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ABSTRACT 

Osteoporosis is a major skeletal disease with low bone mineral density, which leads to 

an increased risk of bone fracture. Salubrinal is a synthetic chemical that inhibits 

dephosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) in 

response to endoplasmic reticulum (ER) stress. To understand possible linkage of 

osteoporosis to ER stress, we employed an unloading mouse model and examined the 

effects of salubrinal in the pathogenesis of disuse osteoporosis. The results presented 

several lines of evidence that osteoclastogenesis in the development of osteoporosis 

was associated with ER stress, and salubrinal suppressed unloading-induced bone loss. 

Compared to the age-matched control, unloaded mice reduced the trabecular bone 

area/total area (B.Ar/T.Ar) as well as the number of osteoblasts, and they increased 

the osteoclasts number on the trabecular bone surface in a time-dependent way. 

Furthermore, a significant correlation of ER stress with the differentiation of 

osteoblasts and osteoclasts was observed. Administration of salubrinal suppressed the 

unloading-induced decrease in bone mineral density, B.Ar/T.Ar, and mature osteoclast 

formation. Salubrinal also increased the colony-forming unit-fibroblasts and 

osteoblasts. It reduced the formation of mature osteoclasts, suppressed their migration 

and adhesion, and increased phosphorylation of eIF2α. While unloading-induced ER 

stress reduced the number of osteoblasts and increased the number of osteoclasts, 

salubrinal suppressed those changes. A TUNEL assay together with CHOP expression 

indicated that ER stress-induced osteoblast apoptosis was rescued by salubrinal. 

Collectively, the results support the notion that ER stress plays a key role in the 

pathogenesis of disuse osteoporosis, and salubrinal attenuates unloading-induced bone 

loss by altering proliferation and differentiation of osteoblasts and osteoclasts via 

eIF2α signaling.  
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Introduction 

Stress to the endoplasmic reticulum (ER) is recognized as cellular insult to a 

protein-folding factory, responsible for the biosynthesis, folding, assembly and 

modification of numerous soluble proteins and membrane proteins [1]. Disturbance to 

normal functions of the ER leads to an evolutionarily conserved stress response, the 

unfolded protein response, which is primarily aimed at damage compensating but may 

eventually trigger cell death if the dysfunction is severe or prolonged[2, 3].Although 

the ER stress has been reported to be linked to various diseases such as diabetes[4, 5], 

neurodegenerative diseases[6], and osteogenesis imperfecta [7], the role of the ER 

stress in the pathogenesis of osteoporosis still remains unclear. 

Osteoporosis is characterized by reduced bone mass, alterations in the 

microarchitecture of bone tissue, reduced bone strength, and an increased risk of 

fracture [8, 9]. Bone remodeling is a continuous bone resorbing and rebuilding 

process, undertaken mainly by bone-resorbing osteoclasts and bone-forming 

osteoblasts [10]. Diminished bone formation and/or excessive bone resorptionduring 

bone remodeling results in osteoporosis. Some murine models for bone diseases 

exhibit useful insights into possible linkage of osteoporotic pathogenesis to the ER 

stress in osteoblasts [11]. For instance, increased apoptotic death of osteoblasts is 

observed in postmenopausal osteoporosis as well as glucocorticoid-induced 

osteoporosis [12]. However, possible involvement of the ER stress in the development 

of osteoporosis has not well been understood. 

The major types of osteoporosis in humans include postmenopausal osteoporosis, 

disuse osteoporosis, and glucocorticoid-induced osteoporosis[13-16]. Unloading in 

animals is often mimicked by tail suspension or sciatic neurectomy for quantitative 

evaluation of the progress of disuse osteoporosis[13, 17, 18]. But the mechanism 

underlying enhanced osteoclasts activity and impaired osteoblasts functions remains 

to be clarified. In the current study, the unloading model was used to analyze the 

pathogenesis of osteoporosis, and the relationship between ER stress and 

osteoporosis. 

Salubrinal is a synthetic chemical (480 Da, C21H17Cl3N4OS) known to block 



5 
 

the dephosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α), 

which plays a critical role in the responses to the ER stress[19]. The elevated 

phosphorylation level of eIF2α activates translation of activating transcription factor 4 

(ATF4), which is one of the key transcription factors in bone formation[20]. Little is 

known, however, on its therapeutic effects on unloading-induced osteoporosis. In the 

present study, the unloading model was used to analyze the pathogenesis of 

osteoporosis, and salubrinal was employed as an agent to evaluate the role of ER 

stress in disuse osteoporosis.  

Using unloaded mice as a model for disuse osteoporosis, we first investigated 

herein the pathogenesis of osteoporosis, focusing on the role of ER stress in the 

development of osteoporosis. We also examined the effects of salubrinal to unloaded 

mice, target the development of bone marrow-derived cells that give rise to both 

bone-forming osteoblasts and bone-resorbing osteoclasts.  
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Materials and Methods 

Animals and materials preparation 

One hundred and seventeen C57BL/6 female mice (Animal Center of Academy 

of Military Medical Sciences, China), ~16 weeks of age, were used. Four to five mice 

per cage were housed under pathogen-free conditions, and were fed with standard 

laboratory rodent chow and water ad libitum. Mice were maintained at a constant 

temperature of 25�, and kept on a 12-hour light/dark cycle during the experimental 

procedure. All experiments were carried out according to the National Institutes of 

Health Guide for Care and Use of Laboratory Animals and were approved by the 

Ethics Committee of Tianjin Medical University. Murine receptor activator of nuclear 

factor kappa-B ligand (RANKL) and murine macrophage-colony stimulating factor 

(M-CSF) were purchased from PeproTech (Rocky Hills, NC, USA). Dulbecco’s 

Modified Eagle’s Medium (DMEM), Minimum Essential Medium Alpha (MEM-α), 

fetal bovine serum, penicillin, streptomycin and trypsin were purchased from 

Invitrogen (Carlsbad, CA, USA). Other chemicals were purchased from Sigma (St. 

