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Abstract: Lop Nur, a playa lake located on the eastern margin of Tarim Basin in 

northwestern China, is famous for the “Ear” feature of its salt crust, which appears in  

remote-sensing images. In this study, partial least squares (PLS) regression was used to 

estimated Lop Nur playa salt-crust properties, including total salt, Ca2+, Mg2+, Na+, Si2+, and 

Fe2+ using laboratory hyperspectral data. PLS results for laboratory-measured spectra were 

compared with those for resampled laboratory spectra with the same spectral resolution as 

Hyperion using the coefficient of determination (R2) and the ratio of standard deviation of 

sample chemical concentration to root mean squared error (RPD). Based on R2 and RPD, the 

results suggest that PLS can predict Ca2+ using Hyperion reflectance spectra. The Ca2+ 

distribution was compared to the “Ear area” shown in a Landsat Thematic Mapper (TM) 5 

image. The mean value of reflectance from visible bands for a 14 km transversal profile to 

the “Ear area” rings was extracted with the TM 5 image. The reflectance was used to build a 

correlation with Ca2+ content estimated with PLS using Hyperion. Results show that the 

correlation between Ca2+ content and reflectance is in accordance with the evolution of the 

salt lake. Ca2+ content variation was consistent with salt deposition. Some areas show a 

negative correlation between Ca2+ content and reflectance, indicating that there could have 

been a small-scale temporary runoff event under an arid environmental background. Further 

work is needed to determine whether these areas of small-scale runoff are due to natural 

(climate events) or human factors (upstream channel changes). 
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1. Introduction 

The salt crust of a playa lake is a complex landscape, which records the drying process of an arid 

land surface and the continuous evolution of natural water. The type and abundance of salt-crust 

properties in a playa lake contain substantial paleoclimatic records and indicate the whole process of 

environmental evolution because climatic conditions were recorded in the lacustrine sediments as 

geochemical signatures. Lop Nur, located on the eastern margin of Tarim Basin in northwestern China, 

was located at the convergence of the Tarim River, Kongqi River, Cheerchen River, and others.  

Lop Nur once consisted of thousands of square kilometers of water and gave birth to thousands of 

years of the ancient Lou-lan civilization. Due to the influence of modern human activities, rivers were 

diverted, and the water supply continued to decline. Lop Nur Lake dried up before 1972 according to 

Landsat MSS images and early field reconnaissance carried out by Chinese scientists [1]. In the 

gradual drying process of Lop Nur, because of strong evaporation, freezing, and thawing,  

salt crystallization occurred to form a salt crust 30–100 cm in depth in different land types. Lop Nur 

became famous around the world for its eastern part, which appears as “the big ear in the western part 

of China” in Landsat MSS images. The “Ear” feature of the salt crust appears in remote-sensing 

images as light rings alternating with dark rings in a roughly circular distribution. 

Lop Nur, as the “drought pole” of the world, has attracted a great deal of attention from researchers 

studying environmental evolution and investigating the background of the natural environment in 

northwestern China [2–4]. The drying process in Lop Nur is related to environmental evolution 

because it may indicate variations in precipitation and evaporation in response to climate conditions. 

Various methods have been used to detect the species of crust, but due to its difficult environment and 

remote location, progress of research at Lop Nur remained slow until the 1990s [5]. With the 

development of remote-sensing technology, many researchers have put effort into knowing the 

relationship between the “ear feature”, the playa crust properties, and environmental evolution. Some 

have thought that the different colors in the ring feature indicated the lake shoreline [6]. Fan et al. [7] 

proposed that the thickness and color of the crust were correlated with the stagnation time of the lake 

in one place during lake evolution. These theories are based on logical inference without showing 

direct evidence. Various drill holes have been made at different parts of Lop Nur to reconstruct 

environmental history of this region [8–10]. However, these studies started with point data. Few 

studies have been carried out on the large-scale drying process and its relationship with the 

characteristics of the “big ear”. Shao et al. [6] analyzed the scattering mechanisms of the “ear” feature 

with SAR (Synthetic Aperture Radar) data. They pointed out that the surface pattern and certain 

subsurface property are correlated. Cai et al. [11] demonstrated that the “ear” feature was related with 

total salt content and surface roughness, based on interpretation of Landsat ETM reflectance data. 

