90% in forebrain structures such as the amygdala (Bjorklund et 

al., 1975; File et al., 1979; Sommer et al., 2001; Tran et al., 2013). To test this hypothesis, 

we bilaterally injected 5,7-DHT into the BLC to chronically reduce local serotonergic 

neurotransmission, then assessed anxiety-like behavior and conditioned fear responses, and 

validated depletion of local 5-HT ex vivo. Since 5,7-DHT has been shown to also reduce 

local norepinephrine levels at higher doses, a norepinephrine reuptake inhibitor 

(desipramine) was administered systemically since it has been shown to block this effect 

(Bjorklund et al., 1975), and norepinephrine, and dopamine were also assessed to confirm 

that the depletion was specific to 5-HT.

2. Methods and materials

2.1. Animals

All experiments were conducted on adult male Wistar rats (300–325 g), which were 

purchased from Harlan Laboratories and were housed individually in plastic cages under 

standard environmental conditions (22 °C; 12/12 light/dark cycle; lights on at 7:00 A.M.) for 

7–10 days prior to the surgical manipulations. Food and water were provided ad libitum. All 

experiments were conducted in accordance with the Guide for the Care and Use of 

Laboratory Animals, Eighth Edition (Institute for Laboratory Animal Research, The 

National Academies Press, Washington, DC, 2011) and the guidelines of the IUPUI 

Institutional Animal Care and Use Committee.

2.2. Microinjection of 5,7-DHT or vehicle into the BLC

Rats were anesthetized by placing them in a closed Plexiglas® box that was connected to an 

isoflurane system (MGX Research Machine; Vetamic, Rossville IN, USA) and then with a 

nose cone connected to the same system during the stereotaxic surgery and during intra-BLC 

injections of 5,7-DHT or vehicle. Rats were placed into a stereotaxic instrument (Kopf 

Instruments, Tujunga, CA, USA) with the incisor bar set at − 3.3 mm and nose cone 

connected to the same system during the surgery. A 33 gauge injector (Plastics One) was 

lowered into position of the BLC using the following coordinates relative to bregma: 

anterior, −2.1 mm; lateral, ±5.0 mm; ventral, −8.5 mm, according to a standard stereotaxic 

atlas of the adult rat brain (Paxinos and Watson, 1986).

The serotonergic toxin 5,7-DHT was used to deplete serotonin within the BLC region. 

Thirty minutes prior to the injections of 5,7-DHT or vehicle into the BLC, all animals were 

systemically (i.p.) pretreated with 25 mg/kg of the norepinephrine reuptake inhibitor 

desipramine (Sigma-Aldrich, St. Louis, MO, USA, dissolved in 0.9% saline). Rats then 

either received bilateral injections of 5 μg/μl of 5,7-DHT (Sigma-Aldrich; 100 nl per side) or 

a saline vehicle with 0.1% ascorbic acid. The open-field and social interaction tests were 

performed 6 days post-BLC injections, and the conditioned fear protocol started on day 7.
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2.3. Open-field behavior test

The open-field arena covered an area of 90 cm × 90 cm, with 40 cm high walls. The open-

field arena was divided into a 6 × 6 grid of equally-sized squares using black tape (36 total 

squares) with 4 squares forming the center; 12 squares forming the middle perimeter; and 20 

squares forming the outer perimeter. The test started by placing a rat in the center. The 

behavior of each rat in the open-field arena was recorded on video and scored afterwards 

using Anymaze Software (Stoelting, Woods Dale, IL, USA).

2.4. Social interaction test

Anxiety-like behavior was measured utilizing the SI test (File, 1980) that was further 

modified and validated measure of anxiety-associated behaviors (Sanders and Shekhar, 

1995) and is sensitive to current pharmacological treatments for anxiety disorders [acute 

benzodiazepine (Johnson et al., 2010) and chronic selective serotonin reuptake inhibitor 

(SSRI) treatments (Lightowler et al., 1994)]. The apparatus consists of a solid wooden box 

with an open roof approximately 0.9 m long × 0.9 m wide with walls 0.3 m high. A video 

camera was fixed above the box, and all behavioral tests were videotaped under low red 

light conditions (approximately 100 lx) and in a familiar environment. The “experimental” 

rat and an unfamiliar “partner” rat are both placed individually in the center of the box and 

allowed to habituate to the environment for a 5-minute period 24 h prior to each SI test. 