Louis, MO, USA) unless otherwise stated. 

 

Experimental design 

In the first set of experiments, fifty-four mice were used to evaluate the role of 

ER stress in the development of unloading-induced osteoporosis. These mice were 

divided into nine groups: the age-matched control (AC; n = 6) and eight hindlimb 

unloading groups (HU). To examine the pathogenesis of disuse osteoporosis, 

unloaded mice were subdivided based on the duration for unloading such as 3h, 6h, 

12h, 1d, 2d, 3d, 7d, and 14d (n = 6 for each subgroup).  

In the second set of experiments, forty-five mice were employed to assess the 

effect of salubrinal on unloading-induced osteoporosis. These mice were divided into 

three groups (n = 21): the age-matched control group (AC), hindlimb unloading group 

(HU), and salubrinal-treated hindlimb unloading group (US). Thirty mice (HU and 

US) were subjected to hindlimb unloading for 2 weeks. All animals were weighed 

prior to any treatment and at sacrifice on 2 weeks.  
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In vivo tail suspension 

The mice were outfitted with a custom-made tail harnesses and suspended from 

an overhead pulley system in the customized cage. The position of the mice was 

adjusted to maintain in a ~30° head-down tilt with the hindlimbs elevated above the 

floor. The mice were able to ambulate within the cage using their forelimbs, which 

remained in contact with the cage floor. However, their hindlimbs remained 

suspended in air and consequently were unable to receive ground reaction forces (Fig. 

1A). Food and water were provided on the cage floor. For the age-matched control 

group, mice were housed individually under the same conditions but were not 

subjected to hindlimb unloading[21-23].  

 

Subcutaneous administration of salubrinal 

In the 2nd set of experiments, for salubrinal-treated group, unloaded mice 

received subcutaneous injections of salubrinal (Tocris Bioscience, Ellisville, MO, 

USA) in propylene glycol daily at a dose of 1 mg/kg body weight for 2 weeks. The 

placebo mice received an equal volume of vehicle[12].  

 

Measurements of bone mineral density and bone mineral content 

The animals were anesthetized by 1.5% isoflurane at a flow rate of 1.0 L/min, 

placed on the platform in the prone position, and their images were acquired in ~5 

min. Using peripheral dual energy X-ray absorptiometry (pDEXA; PIXImus II, Lunar 

Corp, Madison, WI, USA), bone mineral density (BMD, g/cm2) and bone mineral 

content (BMC, g) of the bilateral femur were measured before unloading and sacrifice 

(version 1.47). We scanned the entire animal, and conducted ROI analysis. The 

changes in BMD and BMC were determined, and statistical analysis was conducted. 

 

Micro-computed tomography 

Micro-computed tomography (µCT) was performed using a ScancovivaCT 40 

(Scanco Medical AG, Bassersdorf, Switzerland), a high-resolution desk-top system as 

previously reported[24]. Briefly, the excised left distal femora were scanned using an 
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X-ray source set at 60 kV with 6-μm pixel size. The trabecular bone compartment was 

segmented from the cortical shell for 50 slices in a region ~ 0.5 mm proximal to the 

most distal portion of the growth plate. A three-dimensional (3D) analysis was done to 

determine bone volume fraction (BV/TV, %), trabecular number (Tb.N, 1/mm), 

trabecular thickness (Tb.Th, μm), and trabecular bone spacing (Tb.Sp, μm). 

 

Histology, TRAP, MacNeal, TUNEL, and immunohistochemistry assays 

The distal femora were fixed in 10% neutral buffered formalin for two days and 

decalcified in 14% EDTA for 2 weeks. Decalcified samples were embedded in 

paraffin, and 5-μm-thick coronal sections were cut. The slides were then processed for 

hematoxylin and Eosin (H&E) staining. The images of the distal femora were 

captured with an Olympus BX53 microscope and Olympus DP73 camera. 

Measurements were performed within 1.6-mm2 sample area on the proximal side of 

the growth plate (~0.8 mm proximal distance from the growth plate), in which 

B.Ar/T.Ar (bone area/total area) was determined. 

Tartrate resistant acid phosphatase (TRAP) staining was used to determine 

osteoclast development[25]. The ratio between length of TRAP-positive cells and 

total circumference of bone trabecula were calculated. MacNeal’s staining was used 

for identifying osteoblasts as described previously[26, 27]. The osteoblast number 

was normalized using the trabecular bone surface.  

For immunohistochemical analysis, femoral sections were incubated with 

primary antibodies against nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1) 

(Abcam, Cambridge, MA, USA) at 4� overnight. An immunohistochemical kit and 3, 

3'-diaminobenzidine (DAB) (ZSGB-BIO, Beijing, China) substrate kit were used 

according to the manufacturer protocol. Histomorphometric measurements were 

conducted on the area of the proximal femur. Quantitative analysis was conducted in a 

blinded fashion[28]. 

 

TUNEL assay 

TUNEL staining was performed using a DeadEnd™ Fluorometric TUNEL 
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System (Promega, Madison, WI, USA) and apoptotic cells from the femoral section 

and MC3T3-E1 cells were detected [29, 30].  Fluorescently labelled cells were 

identified in 5 fields of view, and the relative percentage of TUNEL positive nuclei 

was determined using image analysis software (Cellsense standard software). 

 

Isolation of bone marrow-derived cells for osteoclast development 

After euthanasia, bone marrow-derived cells were collected by flushing the iliac 

with Iscove’s MEM (Gibco-Invitrogen, Carlsbad, CA, USA) that contained 2% fetal 

bovine serum (FBS). Cells were separated by low-density gradient centrifugation and 

cultured in α-MEM supplemented with 10% FBS, 30 ng/ml murine 

macrophage-colony stimulating factor (M-CSF), and 20 ng/ml murine receptor 

activator of nuclear factor kappa-B ligand (RANKL). On day 3, the culture medium 

was replaced by α-MEM supplemented with 10% FBS, 30 ng/ml M-CSF, and 60 

ng/ml RANKL. Cells were grown for three additional days[31, 32].  

