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Abstract
Neural stem cells in the adult brain possess the ability to remain quiescent until needed in tissue homeostasis or repair. It
was previously shown that traumatic brain injury (TBI) stimulated neural stem cell (NSC) proliferation in the adult hippocam-
pus, indicating an innate repair mechanism, but it is unknown how TBI promotes NSC proliferation. In the present study, we
observed dramatic activation of mammalian target of rapamycin complex 1 (mTORC1) in the hippocampus of mice with TBI
from controlled cortical impact (CCI). The peak of mTORC1 activation in the hippocampal subgranular zone, where NSCs
reside, is 24–48 h after trauma, correlating with the peak of TBI-enhanced NSC proliferation. By use of a Nestin-GFP
transgenic mouse, in which GFP is ectopically expressed in the NSCs, we found that TBI activated mTORC1 in NSCs. With
5-bromo-2=-deoxyuridine labeling, we observed that TBI increased mTORC1 activation in proliferating NSCs. Furthermore,
administration of rapamycin abolished TBI-promoted NSC proliferation. Taken together, these data indicate that mTORC1
activation is required for NSC proliferation postinjury, and thus might serve as a therapeutic target for interventions to
augment neurogenesis for brain repair after TBI.
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Introduction
Traumatic brain injury (TBI), as a public health issue in

the United States, causes 2.5 million hospital visits each

year (Faul et al., 2010), and 52,000 patients die of severe
injuries. In survivors, both physical and neurobehavioral
disabilities frequently occur (Salmond and Sahakian,
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Significance Statement

Traumatic brain injury (TBI)-induced cell death compromises learning and memory functions in survivors by
disconnecting neurocircuitries in the hippocampus, prompting an urgent need for repair strategies. Innate
repair machinery driven by endogenous neural stem cells (NSCs) responds to injury but does not effect full
recovery. The mechanisms of injury-induced NSC activation are elusive, further impeding possible inter-
ventions for intrinsic restoration. This study demonstrates that mTORC1 signal is activated in NSCs after
trauma, and further inhibition on the mTORC1 pathway diminished the effects of injury on NSC proliferation.
The results suggest that mTORC1 activation mediates TBI-enhanced NSC proliferation, providing a
clinically relevant potential therapeutic target for modulation of postinjury NSC activity.
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2005), as well as an increased susceptibility to neurode-
generative diseases such as Alzheimer’s disease and Par-
kinson’s disease (Sivanandam and Thakur, 2012; Marras
et al., 2014). The hippocampus is one of the brain regions
most vulnerable to cell death (Colicos et al., 1996, Hicks
et al., 1996; Sato et al., 2001; Hall et al., 2005), primarily
acute necrotic immature neuron death in the hippocampal
dentate gyrus (HDG) after trauma (Gao et al., 2008; Zhou
et al., 2012). This damage results in learning and memory
dysfunctions as the most common sequelae of TBI (Sal-
mond and Sahakian, 2005; Perry et al., 2015). However,
effective drugs approved by the Food and Drug Adminis-
tration against cell death after TBI are unavailable. There
is an urgent need for an alternative approach to neuronal
replacement in the damaged hippocampus to promote
cognitive functional recovery.

Adult neural stem/progenitor cells (NSCs) have been
widely discovered in birds, rodents, primates, and human
beings (Reynolds and Weiss, 1992; Eriksson et al., 1998;
Kornack and Rakic, 1999; Nottebohm, 2002). The sub-
granular zone (SGZ) in the hippocampus is one of the
most important niches for adult NSCs to support neuro-
genesis through a lifetime (Cameron and McKay, 2001;
van Praag et al., 2002), contributing to learning and mem-
ory capacity (Shors et al., 2001; Kitamura et al., 2009;
Akers et al., 2014; Christian et al., 2014). In both rodent
models and human beings, NSC proliferation is promoted
after TBI in the adult hippocampus (Dash et al., 2001;
Kernie et al., 2001; Braun et al., 2002; Chirumamilla et al.,
2002; Rice et al., 2003; Ramaswamy et al., 2005; Sun
et al., 2005; Gao et al., 2009; Zheng et al., 2013), indicat-
ing an innate repair response of NSCs to initial injury,
shown as immature neuron loss compensated in the den-
tate gyrus, as well as increased postinjury mature neurons
in some cases (Braun et al., 2002; Sun et al., 2005, 2007;
Gao and Chen, 2013; Wang et al., 2016). Moreover, neu-
rogenesis levels after trauma correlate with injury severity
(Wang et al., 2016). Functionally, neurons born after injury
integrate into preexisting neurocircuitries (Emery et al.,
2005; Sun et al., 2007; Villasana et al., 2015) and are
responsible for spontaneous recovery (Schmidt et al.,
1999; Blaiss et al., 2011; Sun et al., 2015). However, this
innate repair cannot always completely compensate for
cell loss, resulting in retention of permanent functional
deficits in numerous TBI survivors (Prigatano, 1987; Cice-
rone et al., 2005). After treatment with some neurogenic
agents, enhanced endogenous neurogenesis and func-
tional improvements have been positively correlated in

injured mice (Lu et al., 2003; Kleindienst et al., 2005; Lu
et al., 2005; Wu et al., 2008). Taken together, these data
suggest it is feasible to fully repair TBI-induced neuronal
loss and restore cognitive functions by enhancing endog-
enous NSC-mediated neurogenesis.

