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Abstract:

The central nervous system (CNS) is a large network of intercommunicating cells that
function to maintain tissue health and homeostasis. Considerable evidence suggests
that glucocorticoids exert both neuroprotective and neurodegenerative effects in the
CNS. Glucocorticoids act by binding two related receptors in the cytoplasm, the
mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR). The
glucocorticoid:receptor complex then mediate cellular responses by transactivating
target genes or via protein:protein interactions. The paradoxical effects of
glucocorticoids in mediating survival and death of neurons have been attributed to the
concentration and the ratio of mineralocorticoid to glucocorticoid receptor activation.
Glucocorticoid induced leucine zipper (GILZ) is a recently identified protein
transcriptionally upregulated by glucocorticoids. It is constitutively expressed in many
tissues including brain. Functionally while GILZ mimics many of the beneficial effects of
glucocorticoids including the anti-inflammatory and anti-proliferative potential, it
suppresses the adverse effects of glucocorticoids presumably by exerting differential
effects on lineage development by pluripotent cells. As opposed to glucocorticoids,
GILZ downregulates the adipogenic transcription factor peroxisome proliferator-
activated receptor (PPAR)-y and upregulates runt-related transcription factor 2
(RUNX2) widely implicated in osteogenesis and more recently in neurogenesis as well.
Further, data on GILZ expression and effects following induced stress or spinal cord
injury suggest potential roles in CNS diseases. Here we provide a short overview of
GILZ expression in CNS health and discuss three potential rationales for its role in the

pathogenesis of Alzheimer’s disease, a common neurodegenerative pathology.



Introduction:

I. Glucocorticoids in the central nervous system (CNS):

Glucocorticoids (corticosterone in rodents and cortisol in humans) secreted in response
to stress induced activation of the hypothalamo-pituitary-adrenal (HPA) axis exert a
wide range of actions on most cell types including the cells of the central nervous
system (CNS) [1, 2]. Upon binding the mineralocorticoid receptor (MR) or the
glucocorticoid receptor (GR) in the cytoplasm, the glucocorticoid:receptor complex
translocate to the nucleus and mediate cellular responses by genomic mechanisms via
specific glucocorticoid response elements (GRE) in the DNA or by non-genomic
protein:protein interactions. The receptors shuttle between the cytoplasm and the
nucleus; their subcellular localization being determined by the equilibrium between
nuclear import and export [3]. The negative feedback and circadian rhythmicity of
circulating glucocorticoids are critical for maintaining the basal HPA axis activity and

facilitate the termination of HPA activation [3, 4].

Glucocorticoids exhibit ten-fold higher affinity for MR than GR [5, 6]. This one ligand/
two receptor system works in balance, modulating a large spectrum of actions in the
CNS. While MR is highly expressed in limbic areas such as the hippocampus and
amygdala; GR is ubiquitously expressed throughout the brain [7, 8]. Sensitivity to
glucocorticoids depends on the concentration and duration of exposure, bioavailability
and the density of receptors. In physiological conditions and during circadian trough the
high affinity MR is preferably occupied with less than 10% GR occupancy to help

maintain low basal glucocorticoid levels [3, 9]. Several studies suggest that the MR



functionality is important for maintaining the basal HPA activity and preserving the
normal metabolism of the neurons [10, 11]. Pathological effects of glucocorticoids are
largely mediated by GR. While both receptors can modulate transcription of the same
target genes, microarray studies suggest that approximately 20% of the expression
profiles are uniquely modulated by GR [12]. This is largely attributed to the non-genomic
functions, wherein nuclear GR tethers to and interferes with the functioning of other
transcription factors such as nuclear factor-kappa B (NF-xB) and activator protein 1

(AP-1) [8, 13].

|.a: Glucocorticoids in Alzheimer’s disease

Both lack and overexposure of glucocorticoids increases the risk for neurodegenerative
diseases. Excessive glucocorticoid alters MR/GR ratio, disrupts nucleocytoplasmic
shuttling of the receptors and dysregulates HPA activity [1, 4]. Clinical observations of
elevated plasma cortisol and/or changes in circadian rhythm of glucocorticoid release in
Alzheimer’'s disease (AD) and Parkinson’s disease (PD) support a role for high
glucocorticoids in neurodegenerative pathologies [14-16]. In AD patients, the higher
plasma glucocorticoids correlated with decreased hippocampal volume, a region of the
brain critical for learning and memory [15, 16]. Mechanistically, highly elevated
glucocorticoids have been shown to accelerate the beta amyloid (Ap) plague formation
and tau phosphorylation, two major pathological hallmarks of AD, and thereby enhance
the vulnerability of neuronal cells to toxic stimuli [17]. In triple transgenic mouse model
of AD which develops both Ap and tau pathologies in a progressive and region-specific

manner, dexamethasone treatment upregulated steady state levels of amyloid precursor



protein (APP), B-site APP cleaving enzyme (BACE-1) and enhanced AP generation [18,
19]. Blockade of glucocorticoid:GR but not glucocorticoid:MR interaction abrogated the

dexamethasone mediated upregulation of AB secretion [20].

Both stress and Ap aggregates precipitate oxidative stress, considered as one of the
early events in AD pathology as evidenced by the increased presence of reactive
oxygen species in vulnerable neurons [21, 22]. Chronic stress has been shown to
increase lipid peroxidation in the hippocampus in normal and AD mice with three fold
higher upregulation in the diseased animals [23]. It has been observed that the oxidative
stress mediate negative regulation of GR and allow retention of the glucocorticoid:GR
complex in the cytoplasm [23, 24]. This reduces the ability of glucocorticoids to repress
transcription factors NF-kB and AP-1 leading to inflammatory distress. Increased
oxidative stress further enhances A accumulation initiating a vicious cycle [21]. In AD
mice, the AP induced oxidative stress could be suppressed by pharmacological
blockade of corticosterone release suggesting that the elevated glucocorticoids and Ap

act synergistically to enhance the vulnerability of neurons to apoptosis [20].