 

Assays for colony-forming unit-fibroblasts (CFU-F) and colony-forming 

unit-osteoblasts (CFU-Ob) 

To evaluate colony formation capability of fibroblast-like mesenchymal stem 

cells, the CFU-F assay was performed.  In brief, bone marrow-derived cells (2 × 106 

cells/ml) were cultured in 6-well culture plates in a complete MesenCult medium. 

Fresh medium was exchanged every other day. On day 14, cells were stained using a 

HEMA-3 quick staining kit (Fisher Scientific, Waltham, MA, USA). The number of 

CFU-F colonies with more than 50 cells was counted, and the clusters of cells that did 

not present fibroblast-like morphology were excluded[24, 33, 34]. 

In the CFU-Ob assay, bone marrow-derived cells were plated at 2 × 106 cells/ml 

in 6-well plates consisting of the osteogenic differentiation medium (MesenCult 

proliferation kit, supplemented with 10 nM dexamethasone, 50 μg/ml ascorbic acid 

2-phosphate, and 10 mM β-glycerophosphate) [31]. The medium was changed every 

other day, and cells were cultured for 2 weeks. On day 14, cells were stained using an 

alkaline phosphatase (ALP) kit (Sigma-Aldrich, St. Louis, MO, USA). The 
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percentage of ALP-positive colonies was calculated. 

 

Assays for Colony-forming unit-macrophage/monocyte (CFU-M) and Colony-forming 

unit-granulocyte-macrophages (CFU-GM) 

The CFU-M and CFU-GM assays were conducted using bone marrow 

mononuclear cells as described previously [31, 35]. Approximately 2.5 × 104 bone 

marrow-derived cells from the iliac were prepared. Cells were seeded onto a 35-mm 

gridded dish, which was composed of methylcellulose supplemented with 30 ng/ml 

M-CSF and 20 ng/ml RANKL. Cells were cultured for 7 days in the presence and 

absence of salubrinal. The colony numbers of CFU-M and CFU-GM were converted 

to the numbers per iliac. 

 

Assay for differentiation to mature osteoclasts 

The osteoclast differentiation assay was performed using bone marrow-derived 

cells from unloading group in 96-well plates in the presence and absence of 

salubrinal[36]. During 6-day experiments, the culture medium was exchanged once on 

day 4. Adherent cells were fixed and stained with a tartrate resistant acid phosphate 

(TRAP)-staining kit (Sigma-Aldrich, St. Louis, MO, USA). TRAP-positive 

multinucleated cells (>3 nuclei) were identified as mature osteoclasts, and the area 

covered by mature osteoclasts was determined. 

 

Assays for the migration and adhesion of pre-osteoclasts 

Migration of osteoclasts was evaluated using a transwell assay as described 

previously with minor modifications[31]. Bone marrow-derived cells (2 × 106cells/ml 

in 6-well plates) were cultured in M-CSF and RANKL for 4 days. The osteoclast 

precursor cells (1 × 105 cells/well) were loaded onto the upper chamber of transwells 

and allowed to migrate to the bottom chamber through an 8-μm polycarbonate filter 

coated with vitronectin (Takara Bio Inc, Otsu, Shigma, Japan). The bottom chamber 

contained α-MEM consisting of 1% bovine serum albumin (BSA) and 30 ng/ml 

M-CSF. After 6 h reaction, the number of osteoclast precursor cells in the lower 
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chamber (attached onto the bottom of the transwells) was counted.  

For assaying adhesion, osteoclast precursor cells (1 × 105 cells/well) were placed 

into 96-well plates coated with 5 μg/ml vitronectin in α-MEM supplemented with 30 

ng/ml M-CSF[37]. After 30 min of incubation, cells were washed with PBS three 

times and fixed with 4% paraformaldehyde at room temperature for 10–15 min. Cells 

were stained with crystal violet, and the number of adherent cellswas counted. 

 

Cell viability assay 

An MTT assay was used to evaluate cell viability as previously described [38]. 

RAW264.7 cells and MC3T3-E1 cells were seeded in 96-well plates at a density of 

1×104 cells/well. Four hours later, cells were treated with the agent or vehicle 

(DMSO).  After 48 h, the absorbance at 570 nm was detected using a μQuant 

universal microplate spectrophotometer (Bio-tek, Winooski, USA). 

 

Western blot analysis 

For Western blot analysis, protein samples were isolated from the femora using a 

mortar and pestle. Tissues were lysed in a radioimmunoprecipitation assay (RIPA) 

lysis buffer, containing protease inhibitors and phosphatase inhibitors (Roche 

Diagnostics GmbH, Mannheim, Germany). Isolated proteins were fractionated using 

10% sodium dodecyl sulfate-polyacrylamide gels and electro-transferred to 

polyvinylidenedifluoride membranes (Millipore, Billerica, MA, USA)[28]. Primary 

antibodies specific to Bip (Affinity BioReagents, Suwanee, GA, USA), eIF2α, 

phospho-eIF2α, ATF4 (Cell Signaling, Danvers, MA, USA), RANKL, cathepsin K, 

CHOP (the CCAAT/enhancer binding protein homologous protein) (Proteintech, 

Wuhan, China) and β-actin (Sigma, St Louis, USA) were employed. After incubation 

with secondary IgG antibodies conjugated with horseradish peroxidase, signals were 

detected with enhanced chemiluminescence. Data were presented with reference to 

control intensities of β-actin. 

 

Statistical analysis 
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The data were expressed as mean ± standard deviation (SD). Data were analyzed 

with independent-sample t test (for two groups) or one-way ANOVA (for more than 

two groups).  For pair-wise comparisons, a post-hoc test was conducted using 

Fisher’s protected least significant difference. Correlation analysis was performed 

using Pearson correlation coefficient test. The relative parameters (% change) such as 

body weight, BMD, and BMC were calculated as ([S-B]/B × 100 in %, where S = 

“sacrifice” and B = “baseline”. All comparisons were two-tailed and statistical 

significance was assumed at p<0.05. The asterisks (*, **, and ***) represent p<0.05, 

p<0.01, and p<0.001, respectively. 
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Results 

The animals, used for tail suspension and administration of salubrinal, tolerated 

the procedures. No bruising or tissue damage was detected at the tail suspension site.  

