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Abstract—In this paper, a gas turbine-based distributed energy
system (DES) model is developed for the design of operation
planning. An operation mode aimed to optimize the operation of
this DES is proposed. A multi-objective cost function considering
the total system efficiency and operational cost is formulated for
the optimal design of DES operation and control. A two-stage
approach combining the particle swarm algorithm (PSO) with the
sequential quadratic programming (SQP) method is employed to
solve the nonlinear programming problem. Optimal operation
strategies for the DES are investigated using the proposed two-
stage method under three different demand loads in terms of
weather conditions. The simulation results are compared with
those using traditional rule-based operation methods. It is found
that under the proposed operation mode, the DES is capable of
achieving an improved performance in terms of thermal efficiency
and operational cost.

Index Terms—Distributed generation, Optimization, Operational
cost, System efficiency, Two-stage method

I. INTRODUCTION

Distributed generation (DG) can be defined as electric power

generation within distribution networks or on the customer

site of the network [1]. With the widespread application of

combined heating and cooling (CHP) and combined cooling,

heating and power (CCHP), the generated energy includes not

only electricity, but heating and cooling as well. Compared

to large, centralized conventional power plant, distributed

generation has several competitive benefits. It is close to the

user-end which could lead to the reduction of both electricity

transmission loss and thermal transport loss. Moreover, DG

is capable of applying renewable energy resources (e.g. solar,

wind and biomass) to reduce carbon footprint. In addition,

DG is able to meet the local demands in extreme conditions

when the connection with the main grid is unavailable, so

that the energy supply security could be enhanced. Due to the

advantages of DG, it is well acknowledged that DG would

play an important role in future’s energy supply.

In spite of its relatively small scale and low voltage, dis-

tributed energy system (DES) is a complicated energy system,

in terms of varied load demands and the corresponding multi-

energy generation. In order to achieve the load demands while

maximizing the economic and energy saving benefits, the

operation management of DES is crucial. Among the various

aspects influencing the DES operation, the operation strategy

is an important factor determining the performance of DES.

Much research has been carried out and a wide range of

mathematical models have been developed, aiming to optimize

DES operations [1-4]. The most commonly used operation

strategy for DES is rule-based methods, which control the

system by either following the thermal loads or following

the electrical loads. However, these two empirical rule-based

methods only focus on meeting the load demands. Therefore, it

is difficult to take into account of other important aspects, such

as energy saving, operational cost, environmental impact. For

a system for multiple objectives, rule-based methods normally

may not provide an optimal solution. Instead, optimization

algorithm would be an alternative way to pursue these goals.

For a DES model based on component models, the operation

optimization problems can be mathematically considered as

a linear programming problem or nonlinear programming

problem. A variety of methods has been applied to achieve the

optimal operation strategy, such as the Simplex method, La-

grangian relaxation method, quadratic programming method,

etc. [2].

When evaluating the performance and benefits of DES, it is

required to identify performance measures first. According to

the different goals of optimization, different types of perfor-

mance measures have been proposed [3-8]. Usually, three as-

pects are taken into consideration, which are system efficiency,

operational cost, and environment impact, respectively.

Primary energy saving (PES) is used to assess the energy

consumption difference between DES and separate generation

(SG) conventional systems. It is also called ’TPES’ when

using for trigeneration [4]. Primary energy savings ratio

(PESR) could be applied to evaluate the primary energy saving

achieved by DES with respect to the reference conventional

system. Energy utilization factor (EUF) based on the first

law of thermodynamics is defined as the combined energy

of the flows produced by the cogeneration system and used

to meet the energy demands (electricity, hot water, steam and

chilled water) divided by the energy consumption of engine

[5]. Carbon dioxide emissions and carbon dioxide emission

ratio are defined to evaluate the environment impact. The

amount of emission is estimated using the fuel conversion

factors and electricity factors [7, 8].

In this paper, an integrated DES system model is developed

based on detailed component models. Both the operational

cost and exergy efficiency are considered together as a multi-
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objective for operation optimization. The optimization problem

is formulated as a nonlinear programming problem with 672

variables, 288 equality constraints and 576 inequality con-

straints. A two-stage method consisting of a particle swarm

algorithm (PSO) and the sequential quadratic programming

(SQP) is employed to solve the problem. Three cases with

varied loads at three different seasons have been investigated

in detail. It is found that the performance of DES under the

proposed operation mode is better than those using traditional

rule-based operation methods, in terms of the operational cost

and exergy efficiency.

II. SYSTEM CONFIGURATION AND COMPONENT MODELS

Fig. 1 shows the configuration of a gas turbine based DES.