Il. Glucocorticoid induced leucine zipper (GILZ)

GILZ is a recently identified protein that has been shown to mediate many of the cellular
effects of glucocorticoids. It is a member of the TSC22D (transforming growth factor 31-
stimulated clone 22 domain) family of proteins that potentially impact multiple biological

processes [25, 26]. Four different isoforms have been identified arising as splice



variants from a single gene [27]. Structurally, the GILZ protein has an amino terminal
leucine zipper motif for dimerizing and a carboxy terminal proline rich region for protein-
protein interactions [25, 26]. Constitutive expression of GILZ has been reported in many
cell types and multiple organs including skeletal muscle, lungs, intestine, kidney and
brain [27]. With six GRE in its promoter region, GILZ is strongly induced by
glucocorticoids [25]. Much like other glucocorticoid responsive genes such as the
tyrosine aminotransferase, glutamine synthetase, cholesterol-7a-hydroxylase and the
glucocorticoid receptor, GILZ exhibits circadian rhythm of expression in response to the

rhythmic release of endogenous glucocorticoid [27].

Il.a. GILZ in the CNS

Endogenous GILZ is widely expressed throughout the brain and spinal cord
suggesting a physiological role in the CNS [27]. In mice exposed to water immersion
restraint stress, activation of HPA activity and increased glucocorticoid secretion
correlated with elevated GILZ expression in medial pre-frontal cortex and hippocampal
neurons [28, 29]. The stress induced GILZ upregulation was abrogated in
adrenalectomized mice attributing the response to the increase in glucocorticod:GR
mediated transactivation [29]. Constitutive expression of GILZ has been observed in
murine microglial cells. Further, similar to the observations in macrophages and
lymphocytes, microglial GILZ expression correlated negatively with inflammatory

cytokines and was downregulated following induced anxiety [28, 30].

I1l. Plausible roles of GILZ in AD:




Three distinct rationales are postulated for potential roles of GILZ in AD pathogenesis.
1) A role in AP regulation supported by the ubiquitous expression of GILZ in neurons
and glia [27, 29]; 2) GILZ as an anti-inflammatory molecule that modulates the
processes of neuroinflammation and neurodegeneration in AD [31, 32] and 3) a role in
neurogenesis based on potential cross-talk between GILZ and other nuclear
transcriptional hormone receptors such as peroxisome proliferator-activated receptor

(PPAR)-y and CCAAT/enhancer-binding protein (C/EBP)-5 [33].

Hypothesis 1: Constitutive GILZ regulates physiological AB in CNS health.

Normal brain contains both soluble and neuronal AB. Picomolar concentration of AB
exhibit neurotrophic properties, promote neurogenesis and contribute to normal synaptic
activity and memory [34]. Mechanistically physiological AB has been shown to mediate
tyrosine phosphorylation and increase phosphatidylinositol-3-kinases (PI13K) activity in
neuronal cells [22, 35, 36]. The PI3K pathway has been implicated in modulating
autophagy, neuronal survival, neurite extension and synaptic plasticity in the brain.
Blockade of this pathway has been shown to increase apoptosis in Ap exposed

neuronal cells [37, 38].

As stated above, considerable data suggest essential roles for MR, the high affinity
receptor for glucocorticoids, in neuronal survival and neurogenesis [10]. In health under
low GC conditions, ligand activated MR not only induces BACE-1 transcription and
inflammatory cytokines that facilitate AP production, but also upregulates many

neuroprotective molecules [4, 39]. In PC12 neuronal cells overexpression of MR has



been shown to enhance neuron specific genes such as microtubule associated protein-
2 (MAP2) and B-tubulin 1ll, increase the ratio of anti-apoptotic (Bcl2 and Bclx.) to pro-
apoptotic (Bax and Bak) proteins and diminish caspase 3 cleavage [40, 41]. While
exposure to AB reduced MR and increased nuclear GR in cultured rat hippocampal and
cortical neurons with consequent increase in cell death, activation of MR reduced the
vulnerability of the cultured neurons to apoptosis [41, 42]. Tauroursodeoxycholic acid
(TUDCA), a cholesterol derived endogenous molecule, has been shown to exhibit
neuroprotective effects by selectively binding MR and increasing its nuclear
translocation with subsequent transactivation of Bcl-2 and other anti-apoptotic genes
[43]. It has been suggested that an optimal balance between MR and GR activation with
MR predominating in the hippocampus is necessary for best emotional and cognitive

function [1, 10, 11].

GILZ is one of the transcripts upregulated by both MR and GR [31, 44]. Mechanistically
much like glucocorticoids, GILZ has been shown to enhance expressions of anti-
apoptotic molecules such as Bcl-2 and Bcl-x. in different cell types including
cardiomyocytes, epithelial cells and many human cancer cells [31, 45-47]. GILZ has
also been shown to modulate the PI3K pathway, suppress cytokines and inhibit
inflammation in activated lymphocytes and epithelial cells [48, 49]. Taken together it is
plausible that the constitutive GILZ induced in neuronal cells under low GC conditions
may act in concert with picomolar AB in regulating autophagy and neuronal survival by
increasing anti-apoptotic factors and suppressing excessive cytokines. Furthermore,

since PI3K signaling has been shown to play critical roles in regulating survival of Ap



exposed neurons, it is tempting to speculate that the regulation of PI3K signaling by
constitutive GILZ in neurons may indirectly control the threshold of AR accumulation and

CNS health.