NSC activity is regulated by various extracellular signals
(Lie et al., 2005; Sierra et al., 2015), making it difficult to
tease out the mediators of TBI-enhanced NSC prolifera-
tion. In the present study, we instead investigated the
intracellular pathway to shed light on the mechanisms
activating the proliferation program in NSCs after trauma.
The mammalian target of rapamycin (mTOR) pathway,
especially mTOR complex 1 (mTORC1), is important for
coordinating extracellular signals and regulating cell pro-
liferation (Laplante and Sabatini, 2012). It is required for
maintaining the neural progenitor pool in adult and aging
rodents (Paliouras et al., 2012). Additionally, activation of
mTORC1 in aging mice rescued the decline of NSC pro-
liferation and neurogenesis in the hippocampus (Romine
et al., 2015). Sustained activation of mTORC1 in embry-
onic and neonatal NSCs leads to an imbalance of prolif-
eration and differentiation (Magri et al., 2011; Hartman
et al., 2013). Collectively, mTORC1 plays crucial roles in
NSC activity modulation. After TBI, mTORC1 was acti-
vated in neurons, microglia, and astrocytes at several time
points (Chen et al., 2007; Park et al., 2012). In our study,
we examined mTORC1 activation in NSCs within an ex-
tended time scale up to 1 week after injury in a controlled
cortical impact (CCI) model in mice. Our results indicate
that mTORC1 activation in the hippocampus lasts up to
72 h after injury, whereas mTORC1 activation in NSCs
mainly occurs 24–48 h after trauma. Furthermore,
mTORC1 inhibition eliminated TBI-enhanced NSC prolif-
eration in the hippocampus, demonstrating that mTORC1
signaling is required for NSC proliferation after trauma.

Method and Materials
Animal care

Male C57 BL/6 mice (The Jackson Laboratory, Bar
Harbor, ME) were housed in a 12/12-h light/dark cycle
environment. Access to food and water was provided ad
libitum. Nestin-enhanced green fluorescent protein
(EGFP) mice were kept in the same environment and were
a gift from Dr. G. Enikolopov at Cold Spring Harbor Lab-
oratories (Cold Spring Harbor, NY) as previously de-
scribed (Mignone et al., 2004). All operations were
performed according to protocols approved by the Indi-
ana University Animal Care and Use Committee.

CCI traumatic brain injury
Nine-week-old male mice (n � 62) were subjected to

CCI injury or sham surgery. Briefly, a solution of 2.5%
tribromoethanol (Avertin, Sigma-Aldrich, St. Louis, MO)
was used to anesthetize the mice. The mice were fixed in
a stereotaxic frame (Kopf Instruments, Tujunga, CA), and
craniotomy proceeded under sterile conditions. The skin
was cut and retracted, and a 4-mm craniotomy was con-
ducted midway between the bregma and lambda sutures
and laterally halfway between the central suture and the
temporalis muscle. The skullcap was removed carefully
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with intact dura left below. Before injury, the tip of the
electromagnetic impactor was adjusted and kept perpen-
dicular to the exposed cortical surface. In the experi-
ments, injury was set at velocity of 3.0 m/s and
deformation at 1.0 mm by controlling the electromagnetic
impactor. The injury site was permitted to dry before the
wound was sutured. A heating pad was used during the
whole surgery and recovery period to maintain the ani-
mals’ core body temperature at 36–37°C.

Drug administration
To assess whether mTORC1 inhibition impairs TBI-

enhanced NSC proliferation, mice were subjected to
sham surgery or CCI injury as described above. Rapamy-
cin (10 mg/kg; LC Laboratories, Woburn, MA) was dis-
solved in a solution of 5% PEG400/4% ethanol and 5%
Tween 80 and administered i.p. 12, 24, 36, and 44 h after
TBI (Fig. 4A). 5-Bromo-2=-deoxyuridine (BrdU; 100 mg/kg
in saline; Sigma-Aldrich) was injected i.p. immediately
after the final dose of rapamycin (Fig. 4A).

Tissue processing
To assess the mTORC1 activation time course, mice

were sacrificed 4, 24, 48, and 72 h and 1 week after CCI
or after sham surgery. To quantify mTORC1 activation in
NSCs and proliferating NSCs after TBI, mice were per-
fused at 24 or 48 h after trauma. To evaluate mTORC1
inhibition effects on TBI-enhanced NSC proliferation,
mice were sacrificed 48 h after initial injury and the treat-
ment described above (Fig. 4A). Briefly, the mice were
anesthetized deeply and perfused with cold saline tran-
scardially, followed by fixation with 4% paraformaldehyde
(PFA) in PBS. Brain tissues were then collected and post-
fixed overnight with PFA in 4°C, followed by cryoprotec-
tion in 30% sucrose for 48 h. Serial coronal sections were
cut at 30-�m thickness using a cryostat (LeicaCM 1950;
Leica, Buffalo Grove, IL) and preserved at –20°C. The
sections were processed for immunohistochemical anal-
ysis.