During the SI test, the two rats are placed together in the center of the box, and the total 

duration (sec) of non-aggressive physical contact (grooming, sniffing, crawling over and 

under, etc.) initiated by the “experimental” rat is quantified over a 5-minute duration. 

Videotaped sessions were scored at a later time by an investigator (Stephanie Fitz), who was 

blind to any drug treatment.

2.5. Fear conditioning protocol

The fear-conditioning chamber has a grid floor composed of 6 stainless steel rods connect to 

a shock generator (Kinder Scientific, Poway, CA, USA). The fear conditioning protocol was 

4 days long and was implemented 7 days after 5,7-DHT or vehicle injections and was 

finished on day 11. On day 7, rats were placed in the conditioning chamber and allowed to 

habituate for 10 min. On day 8, test day 1, the rats were placed back in the conditioning 

chamber and underwent 10 trials, using a 120 s inter-trial interval, of a tone conditioned 

stimuli (CS: 80 dB, 20 s) co-terminating with a single shock unconditioned stimuli (UC: 

0.80 mA, 500 ms). On day 9, test day 2, the rats where given 10 trials, using a 120 s inter-

trial interval, of tone (CS only). On day 10, test day 3, rats underwent an extinction 

paradigm of 40 trials, using a 120 s inter-trial interval, of tone CS only. All sessions were 

video-recorded and the total time spent freezing during the tones on all 3 test days was 

scored blind by the investigator Stephanie Fitz.

2.6. Ex vivo processing of brain tissue for later HPLC analyses and immunohistochemistry

2.6.1. Experiment 1—After the final behavior test on day 11, all rats were anesthetized 

with isoflurane and decapitated; their brains were then removed and frozen and were 

coronally sectioned at 300 μm on a Leica cryostat for verification of the cannulae placement 

then later stored in a −80 °C freezer.
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2.6.2. Experiment 2—After the final behavior test on day 11, the rats were anesthetized 

with isoflurane, then perfused transcardially with 0.05 M phosphate buffered saline (PBS; 

250 ml), followed by 4% paraformaldehyde in 0.1 M sodium phosphate buffer (PB; 250 ml). 

Brains were removed and post-fixed for 24 h in the same fixative, rinsed for 24 h in 0.1 M 

PB, then placed in cryoprotectant (30% sucrose in 0.1 M PB) for an additional 4–5 days. To 

maintain a consistent plane for coronal sections brains were placed in a rat brain matrix (ASI 

Instruments, Model No. RBM-4000C, Warren, MI, USA) and cut with a razor blade at the 

caudal border of the mammillary bodies. Brains were frozen in a beaker of liquid isopentane 

pre-cooled by surrounding the beaker with dry ice. Serial coronal sections (30 μm) were cut 

using a cryostat and were immediately placed in cryoprotectant consisting of 27% ethylene 

glycol and 16% glycerol in 0.05 M PB to yield six alternative sets of sections. Sections were 

stored at −20 °C until immunohistochemical processing for the serotonin transporter. All 

solutions had a pH of 7.4.

2.7. High performance liquid chromatography with electrochemical detection (HPLC-ED) 
sample analysis of 5-HT, norepinephrine and dopamine in BLC and 5-HT in DRN

In Experiment 1, the 300 μm coronal brain sections were placed on an inverted glass petri 

precooled with dry ice placed underneath dish. The BLC and central amygdala (CeA) region 

−3.00 mm from bregma (rostral side of section) and dorsal raphe nucleus (DRN) −8.00 mm 

bregma (rostral side of section) were respectively micropunched with Harris Aluminum 

Micro-Punches with a tip diameter of 2.0 mm and 1.0 mm (cat. no. 15089-4, Ted Pella, see 

red dashed circle in Fig. 1a) and placed into 1 ml Epindorph tubes with 5 ml of 0.1 N 

perchloric acid then stored at −80 °C, were analyzed for 5-HT, norepinephrine, and 

dopamine content using HPLC/EC, as previously described (Li et al., 1998) with 

modifications. Samples were loaded into a 5 ml sample loop and injected onto an analytical 

column (BDS Hypersil C18, 3 mm, 2 × 150 mm; Thermo Fisher Scientific, Waltham, MA) 

with a mobile phase consisting of: 50 mM sodium phosphate, 0.1 mM EDTA, 400 mg/L 

sodium octyl-sulfate, and 10% methanol at pH 6.0. Monoamines were oxidized at 350 mV 

using an amperometric detection system (Decade II detector with VT-03 ISAAC cell; Antec 

Leyden, Boston, MA) at a sensitivity setting of 0.1 nA/V. Output from the detector was 

analyzed with a computer program (ChromPerfect, Justice Innovations, Inc., Palo Alto, CA), 

and levels were determined by comparison with a standard curve.