Hypothesis 2: Exogenous GILZ is an attractive strategy to suppress neuroinflammation.

Neuroinflammation plays critical roles in the initiation and/or progression of most
neurodegenerative diseases including AD [50-52]. Aging and chronic stress are
significant risk factors. In addition, persistent stress mediated increase in glucocorticoids
enhances the neuronal cell vulnerability to glutamate, the excitatory neurotransmitter
and Ap induced neurotoxicity [1, 19]. AP exposure activates the p65:p50 NF-«B dimers
in glia and post-mitotic neurons and enhance transactivation of inflammatory and
apoptotic genes [53]. Elevated Bax (pro-apoptotic) to Bcl-2 (anti-apoptotic) ratio has
been observed in AB stimulated neuronal cells [54-56]. Increased presence of IL-1f3, IL-
6, and TNF-a has been reported in the affected tissues, serum and cerebrospinal fluid
of AD patients [57]. However, exogenous glucocorticoids, the prototype anti-
inflammatory agents have been largely ineffective and even counter-productive in the
treatment of AD. The low therapeutic efficacy of glucocorticoids is correlated with a
disproportionate increase in the glucocorticoid:GR complex with enhanced susceptibility

to apoptosis [58].

GILZ represents a potentially efficacious alternative anti-inflammatory molecule to
suppress neuroinflammation. Mechanistically the anti-inflammatory and anti-apoptotic

effects of both glucocorticoids and GILZ are largely attributed to the suppression of NF-



kB mediated transactivation [59, 60]. While the glucocorticoid:GR complex tether to and
interfere with NF-kB-DNA binding, GILZ binds to and sequesters the p65 subunit of NF-
kB in the cytoplasm, thereby preventing nuclear translocation and transactivation of
pathological mediators [7, 26, 61]. Overexpression of GILZ has been shown to suppress
inflammatory cytokines and ameliorate pathology in models of colitis, multiple sclerosis
and spinal cord injury [32, 62, 63@@ observed that selective blockade of activated p65
by as a synthetic peptide mimic of the p65 binding domain of GILZ suppressed A
mediated toxicity in neuroblastoma cells and in primary human neuronal cells [64, 65].
Taken together, it is hypothesized that by virtue of binding the transactivation domain of
p65 exposed only in activated cells, exogenous GILZ represents an attractive strategy

to suppress neuroinflammatory-neurodegenerative diseases including AD (Fig 2).

Hypothesis 3: GILZ plays a role in neurogenesis.

Neurogenesis involves proliferation, survival, migration and lineage differentiation of
neural stem/progenitor cells. Continuous stimulation including cognitive functions elicits
protective responses that avoid tissue damage, promote neurogenesis and maintain
homeostasis in the CNS. This involves complex signaling pathways that are interlinked
and tightly regulated [66]. Glucocorticoid and NF-kxB signaling are two cross-talking
pathways shown to play crucial roles in adult neurogenesis [67, 68]. In health,
stimulation of NF-kB signaling by low concentrations of proinflammatory cytokines such
as TNF-a or the excitatory neurotransmitter glutamate has been shown to increase
proliferation and differentiation of neural stem cells and promote neuronal survival [67,

69]. It has been suggested that neuroprotection is largely attributed to the activation of
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NF-kB C-rel dimers [70]. Similarly at physiological concentrations, glucocorticoids
signaling via MR increased the proliferation and differentiation of human hippocampus-
derived stem cells. However, excessive inflammation or high glucocorticoids largely
inhibited neuronal stem cells [68, 71]. GILZ as an interface molecule that connects
glucocorticoid and NF-«kB pathways could potentially play a role in modulating the

neural stem cell responses and hence neurogenesis [59].

In addition to NF-«xB, the GILZ also interacts with other transcription factors implicated in
adult neurogenesis, the PPAR-y and C/EBP-6 [72, 73]. The basal expression of both
C/EBPS and PPAR-y in the adult CNS is relatively low [74, 75]. While NF-xB activation
and cytokines such as TNF-a enhance C/EBPS expression, sustained elevation of
inflammatory cytokines suppress its transcription [76]. Glucocorticoids enhance the
transcription of both C/EBPS and PPAR-y [77, 78]. Further, C/EBPJ has also been
shown to bind the C/EBP binding elements in PPAR-y promoter and upregulate its
transcription [75, 76]. Several reports substantiate a neurogenic role for PPAR-y.
Activation of PPAR-y in neural stem cells has been shown to promote differentiation to
mature neurons, astrocytes and oligodendrocytes [74]. Treatment with PPAR-y agonists

has been shown to induce neurite outgrowth and increased axonal length in

hippocampal neurons [79].

GILZ has been shown to bind a tandem repeat of C/EBP binding sites and act as a
sequence-specific trans-repressor of PPAR-y in pluripotent mouse mesenchymal stem

cells [33]. In human bone marrow derived stem cells dexamethasone induced GILZ has



been shown to suppress PPAR-y2 and upregulate RUNX-2 transcription factor [73, 80].
Although a plethora of studies substantiate the critical involvement of RUNX2 in
osteogenesis, recent reports suggest a potential role for the molecule in neuronal
development [81]. Adult human hippocampus and cultured rat astrocytes have been
shown to express RUNX2 transcript [82, 83]. In human astroglioma cells RUNX2 is
significantly elevated and regulates the expression of galectin 3, a p galactoside-binding

lectin that has been shown to promote neural cell adhesion and neurite growth [83].