Immunohistochemistry
First, free-floating sections were washed in PBS three

times, followed by incubation in blocking buffer (0.1%
Triton X-100, 1% bovine serum albumin, 5% normal goat
serum in PBS) for 1 h. Then sections were incubated with
primary antibody overnight at 4°C, washed for three times
in PBS, and then incubated with secondary antibody for 2
h at 4°C. After 4=,6-diamidino-2-phenylindole (DAPI) treat-
ment for 2 min, sections were washed again with PBS
three times and mounted with Fluoromount-G (Southern-
Biotech, Birmingham, AL). For BrdU incorporation, sec-
tions were treated before standard blocking protocol as
follows: incubation with 2N HCl was performed at room
temperature for 1 h, followed by soak in 0.1 M (pH 8.4)
borate buffer for 10 min. After three washes in PBS,
sections were processed according to standard protocol
in blocking solution. The primary antibodies and their final
concentrations used in the experiments were as follows:
anti-BrdU (1:200, rat; AbD Serotec, Raleigh, NC), anti-pS6
(1:200, rabbit; Cell Signaling Technology, Danvers, MA),
anti-GFP (1:1000, chicken; Abcam, Cambridge, MA), and

anti-Sox2 (1:1000, goat; R&D Systems, Minneapolis, MN).
Secondary antibodies were from Jackson ImmunoRe-
search Laboratories (West Grove, PA) and applied in a
1:1000 dilution.

Immunoblotting
To assess mTORC1 activation in the whole hippocam-

pus, mice were sacrificed at 4, 24, 48, and 72 h and 1
week after CCI or after sham surgery. The ipsilateral
hippocampi were collected, homogenized with ice-cold
Triton lysis buffer (1% Triton X-100, 20 mM Tris-HCL, 150
mM NaCl, 5 mM EGTA, 10 mM EDTA, and protease inhib-
itor cocktail [Roche, Basel, Switzerland]), and centrifuged
for 30 min at 14,000 rpm, 4°C. Protein concentration was
determined by a modified Lowry assay (Bio-Rad, Hercu-
les, CA). The same amount of protein in each sample was
loaded and run on SDS/PAGE. After electrotransfer to
nitrocellulose membranes at 30 V overnight at 4°C, the
membrane was incubated in PBS with 5% nonfat milk at
room temperature for 1 h and probed with antibodies
against S6 (1:1000, rabbit, Cell Signaling Technology),
�-actin (1:000, mouse, Abcam), and pS6 (1:200, rabbit,
Cell Signaling Technology) overnight at 4°C. Secondary
antibodies were used at a dilution of 1:5000. The mem-
brane was washed three times and rinsed in TBST. Fi-
nally, proteins were detected with ECL substrates (Bio-
Rad), and images were acquired using normal image
scanning methods for colorimetric detection.

Cell counting
Brain sections were simultaneously processed for im-

munohistochemistry. An inverted fluorescent microscope
system (Axiovert 200M, Zeiss, Jena, Germany) was used
to analyze the sections. Series of every sixth section (30
�m thickness, 180 �m apart, 12–16 sections in each
animal) from covered whole hippocampus were analyzed
in a double-blind fashion. Double-positive cells were
counted under the microscope with a 40� objective
through the whole series. We used one marker as an
indicator; when a positive cell showed in the field, we
switched to the channel matching second marker signal.
If the target cell also had been labeled, we counted it as a
double-positive cell. Triple-positive cells were similarly
counted under the microscope through the whole series.
We used one marker as an indicator; when a positive cell
showed in the field, we switched to the channel matching
second marker signal. If the target cell also had been
labeled, we again switched to the channel matching third
marker signal. Then if the target cell again had been
labeled, we counted it as a triple-positive cell.

In all experiments, double- and triple-positive cells were
quantified in a double-blind fashion using a profile count
method. Briefly, every single colabeled cell (even partial
cells at the borders of sections) was counted in multi-
planes throughout the region of interest in the 30-�m
section. Contours of granule cell layer (GCL) were created
in Zeiss software (AxioVision v4.8) to measure the volume
of GCL. The cell density was calculated by dividing total
cell number by the GCL volume, thus expressed as aver-
age number/mm3.
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Microscopy
The inverted fluorescent microscope (Zeiss Axiovert

200M) used for cell counting and image capture was
combined with an ApoTome structured-illumination at-
tachment (Zeiss). A digital camera (Zeiss Axio Cam MRc5)
interfaced with the microscope was controlled by a com-
puter. Representative images were captured and stacked
as a cut view image in software (AxioVision v4.8). The
images were assembled and labeled in Photoshop 7.0
(Adobe Systems, San Jose, CA).

Statistical analysis
Quantification of target cells is shown as average � SD.

Data were analyzed via appropriate type of ANOVA fol-
lowed by Fisher’s least significant difference test. Super-
script letters listed with p-values correspond to the
statistical tests shown in Table 1. Statistical analysis was
done using SPSS software (IBM, Armonk, NY). Signifi-
cance was set at p � 0.05.

Results
mTORC1 signaling activation in the whole
hippocampus after TBI

NSCs have long been reported to respond to brain
injuries, including stroke, seizure, and TBI (Parent et al.,
1997, 2002; Dash et al., 2001; Kernie et al., 2001; Yagita
et al., 2001; Braun et al., 2002; Chirumamilla et al., 2002;
Rice et al., 2003; Ramaswamy et al., 2005; Sun et al.,
2005; Yamashita et al., 2006; Gao et al., 2009; Zheng
et al., 2013). After TBI, enhanced NSC proliferation in the
hippocampus has been observed regardless of injury
model and animal model (Dash et al., 2001; Kernie et al.,
2001; Braun et al., 2002; Chirumamilla et al., 2002; Rice
et al., 2003; Ramaswamy et al., 2005; Sun et al., 2005;
Gao et al., 2009; Zheng et al., 2013). It was further dem-
onstrated that quiescent NSCs are the subgroup mainly
activated by TBI (Gao et al., 2009). However, the molec-
ular mechanism underlying the phenomenon remains elu-
sive, impeding development of interventions aimed at
promoting neurogenesis by further enhancing NSC pro-
liferation after trauma. The mTOR signaling pathway, es-
pecially mTORC1, is known to be involved in NSC activity
regulation in embryonic (Magri et al., 2011), neonatal
(Hartman et al., 2013), adult (Paliouras et al., 2012), and
aging (Paliouras et al., 2012; Romine et al., 2015) rodents,
and its activation has also been reported after TBI in the

hippocampus (Chen et al., 2007; Park et al., 2012), so we
proposed that mTORC1 signaling mediates TBI-
enhanced NSC proliferation.