2.8. Immunostaining the serotonin transporter in the BLC

In Experiment 2, immunostaining for the serotonin transporter (SERT) was done on the 30 

μm coronal brain sections of perfused rats to determine if 5,7-DHT had effectively lesioned 

local serotonergic fibers and terminals. Immunostaining for SERT using a primary antibody 

directed against SERT (rabbit anti-SERT polyclonal serum antibody, cat. no. 24,330, 

Immunostar, Hudson WI, USA; diluted 1:1500). Free-floating sections were washed in 0.05 

M PBS for 30 min, then incubated in 1% H2O2 in PBS for 20 min. Sections were then 

washed 10 min in PBS and 20 min in PBS with 0.3% Triton X-100 (PBST). Sections were 

then incubated 12-16 h in PBST with primary antibody solution at room temperature. After a 

30-minute wash in PBST, sections were incubated 2 h in the biotinylated swine anti-rabbit 

IgG secondary antibody (cat no. BA-1000, Vector Laboratories, Burlinghame, CA, USA; 

diluted 1:500). Sections were washed again for 30 min in PBST then incubated 1.5 h in an 
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avidin-biotin complex provided in a standard Vector Elite kit (cat no. PK-6100, Vector 

Laboratories; diluted 1:500). Substrates for chromogen reactions were SG (SK-4700, Vector 

Laboratories, Burlingame, CA, USA) in PBS containing 0.003% H2O2, pH 7.4. Substrate 

reactions were run for 15 min. All sections were mounted on clean glass slides, dried 

overnight, dehydrated and mounted with coverslips using DPX mounting medium (Sigma-

Aldrich, St. Louis, MO, USA). All washes and incubations were done in 12-well 

polystyrene plates with low frequency shaking on an orbital shaker.

2.8.1. Photography—Photomicrographs were obtained using a Leica brightfield 

microscope using N plan 5×, 10×, 20× and 40× objective lenses (model DMLB, Leica 

Microsystems, Buffalo Grove, IL, USA), a SPOT digital camera (RT color, Diagnostics 

Instruments Inc., Sterling Heights, MI, USA) and SPOT 4.0.6 for Windows digital imaging 

software (Silicon Graphics, Mountain View, CA, USA) or a Nikon 90i microscope and a 

Nikon DS-Fi1 digital camera with NIS Elements 3.00 imaging software (A.G. Heinze Inc., 

Lake Forest, CA, USA). Photographic plates were prepared in CorelDraw 11.633 for 

Windows (Eden Prairie, MN, USA).

2.9. Statistical analyses

The following dependent variables were analyzed using a two-tailed independent Student's 

t-test (open-field, social interaction, and 5-HT, norepinephrine, and dopamine 

concentrations). Fear conditioned freezing behavior was analyzed using a one way ANOVA 

with repeated measures with drug treatment as main factor and time as the repeated 

measures. In the presence of significant main effects, between-subjects post-hoc tests were 

conducted using two-tailed independent Student's t-tests. Statistical significance was 

accepted with p ≤ 0.05. All statistical analyses were carried out using SPSS 22.0 (SPSS Inc., 

Chicago, IL, USA) and all graphs were generated using SigmaPlot 12.0 for Windows (SPSS 

Inc.) and figure-plate illustrations were done using CorelDraw version 12 for Windows.

3. Results

3.1. Open-field behavior and social interaction test

Rats receiving intra-BLC injections of vehicle (n = 8) or 5,7-DHT (n = 11) did not show 

differences in general locomotor associated behaviors (i.e., distance traveled, t(16) = −0.7, p 

= 0.477) in the open-field (one less n for vehicle group due to malfunctioning video). 

Although the 5,7-DHT-treated rats did not show a preference for spending more time in the 

center regions of the open-field (center time, t(7) = 0.5, p = 0.630; data not shown), they did 

show an increase in social interaction, compared to vehicle-treated controls t(17) = −2.8, p = 

0.012 (Fig. 1a).