 

Unloading-driven alteration in body weight and B.Ar/T.Ar in the femur 

During the 2-week experiment, age-matched control in body weight increased. 

However, unloaded mice demonstrated a time-dependent decrease in body weight 

(Fig. 1B). Compared to age-matched control, a statistically significant decrease was 

observed in these 4 unloaded groups (all p<0.001). Similar to the change of body 

weight, the histological samples of the distal femora from the unloaded mice showed 

a time-dependent decrease in B.Ar/T.Ar (Fig. 1C). Compared to age-matched control, 

a statistically significant decrease was observed in HU3d (p<0.05), HU7d (p<0.001), 

and HU14d (p<0.001), no significant difference was found in HU1d (p=0.433). 

 

Unloading-driven alteration in both osteoblast number and osteoclast number in the 

femur  

Compared to the age-matched control mice, unloaded group showed that the 

number of osteoblasts on bone surface was significantly decreased in a 

time-dependent fashion in HU1d (p<0.05), HU3d (p<0.01), HU7d (p<0.01), and 

HU14d (p<0.001) (Fig. 1D). However, unloaded group presented that the ratio of 

TRAP-positive cells to trabecular bone surface was significantly increased in a 

time-dependent manner in HU3d (p<0.01), HU7d (p<0.01), and HU14d (p<0.001), 

whereas HU1d showed no significant increase (p=0.335) (Fig. 2A).  

 

Unloading stimulated development of osteoclasts and CFU-M/CFU-GM 

Compared to the bone marrow-derived cells isolated from the age-matched 

control, the cells from the unloaded mice exhibited an increase in the surface area 

occupied by multi-nucleated osteoclasts (p<0.001) (Fig. 2B). Pre-osteoclast cells 

isolated from the unloaded mice were more migratory than those from the 

age-matched control (p<0.001) (Fig. 2C). In the adhesion assay, the cells isolated 
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from the unloaded mice presented an increase in adhesion over those from the 

age-matched control (p<0.001) (Fig. 2D). Furthermore, the number of CFU-M 

(p<0.001; Fig. 2E) and CFU-GM (p<0.001; Fig. 2F) in an iliac significantly increased 

in the unloaded group. 

 

Unloading-induced ER stress 

Compared to the age-matched control, the unloading group significantly 

increased the expression of Bip in HU3h (p<0.01), HU6h (p<0.05) and HU12h 

(p<0.01), but decreased in HU2d, HU3d, HU7d (all p<0.05), and HU14d (p<0.01). 

Meanwhile, compared to the age-matched control, unloading significantly increased 

the expression of p-eIF2α in HU3h and HU6h (both p<0.05), and HU12h group 

exhibited the same level as the age-matched control group (p=0.126), but decreased in 

a time-dependent manner in HU1d, HU3d, HU7d, and HU14d (all p<0.05). The 

unloading group increased the level of ATF4 in HU3h and HU6h (both p<0.05). 

HU12h (p=0.176) and HU1d (p=0.053) exhibited no significant change to the 

age-matched control group, while they decreased in HU2d, HU3d, HU7d (all p<0.05), 

and HU14d (p<0.01) in a time-dependent manner. The expression of CHOP showed a 

significant increase after HU12h (all p<0.01) (Fig. 3A-E).  

For correlational analysis, the expression levels of p-eIF2α were positively 

associated with osteoblastogenesis (r = 0.886 in CFU-Ob, y = 70.25x - 34.25, r = 

0.881 in N.Ob/BS, y = 34.05x - 5.216, and r = 0.869 in B.Ar/T.Ar, y = 35.17x - 14.04; 

all p<0.001). However, the expression levels of p-eIF2α were negatively associated 

with osteoclastogenesis (r = -0.847 in osteoclast formation, y = -70.73x + 117.5, r = 

-0.869 in osteoclast migration, y = -701.3x + 939.1, r = -0.847 in osteoclast adhesion, 

y = -451.0x + 566.5, r = -0.919 in Oc.S/BSf, y = -35.57x + 44.85, r = -0.896 in 

CFU-M, y = -56409x + 65751, and r = -0.845 in CFU-GM, y = -11676x + 14016; all 

p<0.001) (Fig. 3F). 

 

Attenuation of unloading-induced effects in salubrinal-treated mice 

Compared to age-matched control, unloading mice demonstrated a decrease in 
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body weight (p<0.001), while subcutaneous administration of salubrinal for 2 weeks 

significantly suppressed the unloading-induced decrease in body weight (p<0.001; Fig. 

4A).  

Compared to the age-matched control, the unloaded mice presented a significant 

reduction in BMD and BMC (both p<0.001). However, the unloaded mice treated 

with salubrinal exhibited a statistically significant recovery of BMD and BMC in the 

femur (both p<0.05) (Fig. 4 B&C).   

Micro-CT scanning at the distal femora (Fig. 4 D) indicated that the femoral 

BV/TV was increased from 18.7 ± 1.9 % (HU) to 24.1 ± 1.7 % (US) (p<0.05; Fig. 4E). 

The trabecular number increased from 5.16 ± 0.4 1/mm (HU) to 6.19 ± 0.42 1/mm 

(US) (p<0.05) (Fig. 4F), and the trabecular thickness of the femur was increased with 

salubrinal in the present study (p<0.01; Fig. 4G). However, the trabecular spacing of 

the femur was decreased by salubrinal treatment (p<0.05; Fig. 4H).  

Compared to age-matched control mice, unloaded mice presented a reduction in 

B.Ar/T.Ar (p<0.001). However, administration of salubrinal significantly restored 

B.Ar/T.Ar (p<0.001) (Fig. 4I). 