Collectively, the physical interactions of GILZ with multiple transcription factors greatly
enhances the number of potentially regulated genes or post-translational modifications
that could crucially affect molecular mechanisms involved in the dynamic process of
adult neurogenesis. It is postulated that under low glucocorticoid and inflammatory
conditions, GILZ could facilitate neuronal differentiation of stem cells and promote
hippocampal neurogenesis by upregulating RUNX-2 transcription. This is supported by
the observations of inverse relationship between NF-kB and RUNX-2 transcription

factors and elevated RUNX-2 in adult hippocampus [83, 84].

V. Conclusion:

The effects of endogenous and exogenous glucocorticoids in neurogenesis,
neuroinflammation and neurodegeneration in the CNS have been extensively
investigated with some mechanistic elucidations, some contradictory findings and some
as yet unanswered questions. It is tempting to speculate that some of the contradictory

or unknown glucocorticoids effects could be attributed to the GILZ expression. The



uneven distribution and upregulated expression following HPA activation suggests
multiple roles for GILZ in the CNS. Much like its effects on osteogenic differentiation,
GILZ could potentially play a role in neuronal differentiation and development. In
microglial cells a tightly controlled and coordinated action of MR and GR has been
shown to regulate NF-«B functions [8]. At low ligand concentration or at early time
points following activation, the effects of MR mediated transactivation of neurotrophic
factors and anti-inflammatory GILZ could potentially supersede that of BACE1 and pro-
inflammatory cytokines. In conditions of chronic stress and/or AB toxicity inflammatory
mediators suppress GILZ. In this context, exogenous GILZ could represent an attractive
strategy to suppress neuroinflammation. In conclusion, elucidation of the physiological
role of GILZ in the CNS, its induction by other factors including microbial agents or free
radicals, role in BACE-1 activity and Ap homeostasis will enhance our understanding of
the glucocorticoid signaling in the CNS and help in the identification of alternative

therapeutic strategies to target neuroinflammation and neurodegeneration.



Figure legend:

Fig 1. Schematic representation of potential role of GILZ in regulating physiological
amyloid beta in CNS health. Low glucocorticoid (GC) and picomolar concentration of
amyloid beta (AP) are features of healthy CNS. Signaling via phosphatidylinositol-3-
kinases (P13 K) has been shown to critical for neutrophic and anti-apoptotic effects of
picomolar AB. Blockade of PI3 K has been shown to abrogate such effects. Under low
GC conditions, MR is preferentially occupied and mediates GILZ expression. In
lymphocytes and epithelial cells, GILZ overexpression has been shown to suppress PI3
kinase activity and inhibit inflammatory responses. Micromolar concentration of Ap is
associated with enhanced production of anti-apoptotic factors via increased PI3 kinase
signaling. This figure speculates that constitutive GILZ expression plays a role in

modulating PI3 K signaling thereby regulating indirectly the physiological A.

Fig 2: Schematic representation of exogenous GILZ as a potential therapeutic agent for
AD. Aging, chronic stress, amyloid b aggregates or other factors mediated oxidative
stress activate NF-kB p65 which in turn induces activation of pro-inflammatory
(cytokines, glutamate) and proapoptotic factors that ultimately lead to cell death.

Exogenous GILZ will bind p65 and prevent activation of deleterious mediators.

Fig 3: Potential role of GILZ adult neurogenesis: Schematic representation of some of the
factors involved in adult neurogenesis. Toll like receptor (TLR) stimulation and cytokines such

as TNF-a activate NF-kB transcription factor in adult hippocampal neural stem cells. While NF-



kB C-rel containing dimers are predominantly neuroprotective, p65 containing dimers promote
transactivation of inflammatory cytokines that upregulate C/EBP & transcription factor which in
turn induces PPAR-y. However, inflammatory cytokines can also downregulate both C/EBP 6

and PPAR-y. Glucocorticoids induced GILZ expression in neural stem cells can modulate this

process at two steps (inhibitory actions shown in red): 1) blockade of NF-kB p65 and 2)

suppression of PPAR-y and transactivation of RUNX-2.



References:

1. Abraham IM, Meerlo P, Luiten PG: Concentration dependent actions of
glucocorticoids on neuronal viability and survival. Dose Response 2006, 4(1):38-54.

2. Brunson KL, Chen Y, Avishai-Eliner S, Baram TZ: Stress and the developing
hippocampus: a double-edged sword? Molecular neurobiology 2003, 27(2):121-136.

3. Madan AP, DeFranco DB: Bidirectional transport of glucocorticoid receptors
across the nuclear envelope. Proc Natl Acad Sci U S A 1993, 90(8):3588-3592.

4, Brureau A, Zussy C, Delair B, Ogier C, Ixart G, Maurice T, Givalois L: Deregulation of
hypothalamic-pituitary-adrenal axis functions in an Alzheimer's disease rat model.
Neurobiology of aging 2013, 34(5):1426-1439.

5. Grossmann C, Scholz T, Rochel M, Bumke-Vogt C, Oelkers W, Pfeiffer AF, Diederich S,
Bahr V: Transactivation via the human glucocorticoid and mineralocorticoid
receptor by therapeutically used steroids in CV-1 cells: a comparison of their
glucocorticoid and mineralocorticoid properties. Eur J Endocrinol 2004, 151(3):397-
406.

6. Rupprecht R, Reul JM, van Steensel B, Spengler D, Soder M, Berning B, Holsboer F,
Damm K: Pharmacological and functional characterization of human
mineralocorticoid and glucocorticoid receptor ligands. Eur J Pharmacol 1993,
247(2):145-154.

7. Newton R: Molecular mechanisms of glucocorticoid action: what is important?
Thorax 2000, 55(7):603-613.

8. Ogita K, Sugiyama C, Acosta GB, Kuramoto N, Shuto M, Yoneyama M, Nakamura Y,
Shiba T, Yamaguchi T: Opposing roles of glucocorticoid receptor and
mineralocorticoid receptor in trimethyltin-induced cytotoxicity in the mouse

hippocampus. Neurosci Lett 2012, 511(2):116-119.



