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Abstract  

Nonalcoholic fatty liver disease (NAFLD) is a spectrum of pathologies associated with fat 

accumulation in the liver. NAFLD is the most common cause of liver disease in the United 

States, affecting up to a third of the general population. It is commonly associated with features 

of metabolic syndrome, particularly insulin resistance. NAFLD shares the basic pathogenic 

mechanisms with obesity and insulin resistance, such as mitochondrial, oxidative and 

endoplasmic reticulum stress. Lipoxygenases catalyze the conversion of poly-unsaturated fatty 

acids in the plasma membrane—mainly arachidonic acid and linoleic acid—to produce oxidized 

pro-inflammatory lipid intermediates. 12-Lipoxygenase (12-LOX) has been studied extensively 

in setting of inflammation and insulin resistance. As insulin resistance is closely associated with 

development of NAFLD, the role of 12-LOX in pathogenesis of NAFLD has received increasing 

attention in recent years.  In this review we discuss the role of 12-LOX in NAFLD pathogenesis 

and its potential role in emerging new therapeutics. 
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Introduction  

Nonalcoholic fatty liver disease (NAFLD) is a clinicopathologic spectrum of liver 

pathologies associated with excessive accumulation of fat in the liver (Browning et al., 2004; 

Neuschwander-Tetri & Caldwell, 2003). This spectrum is continuous but can be graded based 

on pathological features; in increasing severity, these are: bland steatosis, steatohepatitis, 

fibrosis and cirrhosis. (Matteoni et al., 1999).  NAFLD affects 31% of the US population, and is 

strongly correlated with the high incidence of obesity in Western cultures (Browning et al). 

Simple hepatic steatosis or non-alcoholic fatty liver (NAFL) is a largely benign and 

reversible condition defined by an excess accumulation of lipid droplets in the liver (Burt, 

Mutton, & Day, 1998). However, when non-alcoholic hepatic fat accumulation is associated with 

a significant inflammatory reaction—seen as lobular inflammation and cellular ballooning injury 

on histopathology —the pathology is considered nonalcoholic steatohepatitis (NASH) (Ludwig, 

McGill, & Lindor, 1997). An estimated 20-33% of individuals with NAFL patients show evidence 

of NASH on histopathology  (Williams et al., 2011). Further progression of the disease in the 

setting of ongoing inflammation results in fibrosis (Ludwig et al., 1997) and eventually occurs in 

20% of individuals with NASH. (Matteoni et al., 1999) Individuals with NASH progress to fibrosis 

and cirrhosis at a rate of 7-10% annually.(Argo, Northup, Al-Osaimi, & Caldwell, 2009; Harrison, 

2003; Mishra & Younossi, 2012). Annual incidence of hepatocellular cancer and liver related 

death in patients with NASH related cirrhosis is around 2.6% and 1.4-3% respectively. (Sanyal 

et al., 2006) 

The prevalence of NAFL reaches up to 90% in the obese population, and more than half 

of these show evidence of NASH based on histopathology. (Spaulding, Trainer, & Janiec, 

2003). Furthermore, NAFLD is commonly associated with features of type 2 diabetes and 

metabolic syndrome.  For instance, among individuals with type 2 diabetes mellitus (T2D) up to 

70% have NAFL, and NASH is evident in ~67% of those biopsied (Matteoni et al., 1999). 

Reciprocally, T2D is seen in 30% of patients with NAFLD (Loomba et al., 2012). This strong 
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association of NAFLD with metabolic syndrome, suggests that mechanisms may be shared 

between these pathologies, in particular the conditions of maladaptive inflammation and insulin 

resistance observed in both. One biochemical pathway that is likely to be relevant but has not 

yet been extensively studied in NAFLD, is the eicosanoid generating lipoxygenases pathway. In 

this review, we summarize the current understanding of the pathogenesis of NAFLD, introduce 

the pertinent mechanisms by which 12-LOX could play a part in NAFLD pathogenesis, and 

discuss current and potential new therapeutic approaches.  

 

NAFLD Pathogenesis  

NAFLD is a complex disease, and accordingly its etiology involves multiple interacting 

factors, such as nutrient excess, obesity and metabolic syndrome (Assay et al., 2000; Beymer, 

2003; Leite, Salles, Araujo, Villela-Nogueira, & Cardoso, 2009; Prashanth et al., 2009). In such 

“overfed” states, free fatty acids (FFAs) are directed to adipose tissue where they are converted 

into triglycerides under the control of the insulin signaling pathway. However, with chronic over-

nutrition and obesity the presence of low grade inflammation in adipose tissues drives the 

development of peripheral insulin resistance, creating a state of relative insulin deficiency 

(Hirosumi et al., 2002). Under these conditions, lipolysis is no longer inhibited in adipocytes by 

insulin, leading to an increase in circulating FFAs (Samuel & Shulman, 2012); these FFAs in 

turn are sequestered by the liver for lipogenesis. Furthermore, in states of insulin resistance 

gluconeogenesis is uninhibited, while enhancing de novo lipogenesis. This is referred to as 

selective insulin resistance, as in normal conditions insulin inhibits gluconeogenesis while 

promoting de novo lipogenesis (Figure 1). Moreover, locally generated lipid products from cells 

in the liver (hepatocytes, invading immune cells) may also contribute substrate for lipogenesis.  