 

Salubrinal-driven enhancement of bone-forming osteoblasts in vivo  

Compared to the age-matched control group, unloaded mice for 2 weeks 

presented a significant reduction in the number of osteoblast on trabecular bone 

surface by MacNeal’s staining (p<0.001). However, two-week administration of 

salubrinal significantly increased the osteoblast number (p<0.001; Fig. 5A).  

 

Salubrinal-driven inhibition of apoptosis in bone cavity 

TUNEL-positive cells at the distal femora presented a significant increase in 

unloaded mice compared to age-matched control mice (p<0.001), whereas the 

salubrinal-treated unloading mice was significant decreased them compared to 

unloaded mice (p<0.001; Fig. 5B).  

 

Salubrinal-driven differentiation of osteoblasts and development of fibroblasts 
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Without salubrinal, the percentage of ALP positive colonies was 30.5 ± 1.7% in 

AC and 25.6 ± 2.2% in HU (p<0.05) (Fig. 5C). Administration of salubrinal at 1 

mg/kg increased the osteoblast differentiation to 41.3 ± 1.6% in vivo (p<0.001). After 

administration of salubrinal at 0.5 μM in vitro, the percentage of ALP-positive 

colonies increased 5.1% (p<0.05; Fig. 5D).  

Compared to age-matched control, unloading mice presented a significant 

decrease in CFU-F (p<0.01). Salubrinal treated unloading mice produced more 

CFU-F colonies when compared to the cultures established from hindlimb unloaded 

mice (p<0.01; Fig. 5E). Furthermore, administration of salubrinal at 0.5 μM in vitro 

increased CFU-F colonies when compared to the cultures established from unloaded 

mice (p<0.01; Fig. 5F). 

 

Salubrinal-driven inhibition of bone resorption and osteoclast development in vivo 

and in vitro 

Compared to the age-matched control, TRAP staining of the distal femora 

showed that Oc.S/BSf was significantly increased in the unloaded mice (p<0.001). 

However, the elevated ratio in the hindlimb unloaded group was significantly 

suppressed by salubrinal (p<0.001; Fig. 6A). 

Osteoclast formation was conducted using bone marrow-derived cells, the cells 

from the unloaded mice exhibited a significant increase in the surface area occupied 

by multi-nucleated osteoclasts (p<0.001). However, salubrinal treated unloaded mice 

significantly decreased it compared to unloaded mice without salubrinal treatment 

(p<0.001; Fig. 6B). To further evaluate the effects of salubrinal on the formation of 

mature osteoclasts in vitro, three dosages of salubrinal (1, 2, and 5 µM) were applied 

to the bone marrow-derived cells isolated from HU. Compared to the HU control, in 

vitro administration of salubrinal for a 6-day culture period resulted in a significant 

decrease in osteoclast formation (all p<0.001; Fig. 6C). To test the effects of 

salubrinal on the late development of osteoclasts, salubrinal was administered on days 

4 to 6. This timeline was also able to provide a significant decrease in osteoclast 

formation in a time- and dosage-dependent manner (all p<0.001) in HU (Fig. 6C).  
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Osteoclast function was evaluated through migration and adhesion assays. 

Pre-osteoclast cells isolated from the unloaded mice were more active in migration 

than those from the age-matched control mice (p<0.001). In addition, pre-osteoclast 

cells isolated from the salubrinal treated mice presented a significantly reduced 

migration rate compared to unloaded mice (p<0.001; Fig. 6D). A significant decrease 

in osteoclast migration was observed in a dosage-dependent manner in vitro (all 

p<0.001 for 1, 2 and 5 µM; Fig. 6E). In M-CSF mediated adhesion, the cells isolated 

from the unloaded mice presented stronger adhesion than those from the age-matched 

control (p<0.001). Compared to the cells isolated from the unloaded mice, the cells 

from the salubrinal-treated mice exhibited a significant reduction in osteoclast 

adhesion (p<0.001; Fig. 6F). In vitro analysis revealed a significant decrease in the 

osteoclasts adhesion in a dosage-dependent manner (all p<0.001 for 1, 2 and 5 µM; 

Fig. 6G).  

 

Salubrinal-driven suppression in CFU-M and CFU-GM of mature osteoclasts 

The number of CFU-M and CFU-GM, representing the number of osteoclast 

progenitors from unloaded mice was significantly higher than that of AC (both 

p<0.001). Cells derived from mice treated with salubrinal had the significantly lower 

numbers of CFU-M and CFU-GM (both p<0.001; Fig. 7A&B). After administration 

of salubrinal at 1, 2, and 5µM, a statistically significant dosage-dependent decrease in 

both CFU-M and CFU-GM was observed (both p<0.001; Fig. 7C&D). 

 

Salubrinal-driven alteration in NFATc1 

Immunohistochemistry staining of NFATc1 showed the unloading-driven upregulation 

of osteoclasts. Specifically, NFATc1-positive cells in salubrinal-treated mice were 

significantly decreased (p<0.01; Fig. 7E). 

 

Salubrinal protects osteogenesis against ER stress in vitro and in vivo 

Tunicamycin was used as an activator of ER stress. We employed salubrinal at 

0.2 to 5 μM, and evaluated their effects in the presence of tunicamycin. Tunicamycin 
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increased viability of RAW264.7 cells at 100 ng/ml, but salubrinal partially inhibited 

it in a dose-dependent manner (both p<0.05 at sal 1μM and 5μM; Fig. 8A). 

Tunicamycin inhibited viability of MC3T3-E1 cells at 100 ng/ml, while salubrinal 

restored the viability in a dose-dependent manner (p<0.05 at sal 1μM; p<0.01 at sal 

5μM; Fig. 8B). TUNEL-positive MC3T3-E1 cells were significantly increased in the 

presence of tunicamycin, whereas salubrinal treatment significantly decreased 

TUNEL positive cells (both p<0.001; Fig. 8C).  