3.2. Fear conditioning behaviors

On acquisition day all rats displayed increased freezing over time with repeated pairings of 

the conditioned stimulus (tone) with the unconditioned stimulus (shock). However, 5,7-

DHT-treated rats had reduced acquisition of fear on test day 1, which was evidenced by their 

freezing ∼50% of duration of the tones 3–5, compared to vehicle-treated rats, which 

displayed ∼80–95% freezing during tones 3–5 (treatment × time effect, F(4,68) = 6.5, p < 
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0.001, Fig. 1b). On test day 2 (evidence of consolidation), there was a significant treatment 

× time effect, F(4,68) = 3.0, p = 0.024 detected, with 5,7-DHT treated rats showing ∼20–30% 

less freezing during tones 1–5 (Fig. 1c). On test day 3, the fear recall was ∼80% freezing in 

the control rats and markedly reduced to ∼40% freezing in the 5,7-DHT treated rats 

(treatment × time effect, F(19,323) = 6.6, p < 0.001, Fig. 1d).

3.3. Histological verification of cannulae placements

Histological verification of injection site location was done on 300 μm coronal brain 

sections as they were being sectioned. The distribution of injection sites was done using a 

Leica Stereozoom microscope at 10× magnification. The injection sites from Experiment 1 

were located within the BLC complex of all vehicle-treated rats, and all 5,7-DHT-treated 

rats except one, which had one injection site in the BLC and one on the BLC/CeA border. 

The injection sites from Experiment 2 were located within the BLC complex of all vehicle-

treated rats except one unilateral injection in the CeA, and all 5,7-DHT treated-rats except 

two, which had unilateral injections into the CeA. The behaviors in those rats did not differ 

significantly from other vehicle or 5,7-DHT rats so were included in the final analyses. All 

cannula placements are illustrated on a coronal brain section from a standard rat stereotaxic 

atlas (Paxinos and Watson, 1997) in Fig. 1e (for neurochemical data in Fig. 1g) and 1f (for 

immunohistochemical data in Fig. 1h).

3.4. Effects of 5,7-DHT injections into the BLC on local 5-HT concentrations and terminal 
fields

3.4.1. Experiment 1—Using HPLC detection of 5-HT, norepinephrine, and dopamine 

concentrations in 2.0 mm diameter micropunches of the BLC/CeA area, in 300 μm-thick 

coronal brain sections, we determined that 5,7-DHT injections into the BLC/CeA area (see 

Fig. 1e) reduced local concentrations of 5-HT by ∼40% (t(6) = 1.9, p = 0.050), but did not 

alter local norepinephrine (t(6) = 3.8, p = 0.714) or dopamine (t(5) = 0.6, p = 0.641) 

concentrations, or 5-HT concentrations in the dorsal raphe nucleus (t(5) = 0.7, p = 0.525) 

(Fig. 1g).

3.4.2. Experiment 2—Contrary to some other reports, following 5,7-DHT injections into 

the BLC/CeA area (see Fig. 1f) we did not observe obvious loss of serotonergic fibers or 

terminals in the BLC region when assessing SERT immunostaining in the BLC region (Fig. 

1h).

4. Discussion

Here we show that depletion of serotonin within the BLC using 5,7-DHT decreased anxiety-

associated behaviors in a social interaction test, but also reduced acquisition of cue-induced 

fear conditioned freezing (as well as an expected proportionate reduction in recall during 

extinction sessions). In Experiment 1, ex vivo analyses of microdissected tissue revealed that 

5,7-DHT reduced local 5-HT concentrations in the BLC/CeA by ∼40% without altering 

local norepinephrine or dopamine concentrations, or 5-HT concentrations in the DRN. The 

level of 5,7-DHT-induced depletion of 5-HT in the amygdala ranged from 40 to 80% 

depletion, which is very consistent with other published studies using this technique in the 
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amygdala (File et al., 1979; Izumi et al., 2012; Sommer et al., 2001; Tran et al., 2013). Our 

more modest reduction of 5-HT in the BLC/CeA are most likely due to our decision to 

include a larger diameter to capture the BLC and the CeA since one 5,7-DHT injection was 

located on the BLC/CeA border. Yet in Experiment 2, the 5,7-DHT injections into the BLC 

did not produce any clear evidence of loss of SERT immunoreactive fibers. Some authors 

have reported that 5,7-DHT does produce site-specific destruction of serotonergic terminals, 

yet this may depend on the doses used (we used 5 μg per side, but others have used from to 

4-16 μg 5,7-DHT), or the timing of tissue assessment post-5,7-DHT injections (we assessed 

this at 11 days post-injection, but others whom have assessed this ≥2 weeks post-injection 

have observed significant decreases in SERT binding or SERT-immunoreactive fibers 

(Sommer et al., 2001; Lieben et al., 2006; Tran et al., 2013). Collectively, our data suggest 

that our low dose and shorter timeline for assessing the lesions was long enough to show 

local reductions in 5-HT concentrations and disrupted fear conditioned behavioral responses, 

but not long enough to observe a significant loss of SERT-immunoreactive fibers.