However, this research did not include quantitative analysis using spectral data. 

With the increasing need for large-scale detection in Lop Nur, remote sensing has been considered 

to be a promising tool for rapid quantification of single or multiple crust properties [12]. Numerous 
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studies have demonstrated that soil salinity can be estimated using laboratory-measured and simulated 

hyperspectral data [12–22]. Mougenot et al. [23] evaluated the spectra of different salts consisting of 

chlorides, sulfates, and calcite. The evaluation yielded the spectral response patterns of saline soils as  

a function of the quantity and mineralogy of the salts they contained. Chang et al. [24] predicted 

exchangeable Na+ with low accuracy. Dunn et al. [25] predicted larger-scale exchangeable Na+  

with near-infrared spectroscopy and obtained better results. For alkali earth metals, Ca2+ and Mg2+, 

most studies have obtained successful prediction with laboratory NIR spectroscopy. The success of  

these laboratory spectrum-based studies has naturally led to exploration of imaging spectroscopy to 

characterize soil properties at large scales because imaging spectroscopy can not only acquire spectral 

information in several hundred spectral bands as laboratory spectroscopy does, but also provides  

a synoptic view which cannot be achieved by laboratory spectroscopy. Crowley [26] has mapped 

evaporate minerals in Death Valley using airborne hyperspectral AVIRIS data. Their results 

demonstrated the potential value of imaging spectrometry as a tool for mapping playa evaporates. 

Kodikara et al. [27] demonstrated the possibility of mapping evaporate minerals and associated 

sediments in a dry alkaline saline lake using space-borne hyperspectral Hyperion data. 

This study aims to: (1) evaluate the potential of hyperspectral data for estimating playa salt-crust 

properties, including total salt, Ca2+, Mg2+, Na+, Si2+, and Fe2+; (2) map Ca2+ with Hyperion imagery; 

and (3) compare the Ca2+ distribution with the “ear” feature to investigate the process of lake drying. 

2. Materials and Methods 

2.1. Field Works and Salt-Crust Sampling 

The study area is located in the Lop Nur, Xinjiang, Northwest China. In this region, the annual 

rainfall is 22 mm, while the evaporation is 3000 mm. There is a strong wind over scale 6 for more than 

100 days per year, and the highest air temperature in the summer fluctuates between 40 and 50 °C [3]. 

The rivers entering Lop Nur have had zero flow in recent years. Due to the special geographical 

position and climatic condition of Lop Nur, the salt concentration of the crust has varied little since the 

crust formed. 

A total of six field trips were carried out from 2006 to 2011 for visiting to the ruins of the Loulan 

Kingdom and the Lop Nur Lake region. Among these field trips, samples collected in November 2008 

and November 2011 were used for modeling salt-crust properties in this study. These sampling sites 

were projected onto a georeferenced Landsat TM5 image of the area (Figure 1). In 2008 field trip, 

three routes, four study areas, and 78 sampling sites were selected along a profile length of a 62 km 

transect. Each sample collected in 2008 was analyzed for total salt, moisture content, Na+, and Ca2+. 

From the field work in 2011, a total of 78 surface (0–2 cm) crust samples were collected were used for 

laboratory spectral measurement and model building. Each of these samples was collected from an 

approximately 30 × 30 m area. The geographic coordinates of each sampling site were recorded at  

one-meter accuracy using a global positioning system (GPS) instrument. The samples were kept fresh 

in sealed plastic bags (17 cm × 20 cm) and transported to laboratory for analysis. Each sample 

collected in 2011 was analyzed for total slat, Na+, Ca2+, Mg2+, Fe2+, and Si2+. 
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Figure 1. Study area and sampling sites in Lop Nur overlaid on a false color composite 

(TM 3 = red, TM 2 = green, TM 1 = blue) of the Landsat TM 5 image acquired on  

23 August 2007. 

 

2.2. Spectral Reflectance Analysis 

2.2.1. Satellite Image Spectra 

The Hyperion imaging spectrometer is on board the NASA EO-1 satellite, which was launched on 

21 November 2000. Hyperion images are characterized by a total of 242 channels at 10-nm spectral 

intervals over the spectral region 356–2577 nm, acquired at 30 m spatial resolution with an approximate 

50:1 signal-to-noise ratio (SNR). A Hyperion scene has 7.7 km cross-track width with 42 or 185 km 

along-track length. Out of the 242 collected channels, bands 1–7 (356 to 417 nm), bands 58–70 

(collected by the VNIR instrument), bands 71–76 (collected by the SWIR instrument), and bands  

225–242 (2406 to 2577 nm) are not calibrated. Therefore, a Hyperion image spectrum has total  

198 bands from 427 to 2395 nm for further analysis. 