Western blot analysis demonstrated that salubrinal increased the level of Bip, 

p-eIF2α/eIF2α (both p<0.05) and ATF4 (p<0.01), but decreased the level of CHOP in 

vitro (p<0.01) (Fig. 8D). Salubrinal increased the level of phosphorylated eIF2α 

(p<0.05; p-eIF2α), while it decreased the level of RANKL, cathepsin K and CHOP 

(all p<0.05) compared to the unloaded mice in vivo (Fig. 8E). 
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Discussion 

This study demonstrates that the ER stress plays a critical role in the 

pathogenesis of disuse osteoporosis. Using the tail suspended mice as a disuse 

osteoporosis model, unloading-driven reduction in femoral B.Ar/T.Ar was observed in 

a time-dependent fashion. The number of osteoblasts on the distal femora was 

significantly decreased in the unloaded mice. TRAP staining showed that Oc.S/BSf 

was increased in the unloaded mice. Unloading significantly increased the expression 

of Bip, p-eIF2α and ATF4 within 12 h of tail suspension, but decreased at later time 

points in HU2d to HU14d. The results indicate that short-term ER stress can protect 

cell through increasing Bip, p-eIF2α and ATF4 level, whereas long-term unloading 

induces apoptosis by inhibiting Bip, p-eIF2α and ATF4. The expression of CHOP 

showed a time-dependent increase (Fig. 8F). Furthermore, to understand the role of 

ER stress in induction of disuse osteoporosis, the effect of salubrinal as an eIF2α 

dephosphorylation inhibitor that block unloading-induced ER stress was investigated. 

Administration of salubrinal significantly suppressed unloading-induced bone loss 

and prevented apoptosis. Salubrinal also evaluated the levels of Bip, p-eIF2α/eIF2α, 

ATF4, RANKL, CHOP, and cathepsin K in tail-suspended mice. Meanwhile, 

administration of salubrinal in age-matched control (non-osteoporotic mice), no 

detectable changes were observed on bone formation and osteoclastogenesis (data not 

shown). These results showed that unloading-induced disuse osteoporosis modulates 

the expression of Bip, p-eIF2α, ATF4 and CHOP, indicating the possibility that the ER 

stress is involved in disuse osteoporosis. 

Although lots of models such as ovariectomy-induced osteoporosis, 

glucocorticoid-induced osteoporosis, and disuse osteoporosis has been generated[13, 

39, 40], disuse osteoporosis is selected in current study since the stimulus intensity 

and procedure of hindlimb suspension can be easy operated and quantified analysis 

for the development of osteoporosis. The tail-suspended animal model has been 

widely accepted as an effective disuse osteoporosis model for simulating bone loss[15, 

22, 41]. In the current tail suspension experiment, bone formation was mildly 

inhibited and bone resorption was markedly increased in unloaded mice, these 
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changes are in accord with previous study[14, 42-44]. Our correlation analysis and 

linear regression showed that the expression level of p-eIF2α was positively 

associated with the number of bone-forming osteoblasts, and negatively associated 

with that of bone-resorbing osteoclasts. Therefore, disuse osteoporosis model was 

used in the current study.  

In the second set of experiments, salubrinal was applied as a dissecting tool to 

evaluate the role of ER stress in the development and treatment of osteoporosis. As 

shown in previous study, salubrinal inhibited eIF2α dephosphorylation through ER 

stress in glucocorticoid induced bone loss animal model[12]. In our study, ER stress 

induced by unloading and was significantly inhibited by salubrinal in disuse 

osteoporosis. Our results showed that daily subcutaneous administration of salubrinal 

significantly suppressed unloading-induced decrease of bone mass. During bone 

remodeling progresses, osteoblasts and fibroblasts are generated from bone marrow 

mesenchymal stem cells [34]. To evaluate the proliferation and differentiation of these 

stem cells, we conducted CFU-F and CFU-Ob assays. The increase in CFU-F by 

salubrinal suggested stimulated proliferation of MSCs in bone marrow-derived cells, 

while the elevated number of ALP-positive cells in CFU-Ob as well as the osteoblast 

number on bone surface indicated an enhancement of osteoblast differentiation. The 

results of the CFU-F and CFU-Ob assays are consistent with salubrinal-driven 

augmentation of bone formation in the unloaded mice. Subcutaneous injection of 

salubrinal as well as in vitro suppressed the maturation of osteoclasts, the migration 

and adhesion of pre-osteoclasts, as well as the population of colony-forming 

unit-macrophage. The result shows that salubrinal is able to prevent bone loss in 

disuse osteoporosis and induce the promotion of osteoblastogenesis as well as the 

suppression of osteoclastogenesis.  

Our study consistent with salubrinal-driven augmentation of bone formation in 

the unloaded mice by decreasing ER stress, inhibiting eIF2α dephosphorylation by 

salubrinal prevents osteoblast apoptosis, accelerate the healing of bone wounds[45], 

enhance bone formation[12], and increase the mineralization of MC3T3 cells[32, 46]. 

The elevated level of p-eIF2α contributes to osteoblast differentiation in disuse 
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osteoporosis by the suppression of cellular stress, such as stress to the ER and 

radiation, through decreasing translational efficiency in general, except for a set of 

proteins such as ATF4[47]. Cell viability and TUNEL assays were conducted to 

evaluate apoptotic cells. In histological TUNEL assay in vivo, apoptotic cells were 

located in bone marrow cavity.  For in vitro assay, ER stress induced osteoblast 

apoptosis, and salubrinal rescued it. However, osteoclast apoptosis was not observed 

in RAW264.7 cells. 