To demonstrate this hypothesis, we induced moderate
TBI in adult mice by a CCI injury model and evaluated
mTORC1 signal activation in the whole hippocampus at
different time points postinjury. Adult mice were sacrificed
4, 24, 48, and 72 h and 1 week after CCI or after sham
surgery, and ipsilateral hippocampi were subjected to
immunoblotting. We evaluated the total amount and
phosphorylated form of ribosomal protein S6 (a widely
used marker for mTORC1 activation; Laplante and Saba-
tini, 2012; Fig. 1A). After trauma, total S6 was elevated
rapidly 4 h postinjury (F(5,12) � 5.108, p � 0.017a; Fig. 1B),
reached a peak at 24 h (F(5,12) � 5.108, p � 0.001a; Fig.
1B), stayed at high levels at 48 h (F(5,12) � 5.108, p �
0.012a; Fig. 1B) and 72 h (F(5,12) � 5.108, p � 0.043a; Fig.
1B), and returned back to normal level by 1 week after
injury (F(5,12) � 5.108, p � 0.230a; Fig. 1B). Meanwhile, the
phosphorylation level (pS6) was dramatically increased at
4 h (F(5,12) � 6.000, p � 0.003b; Fig. 1B), further elevated
at 24 h (F(5,12) � 6.000, p � 0.001b; Fig. 1B), stayed at high
levels at 48 h (F(5,12) � 6.000, p � 0.013b; Fig. 1B),
remained slightly higher than sham level at 72 h (F(5,12) �
6.000, p � 0.091b; Fig. 1B), and returned comparable to
baseline by 1 week (F(5,12) � 6.000, p � 0.537b; Fig. 1B).
Together, the data suggest that the mTORC1 signal was
activated in the hippocampus mainly at 4, 24, and 48 h
after TBI.

mTORC1 signaling activation in the HDG after TBI
To assess temporal-spatial mTORC1 activation in the

HDG, adult mice were sacrificed 4, 24, 48, and 72 h and
1 week after CCI or sham surgery. The epicenter section
from each animal was processed for immunostaining with
antibody against pS6. In sham animals, a limited number
of pS6-positive cells were mainly observed in the GCL
and few in the hilus, indicating a baseline of mTORC1
activity in the HDG (Fig. 1C). After TBI, we observed a
wave of mTORC1 activation in the HDG starting no later
than 4 h, maintaining a high level of activation at least until
72 h, and returning to sham level by 1 week postinjury
(Fig. 1E, G, I, K, M).

Meanwhile, mTORC1 activation showed different pat-
terns regarding signal location in subregions in the HDG at
different time points. At 4 h after TBI, increased pS6-
positive cells were predominantly restricted to the GCL
(Fig. 1E), indicating a rapid response in granule neurons to
the initial insult. At 24 h after trauma, the pS6-positive
cells not only further accumulated in the GCL, but also
vastly spread to the molecular layer (ML) and hilus (Fig.
1G). At 48 h after CCI, the pS6 signal reached a peak, and
positive cells were mainly observed in the ML and hilus
but few in the GCL (Fig. 1I), implying strong mTORC1
activation in reactive glia, especially reactive microglia, at
this time point according to our unpublished data. At 72 h
after trauma, mTORC1 activation started decreasing, and
the remaining positive cells were mostly in the ML (Fig.
1K), largely attributable to reactive astrocytes based on
our unpublished data. By 1 week after TBI, the pS6 signal

Table 1. Statistical analysis.

Line Data structure Type of test Power
a Normal distribution One-way ANOVA 0.896
b Normal distribution One-way ANOVA 0.941
c Normal distribution One-way ANOVA 1.000
d Normal distribution One-way ANOVA 1.000
e Normal distribution One-way ANOVA 0.999
f Normal distribution One-way ANOVA 0.889
g Normal distribution One-way ANOVA 0.986
h Normal distribution One-way ANOVA 0.997
i Normal distribution Two-way ANOVA 0.988 for injury

0.732 for treatment
0.478 for interaction
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was back to sham level and again showed sporadic acti-
vation mainly in the GCL (Fig. 1M). Collectively, we de-
tected a time-dependent and location-shifted mTORC1
activation pattern in the HDG after TBI, indicating
mTORC1 involvement in various responses to CCI in
multiple cell types.

Time course of mTORC1 signaling activation in the
SGZ after TBI

To further assess whether mTORC1 is activated in the
NSCs after TBI, we focused on pS6 signal in the SGZ,
where adult NSCs locate in the hippocampus (Faigle and
Song, 2013). In sham animals, we again observed pS6-
positive cells mainly in the GCL (Fig. 1D). At 4 h after CCI,
increased pS6 signal was seen primarily in the GCL but
not SGZ (Fig. 1F). At 24 h postinjury, a dramatic increase
of pS6-positive cells showed up in the SGZ (Fig. 1H), as
well as in the ML and hilus. At 48 h after CCI, pS6-positive

cells in the SGZ decreased compared with 24 h, but were
still more numerous than in sham surgery (Fig. 1J). At 72
h and 1 week after TBI, mTORC1 activation in the SGZ
was limited and comparable to that of sham animals (Fig.
1L, N). Taken together, our data enabled us to narrow
down activation of mTORC1 in the SGZ predominantly to
24 and 48 h after initial insult, suggesting the potential
time course of mTORC1 activation in NSCs. The duration
of mTORC1 activation correlates with TBI-enhanced NSC
proliferation (Gao et al., 2009), suggesting possible in-
volvement of mTORC1 activity in TBI-enhanced NSC pro-
liferation.