One Hyperion image covering part of the study region was acquired on 8 January 2007 with cloud-free. 

Due to of the difficulty of acquiring satellite hyperspectral data, and especially the weather conditions 

which are not favorable for conducting field work in Lop Nur in an “ideal” timeline, sampling could 

not be conducted simultaneously with image data collection. This Hyperion image was the most 

optimal data for this work, though it did not cover all 2008 and 2011 sampling sites. 

The acquired Hyperion image was downloaded from the United States Geological Survey (USGS) 

website [28] in radiance. Radiometric and geometric corrections were required so that reflectance 

spectra could be derived from the radiance data and then related to a specified crust property. At the 

beginning of the preprocessing, uncalibrated image bands and overlay bands were eliminated. The 
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radiance data were converted into surface reflectance using ACORN, a commercial software package 

for atmospheric calibration. The positional, atmospheric, and weather parameters (i.e., satellite 

acquisition altitude, humidity, and visibility) required by atmospheric correction. For geometric 

calibration, the Hyperion image was rectified by referring to a Landsat TM 5 image acquired in 

23 August 2007. 39 pairs of ground control point (GCP) were manually selected from the reference 

TM and the Hyperion image. A bilinear warping method was used to project the Hyperion image into 

the Universal Transverse Mercator (UTM) coordinates, Zone 46, WGS-84 Datum. Registration 

accuracy was assessed using the ENVI dynamic overlay function. 

Because several noisy bands were corrupted by atmospheric water absorption, these noisy bands 

were excluded, and 156 bands were retained for partial least squares regression. 

2.2.2. Laboratory Spectra 

Crushed salt-crust samples were scanned in laboratory using an SVC HR-1024 high-resolution field 

portable spectroradiometer with the wavelength range 350–2500 nm. A 50-Watt ASD Pro lamp 

(Analytical Spectral Devices, Boulder, CO, USA) was used as artificial illumination with approximate 

30° zenith angle. The fiber-optical head of the spectrometer pointed at the nadir viewing angle at  

a height of 30 cm above the sample surface. An 8° fore-optic was used, resulting in a 4.2-cm diameter 

field of view (FOV). Spectral measurement began by scanning a white Spectralon reference panel from 

Labsphere. Three spectra were acquired for each salt crust sample by rotating the sample by 120° for 

the second and third measurements. To reduce the effect of salt crust texture on the measured spectra, 

the average of three spectral measurements for each sample was used in spectral-composition 

modeling. Because of the SVC sensor, the raw data have two overlapping bands at 983–1019 and 

1879–1927 nm. The 978–1015 and 1867–1906 nm bands were therefore removed, leaving 897 bands 

for modeling. 

To compare results for laboratory spectra with those for Hyperion spectra, the spectral bands  

and crust samples for both datasets must match each other. The laboratory spectra were, therefore, 

resampled to the Hyperion spectral resolution, resulting in 156 bands from 436 to 2356 nm. 

2.3. Partial Least Squares (PLS) Modeling 

Partial least squares (PLS) modeling was used to build relationships between salt crust parameters 

and hyperspectral data. PLS is a standard multivariate regression method developed by Herman  

Wold [29,30]. PLS uses a few eigenvectors of the explanatory variables so that the corresponding 

scores not only explain the variance in the explanatory variables, but also have high correlations  

with the response variables. A simplified PLS model consists of the two outer relations shown in 

Equations (1) and (2), which describe the eigenstructure decomposition of both the matrix containing 

the explanatory variables (i.e., spectral bands) and the matrix containing the response variables  