In 2012, Izumi and colleagues conducted a contextual fear conditioning study using 

injections of a higher dose of 5,7-DHT (8 μg per side) into the amygdala. In these studies, 

injections of 5,7-DHT were done 3 days after a contextual fear conditioning paradigm where 

the rats received 3 days of repeated footshock (no tone pairings) and freezing was assessed 2 

weeks after 5,7-DHT injection for 5 consecutive days when placed in the same footshock 

box. In this study, they show a depletion of 5-HT (but not catecholamines) in the amygdala 

14 days after injection. The depletion of serotonin in the amygdala following contextual fear 

conditioning reduced later recall of fear-associated freezing (Izumi et al., 2012). 

Collectively, our results alongside Izumi's study provide evidence that 5-HT in the amygdala 

plays a role in both threat learning and threat recall. The decrease in anxiety-associated 

behaviors after 5,7-DHT injections into the amygdala in our experiments is consistent with 

File and colleagues, who also observed anxiolytic-like behaviors in a SI test following intra-

amygdala 5,7-DHT injections (File et al., 1981). Overall, these data demonstrate that 5-HT 

plays a critical role in the regulation of anxiety states and threat memory acquisition/recall 

through actions within the BLC, and that disruption of serotonergic activity in the amygdala 

contributes to aberrant anxiety states and fear memory.

The vast majority of forebrain projecting serotonergic cell bodies are localized in the dorsal 

(DRN) and median (MnR) raphe nuclei. Neurons within these regions send projections to 

the various parts of the amygdala, including BLC (Vertes, 1991). The specific origin of 

serotonergic fibers in the BLC primarily originate from the midline DRN, with far fewer 

projections originating in the MnR [evidenced with the retrograde tracer cholera toxin B 

(CTB) injections into the BLC region and CTB + tryptophan hydroxylase double 

immunohistochemistry co-localization in the brainstem raphe (Hale et al., 2008)]. Consistent 

with the DRN and MnR being the origin of serotonergic fibers in the BLC, File and 

colleagues showed that 5,7-DHT injections into the DRN/MNR led to marked 44% 

depletion of 5-HT in limbic regions (e.g., hippocampus) and significantly increased social 

interaction scores (File et al., 1979). Yet, although the effects of depleting 5-HT in the BLC 

produces consistent anxiolytic effects and diminished threat learning in the experiments 

conducted here, exactly how 5-HT release in the BLC increases anxiety and enhances threat 
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learning is complex. Factors that contribute to this are: 1) the amygdala contains all of the 5-

HT receptor subtypes (5-HT1–7); and 2) these receptors mediate both excitatory and 

inhibitory actions of 5-HT and some receptor subtypes are expressed on both GABAergic 

interneurons and glutamatergic projection neurons (McDonald and Mascagni, 2007). 

Application of 5-HT in the BLC region initially produces inhibitory responses by 

depolarizing GABAergic interneurons, and leads to increased inhibition of excitatory 

pyramidal neurons (Rainnie, 1999). However, there is evidence that stress-related conditions 

leading to repeated or prolonged release of 5-HT can lead to loss of local inhibition. For 

example, extracellular levels of 5-HT increase rapidly in the BLC during conditioned fear 

(Zanoveli et al., 2009) and during exposure to inescapable stress (Amat et al., 1998) and if 

this stress is chronic (i.e., inescapable stress, but arguably also occurring during fear 

conditioning paradigms), 5-HT concentrations remain high in the BLC, which appears to 

lead to a net loss of local GABA inhibition and subsequent increase in excitation of 

glutamatergic projection neurons. As mentioned in the introduction, this is support by 

studies showing that serotonin increases GABAergic tone in BLC by exciting local 

GABAergic interneurons via the postsynaptic 5-HT2A receptor (Jiang et al., 2009; 

McDonald and Mascagni, 2007; Rainnie, 1999), but stress downregulates the 5-HT2A 

receptor and reduces serotonin's effects on local GABAergic tone (Jiang et al., 2009). In 

general, this could lead to net increases in the excitability of amygdala glutamatergic 

projection neurons, leading to enhanced fear conditioned behavior, so an overall increase in 

local 5-HT levels should also enhance fear conditioning. This hypothesis is supported by 

work done by Bosker and Ravinder, where a single systemic treatment with serotonin 

reuptake inhibitor treatment in rats increased extracellular 5-HT in the amygdala by ∼150% 