10.

11.

12.

13.

14.

15.

16.

17.

De Kloet ER, Reul IM: Feedback action and tonic influence of corticosteroids on
brain function: a concept arising from the heterogeneity of brain receptor
systems. Psychoneuroendocrinology 1987, 12(2):83-105.

Le Menuet D, Lombes M: The neuronal mineralocorticoid receptor: from cell
survival to neurogenesis. Steroids 2014, 91:11-19.

ter Heegde F, De Rijk RH, Vinkers CH: The brain mineralocorticoid receptor and
stress resilience. Psychoneuroendocrinology 2015, 52:92-110.

Chen DW, Lynch JT, Demonacos C, Krstic-Demonacos M, Schwartz JM: Quantitative
analysis and modeling of glucocorticoid-controlled gene expression.
Pharmacogenomics 2010, 11(11):1545-1560.

Chantong B, Kratschmar DV, Nashev LG, Balazs Z, Odermatt A: Mineralocorticoid and
glucocorticoid receptors differentially regulate NF-kappaB activity and pro-
inflammatory cytokine production in murine BV-2 microglial cells. Journal of
neuroinflammation 2012, 9:260.

Giubilei F, Patacchioli FR, Antonini G, Sepe Monti M, Tisei P, Bastianello S, Monnazzi P,
Angelucci L: Altered circadian cortisol secretion in Alzheimer's disease: clinical
and neuroradiological aspects. J Neurosci Res 2001, 66(2):262-265.

Huang CW, Lui CC, Chang WN, Lu CH, Wang YL, Chang CC: Elevated basal cortisol
level predicts lower hippocampal volume and cognitive decline in Alzheimer's
disease. J Clin Neurosci 2009, 16(10):1283-1286.

Weiner MF, Vobach S, Olsson K, Svetlik D, Risser RC: Cortisol secretion and
Alzheimer's disease progression. Biol Psychiatry 1997, 42(11):1030-1038.

Abraham I, Harkany T, Horvath KM, Veenema AH, Penke B, Nyakas C, Luiten PG:
Chronic corticosterone administration dose-dependently modulates Abeta(1-42)-
and NMDA-induced neurodegeneration in rat magnocellular nucleus basalis. J

Neuroendocrinol 2000, 12(6):486-494.



18.

19.

20.

21.

22.

23.

24,

25.

Baglietto-Vargas D, Chen Y, Suh D, Ager RR, Rodriguez-Ortiz CJ, Medeiros R, Myczek
K, Green KN, Baram TZ, LaFerla FM: Short-term modern life-like stress exacerbates
Abeta-pathology and synapse loss in 3xTg-AD mice. Journal of neurochemistry
2015, 134(5):915-926.

LiWZ, LiWP, Yao YY, Zhang W, Yin YY, Wu GC, Gong HL: Glucocorticoids increase
impairments in learning and memory due to elevated amyloid precursor protein
expression and neuronal apoptosis in 12-month old mice. Eur J Pharmacol 2010,
628(1-3):108-115.

Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM: Glucocorticoids
increase amyloid-beta and tau pathology in a mouse model of Alzheimer's
disease. J Neurosci 2006, 26(35):9047-9056.

Sayre LM, Perry G, Smith MA: Oxidative stress and neurotoxicity. Chem Res Toxicol
2008, 21(1):172-188.

Swomley AM, Forster S, Keeney JT, Triplett J, Zhang Z, Sultana R, Butterfield DA:
Abeta, oxidative stress in Alzheimer disease: evidence based on proteomics
studies. Biochimica et biophysica acta 2014, 1842(8):1248-1257.

Rothman SM, Mattson MP: Adverse stress, hippocampal networks, and Alzheimer's
disease. Neuromolecular Med 2010, 12(1):56-70.

Sotiropoulos |, Cerqueira JJ, Catania C, Takashima A, Sousa N, Almeida OF: Stress
and glucocorticoid footprints in the brain-the path from depression to Alzheimer's
disease. Neurosci Biobehav Rev 2008, 32(6):1161-1173.

Cannarile L, Zollo O, D'Adamio F, Ayroldi E, Marchetti C, Tabilio A, Bruscoli S, Riccardi
C: Cloning, chromosomal assignment and tissue distribution of human GILZ, a
glucocorticoid hormone-induced gene. Cell death and differentiation 2001, 8(2):201-

203.



26.

27.

28.

29.

30.

31.

32.

33.

Di Marco B, Massetti M, Bruscoli S, Macchiarulo A, Di Virgilio R, Velardi E, Donato V,
Migliorati G, Riccardi C: Glucocorticoid-induced leucine zipper (GILZ)/NF-kappaB
interaction: role of GILZ homo-dimerization and C-terminal domain. Nucleic Acids
Res 2007, 35(2):517-528.

Ayyar VS, Almon RR, Jusko WJ, DuBois DC: Quantitative tissue-specific dynamics
of in vivo GILZ mRNA expression and regulation by endogenous and exogenous
glucocorticoids. Physiol Rep 2015, 3(6).

Wohleb ES, Hanke ML, Corona AW, Powell ND, Stiner LM, Bailey MT, Nelson RJ,
Godbout JP, Sheridan JF: beta-Adrenergic receptor antagonism prevents anxiety-
like behavior and microglial reactivity induced by repeated social defeat. J
Neurosci 2011, 31(17):6277-6288.

Yachi K, Inoue K, Tanaka H, Yoshikawa H, Tohyama M: Localization of
glucocorticoid-induced leucine zipper (GILZ) expressing neurons in the central
nervous system and its relationship to the stress response. Brain Res 2007,
1159:141-147.