(i.e., the abundance of Ca2+), and an inner relation shown in Equation (3), which links the score 

matrices resulting from these two eigenstructure decompositions [31]: 

X = TD’ + E (1)

Y = UQ’ + F (2)
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U = BT (3)

The first outer relation is derived by applying principal component analysis (PCA) to X, resulting in 

the score matrix T and the loading matrix D plus an error matrix E. In a similar way, the second outer 

relation is derived by decomposing Y into the score matrix U, the loading matrix Q, and the error term 

F. The inner relation is a multiple linear regression between the score matrices U and T in which B is a 

regression coefficient matrix determined by least-squares minimization. The prime (’) represents a 

matrix transpose. Y is computed as: 

Y = TBQ’ + F (4)

The goal of PLS modeling is to minimize the norm of F while maximizing the covariance between 

X and Y by the inner relationship. Because the two separate PCA approaches to the derivation of PLS 

factors described above are not the best possible ones and could result in a weak correlation for  

the inner relation, a method resulting in a strong inner relation between T and U was used in this  

study [31–33]. Selecting the optimal number of latent variables is essential for building a robust  

PLS model. The leave-one-out cross-validation method was used to determine the optimal number of 

latent variables. Given a set of m samples, m-1 samples are used to develop a calibration model, and 

the concentration of the left-out sample is predicted using the calibration model. This process is 

repeated until each sample has been excluded once. The predicted error sum of squares (PRESS) can 

be calculated as: 


=
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m

i
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1
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where ŷ(i) and yi are the estimated and actual concentrations for the left-out sample. The root mean 

square error of cross-validation (RMSECV) for each PLS model with a given number of latent 

variables can be expressed as: 

mPRESSRMSECV j=  (6)

where j is the number of latent variables. In general, the number of latent variables is considered to be 

optimal when it yields the minimal RMSECV. 

For a specified salt crust property parameter, two statistical indices, the leverage and the 

Studentized residual, were used to determine outliers [33]. The identified outliers were discarded from 

PLS analysis. In PLS analysis, the dataset was divided into two subsets: one for calibration, and  

the other for validation. 30% of the samples were randomly selected as the validation dataset.  

The leave-one-out cross-validation method was used to determine the optimal number of PLS factors. 

Previous studies have shown that data pretreatment improves PLS performance [32,34]. Mean 

centering was used in this study. Mean centering subtracts the means of individual spectral bands from 

the spectral data; similar subtractions were applied to salt-crust property values. Mean centering was 

used because it is simple and facilitates the interpretation of PLS results. 

Prediction accuracy was assessed on the basis of the coefficient of determination (R2), the slope (b) 

of the regression line, and the root mean square errors of calibration dataset (RMSEC) and validation 

dataset (RMSEP). The ratio of performance deviation (RPD) was also used to evaluate prediction 

accuracy. RPD is the ratio of the standard deviation (SD) of a sample chemical concentration to root 



Remote Sens. 2014, 6 7789 

 

 

mean square error (RMSE) from a PLS model [35]. Many researchers have used RPD to evaluate the 

stability and effectiveness of PLS calibration and prediction [36–39]. Here, RPD was used as proposed 

by Chang et al. [24]: results from PLS modeling were classified as good if RPD > 2, as satisfactory 

and open to improvement using different calibration strategies if 1.4 ≤ RPD ≤ 2, and as unreliable if 

RPD < 1.4. 

3. Results and Discussions 

3.1. Properties of Laboratory Spectra 

A total of 78 samples were analyzed for the laboratory spectra, of which three samples were 

identified as outliers and 75 samples were used in PLS modeling. Twenty-five of these samples were 

randomly selected for validation, and 50 remaining samples were used for calibration to estimate 

individual salt-crust property contents. Table 1 lists the chemical content ranges of both the calibration 

and the validation datasets and the number of samples in each dataset. From Table 1, it can be seen that 

there were no significant differences between both datasets for any of the salt-crust property parameters 

when mean contents were compared. The standard deviations of soil samples for both calibration and 

validation were similar for all the properties examined. PLS modeling was conducted with measured and 

simulated Hyperion spectra, with the results summarized in Table 2, Figures 2 and 3. 