Together, the above mentioned dysfunctions drive the accumulation of triglycerides as lipid 

droplets in the liver, which upon exceeding 5% of the hepatocytes on histopathology is clinically 

defined as nonalcoholic fatty liver (NAFL), or bland steatosis (Burt et al., 1998). A considerable 
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percentage of these patients (20-30%) develop hepatic inflammation and progress to 

nonalcoholic steatohepatitis (NASH) (Ludwig et al., 1997). Although the transition from NAFL to 

NASH generally occurs in the setting of obesity and insulin resistance, the triggering events and 

downstream mechanism of progression are not yet completely understood; however it is likely 

that progression requires two hits that lead to the disruption of distinct molecular pathways (Day 

& James, 1998). Traditionally it has been hypothesized that a first hit results in development of 

simple steatosis, while a second hit results in progression from simple steatosis to 

steatohepatitis (Day & James, 1998). In recent years, a consensus has been emerging that the 

first of these hits encompasses insulin resistance, continued nutrient excess, and impaired 

autophagy that lead to steatosis, and that the second of these hits encompasses oxidative 

stress, ER stress, impaired autophagy, altered intestinal microbiome and intestinal translocation 

that allow progression to steatohepatitis (Buzzetti, Pinzani, & Tsochatzis, 2016). The hepatocyte 

alone is not responsible for the spectrum of molecular disorders leading to steatohepatitis, and 

other cells such as adipocytes and hepatic dendritic cells, NK-T cells, CD4 and CD8 T cells 

likely contribute (He et al., 2017; Heier et al., 2017; Walker & Lemon, 2016). In the rest of this 

section, we review three interconnected molecular pathways in hepatocytes—autophagy, ER 

stress and oxidative stress —that have been implicated in NAFLD progression and introduce 

12-LOX pathway which we believe plays an important role in the pathogenesis of NAFLD. 

Figure 1 provides an overview of the pathogenesis of NAFLD described in this paper. 

 

Autophagy  

Autophagy is a critical cellular mechanism that regulates intracellular recycling and 

energy homeostasis through the orderly degradation of cellular components. The three 

pathways of autophagy (macroautophagy, microautophagy, and chaperone-mediated 

autophagy) have all been described in the liver. In macroautophagy, large cytosolic regions are 

sequestered within double membrane autophagosome vesicles. ATG7 is an important protein 
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for autophagosome formation and when this pathway is blocked, as in Atg7-/- mice, damaged 

organelles and altered proteins accumulate even under basal conditions in hepatocytes 

(Komatsu et al., 2005). In microautophagy, direct lysosomal engulfment of the cytoplasmic 

cargo occurs through membrane invagination. Chaperone-mediated autophagy is a more 

selective pathway that relies on the recognition of specific amino acid motifs by the chaperone 

Hsp70, that directs the delivery of specific proteins to lysosome. Upregulation of chaperone-

mediated autophagy occurs as a response to cellular stress including nutrient deprivation and 

oxidative stress (Kiffin, Christian, Knecht, & Cuervo, 2004).  

Autophagy has been shown to regulate lipid metabolism. Under conditions of starvation, 

autophagy is induced leading to lipolysis and free fatty acid production, which provides an 

additional source of energy (Singh et al., 2009). Notably, this process of utilizing lipids as a 

source of energy is hindered during nutrient excess as shown in the RALA255-10G hepatocyte 

cell line treated with the fatty acid oleate. Knockdown of Atg5 (a gene important in autophagy) 

caused fat accumulation after treatment with fatty acid oleate showing the importance of 

autophagy during nutrient excess (Singh et al., 2009). Nutrient excess has also been shown to 

inhibit autophagy in the liver of high fat diet (HFD)-fed mice. Conversely, treatment of the LO2 

hepatocyte cell line with ω-3 fatty acids decreased cellular lipid accumulation partly by 

increasing autophagic flux and downregulation of lipogenesis genes (Chen et al., 2015). This 

finding suggests that in the setting of excess fat accumulation in the liver, autophagy is down 

regulated, leading to an additional increase of lipid accumulation in liver. Furthermore, these 

data indicate that not only over nutrition per se, but also diet composition, is crucial to driving 

NAFLD pathogenesis.  

Autophagy also plays a role in controlling inflammation through regulatory interactions 

with inflammatory signaling pathways by removing endogenous inflammasome activators and 

through effects on the release of cytokines and immune mediators (Deretic, Saito, & Akira, 

2013). Atg5-/- mice infected with mycobacterium resulted in macrophages that hypersecrete IL-
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1α and IL-17, resulting in a pro-inflammatory state (Castillo et al., 2012). Greater cell death was 

seen in Atg5-/- macrophages compared to wild type under conditions of oxidative and ER stress 

in setting of atherosclerosis (Liao et al., 2012). 