This DES consists of a 350 KW micro-gas turbine generator,

a 600 KW absorption chiller, a 100 KW electricity chiller

and a 600 KW heat exchanger. Natural gas is used as the

fuel being burned in the gas turbine to drive a synchronous

generator. Waste heat from the gas turbine is distributed into

heat exchanger and absorption chiller to generate hot water and

cold water, respectively. Electric chiller will be turned on when

the cooling output of absorption chiller is not sufficient. Two-

directional electrical flow with the power grid is allowed, so

the excess electricity may be sold back to the grid depending

on the energy policy.

Fig. 1: The configuration of DES.

A. Gas Turbine Model

According to Wang [9] and Zhang [10], the main outputs of

a micro-gas turbine model include exhaust gas temperature T4,

mass flow rate of exhaust gas Gg , and mass flow rate of fuel

Gf , which can be represented as a function of output power

P as follows:

T4 (P ) = a1P
3 + a2P

2 + a3P + a4 (1)

Gg (P ) = b1P
2 + b2P + b3 (2)

Gf (P ) = c1P
2 + c2P + c3 (3)

where a, b and c are coefficients.

B. Heat Exchanger Model

Using the ε-NTU method, the heat exchange is considered

as a function of exhaust gas mass flow G and temperature T
[18], as given in (4). For the heat exchanger being considered

in this work, the relations among the exhaust gas mass

flow rate, its temperature, and the exchange heat amount are

presented in Fig. 2, and can be expressed as a lookup table. A

two-dimensional interpolation method is applied in the DES

operation optimization.

QHX = HX (T,G) (4)
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Fig. 2: Heat exchanger performance varied with the exhaust

gas mass flow and temperature.
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Fig. 3: The relation between COP and load rate for Absorption

chiller.

C. Absorption Chiller Model

Based on the heat balance and mass balance equations de-

veloped by Borg and Kelly [11], the coefficient of performance

of absorption chiller can be considered as a function of waste



heat temperature, as shown in Fig. 3. The absorption chiller

capacity is also treated as a function of exhaust gas mass flow

and temperature, as follows:

QAC = AC (T,G) (5)

COPAC = COP (T ) (6)

D. Electrical Chiller Model

For electrical chiller, its efficiency changes little and can

be considered as a constant value. Usually, the coefficient is

between 3 and 6. In this study, COPEC is chosen to be a

constant value of 4. The performance of electrical chiller can

be expressed as:

QEC = EC (P ) = COPEC · P (7)

III. PROBLEM FORMULATION

DES is a complex system including power generation, heat

conversion, heat transfer, power transfer, grid interface with

the dynamic loads requirement. In this paper, a multi-objective

cost function is used to optimize the operational cost and the

total system efficiency. The reason the environment impact is

not considered in the objective function is because it is cor-

related with the system efficiency. Normally, the high system

efficiency corresponds to the low environmental impact, and

vice versa.

A. Cost Function

The operational cost fcost is determined by the fuel con-

sumption, the electricity purchased from the grid or sold back

to the grid.

fcost (x) = cpelecW
p (x) + cgasmfuel (x)− cselecW

s (x) (8)

where cpelec is the electricity purchase price, cselec is the

electricity selling price, and cgas is the natural gas price. The

total system exergy efficiency fEUF can be calculated based

on the fuel exergy, the thermal product, and electricity.

fEUF (x) =
W (x) + Eht (x) + Ecw (x)

mfuel (x)LHVfuel
(9)

where W is the power generation, Eht is the exergy for heating

demand, Ecw is the exergy for cooling demand, mfuel is the

fuel consumption, LHV is the lower heating value of fuel,

chosen to be 43100 KJ/Kg.

For the DES in Fig. 1, the decision variables are defined as:

xi (1) for GT power output, xi (2) for GT power ratio to EC,

xi (3) for GT power ratio to EL, xi (4) for grid power ratio to

EC, xi (5) for grid power ratio to EL, xi (6) for exhaust gas

distribution to absorption chiller, and xi (7) for exhaust gas

distribution to heat exchange, where i = 1, 2, . . . , 96 for a 24-

hour operation cycle, sampled every 15 minutes. All variables

are scaled between 0 and 1.

For the operational cost, it is preferred to be as small

as possible, while for the efficiency, the higher the better.

However, there exists a conflict between cost and efficiency.

Hence, the optimization algorithm is applied to find out the

best tradeoff between the two. In order to balance the multi-

objective function, weighting factors are added. In the process

of normalization, cost and EUF are compared with extreme

values respectively, to achieve a convergent numerical solution.

min J
x

(x) = w1 ·
∑

fcost (x)∑
fo
cost

+ w2 ·
∑

fo
EUF∑

fEUF (x)
(10)

where w1, w2 are weighting factors with w1+w2 = 1, fo
cost is

the cost only condition, fo
EUF is the efficiency only condition.