Table 1. Calibration and validation datasets: number of samples, chemical content ranges, 

means, and standard deviations for the salt-crust properties studied. 

Parameter 
Number of 

Samples 
Minimum 
Content 

Maximum 
Content 

Mean 
Content 

Standard 
Deviation 

Calibration samples 
Ca2+ (g/kg) 50 6.52 54.90 20.99 13.72 

Total salt (g/kg) 50 201.00 965.00 736.48 183.28 
Mg2+ (g/kg) 50 0.049 4.80 1.12 1.32 
Na+ (g/kg) 50 149.00 465.00 378.32 72.59 

Fe2+ (mg/kg) 50 0.08 2.07 1.26 0.42 
Si2+ (mg/kg) 50 80.00 428.00 199.88 82.09 

Validation samples 
Ca2+ (g/kg) 25 6.73 51.70 26.26 15.50 

Total salt (g/kg) 25 330.00 956.00 679.52 190.32 
Mg2+ (g/kg) 25 0.048 5.16 1.20 1.26 
Na+ (g/kg) 25 140.00 460.00 363.24 73.55 

Fe2+ (mg/kg) 25 0.08 2.15 1.15 0.51 
Si2+ (mg/kg) 25 24.00 417.00 227.64 99.21 
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Table 2. Statistical parameters resulting from partial least squares (PLS) calibration and 

validation with laboratory and simulated Hyperion spectra. 

Soil Properties 
Data 
Type 

NLv 
Calibration Validation 

Rc
2 RPDc RMSEC Rv

2 RPDv RMSEP 

Ca2+ (g/kg) 
Laboratory  7 0.88 2.89 4.75 0.73 1.95 7.95 
simulated 
Hyperion  

10 0.93 3.91 3.51 0.77 2.11 7.33 

Total Salt 
(g/kg) 

Laboratory  6 0.62 1.64 112.04 0.53 1.48 128.63 
simulated 
Hyperion 

6 0.62 1.75 105.01 0.53 1.54 123.46 

Mg2+ (g/kg) 
Laboratory  5 0.93 1.39 0.95 0.44 1.09 1.16 
simulated 
Hyperion 

5 0.68 1.78 0.74 0.43 1.26 1.00 

Na+ (g/kg) 
Laboratory  5 0.64 1.68 43.10 0.56 1.51 48.85 
simulated 
Hyperion 

6 0.69 1.81 40.16 0.63 1.66 44.33 

Fe2+ (mg/kg) 
Laboratory  8 0.87 2.77 0.15 0.18 1.07 0.48 
simulated 
Hyperion 

6 0.64 1.69 0.25 0.38 1.29 0.40 

Si2+ (mg/kg) 
Laboratory  9 0.90 3.18 25.84 0.52 1.48 67.13 
simulated 
Hyperion 

6 0.61 1.62 50.59 0.55 1.51 65.66 

Both R2 and RPD values indicated that Ca2+ can be estimated using laboratory spectra at different 

spectral resolutions, with R2 ≥ 0.88 and RPD > 2. These results are expected and consistent with 

previous studies which show that Ca2+ can be reliably estimated from lab measured reflectance  

spectra [24,40,41]. PLS resulted in good estimation with laboratory spectra for Fe2+ and Si2+ with  

R2 ≥ 0.87 and RPD > 2. These findings are similar to those of Cozzolino et al. [40]. PLS performed 

satisfactory estimation with laboratory spectra for total salt, Mg2+, and Na+ with 2 > RPD > 1.4.  

The calibrations for total salt and Na with laboratory data were not as good as for the other properties,  

but satisfactory nonetheless. In terms of R2, our result for Na+ is better than R2 of 0.09 reported by 

Chang et al. [24]. PLS with the simulated Hyperion spectra yielded accurate estimates for total salt, 

Mg2+, and Na+ and satisfactory estimates for Fe2+ and Si2+, with 2 > RPD > 1.4. For Fe2+ and Si2+,  

R2 and RPD values with simulated Hyperion data were lower than those resulting from PLS with  

897-band laboratory spectra, suggesting the lower spectral resolution decreased estimation accuracy. 