 

Endoplasmic Reticulum Stress 

Nutrient overabundance places increased demand on the endoplasmic reticulum (ER) to 

synthesize the additional proteins that are required to process excess fat and to package it with 

lipoproteins for transport throughout the body. When increased protein synthesis demands 

exceed the capacity of the ER, unfolded proteins accumulate in the lumen, triggering the 

unfolded protein response (UPR). The protein folding chaperone BiP (binding immunoglobulin 

protein) normally binds to and suppresses the activation of ER stress sensors in a steady state.  

However, as unfolded proteins mount, BiP migrates from these "folding" sensors to facilitate 

protein folding. This dissociation permits activation of each of the sensor pathways—PERK 

(double stranded RNA-dependent protein kinase-like ER kinase), IRE-α (Inositol requiring 

element-1α), and ATF6 (activating transcription factor 6)—initiating the UPR. Chronic activation 

of the UPR generates a maladaptive state of ER stress. In fact, saturated fats such as palmitate 

have been shown to alter ER membrane integrity by saturating the phosphatidyl choline and 

triacylglycerol content in ER membranes. (Borradaile et al., 2006)  

ER stress is closely tied to the induction of inflammatory pathways. For example, ER 

stress activates the transcription factor NF-ĸB through PERK and IREα pathways by 

overcoming the constitutively expressed Iĸβ (inhibitor of NF-ĸB). This frees NF-ĸB to translocate 

to the nucleus, thereby activating transcription of pro-inflammatory genes. Ob/ob mice, which 

develop steatosis due to a mutation in leptin, have been used to study fatty liver. However, 

these mice do not develop NASH until a second insult occurs, such as treatment with 

lipopolysaccharide (LPS).  LPS-treated ob/ob mice develop hepatic inflammation through 

increased expression of pro-inflammatory IFN-γ and decreased expression of anti-inflammatory 
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IL-10 (Yang, Lin, Lane, Clemens, & Diehl, 1997). Hepatic activation of ER stress pathway 

proteins, such as XBP1s, p-eIF2α and ATF4, and the downstream mediator CHOP are also 

increased in LPS-treated ob/ob mice. Furthermore, these mice showed increased Bcl-2 and Bcl-

XL protein expression, consistent with the promotion of apoptosis with an increased CHOP 

expression. Lastly, ER stress in hepatocytes has been shown to activate inflammasomes—

proinflammatory multiprotein complexes of the innate immune system that regulate activation of 

caspase-1 in response to infectious microbes or host proteins. This was demonstrated in ob/ob 

mice, which showed elevated mRNA levels of many inflammasome components upon LPS 

treatment (Lebeaupin et al., 2015).  

 

Oxidative Stress 

Oxidative stress is believed to play an important role in progression from steatosis to 

steatohepatitis. The metabolism of excess nutrients in hepatocytes places a high demand on 

the electron transport chain in the mitochondria, resulting in free radical generation, damage to 

cellular proteins, and increased oxidative stress. Furthermore, the increased demand for 

electron transport chain proteins feeds ER stress. ER stress feeds back to increase oxidative 

stress as free oxygen radicals are generated at the time of disulfide bond formation during 

protein folding (Zhang & Kaufman, 2008). 

Levels of fatty acid oxidation have been shown to be elevated in the liver of obese 

individuals while fatty acid uptake and esterification remain similar to lean subjects (Iozzo et al., 

2010). This increase correlated with insulin resistance. Interestingly this increase in fatty acid 

oxidation was not accompanied by mitochondrial respiratory chain (MRC) activity. When liver 

biopsy specimens of patients with NASH were compared to healthy controls, long chain acyl 

carnitine/carnitine ratio was increased, while MRC complexes I through IV were lower, 

suggesting that mitochondrial respiratory chain lags behind fatty acid oxidation, thereby 

increasing oxidative stress in the hepatocytes (Pérez-Carreras et al., 2003). Numerous studies 
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explored and found evidence of oxidative stress in patients with NAFLD. Lipid peroxidation 

products such as malondialdehyde (MDA), hydroxynonenol (HNE), oxidized LDL (ox-LDL), 

thiobarbituric acid-reacting substances (TBARS) were found to be higher in plasma of patients 

with NASH compared to patients with steatosis alone, suggesting that oxidative stress could 

have contributed to progression from steatosis to NASH (Chalasani, Deeg, & Crabb, 2004). 

Also, HNE and 8-hydroxy deoxyguoanosine staining is significantly higher in liver tissue of 

patients with NASH compared to those with steatosis alone (Seki et al., 2002). Intensity of 

staining in the livers with 3-Nitrotyrosine, a lipid peroxidation product was also found to be 

highest in subjects with NASH, high in those with steatosis alone compared to healthy subjects 

(Sanyal et al., 2001). Studies have also explored using serum thioredoxin as a non-invasive 

marker of NASH as it was significantly elevated in patients with NASH compared to steatosis or 

healthy controls (Sumida, Niki, Naito, & Yoshikawa, 2013).  