The development of osteoclasts was suppressed by both subcutaneous injection 

of salubrinal as well as in vitro incubation of bone marrow-derived cells with 

salubrinal[32, 48]. Although the effects of salubrinal in RAKNL-induced osteoporosis 

were reported[32], its therapy on disuse model that is one of clinical related 

osteoporosis has not been validated. Importantly, salubrinal suppressed the maturation 

of osteoclasts in both early and late development phases, the migration and adhesion 

of pre-osteoclasts. Furthermore, macrophage (G) and mononuclear (M) were 

osteoclast progenitors [25]. Salubrinal affected the development of osteoclasts in 

osteoporosis by CFU-M/CFU-GM assays. NFATc1 is usually expressed in osteoclasts, 

and is linked to osteoclastogenesis. Our previous studies have demonstrated that 

salubrinal suppresses osteoclastogenesis by reducing NFATc1 [28, 46]. The result for 

NFATc1 in this study is consistent with those previous studies. The osteoclast 

formation is associated with osteoclast-specific genes including RANKL and 

NFATc1,as well as ER stress[49]. Because of the role of Bip and phosphorylated 

eIF2α in reducing translational efficiency, the suppression of NFATc1 by salubrinal is 

likely to be regulated at least in part at the level of translation [50]. Osteoclastogenesis 

by unloading were reduced by salubrinal through regulation of Bip, eIF2α and 

NFATc1 (Fig. 8G).  

PERK (double-stranded RNA-activated protein kinase-like ER kinase) is one of 

the three principal kinases in the unfolded protein response (UPR) in ER stress. When 

activated, PERK phosphorylates eIF2α and inhibits general translational activities. In 

this way, an increase in p-eIF2α reduces the flux of proteins entering into the ER [1]. 

In our study, we demonstrated that p-eIF2α/eIF2α was elevated in response to 
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short-term ER stress. For long-term stress, CCAAT/enhancer CHOP was elevated. 

CHOP regulates expression of pro-apoptotic factors and blocks BCL-2. Hence, CHOP 

has the propensity to drive apoptosis [51] and thus cells might be led to apoptosis. Our 

linear regression analysis showed that the expression level of p-eIF2α was positively 

associated with the number of bone-forming osteoblasts, and negatively associated 

with that of bone-resorbing osteoclasts. 

In summary, this study demonstrates the crucial role of ER stress in the 

pathogenesis of osteoporosis using disuse osteoporosis model. The results herein 

utilizing in vivo of the unloaded mouse model and in vitro analysis of primary bone 

marrow-derived cells, reveal that administration of salubrinal is effective in 

attenuating apoptosis, as well as stimulating osteoblastogenesis and inhibiting 

osteoclastogenesis by suppressing dephosphorylation of eIF2α. The current 

experiments also provide the possibility of salubrinal as a therapeutic agent for 

reversing bone loss from osteoporosis by suppressing unloading-associated ER stress. 

Further analysis will target the molecular mechanism of salubrinal’s action warrants 

the potential development of a novel strategy for combating unloading-driven 

osteoporosis through eIF2α signaling. 
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Figure legends 

Fig. 1. Effects of hindlimb unloading on body weight, B.Ar/T.Ar and osteoblast 

number. (A) Mouse hindlimb suspension (Bar = 2 cm). (B) The percentage change of 

body weight. Loss in body weight by hindlimb suspension on day 1, 3, 7, and 14, 

respectively. (C) Histological parameters of trabecular bone on the proximal side of 

the growth plate in the distal femur were determined by H&E staining (Bar = 200 μm). 

The unloaded mice exhibited a time-dependent decrease in B.Ar/T.Ar. The 

representative photographs of distal femur were used to evaluate B.Ar/T.Ar. 

Trabecular bones were indicated by the arrows. (D) MacNeal’s staining was used to 

determine the number of osteoblasts in the trabecular bone surface in the distal 

metaphysis of the femur. Hindlimb suspension showed a time-dependent decrease in 

the osteoblast number. The representative photographs of the distal femur were used 

to evaluate N.Ob/BS/mm (Bar = 50 µm). Osteoblasts, located on the trabecular bone 

surface, were indicated by the arrows. The asterisks (*, **, and ***) represent 

statistical significance at p<0.05, p<0.01, and p<0.001, respectively (n = 6). AC: 

age-matched control. HU: hindlimb unloading. 

 

Fig. 2. Effects of hindlimb unloading on osteoclast development. (A) TRAP staining 

was used to evaluate bone resorption in the distal metaphysis of the femur. The 

representative photographs are shown on the bottom (Bar = 200 μm on the upper, and 

Bar = 50 μm on the bottom). TRAP staining showed that the ratio of the number of 

TRAP-positive cells was time-dependent increase in the hindlimb unloaded groups. 

TRAP-positive cells, red color, indicated by the arrows. (B) Unloading stimulated 

osteoclast formation. The microphotographs on the bottom represent osteoclast 

cultures with TRAP staining for the age-matched control and hindlimb unloaded mice 

(1 week). Bar = 200 µm. (C-D) Effects of hindlimb unloading on osteoclast migration 

(C) and adhesion (D). The unloaded group significantly activated osteoclast migration 

and adhesion. The representative photographs are shown on the bottom. Bar = 200 µm. 

(E-F) Effects of hindlimb unloading on CFU-M (E) and CFU-GM (F). 

Unloading-induced increase in both CFU-M and CFU-GM in the unloaded mice. The 
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images on the bottom exhibited 2 different groups, in which the circles indicate the 

colonies of CFU-M and CFU-GM. Bar = 500 µm. The asterisks (**, and ***) 

represent statistical significance at p<0.01, and p<0.001, respectively (n = 6). 

 

Fig. 3. The role of ER stress in the pathogenesis of disuse osteoporosis. (A-E) To 

investigate the role of ER stress in the pathogenesis of osteoporosis, p-eIF2α/eIF2α 

was evaluated by immunoblotting. Compared to the age-matched control, the 

unloading group significantly increased the expression of Bip, p-eIF2α and ATF4 in 

short-term, but decreased in a time-dependent manner in long-term. The expression of 

CHOP showed a significantly increase in a time-dependent manner (n = 6). (F)  

Correlations between ER stress and the differentiation of osteoblasts and osteoclasts. 

The expression levels of p-eIF2α were positively associated with bone-forming 

osteoblasts (CFU-Ob, N.Ob/BS, and B.Ar/T.Ar), and negatively associated with 

bone-resorbing osteoclasts (osteoclast development, CFU-M, and CFU-GM). The 

asterisks (*) represent statistical significance at p<0.05. 