In general, the validation results indicated that PLS can satisfactorily predict most of salt-crust 

properties from hyperspectral data. All RPD values for PLS validation were less than 2 except for  

Ca2+ with simulated Hyperion spectra, implying that almost no soil properties can be predicted using 

hyperspectral data with good accuracy. The PLS models with the laboratory spectra (897 bands) and 

the simulated Hyperion spectra produced satisfactory validation for total salt, Na+ and Si2+. PLS gave 

the poorest prediction for Mg2+ using the laboratory data and simulated Hyperion data. The result is 

not consistent with the results reported by Shepherd et al. [41]. The reason maybe attributed to the 

Mg2+ range of the validation samples. The calibration dataset and validation dataset both were selected 
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randomly. The Mg2+ range for the calibration dataset is 0.049–4.80 g/kg, while the Mg2+ range for the 

validation dataset is 0.048–5.60 g/kg. The Mg2+ range for validation is beyond the range for calibration. 

Figure 2. Scatter plots for measured salt-crust properties and PLS estimates using 

laboratory spectra. 

  

  

  

The two datasets were different in spectral resolution. The spectral resolution of the 897-band 

laboratory spectrum dataset was 2 nm, whereas the spectral resolution of the 156-band simulated 

Hyperion spectral dataset was 10 nm. PLS performance for these two datasets was compared. The 

effects of spectral resolution on PLS performance in predicting soil properties were evaluated based on 

the coefficient of determination (R2) and the RPD values resulting from validation (Table 2). PLS with 

simulated Hyperion spectra resulted in more accurate estimates (RPD = 3.91) and validation (RPD = 2.11) 
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for Ca2+ than PLS with laboratory data (Table 2). PLS performance for predicting these properties was 

not sensitive to the degraded spectral resolution. 

Figure 3. Scatter plots between measured salt crust properties and PLS estimates using 

simulated Hyperion spectra. 

  

   

  

3.2. Hyperion Spectra of Ca2+ Property and Mapping Results 

To obtain the Ca2+ distribution around the “ear” area, Hyperion image spectra were used to build 

the relationship with Ca2+ abundance. Because of special environmental conditions in Lop Nur, the 

Ca2+ concentration of the crust changed little without eluviation. This means that a Hyperion image 

acquired in 2007 can be used to estimate the Ca2+ distribution since then. Salt-crust samples were 

collected in 2008 and 2011. A total of 13 samples were covered by the Hyperion image. Eight samples 
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from 2008 were used for calibration and five samples from 2011 for validation. The PLS results for the 

Hyperion image spectrum demonstrated good calibration for Ca2+, with R2 = 0.99 and RPD > 13.48, 

and satisfactory validation, with R2 = 0.51, RPD > 1.72 (Figure 4). These results are comparable to the 

findings by Lagacherie et al. [42], who reported that stable estimation for calcium carbonate using 

airborne HYMAP image spectra. These results demonstrate that Ca2+ of salt-crust for playa lake could 

be mapped with spaceborne hyperspectral imagery. 

Figure 4. Estimation of Ca2+ abundance through application of PLS to Hyperion image spectra. 

 

The PLS model with 13 salt-crust samples was applied to the Hyperion images to generate a spatial 

distribution map of Ca for the Lop Nur “ear” area. The Ca2+ distribution for “ear” area on the map is 

dominated by an orange color with 5%–8% Ca2+ (Figure 5). The blue belt represents 10%–13% Ca2+ 

as seen on the map. 

3.3. Relationship between Ca2+ Abundance and Belt Features 

The belt features of the Lop Nur lake region appear as “a big ear” in remote sensing images.  

The mean value of reflectance from the first three TM bands (TM 1: 450–520 nm, TM 2: 520–600 nm, 

TM 3: 620–690 nm) was used to express the belt characteristic that light rings alternate with dark  

rings with roughly circular distribution. Ca2+ distribution was compared to the texture feature of the 

“Ear area” shown in the TM image to explain the formation process and the environmental meanings 

of the belt features. 