 

Lipoxygenases 

A potential new pathway linking the three molecular mechanisms described with NAFLD 

is the lipoxygenase (LOX) pathway. Lipidomics analysis compared two mouse models of 

NAFLD, wild-type mice on a high fat diet (HFD) and ob/ob mice on a HFD. The study 

demonstrated that the enrichment of triacyl glycerol and 18:1 fatty acids are the most prominent 

difference compared with wild-type on regular chow (Hall et al., 2017). This finding suggests 

that abundance of lipid species, and perhaps their metabolism, may be important in the 

development of NAFLD.  LOX enzymes catalyze the conversion of polyunsaturated fatty acids 

in the plasma membrane—mainly arachidonic acid and linoleic acid—to produce oxidized pro-

inflammatory intermediates (Powell & Rokach, 2015; Tersey et al., 2015). LOXs are classified 

based on the carbon atom (5, 12 or 15) on arachidonic acid that is the target for oxygenation 

and stereo-selectivity (R or S enantiomer). Humans and mice have three homologues: 5-LOX, 

12-LOX and 15-LOX, which produce 5-(S)-hydroxyeicosatetraenoic acid (5-HETE), 12-HETE, 
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and 15-HETE from arachidonic acid, respectively (Tersey et al., 2015). However, since the 

mouse 15-LOX enzyme produces predominantly 12-HETE (in a 6:1 ratio over 15-HETE), this 

orthologue is also commonly known as 12/15-LOX. Henceforth in this review, we will use the 

term 12-LOX to refer to the mouse 12/15-LOX enzyme, as it is functionally equivalent to human 

12-LOX and produces the majority of 12-HETE in mice. Listed in Table 1 are the major 

lipoxygenases, the gene encoding them, and their major lipid products. 

 

12-LOX in the pancreatic islet:  Whereas 12-LOX has been studied extensively during the 

inflammatory response in tissues such as islets, adipocytes and macrophages, its function in the 

liver is not as well understood. Mice harboring deletion of the gene encoding 12-LOX (Alox15) 

appear phenotypically normal, however they exhibit resistance to glucose intolerance when 

challenged with a high fat diet (HFD) (Nunemaker et al., 2008). HFD-fed Alox15-/- mice also 

exhibit reduced insulin resistance and reduced macrophage infiltration within the adipocytes 

compared to control mice (Nunemaker et al., 2008). Whereas these studies showed the global 

importance of 12-LOX in the stress response to HFD-feeding, several different tissue-specific 

knockout models have been studied to differentiate the role of 12-LOX in various 

tissues/organs. 12-LOX is detected at low levels in human and mouse islets and treatment of 

human islets with pro-inflammatory cytokines results in an increase in both 12-LOX activity and 

protein levels (Chen, Yang, Smith, Carter, & Nadler, 2005). Inhibition of 12-LOX, either 

genetically or chemically, reverses islet β-cell dysfunction as seen in the presence of pro-

inflammatory cytokines and restores normal insulin secretion, alluding to the crucial role played 

by 12-LOX in preserving insulin secretion during stress (Ma et al., 2017; Tersey et al., 2014). 

Treatment of human islets with 12-HETE shows a similar reduction in insulin secretion and β-

cell dysfunction as seen with pro-inflammatory cytokines, further supporting the role of 12-HETE 

in islet stress. HFD-fed mice exhibited ER stress (shown by activation of CHOP) and oxidative 

stress (shown by activation of 4-HNE) in their islets and genetic deletion of Alox15 in the 
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pancreas of mice results in decreased ER and oxidative stress as well as improved metabolic 

health (Tersey et al., 2014, 2015). This effect of 12-LOX appears to be mediated by p38MAPK, 

as islets treated with 12-HETE show increased phosphorylation of p38MAPK and Alox15 

knockdown in mouse islets demonstrated decreased phosphorylated p38MAK (Ma et al., 2010). 

 

12-LOX in macrophages and adipose tissue:  Recruitment of CD11b+, F4/80+macrophages and 

elevated protein levels of inflammatory markers such as IL-1β, IL-6, IL-10, IFN-γ, Cxcl1 and 

TNF-α were seen in adipose tissue of control mice but not in Alox15-/- mice fed a HFD. This 

observation suggests a crucial role of 12-LOX in obesity and related inflammatory states (Sears 

et al., 2009). 3T3-L1 adipocytes treated with 12-HETE showed increased expression of 

inflammatory genes IL-6, TNF-α, MCP-1, IL-12p40 and reduced expression of anti-inflammatory 

adiponectin. These changes are mediated via janus kinase (JNK) phosphorylation, with 

subsequent phosphorylation of IRS-1(Ser) and impaired phosphorylation of IRS-1(Tyr) and 

protein kinase B phosphorylation (Chakrabarti, Cole, Wen, Keller, & Nadler, 2009). Likewise, 

12-LOX expression in visceral adipose tissue of patients with T2D correlated with an increase in 