The solutions of these two extreme conditions can be achieved

through rule-based algorithm.

B. Constraints
The equality and inequality constraints are listed bellow:
(1)The generated electricity, heating, and cooling have to

meet the load demands.

xi (1) · xi (3) · P rated
GT + xi (5) · EL (i) = EL (i) (11)

AC (xi (1) , xi (2) , xi (4))COP (xi (1))+
EC (xi (1) , xi (6)) = CL (i)

(12)

HX (xi (1) , xi (7)) = HL (i) (13)

(2) All units should be operated within upper and lower

bounds.
The gas turbine power generation:

Plb ≤ PGT ≤ Pub (14)

The electrical chiller:

xi (1) · xi (2) · P rated
GT + xi (4) · P rated

EC ≤ P rated
EC (15)

The absorption chiller:

AClb ≤ AC (xi (1) , xi (2) , xi (4)) ≤ ACub (16)

The heat exchanger:

HXlb ≤ HX (xi (1) , xi (7)) ≤ HXub (17)

(3) The power output rising and falling rates constraints

|Pi+1 − Pi|
Δi

≤ ri (18)

Δi is the time interval between time i + 1 and i. ri is the

maximum rising and falling rates. The maximum rising and

falling rates are usually considered as the same value, which

can be chosen between 1-5% per minute.
(4) Energy distribution constraints include:

xi (2) + xi (3) ≤ 1 (19)

xi (6) + xi (7) ≤ 1 (20)

In summary, the optimization problem can be formulated as a

standard nonlinear programming problem below:

min
x

J (x)

s.t. h (x) = 0
g (x) ≤ 0

0 ≤ xi (j) ≤ 1
i = 1, 2, . . . , 96, j = 1, 2, . . . , 7

where J (x) is defined in (10), h (x) consists of (11), (12)

and (13), and g (x) is given by (15) to (20).



IV. CONTROL STRATEGY

DES can be controlled by several possible operation modes.

In practical operation, the most commonly used operation

strategies are rule-base strategies. However, the rule-based

strategies are incapable to evaluate the system’s performance

sufficiently. Hence, an optimal operation mode is proposed in

this paper, aiming to increase the system efficiency while de-

crease the operational cost. For DES without thermal storage,

the offline planning problem can be formulated as the nonlin-

ear programming (NLP) problem. Various algorithms can be

used to solve this kind of problem. Facci [12] chose dynamic

programming method to optimize the CHP system’s operation

strategy for economic analysis. Chandan [17] used an interior-

point algorithm, while Rong [13] used Lagrangian relaxation

to solve a similar problem. In the current study, considering

the problem size and the computational complexity, a two-

stage approach combining PSO and SQP is employed to solve

the NLP problem.

A. The Two-Stage Approach

PSO is an effective global optimization algorithm for both

constrained and unconstrained problems. The PSO algorithm

searches in parallel using a group of particles, each particle is

a potential solution. For heuristic algorithm like PSO, there are

ways to deal with general constrained nonlinear problems [14].

Penalty function is applied to deal with both constraints [20].

In order to reduce the computation time, equality constraints

are converted into inequality constraints with a small range.

However, there is no guarantee of the global optimum with

nonlinear constraints, especially with high dimensional nonlin-

ear inequality constraints [20]. Therefore, the results of PSO

are used as the initial guess for SQP to obtain a convergent

solution.

The SQP method is a commonly used nonlinear program-

ming method to deal with nonlinear constrained optimiza-

tion problems. For each iteration, a quadratic programming

(QP) subproblem is solved to obtain the search direction

for updating the control variables [15]. SQP algorithm is

extremely sensitive to the initial guess, especially for large

scale problems. A bad initial guess would result in the local

optimal, immature results or high computation cost. In this

paper, results from PSO is applied as the initial guess to reduce

the computational cost.

B. Rule-Based Approach

Generally, the rule-based algorithms used in DES are fol-

lowing the electrical load method (FEL), following the thermal

load method (FTL) and the combination of the two methods

(CET).

FEL method means that the electric demand decides the

power output of the power generation unit (PGU) if the

requirement is below the PGU’s rated power. Otherwise, the

system should purchase extra electricity from the grid to meet

the requirement. Meanwhile, the waste heat is used for cooling

and heating consumption.

FTL method means that the PGU generates substantial heat

to meet the cooling and heating demands. At the same time, if

the PGU does not generate adequate electricity to balance the

electric load, the shortfall comes from the grid. And electricity

can be sold back to the grid if there is surplus.