TBI activates mTORC1 signaling in NSCs
To accurately determine whether mTORC1 is activated

in NSCs, we colabeled pS6 with an NSC marker. Addi-
tionally, we took advantage of a Nestin-GFP transgenic
mouse, in which NSCs ectopically express green fluores-

Figure 1. TBI activates mTORC1 signaling in the hippocampus. Mice received a moderate CCI at the age of 9 weeks and were
sacrificed at 4, 24, 48, and 72 h and 1 week after injury as well as after sham injury (n � 3 for each group). A, Immunoblotting with
antibodies against pS6, S6, and �-actin shows mTORC1 signaling activation in the hippocampus. B, Quantification of blots shown
in A (�p � 0.05, ��p � 0.01). C–N, Immunostaining with antibody against pS6 (red) shows mTORC1 signaling activation in the HDG
after sham surgery (C) and 4 h (E), 24 h (G), 48 h (I), 72 h (K), and 1 week (M) after CCI, and in the SGZ at corresponding time points
(D, F, H, J, L, N), respectively. DAPI staining shows the structure of HDG.
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cent protein (GFP; Mignone et al., 2004; Gao et al., 2009).
We hardly observed NSCs costaining with pS6 in the SGZ
of sham-treated animals (Fig. 2A–C). Quantification
showed that 2.6 � 2.1% of NSCs were pS6 positive at the
epicenter (Fig. 2J). When we further examined NSCs
across the whole hippocampus, only 1096 � 805/mm3 of
total NSCs in the whole hippocampus were colabeled
with pS6 (Fig. 2K). These results confirmed our prior
notion that mTORC1 activity in the NSCs is very low in the
sham-treated animals.

At 24 h after TBI, the number of pS6-positive cells in the
SGZ was dramatically increased (Fig. 2E) and largely
labeled NSCs (Fig. 2D–F, white arrows). Quantification
showed that mTORC1 is active in 60.7 � 6.8% of total

NSCs in the epicenter (F(2,12) � 35.077, p � 0.001c; Fig.
2J). In all, mTORC1 signaling is active in 15750 � 4620/
mm3 NSCs across the whole hippocampus (F(2,12) �
85.257, p � 0.001d; Fig. 2K), indicating a dramatic 15-fold
increase compared with sham control.

At 48 h after CCI, the number of pS6-positive cells was
still very high (Fig. 2H), whereas labeling in NSCs de-
creased (Fig. 2G–I, white arrows). At the epicenter, the
percentage of mTORC1-positive NSCs also dropped to
17.7 � 10.4% (F(2,12) � 35.077, p � 0.001c vs. 24 h, p �
0.017c vs. sham; Fig. 2J). The number of NSCs with active
mTORC1 across the whole hippocampus rapidly de-
creased to 5987 � 1348/mm3 (F(2,12) � 85.257, p � 0.001d

vs. 24 h) but was still much higher than basal level (F(2,12)

Figure 2. TBI activates mTORC1 signaling in NSCs. Mice received a moderate CCI at the age of 9 weeks and were sacrificed at 24
or 48 h after injury as well as after sham injury (n � 5 for each group). A–I, Immunostaining with antibodies against GFP (green) and
pS6 (red) shows mTORC1 signaling activation in NSCs (white arrows) in sham animals (A–C) 24 h (D–F) and 48 h (G–I) after CCI in
the subgranular zone. J, Quantification of total pS6-positive NSCs after sham surgery and 24 and 48 h after CCI, respectively. K,
Quantification of percentage of pS6-positive NSCs in the epicenter after sham surgery and 24 and 48 h after CCI, respectively (�p �
0.05, ��p � 0.01, ���p � 0.001).
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� 85.257, p � 0.044d vs. sham; Fig. 2K). In all, we
observed a rapid and robust activation of mTORC1 in
NSCs 24 h after TBI that lasted at least to 48 h after
trauma.

TBI activates mTORC1 signaling in proliferating
NSCs

Previously, it was proven that TBI transiently promoted
NSC proliferation around 24–48 h postinjury (Gao and
Chen, 2013). The molecular mechanisms that mediate
TBI-enhanced NSC proliferation are completely unknown.
The timing of mTORC1 signaling activation correlates well
with NSC proliferation after TBI, strongly suggesting that
mTORC1 signaling activation is involved in regulating TBI-
induced NSC proliferation. Thus we further assessed
whether mTORC1 signaling is activated in proliferating
NSCs. BrdU injection (i.p., 100 mg/kg) was given 4 h
before sacrifice (Fig. 3A), and the proliferating cells during
this 4 h period were pulse-labeled. Series of every sixth
section were processed for triple immunostaining to as-
sess mTORC1 activity in proliferating NSCs.