Berrebi D, Bruscoli S, Cohen N, Foussat A, Migliorati G, Bouchet-Delbos L, Maillot MC,
Portier A, Couderc J, Galanaud P et al: Synthesis of glucocorticoid-induced leucine
zipper (GILZ) by macrophages: an anti-inflammatory and immunosuppressive
mechanism shared by glucocorticoids and IL-10. Blood 2003, 101(2):729-738.
Ayroldi E, Riccardi C: Glucocorticoid-induced leucine zipper (GILZ): a new
important mediator of glucocorticoid action. FASEB J 2009, 23(11):3649-3658.
Fan H, Morand EF: Targeting the side effects of steroid therapy in autoimmune
diseases: the role of GILZ. Discov Med 2012, 13(69):123-133.

Shi XM, Blair HC, Yang X, McDonald JM, Cao X: Tandem repeat of C/EBP binding
sites mediates PPARgamma2 gene transcription in glucocorticoid-induced

adipocyte differentiation. J Cell Biochem 2000, 76(3):518-527.



34.

35.

36.

37.

38.

39.

40.

Atwood CS, Obrenovich ME, Liu T, Chan H, Perry G, Smith MA, Martins RN: Amyloid-
beta: a chameleon walking in two worlds: a review of the trophic and toxic
properties of amyloid-beta. Brain Res Brain Res Rev 2003, 43(1):1-16.

Hu J, Akama KT, Krafft GA, Chromy BA, Van Eldik LJ: Amyloid-beta peptide activates
cultured astrocytes: morphological alterations, cytokine induction and nitric oxide
release. Brain research 1998, 785(2):195-206.

Jimenez S, Torres M, Vizuete M, Sanchez-Varo R, Sanchez-Mejias E, Trujillo-Estrada L,
Carmona-Cuenca |, Caballero C, Ruano D, Gutierrez A et al: Age-dependent
accumulation of soluble amyloid beta (Abeta) oligomers reverses the
neuroprotective effect of soluble amyloid precursor protein-alpha (sAPP(alpha))
by modulating phosphatidylinositol 3-kinase (PI3K)/Akt-GSK-3beta pathway in
Alzheimer mouse model. J Biol Chem 2011, 286(21):18414-18425.

Bhaskar K, Miller M, Chludzinski A, Herrup K, Zagorski M, Lamb BT: The PI3K-Akt-
MTOR pathway regulates Abeta oligomer induced neuronal cell cycle events. Mol
Neurodegener 2009, 4:14.

Jiao J, Xue B, Zhang L, Gong Y, Li K, Wang H, Jing L, Xie J, Wang X: Triptolide
inhibits amyloid-betal-42-induced TNF-alpha and IL-1beta production in cultured
rat microglia. Journal of neuroimmunology 2008, 205(1-2):32-36.

Huang HJ, Liang KC, Chang YY, Ke HC, Lin JY, Hsieh-Li HM: The interaction between
acute oligomer Abeta(1-40) and stress severely impaired spatial learning and
memory. Neurobiol Learn Mem 2010, 93(1):8-18.

Almeida OF, Conde GL, Crochemore C, Demeneix BA, Fischer D, Hassan AH, Meyer
M, Holsboer F, Michaelidis TM: Subtle shifts in the ratio between pro- and
antiapoptotic molecules after activation of corticosteroid receptors decide

neuronal fate. FASEB J 2000, 14(5):779-790.



41.

42.

43.

44,

45,

46.

47.

48.

Lai M, Seckl J, Macleod M: Overexpression of the mineralocorticoid receptor
protects against injury in PC12 cells. Brain Res Mol Brain Res 2005, 135(1-2):276-
279.

Murphy EK, Spencer RL, Sipe KJ, Herman JP: Decrements in nuclear glucocorticoid
receptor (GR) protein levels and DNA binding in aged rat hippocampus.
Endocrinology 2002, 143(4):1362-1370.

Sola S, Amaral JD, Borralho PM, Ramalho RM, Castro RE, Aranha MM, Steer CJ,
Rodrigues CM: Functional modulation of nuclear steroid receptors by
tauroursodeoxycholic acid reduces amyloid beta-peptide-induced apoptosis. Mol
Endocrinol 2006, 20(10):2292-2303.

Bergann T, Fromm A, Borden SA, Fromm M, Schulzke JD: Glucocorticoid receptor is
indispensable for physiological responses to aldosterone in epithelial Na+
channel induction via the mineralocorticoid receptor in a human colonic cell line.
Eur J Cell Biol 2011, 90(5):432-439.

Aguilar D, Strom J, Chen QM: Glucocorticoid induced leucine zipper inhibits
apoptosis of cardiomyocytes by doxorubicin. Toxicol Appl Pharmacol 2014,
276(1):55-62.

Delfino DV, Agostini M, Spinicelli S, Vito P, Riccardi C: Decrease of Bcl-xL and
augmentation of thymocyte apoptosis in GILZ overexpressing transgenic mice.
Blood 2004, 104(13):4134-4141.

Kervoelen C, Menoret E, Gomez-Bougie P, Bataille R, Godon C, Marionneau-Lambot S,
Moreau P, Pellat-Deceunynck C, Amiot M: Dexamethasone-induced cell death is
restricted to specific molecular subgroups of multiple myeloma. Oncotarget 2015,
6(29):26922-26934.

Grugan KD, Ma C, Singhal S, Krett NL, Rosen ST: Dual regulation of glucocorticoid-

induced leucine zipper (GILZ) by the glucocorticoid receptor and the PI3-



49.

50.

51.

52.

53.

54.