A transversal profile of 14 km (Figure 6) to the rings of the “ear” was drawn to extract the 

reflectance of each ring from the TM image. The corresponding Ca2+ distribution for this 14-km-long 

profile was obtained from the mapping results for the Hyperion image. Comparison between Ca2+ 

content and reflectance is shown in Figure 7, and their variations are consistent. In the Lop Nur Lake 
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region, Ca2+ generally exists in gypsum (CaSO4), and gypsum is a deposited material indicative  

of an arid environment. During the dry period of a saline lake, with ongoing lake retreat, salt will 

continue to deposit. The reflectance of salt is higher than that of deposited sediments. The amount  

of salt deposition therefore has a positive correlation with reflectance. Variation of Ca2+ content  

was consistent with salt deposition. The correlation between Ca2+ content and reflectance was in 

accordance with salt-lake evolution. 

Figure 5. Ca2+ abundance map derived by applying the PLS model to the Hyperion image. 

The location of the image is indicated by the oblique rectangular box in Figure 1. 
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Figure 6. Transversal profile to the rings of the “ear” in Lop Nur. (the background Landsat 

TM 5 image acquired on 23 August 2007; band 3 = red, band 2 = green, band 1 = blue). 

The transversal profile location was shown in Figure 1. 

 

Figure 7. Correlation between Ca2+ distribution and mean value of visible reflectance.  

The rectangles show the anti-correlated areas where Ca2+ content has negative correlation 

with reflectance. The color of each rectangle shows the length of the anti-correlated area. 

Light green rectangle shows 4.2–5.6 km. Light blue rectangle shows 6.5–6.9 km.  

Light pink rectangle shows the anti-correlated points.  
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Moreover, some anti-correlated areas shown in Figure 7 can be used to explain the environmental 

background of the belt features. At two anti-correlated areas at 2.4 and 3.7 km, Ca2+ content reaches 

peak values, and the corresponding reflectance values are in valley. Large values of Ca2+ deposition 

readings show that the climate was arid, whereas the low reflectance indicated that temporary larger 

upstream runoff events, carrying large quantities of sediments, may occur. These two anti-correlated 

areas should belong to the same climatic period because of their close location, when some extreme 

weather events perhaps occurred to cause unstable upland water flow. From 4.2 to 5.6 km, Ca2+ 

content shows a consistent trend with variation in reflectance, but the stability is poor, indicating  

that this period could represent the unstable transition period during a drought. From 6.5 to 6.9 km, 

Ca2+ content decreases, and reflectance increases; with less upland water flow, the salt concentration  

of the lake was probably so high that Ca2+ precipitation gradually weakened and then Na and K as 

high-solubility salts began to precipitate and deposit. This period could have been one of extreme 

droughts. At the anti-correlated areas at 7.9, 8.9, 10.0, 11.1, and 13.4 km, Ca2+ content has negative 

correlation with reflectance, indicating that there could have been a small-scale temporary runoff event 

under an arid environmental background, leading to a temporary increase in sediment and making the 

reflectance of these areas low. 

From 8.9–14 km, four narrow abnormal domains can be observed, indicating small-scale temporary 

runoff events. During the late stage of playa-lake evolution, because of the small quantity of lake 

water, sediment deposition was sensitive to upland water supply. It is not yet possible to determine 

whether these areas of small-scale runoff are due to natural factors (climate events) or human factors 

(upstream channel changes). Further work is needed to date the various belts and combine them with 

modern hydrological data to synthesize an analysis. 

4. Conclusions 

In this paper, PLS models estimating playa lake crust constituents: total salt, Ca2+, Mg2+, Na+, Si2+, 

and Fe2+ are developed using laboratory hyperspectral data with high and low spectral resolution. 

Validation results prove that most of the studied salt-crust properties can be predicted with satisfactory 

accuracy using hyperspectral data. A Ca2+ abundance map is derived by applying the PLS model to the 

Hyperion image. A transversal profile of 14 km to the rings of the “ear” was drawn to extract 

reflectance of each ring from the Landsat TM image. Comparison results between Ca2+ content and 

reflectance show that the Ca2+ content has positive correlation with reflectance, and their variations are 

consistent. Variation of Ca2+ content was consistent with salt deposition. The correlation between Ca2+ 

content and reflectance was in accordance with salt-lake evolution. The presence of some anti-correlated 

areas may indicate the occurrence drought periods or small-scale temporary runoff events. What needs 

to be mentioned is that small-scale runoff events need further work to determine. 
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