In sham-treated animals, only 2320 � 513/mm3 NSCs
were proliferating, as pulse-labeled by BrdU (Fig. 3B, C, E,
white arrowheads, and Fig. 3N). Among these proliferating
NSCs, only 49 � 40/mm3 of them were pS6 positive (Fig.
3O), representing only 1.9 � 1.2% of total proliferating
NSCs that were pS6 positive (Fig. 3Q). These data indi-
cate that only a small population of NSCs are proliferating
in the hippocampus of mice receiving sham surgery, and
the activity of mTORC1 signaling at these proliferating
NSCs is extremely low.

Twenty-four hours after receiving moderate CCI injury,
3070 � 658/mm3 NSCs were proliferating in the hip-
pocampus of the mice (Fig. 3F, G, I, white arrowhead and
arrow, and Fig. 3N). However, TBI significantly activated
mTORC1 signaling in the hippocampus (Fig. 3H). Of the
proliferating NSCs, 649 � 229/mm3 or 24.7 � 6.2% were
pS6 positive (Fig. 3F–I, white arrow, and Fig. 3O, Q),
whereas the rest of the proliferating NSCs were pS6
negative (Fig. 3F–I, white arrowhead). These results indi-
cate TBI did not dramatically alter NSC proliferation at 24
h compared with sham animals (F(2,12) � 20.432, p �
0.328e; Fig. 3N), which has been demonstrated before
(Gao and Chen, 2013); however, TBI promoted a 13-fold
increase of mTORC1 activation in the proliferating NSCs
24 h after TBI (F(2,12) � 17.037, p � 0.001h; Fig. 3Q).

Forty-eight hours after receiving moderate CCI injury,
5396 � 1092/mm3 NSCs were proliferating in the hip-
pocampus of the mice (Fig. 3J, K, M, arrowheads and
arrows, and Fig. 3N). TBI dramatically increased the pro-
liferation of NSCs in the hippocampus at this time point
(F(2,12) � 20.432, p � 0.001e), agreeing with a previous
report that TBI transiently promoted NSC proliferation 48
h after TBI (Gao and Chen, 2013). TBI also significantly
promoted mTORC1 signaling in the proliferating NSCs
(1260 � 798/mm3, F(2,12) � 7.954, p � 0.005f vs. sham;
Fig. 3J–M, white arrows, and Fig. 3O). These data indicate
that TBI significantly promotes NSC proliferation (Fig. 3N)
and enhanced mTORC1 activity in the proliferating NSCs
48 h after injury (Fig. 3O, Q). In all, we observed a dra-

matically increased level of mTORC1 activation in prolif-
erating NSCs 24 and 48 h after TBI, and TBI transiently
promoted NSC proliferation beginning 48 h after TBI. The
sequence of mTORC1 activation and NSC proliferation
strongly suggest the possible involvement of mTORC1
signaling pathway activation in TBI-enhanced NSC prolif-
eration.

Inhibition of mTORC1 signaling eliminates TBI-
enhanced NSC proliferation

To further confirm that mTORC1 activation is required
for TBI-enhanced NSC proliferation, we treated TBI ani-
mals with rapamycin, a well-established mTORC1 inhibi-
tor, and evaluated NSC proliferation 48 h after TBI. To fully
block mTORC1 activity, four injections of rapamycin (i.p.,
10 mg/kg) or vehicle were given at 12, 24, 36, and 44 h
after TBI or sham surgery. Immediately after the last
rapamycin injection, a dose of BrdU (i.p., 100 mg/kg) was
given to label cell proliferation, and then animals were
perfused at 48 h after injury (Fig. 4A).

To evaluate mTORC1 inhibition, the epicenter section
from each animal was processed for pS6 staining. The
low-level mTORC1 activation in sham animals was not
apparently affected by rapamycin (Fig. 4B, D), whereas
the originally strong mTORC1 activation in the HDG was
dramatically abolished in TBI animals 48 h after surgery
(Fig. 4C, E). pS6 staining demonstrated successful
mTORC1 inhibition in the HDG after trauma. To assess
overall cell proliferation, the epicenter section from each
animal was processed for BrdU staining. An obvious de-
crease of BrdU-positive cells in the HDG was observed in
both rapamycin-treated sham and TBI animals compared
with vehicle groups (Fig. 4F–I). These data indicate that
inhibition of mTORC1 dramatically reduces cell prolifera-
tion in the hippocampus.

Different types of cells, including glia and NSCs, prolif-
erate after TBI. To further determine whether inhibition of
mTORC1 affects NSC proliferation, double immunostain-
ing with an NSC marker was performed (Fig. 5). In sham
control animals treated with vehicle, there were 1925 �
313/mm3 NSCs proliferating (Fig. 5A–C, arrows, and Fig.
5M), which was slightly decreased by rapamycin treat-
ment to 1436 � 519/mm3, without significant difference
(F(1,19) � 7.543, p � 0.9569; Fig. 5D–F, M). After TBI, NSC
proliferation was dramatically increased to 4260 � 1251/
mm3 (F(1,19) � 20.233, p � 0.001i vs. sham � vehicle; Fig.
5G–I, M), whereas rapamycin treatment abolished the
enhanced effect on NSC proliferation (2375 � 920/mm3,
F(1,19) � 7.543, p � 0.018i vs. TBI � vehicle; Fig. 5J–L, M).
Altogether, our data suggest that inhibition of mTORC1
signaling eliminates TBI-enhanced NSC proliferation, in-
dicating that mTORC1 signaling pathway activation is
required for TBI-enhanced NSC proliferation.