(Bosker et al., 2001) and also enhanced acquisition of fear associated freezing responses, 

and increased fear conditioned freezing responses (Ravinder et al., 2013). Moreover, acute 

systemic injection of the SSRIs citalopram or fluoxetine, which increases 5-HT 

concentrations in the brain, including amygdala (Bosker et al., 2001), administered prior the 

training enhances the acquisition of auditory fear conditioning (Burghardt et al., 2004; 

Ravinder et al., 2013). Acute treatment with SSRIs also enhances fear-potentiated startle in 

humans (Grillon et al., 2007). Finally, complete loss of the SERT gene throughout 

development (i.e., SERT−/− knockout) produces rats that are anxious at baseline (Olivier et 

al., 2008). The loss of the SERT disrupts clearance of 5-HT in the CNS, which is evidenced 

by high baseline concentrations of extracellular 5-HT in limbic regions such as the 

hippocampus (Homberg et al., 2007; Olivier 2008). Within the BLC, the net effect is that 

SERT−/− rats have reduced local inhibition, which leads to enhanced evoked action 

potentials on local glutamatergic projection neurons (Johnson et al., 2012). This loss of 

inhibition in the BLC most likely contributes to high baseline anxiety (Olivier et al., 2008), 

enhanced threat learning, and resistant extinction of fear conditioned freezing behaviors 

(Johnson et al., 2012).

5. Conclusions

The present data, in combination with data showing that pharmacologically increasing 5-HT 

with SSRIs enhances fear conditioning in rodent and in humans, further support an 

important role for 5-HT in the modulation of anxiety-like behavior and fear-associated 
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memories through its actions within the BLC. Furthermore, our data are consistent with 

previous experiments where increasing or depleting 5-HT levels in the BLC region 

respectively enhances or diminishes fear conditioned behaviors. These data provide the first 

evidence showing the impairment of fear acquisition due to reduced 5-HT levels within the 

BLC. These data are also supportive of the hypothesis that increased 5-HT activity within 

the amygdala may be an important mechanism in the pathophysiology of PTSD (Wellman et 

al., 2007; Zanoveli et al., 2009).
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Fig. 1. 
a) Bar graph illustrates social interaction (SI) time for each treatment group (n = 8,11). Line 

graphs in b–d) represent freezing behaviors during standard fear conditioning protocol using 

tone as the conditioned stimulus and shock as the unconditioned stimulus on b) acquisition 

day, and c) tone only on day 2 for evidence of consolidation, and d) tone only on day 3 for 

recall and extinction. Data are presented as means ± SEM. *, represent significant difference 

with an independent 2-tailed Student's t-test, p ≤ 0.05 for bar graphs and an independent 2-

tailed Student's t-test, p ≤ 0.05 protected by a one way ANOVA with repeated measures for 

line graphs (n = 8,11). e–f) Schematic representations of the bilateral injection sites as 

determined by histology for HPLC measures of monoamines in micropunched BLC/CeA 

and DRN (n = 3,6) and immunohistochemistry of SERT-ir fibers in BLC (n = 5,5). Injection 

site placements are illustrated as symbols (with black circle indicating vehicle injections, 

and green squares indicating 5,7-DHT injections). Illustrations of coronal brain sections are 

based on the rat brain atlas of Paxinos and Watson (1997). Numbers to bottom right of the 

section indicate the distance posterior from bregma; the vertical scale on the right of the 

section represents the distance ventral from bregma (in mm). The basolateral amygdala 

complex (BLC) consists of the lateral amygdaloid nucleus (LA) and basolateral amygdaloid 

nucleus (BL)). Solid lines represent white matter tracts and dashed lines illustrate 

subdivisions of the BLC. Abbreviations: BL, basolateral amygdaloid nucleus; CeA, central 

amygdaloid nucleus; ec, external capsule; LA, lateral amygdaloid nucleus; opt, optic tract. 

g) Bar graph illustrates concentrations of 5-HT, norepinephrine (NE), and dopamine (DA) in 
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the BLC/CeA, and 5-HT in the dorsal raphe nucleus (DRN). h) Two representative 

photomicrographs from the BLC region from a vehicle-injected rat (left) and a 5,7-DHT-

injected rat (right).
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