Simple operation strategies like FEL and FTL consider

load demands only. There might exist better feasible solution

when the operational cost and emission aspects are taken

into consideration. In order to improve the performance, some

researchers use a hybrid electric-thermal load operation mode

to reduce both operational and environmental costs [15, 16].

In this work, the rule-based algorithms are also applied

on the DES model for comparison purposes. Two extreme

conditions based on the rule-based approach are simulated,

considering either the operational cost or the thermal effi-

ciency. For operational cost only condition, because electricity

sold back to the grid is allowed and the electricity selling price

is always higher than the purchase price, the power generation

unit would always work on the rated power to generate as

much electricity as possible. For efficiency only condition, in

order to reduce the waste of heat, the system may operate

under the FTL method, and therefore the system efficiency is

able to achieve its maximum.

V. SIMULATION AND DISCUSSION

A. Load Models

Load models of heating, cooling, and electricity are estab-

lished by using EnergyPLus. The climate is classified into

three types: summer, winter, and transition season between the

two. The modeling results of demand loads at three different

seasons are shown in Fig. 4. The red line indicates the heating

load, blue for the cooling load and green for the electricity

load.
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(b) Transition loads

1 5 10 15 20 24
0

100

200

300

400

500

600

700

800

900

Time (Hour)

Lo
ad

 (K
J)

Loads in Winter

CL
EL
HL

(c) Winter loads

Fig. 4: Demand loads under different seasons.

B. Simulation Results

Fig. 5 shows the modeling results of EUF at the load in

summer. Four cases are compared, which are the cost only

case, EUF only case, CET case, and optimized mode case,

respectively. It is undoubted that the EUF only case has the

highest effectiveness among four cases. The optimized mode

case can achieve the efficiency as high as the EUF only case,

during several time periods. However, it is noted that the CET

case occasionally has a better performance than the optimized

mode case. The cost only case always has the lowest efficiency

compared to other three cases. In terms of the average EUF for



a period of 24-hour operation, it can be seen that the efficiency

of optimized mode case is approximately 2% lower than the

EUF only case, but is 3.5% higher than the CET case.
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Fig. 5: EUF comparison in summer.

In terms of the operational cost, it is found that the trajectory

of optimized mode case is always between the two extreme

cases (i.e. cost only case and EUF only case), as shown in

Fig. 6. Both Figs. 5 and 6 suggest that the optimized solution

focuses more on the efficiency at night when both thermal load

and electricity load are low. While during the daytime when all

loads are high, the operational cost turns to be more important.

As a result, the average efficiency of optimized mode case is

better than the cost only solution.
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Fig. 6: Operational cost comparison in summer.

Figs. 7 and 8 show the results of EUF and operational

cost in transition season, respectively. Similar to the results in

summer, the optimized mode can achieve the highest efficiency

at some point. As expected, the average efficiency of optimized

mode case is between cost only case and EUF only case, but

is a little lower than the CET case. It is also noted that the

average system thermal efficiency in transition season is lower

than those in summer and winter. This is probably due to the

smaller thermal demand in transition season. In other words,

more generated heat has to be wasted which leads to a lower

system efficiency in transition season. For the operational cost,

the result of optimized mode case is much closer to that of

cost only case, and is always lower than the EUF only case.
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Fig. 7: EUF comparison in transition.
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Fig. 8: Operational cost comparison in transition.

Figs. 9 and 10 show the efficiency and operational cost

of four cases in winter. The efficiency of optimized mode

case is found to be very close to the EUF only solution, and

is higher than the CET case. For the operational cost, the

trajectory of optimal operational cost coincides with the EUF

only case at night when the thermal load is high and electrical

load is relatively low. During the daytime, it is found that the

optimized strategy operates closer to cost only curved than the

efficiency only curve, suggesting that the proposed optimized

strategy is capable of reducing the cost. The comparison of

average operational cost among the three cases also confirms

it.
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Fig. 9: EUF comparison in winter.
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VI. CONCLUSION

In this paper, a gas turbine-based DES has been devel-

oped using detailed component models. A multi-objective cost

function including the system operation cost and the exergy

efficiency has been proposed for obtaining optimal operating

strategies. The optimization problem was formulated as a non-

linear programming problem that was solved by a two-stage

approach combining PSO and SQP. Three cases under different

demanding loads were studied using the proposed DES model.

In comparison with the results obtained by rule-based methods,

it is found that the optimized operation strategy using the two-

stage method can improve the system performance in terms

of system operation cost and efficiency within an acceptable

computational time. Therefore, it is believed that the two-stage

method can be applied to DES planning and operation.
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