55.

kinase/AKT pathways in multiple myeloma. J Steroid Biochem Mol Biol 2008, 110(3-
5):244-254.

Gupta V, Awasthi N, Wagner BJ: Specific activation of the glucocorticoid receptor
and modulation of signal transduction pathways in human lens epithelial cells.
Invest Ophthalmol Vis Sci 2007, 48(4):1724-1734.

Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs
AH, Wyss-Coray T, Vitorica J, Ransohoff RM et al: Neuroinflammation in Alzheimer's
disease. Lancet neurology 2015, 14(4):388-405.

Latta CH, Brothers HM, Wilcock DM: Neuroinflammation in Alzheimer's disease; A
source of heterogeneity and target for personalized therapy. Neuroscience 2015,
302:103-111.

Gao HM, Hong JS: Why neurodegenerative diseases are progressive: uncontrolled
inflammation drives disease progression. Trends in immunology 2008, 29(8):357-
365.

Bales KR, Du Y, Holtzman D, Cordell B, Paul SM: Neuroinflammation and
Alzheimer's disease: critical roles for cytokine/Abeta-induced glial activation, NF-
kappaB, and apolipoprotein E. Neurobiology of aging 2000, 21(3):427-432; discussion
451-423.

Clementi ME, Pezzotti M, Orsini F, Sampaolese B, Mezzogori D, Grassi C, Giardina B,
Misiti F: Alzheimer's amyloid beta-peptide (1-42) induces cell death in human
neuroblastoma via bax/bcl-2 ratio increase: an intriguing role for methionine 35.
Biochem Biophys Res Commun 2006, 342(1):206-213.

Kitamura Y, Shimohama S, Kamoshima W, Ota T, Matsuoka Y, Nomura Y, Smith MA,
Perry G, Whitehouse PJ, Taniguchi T: Alteration of proteins regulating apoptosis,
Bcl-2, Bcl-x, Bax, Bak, Bad, ICH-1 and CPP32, in Alzheimer's disease. Brain

research 1998, 780(2):260-269.



56.

57.

58.

59.

60.

61.

62.

63.

MacGibbon GA, Lawlor PA, Sirimanne ES, Walton MR, Connor B, Young D, Williams C,
Gluckman P, Faull RL, Hughes P et al: Bax expression in mammalian neurons
undergoing apoptosis, and in Alzheimer's disease hippocampus. Brain research
1997, 750(1-2):223-234.

Dursun E, Gezen-Ak D, Hanagasi H, Bilgic B, Lohmann E, Ertan S, Atasoy IL, Alaylioglu
M, Araz OS, Onal B et al: The interleukin 1 alpha, interleukin 1 beta, interleukin 6
and alpha-2-macroglobulin serum levels in patients with early or late onset
Alzheimer's disease, mild cognitive impairment or Parkinson's disease. Journal of
neuroimmunology 2015, 283:50-57.

Tischner D, Reichardt HM: Glucocorticoids in the control of neuroinflammation. Mol
Cell Endocrinol 2007, 275(1-2):62-70.

McKay LI, Cidlowski JA: Molecular control of immune/inflammatory responses:
interactions between nuclear factor-kappa B and steroid receptor-signaling
pathways. Endocr Rev 1999, 20(4):435-459.

Riccardi C: [GILZ (glucocorticoid-induced leucine zipper), a mediator of the anti-
inflammatory and immunosuppressive activity of glucocorticoids]. Ann Ig 2010,
22(1 Suppl 1):53-59.

Srinivasan M, Janardhanam S: Novel p65 Binding Glucocorticoid-induced Leucine
Zipper Peptide Suppresses Experimental Autoimmune Encephalomyelitis. .
Journal of Biological Chemistry 2011, 286(52):44799-44810.

Cannarile L, Cuzzocrea S, Santucci L, Agostini M, Mazzon E, Esposito E, Muia C,
Coppo M, Di Paola R, Riccardi C: Glucocorticoid-induced leucine zipper is
protective in Thl-mediated models of colitis. Gastroenterology 2009, 136(2):530-
541.

Mazzon E, Bruscoli S, Galuppo M, Biagioli M, Sorcini D, Bereshchenko O, Fiorucci C,

Migliorati G, Bramanti P, Riccardi C: Glucocorticoid-induced leucine zipper (GILZ)



64.

65.

66.

67.

68.

69.

70.

71.

72.

controls inflammation and tissue damage after spinal cord injury. CNS Neurosci
Ther 2014, 20(11):973-981.

Srinivasan M: Glucocoriticoid induced leucine zipper as therapeutic agents in
multiple sclerosis. In: Patent application publication. Edited by office USPI; 2014.
Srinivasan M, Blackburn C, Lahiri D: Functional characterization of a competitive
peptide antagonist of p65 in human macrophage like cells suggests a therapeutic
potential for chronic inflammation. Drug Des Devel Ther 2014(Accepted (In press)).
Faigle R, Song H: Signaling mechanisms regulating adult neural stem cells and
neurogenesis. Biochimica et biophysica acta 2013, 1830(2):2435-2448.

Zhang Y, Hu W: NFkappaB signaling regulates embryonic and adult neurogenesis.
Front Biol (Beijing) 2012, 7(4).

Saaltink DJ, Vreugdenhil E: Stress, glucocorticoid receptors, and adult
neurogenesis: a balance between excitation and inhibition? Cellular and molecular
life sciences : CMLS 2014, 71(13):2499-2515.

Bortolotto V, Cuccurazzu B, Canonico PL, Grilli M: NF-kappaB mediated regulation of
adult hippocampal neurogenesis: relevance to mood disorders and
antidepressant activity. Biomed Res Int 2014, 2014:612798.