IL-6 and IL-12 cytokines (Lieb et al., 2014). Similarly, 12-HETE treatment of mouse macrophage 

cell lines (J773A.1) induced IL-6 and TNF-α production. Over-expression of 12-LOX also 

resulted in higher production of IL-6 and TNF-α. It appears that this action is at least partly 

mediated by p38MAPK and JNK (Wen et al., 2007). IL-12 production by macrophages upon 

IFN-γ stimulation is mediated through 12-LOX (Middleton, Rubinstein, & Pure, 2006). HFD-

induced expression of TNF-α in adipose tissue was attenuated in adipocyte-specific Alox15-/- 

mice. In addition, macrophage infiltration of adipose tissue was also reduced in adipocyte-

specific Alox15-/- mice fed HFD (Cole, Morris, Grzesik, Leone, & Nadler, 2012). It is of interest 

to note that in an adoptive transfer model of type 1 diabetes, splenocytes of Alox15-/- mice 

congenic on the non-obese diabetic (NOD) background are not able to transfer disease, 

whereas splenocytes from control NOD mice transfer disease at 100% within two months 
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(Green-Mitchell et al., 2013). This role of 12-LOX in macrophages also has implications in 

atherosclerosis, as mice reconstituted with bone-marrow from Alox15/Apoe double-knockout 

mice displayed reduced atherosclerotic plaque size compared to bone-marrow from control 

Apoe-/- mice (Huo et al., 2004). 12-LOX deficiency has also been shown to decrease HFD-

induced atherosclerotic plaques in aorta of Ldlr-/- mice (an atherosclerotic mouse model) 

without changing the composition of lipids in the plaque (George et al., 2001).  In fact, 12-LOX 

has been shown to be a major player in the onset of diabetic cardiomyopathy in the 

streptozotocin (STZ) model of diabetes (single high dose), where increased expression of 12-

LOX in cardiomyocytes was seen after exposure to high plasma glucose levels followed by 

deterioration in cardiac function; this deterioration was mitigated in Alox15-/- animals (Suzuki et 

al., 2015). 

 

Lipoxygenases in liver:  A few studies have begun to investigate the role of lipoxygenases in the 

liver. Metabolomics in patients with NASH demonstrated increase in products of lipoxygenase 

pathway, including 5-HETE, 8-HETE, 11-HETE and 15-HETE compared to healthy patients and 

those with steatosis alone. There was no increase in products of cyclooxygenase pathway (Puri 

et al., 2009). In a Methionine choline-deficient mouse model of non-alcoholic steatohepatitis, 

liquid chromatography and mass spectroscopy of serum demonstrated significant elevation of 

12-HETE, linoleic and oleic acids along with bile acids, tauro-B muricholate and taurocholate 

compared to mice supplemented with methionine and choline (Tanaka, Matsubara, Krausz, 

Patterson, & Gonzalez, 2012). In addition, MCD fed mice showed increased gene expression of 

Alox12, an alternate gene whose product also produces 12-HETE.  Recent study in HFD-fed 

wild-type mice show a significant increase in 12-HETE. These mice also demonstrated an 

increase in 15-HETE, 5-HETE and 11-HETE. Livers of patients with NASH who demonstrated 

higher histologic inflammation score had increased 15-HETE levels. (Hall et al., 2016) In clinical 

trials using pentoxyfylline, a methyl xanthine derivative with anti-inflammatory properties partly 
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mediated by suppressing TNF-α gene transcription, subjects who responded to pentoxyfylline 

with improvement in lobular inflammation on histology demonstrated a decrease in plasma 12-

HETE levels (Zein et al., 2012).  Both 12-LOX and 5-LOX are expressed in normal mouse 

hepatocytes and upon liver damage via acetaminophen the transcript and expression levels of 

both are increased (Suciu et al., 2016). Likewise, upon HFD-feeding, 12-HETE and 5-HETE is 

increased compared chow-fed control mice (Lazic et al., 2014a). 5-LOX has been shown to be 

elevated in the liver of ob/ob mice and 5-LOX inhibition downregulated genes involved in 

hepatic fatty acid uptake and acyl-CoA oxidase expression, restored hepatic microsomal 

triglyceride transfer protein activity and hepatic VLDL-triglyceride and Apo-B secretion, 

suggesting a steatogenic role of 5-LOX. (Lopez-Parra et al., 2008). Also, in the Apoe-/- mouse, 

5-LOX deficiency protected mice from macrophage infiltration in the liver with decreased hepatic 

expression of pro-inflammation cytokines (IL-18 and MCP-1) (Martínez-Clemente, Clària, & 

Titos, 2011). Along similar lines, whole-body genetic knockout of Alox15 in HFD-fed mice 

resulted in decreased hepatic steatosis, decreased macrophage infiltration, decreased mRNA 

expression levels of proinflammatory cytokine genes in the liver (IFN-γ, TNF-α and IL-10), and 

decreased immune cell chemoattractants (Cxcl2/3) (Lazic et al., 2014b). The liver includes 

multiple different cell types such as hepatocytes, cholangiocytes, Kupffer cells and stellate cells. 