Discussion
TBI induces dramatic cell death in the hippocampus,

which contributes to vast disconnections of local neuro-
circuitries and subsequent neurobehavioral dysfunctions.
So far, no Food and Drug Administration–approved drug
against neuronal loss caused by TBI is available, and
effective neuroprotective or alternative neural repair ap-
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proaches are urgently needed. NSCs in the hippocampus
represent the potential of neuroregeneration in the adult
brain and hold great promise for neuronal replacement
after trauma (Kuhn et al., 1996; Shapiro and Ribak, 2005;

Ming and Song, 2005; Zhao et al., 2006). It has been
widely reported that NSC proliferation increases after TBI
(Dash et al., 2001; Kernie et al., 2001; Braun et al., 2002;
Chirumamilla et al., 2002; Rice et al., 2003; Ramaswamy

Figure 3. TBI activates mTORC1 signaling in proliferating NSCs. Mice received a moderate CCI at the age of 9 weeks and were
sacrificed at 24 or 48 h after injury as well as after sham injury (n � 5 for each group). A dose of BrdU was administered 4 h before
perfusion. A, Experimental strategy. B–M, Immunostaining with antibodies against GFP (green), BrdU (cyan), and pS6 (red) shows
proliferating NSCs with (white arrows) or without (arrowheads) mTORC1 signaling activation in sham animals (B–E), 24 h (F–I) and 48
h (J–M) after CCI in the subgranular zone. N–P, Quantification of total proliferating NSCs (N), total pS6-positive proliferating NSCs (O),
and total pS6-negative proliferating NSCs (P) after sham surgery and 24 and 48 h after CCI, respectively. Q, Quantification of
percentage of pS6-positive proliferating NSCs after sham surgery and 24 and 48 h after CCI, respectively (�p � 0.05, ��p � 0.01, ���p
� 0.001).
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Figure 4. Rapamycin treatment inhibits mTORC1 signaling and cell proliferation in the hippocampus after TBI. A, Experimental
strategy. B–E, Immunostaining with antibody against pS6 (red) shows mTORC1 signaling activity after rapamycin or vehicle treatment
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et al., 2005; Sun et al., 2005; Gao et al., 2009; Zheng et al.,
2013), as well as production of mature neurons in some
circumstances (Sun et al., 2005, 2007; Wang et al., 2016).
This phenomenon shows the regenerative potential of
adult brain by neurogenic response of NSCs after TBI.
However, the increased NSC proliferation does not al-
ways result in enhanced neurogenesis (Gao and Chen,
2013; Wang et al., 2016). Therefore, the innate response is
not always strong enough to fully compensate for neuro-
nal loss, and thus approaches are needed to further pro-
mote NSC proliferation after trauma. Unfortunately the
molecular mechanisms underlying TBI-enhanced NSC
proliferation are currently unknown, largely impeding its
application.

Neural stem/progenitor cells in the hippocampus can
be categorized into at least two subtypes based on mor-
phology, protein marker expression, and pattern of divi-
sion (Seri and García-Verdugo, 2001; Seaberg and van
der Kooy, 2002; Filippov et al., 2003; Mignone et al., 2004;
Bull and Bartlett, 2005; Encinas et al., 2006, 2008; Enci-
nas and Enikolopov, 2008). Only a small fraction (1.73%)
of radial glia-like type I NSCs can be labeled with BrdU
after a short (4-h) pulse (Gao et al., 2009), indicating that
they are normally quiescent (Mignone et al., 2004; Encinas
et al., 2006); hence they are designated as quiescent
neural stem cells (qNSCs) or active neural stem cells
(aNSCs) depending on whether they are active in prolif-
eration. Under basal conditions, qNSCs play the role of
stem cells, whereas aNSCs undergo asymmetric divisions
to generate small round or oval-shaped type II neural
progenitor cells (NPCs). These progeny cells undergo a
series of symmetric divisions and can be labeled with
BrdU with high frequency. After a short (4-h) pulse,
14.99% of NPCs can be labeled with BrdU (Gao et al.,
2009); they are described as amplifying neural progenitor
cells (aNPCs; Mignone et al., 2004; Encinas et al., 2006).
It has been recently found that TBI activates quiescent
qNSCs. The percentage of proliferating qNSCs was sig-
nificantly increased from 1.73 � 0.16% to 3.76 � 0.48%,
a 2.17-fold difference (Gao et al., 2009), indicating that
TBI may release a subpopulation of qNSCs from quies-
cent status and promote them to reenter the cell cycle,
thus becoming active NSCs (aNSCs). The activation of
qNSCs by TBI is transient. The NSCs reverted back to
quiescence in a few days after TBI, indicating that quies-
cence and proliferation are reversible (Fig. 6). The molec-
ular mechanisms that activate qNSCs after TBI are
completely unknown.

Cellular quiescence is a reversible nonproliferating state
and outside of an active cell cycle (also called G0; Infante
et al., 2008; Coller, 2011). Quiescence serves an essential
role in preserving stem cell function until the stem cell is
needed in tissue homeostasis or repair. Cell quiescence
and proliferation are tightly regulated to maintain tissue
homeostasis (Coller, 2011; Hilpert et al., 2014; Lin et al.,
2014; Rodgers et al., 2014). The reactivation of qNSCs

into proliferation is crucial for tissue repair and regenera-
tion. This reactivation not only exists in neural stem cells,
but it also occurs in other tissue stem cells such as
fibroblasts and hematopoietic stem cells (Rumman et al.,
2015). Studies in the past few years have revealed that,
instead of being a passive state, quiescence is actively
maintained in the cell (Spencer et al., 2013; Hilpert et al.,
2014). Quiescent cells are transcriptionally active. The
extent to which stem cells can regulate quiescence and
reactivation is very poorly understood. Our present study,
in a rodent CCI model, demonstrates that mTORC1 acti-
vation is required for activating quiescent NSCs by TBI.
Our result demonstrates that mTOR signaling is a key
regulator of the stem cell fate choice. We provide a model
of reactivation of quiescent neural stem cells for brain
repair after injury (Fig. 6). This reactivation can potentially
be targeted for interventions on NSC activity and con-
comitant neuronal replacement for functional recovery
after trauma.