 

Fig. 4. Effects of hindlimb unloading and salubrinal on body weight, 

microarchitecture, BMD, and BMC. (A) Salubrinal-driven suppression of 

unloading-induced loss of body weight. (B-C) Salubrinal-driven partial restore of 

unloading-induced loss of BMD (B) and BMC (C) in the femur. (D-G) Representative 

µCT reconstructed femora in the longitudinal (top) and transverse (bottom) 

cross-sections after 2 weeks treatment with salubrinal (D), salubrinal-driven 

suppression of unloading-induced loss of femoral BV/TV (E), femoral trabecular 

number (Tb.N) (F), and femoral trabecular thickness (Tb.Th) (G). (H) 

Salubrinal-driven restore of unloading-induced increase in femoral trabecular spacing 

(Tb.Sp). (I) Histological parameters of trabecular bone on the proximal side of the 

growth plate in the distal femur were determined by H&E staining. The unloading 

group exhibited a lower ratio of B.Ar/T.Ar, and salubrinal enhanced B.Ar/T.Ar of the 

femur. The representative photographs of the distal femur are shown on the right (Bar 

= 500 µm). Trabecular bones were indicated by the arrows. The asterisks (*, **, and 
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***) represent statistical significance at p<0.05, p<0.01, and p<0.001, respectively (n 

= 15). US: salubrinal-treated hindlimb unloading. 

 

Fig. 5. Effects of salubrinal on osteoblast differentiation, apoptosis, and colony 

forming unit-fibroblast. (A) Salubrinal-induced increase in the osteoblast numbers in 

unloaded mice. The microphotographs represent the three groups of MacNeal’s 

staining (Bar = 50 µm). Osteoblasts, located on the trabecular bone surface, were 

indicated by the arrows. (B) DeadEnd™ Fluorometric TUNEL System was used in 

the distal femur to detect apoptosis. Salubrinal-driven inhibition of unloading-induced 

apoptosis was observed in unloaded mice. The microphotographs represent the three 

groups of TUNEL staining (Bar = 200 µm). Apoptotic cells were indicated by the 

arrows. (C) Comparison of CFU-Ob. (D) Effects of in vitro 0.5 μMsalubrinal 

administration on the osteoblast differentiation. (E) Comparison of CFU-F. (F) Effects 

of in vitro 0.5 μMsalubrinal administration on the CFU-F. The representative images 

are shown on the bottom in C-F. The asterisks (*, **, and ***) represent statistical 

significance at p<0.05, p<0.01 and p<0.001, respectively (n = 15).  

 

Fig. 6. Effects of in vivo and in vitrosalubrinal administration on osteoclast 

development. (A) The osteoclast number in the unloaded group was significantly 

suppressed by salubrinal injection. The representative photographs are shown on the 

right (Bar = 200 μm). TRAP-positive cells in the distal metaphysis of the femur, red 

color, indicated by the arrows. (B) Suppression of osteoclast formation by salubrinalin 

vivo. The microphotographs on the bottom represent the three groups of osteoclast 

cultures with TRAP staining. Bar = 200 µm. (C) Effects of in vitrosalubrinal 

administration on the formation of mature osteoclasts. Salubrinal was administered at 

3 dosages (1, 2, and 5 µM) for days 0–6 or days 4–6 to bone marrow-derived cells 

harvested from unloaded mice, and salubrinal significant decrease in the surface area 

of osteoclasts in a time- and dosage-dependent manner in both experiments. Four 

pairs of images on the bottom showed representative osteoclasts stained with TRAP. 

(Bar = 200 µm). (D) Salubrinal-induced reduction in the migration of osteoclasts in 
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unloading-derived cells. (E) In vitro study showed that a significant decrease in the 

osteoclasts migration was observed in a dosage-dependent manner (1, 2 and 5 µM). (F) 

Salubrinal reduced an unloading-induced increase in osteoclast adhesion. (G) In vitro 

study also demonstrated that a significant decrease in the osteoclasts adhesion in a 

dosage-dependent manner (1, 2 and 5 µM). The representative photographs are shown 

on the bottom (Bar = 200 µm in D-G). Asterisk (***) represents statistical 

significance at p<0.001 (n = 15). 

 

Fig. 7. Effects of salubrinal administration on CFU-M and CFU-GM. (A-B) 

Salubrinal-induced reduction in CFU-M (A) and CFU-GM (B) numbers in the 

unloading mice. The images on the bottom exhibited the 3 different culture groups, in 

which the circles indicated the colonies. Bar = 500 µm. (C-D) In vitro administration 

of salubrinal at 1, 2, and 5 µM in unloading-derived cells, a statistically significant 

dosage-dependent decrease in CFU-M (C) and CFU-GM (D) was observed. The 

representative photographs are shown on the bottom (Bar = 500 µm). (E) 

Immunohistochemistry staining and quantification of NFATc1 in distal femur. The 

representative photographs are shown on the right. NFATc1-positive cells in red circle. 

Bar = 100 μm. Asterisk (***) represents statistical significance at p<0.001 (n = 15). 

 

Fig. 8. Effects of salubrinal on ER stress in vitro and in vivo. (A-B) MTT assay for 

cell viability of RAW264.7 cells and MC3T3-E1 cells, respectively. (C) 

Representative immunofluorescence images of MC3T3-E1 cells from different groups 

(blue: DAPI, green: TUNEL+ cells, 200×, Bar=100 μm). The numbers of TUNEL+ 

cells were analyzed at the bottom. (D-E) Representative images of Western blotting 

for salubrinal’s protection of osteogenesis against the ER stress. The levels are shown 

on the right. The experiment was conducted in triplicate. The asterisks (*, **and ***) 

represent p<0.05, p<0.01, and p<0.001, respectively (S: Salubrinal, and Tm: 

Tunicamycin). (F) Proposed role of the ER stress in the pathogenesis of osteoporosis. 

(G) Mechanism of salubrinal that stimulates p-eIF2α and suppresses 

osteoclastogenesis and osteoblast apoptosis. 
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