While these studies suggest that LOXs (and in particular 12-LOX) play an important role in the 

pathogenesis of NAFLD in mice, the specific cell types have yet to be clarified, as studies were 

performed in whole animal genetic deletions. Arachidonic acid metabolism appears to interact 

with cholesterol transport. Products of cholesterol metabolism, bile acids have also found to 

have a role in pathogenesis of NAFLD. Methionine choline deficient mouse model of NASH 

were found to have elevated taurocholate and tauro-β-cholate were found to be elevated in 

addition to 12-HETE compared to control mice. (Tanaka, Matsubara, Krausz, Patterson, & 

Gonzalez, 2012) Reverse cholesterol transport by acetyl salicylic acid is mediated by diverting 

arachidonic acid metabolism from cyclooxygenase enzyme pathway to 5 lipoxygenases thereby 
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generating leukotrienes and lipoxins from 15-HETE, which have been shown to induce Abcb11 

at a post translational level. (Demetz et al., 2014) 

 

Available treatment modalities for individuals with NAFLD 

There are several treatment modalities currently used or in clinical trials for individuals 

with NAFLD. The most widely recommended treatment is a lifestyle modification plan. As little 

as 5% weight loss has been shown to improve NASH histology in a pilot study of 23 

overweight/obese subjects with biopsy-proven NASH (Huang et al., 2005). In another study, 31 

overweight/obese individuals with biopsy-proven NASH were randomized to intensive lifestyle 

therapy or structured education. The patients in the intensive arm lost significantly more weight 

which led to improvement in steatosis, necrosis and inflammation (Promrat et al., 2010). A more 

recent study documented improvement in all histologic features of NAFLD with weight loss, 

including fibrosis. (Vilar-Gomez et al., 2015) Several studies have examined weight loss via 

bariatric surgery and have found improvement in hepatic steatosis, inflammation, and fibrosis 

(Furuya et al., 2007; Popov, 2015). Additionally, exercise alone without any dietary intervention 

has been shown to decrease hepatic liver lipids and improve overall metabolic health (Golabi et 

al., 2016; St. George et al., 2009). Hepatic staining of  malondialdehyde and Cyp2E1 protein 

content decreased with surgical weight loss in obese subjects with NAFLD (Bell et al., 2010).  A 

major limitation of lifestyle modification in the treatment of NASH is patient adherence, which 

can be as low as 30% (Martin, Williams, Haskard, & DiMatteo, 2005). 

The next most common treatment is insulin-sensitizing agents. Several different insulin-

sensitizing agents have been used to treat steatohepatitis with varying degrees of success. 

Although initial proof-of-concept studies have shown that metformin may be associated with 

histologic and biochemical improvement in NASH, subsequent larger studies failed to 

demonstrate histological benefit for metformin in patients with NASH (Haukeland et al., 2009; 

Lavine et al., 2011; Loomba et al., 2009; Nair, Diehl, Wiseman, Farr, & Perrillo, 2004). 
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Pioglitazone, another insulin-sensitizing agent, resulted in decreased inflammation and 

resolution of steatohepatitis when administered for 12-24 months in non-diabetic subjects with 

NASH. Both PPAR-γ and PPAR-α agonistic effects of pioglitazone are believed to aid in its 

effect on NASH (Aithal et al., 2008). However, pioglitazone is associated with higher rates of 

congestive heart failure and this concern has limited its widespread use in treatment of NASH. 

Likewise, while vitamin E (α-tocopherol) at a dose of 800 IU/day has been shown to improve 

NASH histology in non-diabetic adults with biopsy-proven NASH (Sanyal et al., 2010), data 

regarding association of high-dose vitamin E with prostate cancer has to be cautiously 

considered and discussed with patients before long-term use (Bjelakovic, Nikolova, Gluud, 

Simonetti, & Gluud, 2007; Klein et al., 2011; Miller et al., 2005). Analysis in vitro showed that α-

tocopherol reduces lipoxygenase dependent peroxidation of pig liver phosphatidylcholine 

micelles (Hirofumi Arai, Akihiko Nagao, & Kozo Takama, 1995). 

 Several other agents are also being actively studied for NAFLD. A multicenter clinical 

trial showed that 6-ethylchenodeoxycholic acid (obeticholic acid), an activator of farsenoid X 

nuclear receptor (FXR), significantly improved steatohepatitis histopathology. Contrary to 

expectations, subjects treated with obeticholic acid also witnessed worsening HOMA-IR and an 

increase in mean total cholesterol and LDL fraction and a decrease in HDL fraction 

(Neuschwander-Tetri et al., 2015). The long-acting glucagon-like-peptide-1 agonist Liraglutide 

was shown to resolve NASH without progression of fibrosis in a significant number of subjects 

compared to placebo in a recently-published phase 2 trial (LEAN trial) (Armstrong et al., 2016). 

In addition, the Liraglutide group showed significant decreases in hemoglobin A1C, absolute 

weight, BMI and increase in HDL cholesterol fraction, thus aiding cardiovascular risk 

optimization in this patient cohort (Armstrong et al., 2016). 