Pizzi M, Goffi F, Boroni F, Benarese M, Perkins SE, Liou HC, Spano P: Opposing roles
for NF-kappa B/Rel factors p65 and c-Rel in the modulation of neuron survival
elicited by glutamate and interleukin-1beta. J Biol Chem 2002, 277(23):20717-20723.
Egeland M, Zunszain PA, Pariante CM: Molecular mechanisms in the regulation of
adult neurogenesis during stress. Nat Rev Neurosci 2015, 16(4):189-200.

Shi X, ShiW, Li Q, Song B, Wan M, Bai S, Cao X: A glucocorticoid-induced leucine-
zipper protein, GILZ, inhibits adipogenesis of mesenchymal cells. EMBO Rep 2003,

4(4):374-380.



73.

74.

75.

76.

77.

78.

79.

80.

Zhang W, Yang N, Shi XM: Regulation of mesenchymal stem cell osteogenic
differentiation by glucocorticoid-induced leucine zipper (GILZ). J Biol Chem 2008,
283(8):4723-4729.

Morales-Garcia JA, Luna-Medina R, Alfaro-Cervello C, Cortes-Canteli M, Santos A,
Garcia-Verdugo JM, Perez-Castillo A: Peroxisome proliferator-activated receptor
gamma ligands regulate neural stem cell proliferation and differentiation in vitro
and in vivo. Glia 2011, 59(2):293-307.

Pulido-Salgado M, Vidal-Taboada JM, Saura J: C/EBPbeta and C/EBPdelta
transcription factors: Basic biology and roles in the CNS. Prog Neurobiol 2015,
132:1-33.

Ko CY, Chang WC, Wang JM: Biological roles of CCAAT/Enhancer-binding protein
delta during inflammation. J Biomed Sci 2015, 22:6.

Wu Z, Bucher NL, Farmer SR: Induction of peroxisome proliferator-activated
receptor gamma during the conversion of 3T3 fibroblasts into adipocytes is
mediated by C/EBPbeta, C/EBPdelta, and glucocorticoids. Mol Cell Biol 1996,
16(8):4128-4136.

Ramos RA, Nishio Y, Maiyar AC, Simon KE, Ridder CC, Ge Y, Firestone GL.:
Glucocorticoid-stimulated CCAAT/enhancer-binding protein alpha expression is
required for steroid-induced G1 cell cycle arrest of minimal-deviation rat
hepatoma cells. Mol Cell Biol 1996, 16(10):5288-5301.

Mandrekar-Colucci S, Sauerbeck A, Popovich PG, McTigue DM: PPAR agonists as
therapeutics for CNS trauma and neurological diseases. ASN Neuro 2013,
5(5):e00129.

Pan G, Cao J, Yang N, Ding K, Fan C, Xiong WC, Hamrick M, Isales CM, Shi XM: Role
of glucocorticoid-induced leucine zipper (GILZ) in bone acquisition. J Biol Chem

2014, 289(28):19373-19382.



81.

82.

83.

84.

Boeckx C, Benitez-Burraco A: Osteogenesis and neurogenesis: a robust link also
for language evolution. Front Cell Neurosci 2015, 9:291.

Jeong JH, Jin JS, Kim HN, Kang SM, Liu JC, Lengner CJ, Otto F, Mundlos S, Stein JL,
van Wijnen AJ et al: Expression of Runx2 transcription factor in non-skeletal
tissues, sperm and brain. J Cell Physiol 2008, 217(2):511-517.

Vladimirova V, Waha A, Luckerath K, Pesheva P, Probstmeier R: Runx2 is expressed
in human glioma cells and mediates the expression of galectin-3. J Neurosci Res
2008, 86(11):2450-2461.

Yao Z, LiY, Yin X, Dong Y, Xing L, Boyce BF: NF-kappaB RelB negatively regulates
osteoblast differentiation and bone formation. J Bone Miner Res 2014, 29(4):866-

877.



Figure 1 Click here to download Figure Fig 1.jpg 2

APDK (@ e e e

13 383325

Neurotrophic,
anti-apoptotic factors


http://www.editorialmanager.com/moln/download.aspx?id=88209&guid=6b72edbc-a7be-4b67-ae9a-50e35f055e25&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=88209&guid=6b72edbc-a7be-4b67-ae9a-50e35f055e25&scheme=1

Figure 2 Click here to download Figure Fig 2.jpg %

Aging, Stress. AP

Oxidative stress
Reactive oxvgen species

Glia

oy
. -
) -~ -
N\ p<

NF-xB)

ogen s GILZ/
q

Cytokines, glutamate ‘

¥

Pro-apoptotic factors I

\ 4
¥~-—*

Neuronal apoptosis



http://www.editorialmanager.com/moln/download.aspx?id=88210&guid=4f15988d-33c8-4c73-89c2-3dd898cfd523&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=88210&guid=4f15988d-33c8-4c73-89c2-3dd898cfd523&scheme=1

Figure 3

TLR activation. TNF-«

B

Click here to download Figure Fig 3.jpg %

il

Neural stem/progemtor cells

-

|

NF-xB C-rel

!

Antr-apoptotic factors

v

Neuroprotection

4_/\ ﬁ
[ |
\ MR GR.
Ne »ir
v
NF -KB p6eSs < = GILZ
Cyvtokines l
N \ RUNX-2
C/EBP o \l/
\l’ Neurogenesis
PPAR-/

v

Neurogenesis



http://www.editorialmanager.com/moln/download.aspx?id=88211&guid=14f62be1-51e7-47c5-9a4c-51812caed461&scheme=1
http://www.editorialmanager.com/moln/download.aspx?id=88211&guid=14f62be1-51e7-47c5-9a4c-51812caed461&scheme=1