As a fundamental pathway in all types of cells, mTOR
signaling is involved in many important cellular events,
including metabolism, cell growth, cell cycle progression,
and cell survival (Laplante and Sabatini, 2012). Specifi-
cally in the nervous system, particularly in NSCs, mTOR
signaling, especially mTORC1, is also significant for bal-
ancing self-renewal and differentiation. It has been re-
ported that constitutive hyperactivity of mTORC1
signaling is responsible for deregulated NSCs activity in
the embryonic stage and leads to tuberous sclerosis de-
velopment (Magri et al., 2011). In postnatal development,
mTORC1 activity is also required for NSCs, especially in
maintenance of the transit amplifying neural progenitor
pool (Paliouras et al., 2012). Decline of NSC proliferation
in aging rodents can also be restored by activating
mTORC1 activity (Romine et al., 2015). Collectively,
mTORC1 plays significant roles in regulating NSC activity,
particularly in regulating NSC proliferation. After TBI, ac-
tivation of mTORC1 signaling in the injured cortex and
hippocampus has been noticed for a while (Chen et al.,
2007; Park et al., 2012); however, the role of mTORC1
activation remains elusive. Initially, mTORC1 was proven
to mediate apoptotic neuronal death within hours after
TBI, and early inhibition of mTORC1 signaling by rapamy-
cin pretreatment has been shown to alleviate motor def-
icits and cognitive impairments 3 days after trauma (Park
et al., 2012; Ding et al., 2015). Later on, mTORC1 activa-
tion in microglia and astrocytes postinjury has further
been noticed, thus bringing about the idea that roles of
mTORC1 in TBI pathogenesis include inducing neuroin-
flammation and promoting astrogliosis, which was also
reversed by rapamycin administration (Ding et al., 2014;
Nikolaeva et al., 2015). Besides, genetic activation of
mTORC1 by upstream negative regulator inactivation
worsens cognitive performances after TBI in rodents (Ro-
zas et al., 2015). Recently, Butler et al. (2015) pointed out
a regulatory role of mTORC1 in neurogenesis and synap-

continued
in sham animals or 48 h after CCI. F–I, Immunostaining with antibodies against BrdU (red) shows cell proliferation in the HDG after
rapamycin or vehicle treatment in sham animals or 48 h after CCI. DAPI staining shows structure of HDG.
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Figure 5. Inhibition of mTORC1 signaling ablates TBI-enhanced NSC proliferation. Mice were treated with the same procedure as in
Figure 4A (n � 5 for each group). A–L, Immunostaining with antibodies against GFP (green) and BrdU (red) shows NSC proliferation
(white arrows) in the SGZ after rapamycin or vehicle treatment in sham animals and 48 h after CCI. M, Quantification of NSC
proliferation in the SGZ after rapamycin or vehicle treatment in sham animals and 48 h after CCI (�p � 0.05, ��p � 0.01, ���p � 0.001).
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tic reorganization after TBI, which was potentially involved
in post-traumatic epileptogenesis. Altogether, mTORC1
activation was considered a deleterious event after TBI;
thus it was targeted in most studies. However, another
study demonstrated that rapamycin treatment worsened
cognitive deficits instead (Zhu et al., 2014). Our unpub-
lished data also indicate that mTOR activation is required
for survival of spared neurons in the injured cortex. The
exact role of mTOR in TBI pathophysiology has yet to be
determined. In our present study, we focused on the
regulatory role of mTORC1 especially in NSC proliferation
after moderate TBI using a CCI model in rodents. We
illustrated that mTORC1 activation in NSCs in the hip-
pocampus was delayed to 24–48 h after initial injury
compared with 4 h after trauma in mature neurons re-
ported by other studies (Chen et al., 2007; Ding et al.,
2015). In addition, inhibition by rapamycin abolished TBI-
enhanced NSC proliferation in the hippocampus 48 h after
moderate CCI. This study demonstrates a beneficial role
of mTORC1 in neuroplasticity by mediating NSC prolifer-
ation after TBI. Although some studies proved that inhi-
bition of mTORC1 activity after TBI by pre- or post-
treatment with rapamycin improved motor functions and
cognitive outcomes at the acute phase after TBI, the
present results suggest that these regimens may come at
the expense of compromising long-term neuroregenera-
tion. In contrast, short-term enhancing mTOR activation
may increase neurogenesis and have a long-term effort in
improving learning and memory functions after TBI. In all,
the role of mTOR activation is specific to cell type and
time course in TBI pathophysiology. Thus a detailed
spatial-temporal profile of mTOR activation is required,
before clearly determining the therapeutic potential of
inhibition or activation of its activity, as well as when and
where mTOR activity should be modulated in terms of
beneficial neurobehavioral outcomes in TBI patients.
Meanwhile, as a multifunctional signaling pathway, mTOR
may not be a good target for therapeutic applications.
Further investigations are needed to determine specific
downstream targets of mTOR in different scenarios of
individual cell types, namely mature neuron apoptosis,
NSC proliferation, microglia activation–mediated neuroin-
flammation, and astrogliosis.
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