 Based on both the limitations of the current available treatments and the molecular 

mechanisms of NAFLD, there are compelling reasons to study novel therapeutic interventions 

based on the 12-LOX/12-HETE signaling pathway. Protection of HFD-fed Alox15-/- mice from 
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ER stress and inflammation described above suggests that interventions that inhibit 12-LOX 

with small molecule inhibitors, such as ML127, ML351 and ML355 (Kenyon et al., 2011; D. Luci 

et al., 2010; D. K. Luci et al., 2014; Ma et al., 2017) would serve to protect these animals from 

steatohepatitis. Further studies are needed to confirm the potential of these proposed 

interventions, particularly given the possibility of off-target effects and non-tissue-specific effects 

of small molecule drugs of this nature. 

 

Animal Models of NAFLD 

Human research has greatly shaped our understanding of non-alcoholic fatty liver 

disease, but several limitations exist in studying the disease processes in humans, such as 

variations in environmental exposure, pre-existing genetic risk factors, racial and ethnic 

differences in disease presentation, and need for multiple invasive procedures among others. 

Research in animals enables us to circumvent several of these issues. An ideal animal model 

for NAFLD must replicate human disease closely, by exhibiting fatty liver associated with 

inflammation in an environment of nutrient excess, preferably associated with features of 

metabolic syndrome such as obesity and insulin resistance. The animal model should be easy 

to breed and maintain in the lab environment in addition to achieving the desired disease 

phenotype in a reasonable timeframe. Several animal models are available to study NAFLD; 

each one presenting both advantages and limitations. Currently, both mice and pigs have been 

used in NAFLD research, though rodent studies are far more common. NAFLD occurs naturally 

in mice, but it can also be induced more reproducibly through genetic alterations/mutations. 

Alternatively, NAFLD can be induced in animals by feeding mice diets with high fat or 

carbohydrate content, such that 60% of caloric count is derived from fat alone and/or cholesterol 

or simple carbohydrates. Simple carbohydrates, such as glucose and fructose generate 

abundant levels of glycerol-3-phosphate, which can be used in triglyceride synthesis. Moreover, 

as fructokinase is not regulated by insulin, excessive fructose can lead to unregulated 
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production of acetyl-Co-A, which is in turn converted to triglycerides (Jegatheesan & De Bandt, 

2017). Diets deficient in essential nutrients can also result in fatty liver. Listed in Table 1 are the 

various rodent models currently used to study NAFLD and their advantages and limitations.  

Ossabaw pigs, a breed of pig originally found on an island off the state of Georgia in the 

United States, acquired a “thrifty gene” to adapt to seasonable variability of food availability. 

These pigs develop steatosis and steatohepatitis when fed a diet high in fats. However, they are 

not widely used in research due to cumbersome nature of breeding and maintaining these 

animals in laboratory setting (Lee et al., 2009). 

In light of the limitations of rodent and pig models of NAFLD, there is a need for new 

animal models that address these shortcomings. Zebrafish is being explored as a potential 

animal model to study NAFLD. The similarity of zebrafish hepatopancreaticobiliary anatomy to 

humans and presence of orthologues to most human genes in zebrafish, including synteny 

make zebrafish an attractive animal model for hepatopancreaticobiliary disease. In addition, 

genetic tractability and transgenic feasibility allow for development of desired animal models 

with expression of interested study pathways. Rapid external development of transparent 

zebrafish embryo allows for study of effect of gene expression patterns on embryonic 

development in a time efficient manner. All the above features lend zebrafish to study of 

hepatopancreaticobiliary disease (Schlegel, 2012). 

 

Conclusion 

In this review, we summarize the putative role of oxidative stress and ER stress in the 

development of nonalcoholic steatohepatitis and identify the 12-LOX as an under-recognized, 

albeit important, contributor to the  pathogenesis of NAFLD. It is as yet unclear whether current 

approaches to therapy (weight loss, thiazolidinediones, GLP-1 receptor agonists, FXR agonists) 

might operate in part through the alteration of 12-LOX activity.  As such, recently developed 

inhibitors of 12-LOX (Kenyon et al., 2011; D. Luci et al., 2010; D. K. Luci et al., 2014; Ma et al., 
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2017) may represent a novel approach to the treatment and/or prevention of NAFLD, and such 

inhibitors may augment current approaches to treatment. 
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Table 1: Major lipoxygenases, their genes, and major products in humans and mice.  

 Gene Enzyme Product 

Mouse Alox15 12/15-LOX (or 
commonly 12-
LOX) 
 

12-HETE:15-HETE (6:1) 

 Alox12 12-LOX 12-HETE 

Human Alox15 15-LOX 15-HETE 

 Alox12 12-LOX 12-HETE 
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Table 2: Animal Models of nonalcoholic fatty liver disease 
Model Mechanisms Salient Features References 

Dietary 
Deficiency 

  

Methionine choline 
deficient  

Impaired VLDL 
secretion from 
liver 

Features of steatohepatitis in 10 weeks  
But in presence of weight loss and improved insulin sensitivity 

(Caballero et 
al., 2010; Oz, 
Chen, & 
Neuman, 2008) 

Conjugated 
Linoleic Acid (CLA) 

Diet with 
transfat 
conjugated with 
linoleic acid 

Features of steatohepatitis with mild peri-sinusoidal fibrosis with 
insulin resistance and near universal HCC development 
But in presence of weight loss and improved insulin sensitivity 
 
Develops fibrosing NASH, cirrhosis and HCC. 
But in presence of weight loss, improved insulin sensitivity and 
increasing adiponectin levels 

(Fujita et al., 
2010) 

 
Choline-def L-AA 
(CDAA) 

 
Diet deficient in 
choline; 
containining 
only L-amino 
acids 

(de Lima et al., 
2008) 

Dietary Excess     

High Fat Diet > 60% fat 
calories 

Steatosis with minimal and variable inflammation and fibrosis 
associated with obesity, insulin resistance and dyslipidemia. 

(Tetri, 
Basaranoglu, 
Brunt, Yerian, 
& 
Neuschwander
-Tetri, 2008) 

Western Diet 45% saturated 
and trans fats 
High 
cholesterol 

Steatohepatitis w/ballooning and variable fibrosis 
But takes up to 20 weeks 

(Kohli et al., 
2010) 

Atherogenic diet 1.25% 
cholesterol and 
0.5% cholate 

Steatohepatitis with ballooning and fibrosis 
But occurs in setting of weight loss and improved insulin sensitivity 
and takes up to 24 weeks 

(Charlton et al., 
2011) 

Genetic Models     

ob/ob Mutation in 
leptin 

Steatosis, Steatohepatitis develops after 2
nd

 hit in obese, hyperphagic, 
inactive animals that show insulin resistance and dyslipidemia 
But resistant to fibrosis  

(Ingalls, Dickie, 
& Snell, 1950; 
Zhang et al., 
1994) 

db/db 
 

Mutation in 
leptin receptor 
 

Steatohepatitis after 2
nd

 hit in obese animals with insulin resistance  (Chen et al., 
1996; Hummel, 
Dickie, & 
Coleman, 
1966) 

ApoE KO Absence of 
ApoE protein, a 
ligand of the LD 
receptor 

Steatohepatitis after 2
nd

 hit in animals with increased LDL, total 
cholesterol and triglycerides and atherosclerosis 
Model of dyslipidemia 

(Schierwagen 
et al., 2015)  

aP2-nSREBP-1c 
transgenic 
 

Over-exp of 
SREBP-1c in 
adipose tissue  
 

Steatohepatitis with mild fibrosis in animals with increased Glu; 
decreased adiponectin 
Model of lipodystrophy 
 

(Shimano et 
al., 1996) 

MAT1A KO Absence of  
methionine 
adenosyltranfer
ase (impaired 
anti-oxidant 
defense) 

 Steatohepatitis without fibrosis with high susceptibility to tumors  
 But no evidence of metabolic syndrome,  

(Lu et al., 
2001) 
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Figure 1:  Overview of pathogenesis of nonalcoholic fatty liver disease. Nutrient excess 

leads to insulin resistance and low grade inflammation at the level of adipose tissue. This leads 

to the increased circulatory free fatty acids (FFA), that can be accessed by the liver. Insulin in 

steady state promotes de-novo lipogenesis and inhibits gluconeogenesis. But in setting of 

peripheral insulin resistance, insulin selectively dis-inhibits gluconeogenesis and continues to 

promote de novo lipogenesis, thus compounding lipid accumulation in the liver.  Increased 

triglyceride accumulation downregulates autophagy and perpetuates triglyceride accumulation. 

Increased triglyceride accumulation in liver increases demand on electron transport chain in the 

mitochondria, generating free radical species and leading to oxidative stress. This eventually 

increases demand on protein folding in the endoplasmic reticulum with ensuing unfolded protein 

response, where transcription of inflammatory genes, which perpetuates inflammation in setting 

of nutrient excess. 12-Lipoxygenase (12-LOX) acts on membrane lipids (arachidonic acid) to 

produce oxidized lipid products such as, 12-hydroxyeicosatetranoic acid (12-HETE) which have 

chemokine affect, thus amplifying inflammation in the setting of fatty liver. 12LOX inhibitors 

(ML127, ML351, and ML355) aid in alleviating inflammatory response by reducing oxidative end 

product production.  
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Article Highlights 
 

1. Nonalcoholic fatty liver disease is associated with obesity and affects more than 30% of 
the US population. 

2. The molecular pathogenesis of nonalcoholic fatty liver disease involves endoplasmic 
reticulum stress, oxidative stress, and autophagy 

3. 12-Lipoxygenase produces products that exacerbate the molecular stress pathways 
leading to nonalcoholic fatty liver disease 

4. Multiple animal models of nonalcoholic fatty liver disease serve as preclinical models for 
testing of potential therapies for nonalcoholic liver disease 


