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ABSTRACT

In this study we investigated the robustness of the methods that account for independent

left truncation when applied to competing risks settings with dependent left truncation. We

specifically focused on the methods for the proportional cause-specific hazards model and

the Fine-Gray model. Simulation experiments showed that these methods are not in general

robust against dependent left truncation. The magnitude of the bias was analogous to

the strength of the association between left truncation and failure times, the effect of the

covariate on the competing cause of failure and the baseline hazard of left truncation time.

1. INTRODUCTION

In many cohort studies with competing endpoints, individuals are recruited after the

onset of risks under study. For example, when studying the incidence of AIDS and non-

AIDS related death in HIV infected individuals, subjects are recruited at some time after

their corresponding infection or seroconversion dates. This phenomenon is known as left
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truncation in survival analysis. In such settings, individuals are being observed conditional

on the fact that they have survived at least until recruitment. Such a conditioning may

induce late entry bias in biomedical research.

Standard nonparametric or semiparametric statistical methods for survival data with a 

single endpoint, as the Kaplan-Meier estimator and the Cox proportional hazards model, are 

directly applicable to left-truncated data, under the assumption of independence between 

left truncation and failure times, provided that risk sets are adjusted properly (Tsai et 

al, 1987; Lai and Ying, 1991; Andersen et al, 1993; Kalbfleisch and Prentice, 2002). Left 

truncation in the competing risks setting, can be addressed in the same fashion for the 

Aalen-Johansen estimator of the cumulative incidence and the semiparametric Cox-type 

proportional cause-specific hazards model (Andersen et al, 1993; Zhang et al, 2009). However, 

when the interest lies on directly modeling the cumulative incidence through the popular 

Fine-Gray model (Fine and Gray, 1999), left truncation cannot be dealt with by simply 

adjusting the risk sets as in the case of the Cox-type proportional hazards model (Zhang 

et al, 2011). Recently, extensions of the Fine-Gray model to independent left truncation 

setting have been considered and addressed (Zhang et al, 2011; Geskus, 2011; Shen, 2011), 

although, dependence of left truncation time on covariates has only been investigated in 

(Zhang et al, 2011). Nevertheless, the assumption of independence between left truncation 

and failure times may not be reasonable in many clinical settings. For example, in natural 

history HIV studies, enrollment time may be shorter for subjects with acute infection, that 

is, for subjects with symptoms soon after HIV seroconversion, and it is known that acute 

infection is associated with higher disease progression rate and shorter time to an AIDS-

related death. In such cases, left truncation time (i.e. time to enrollment) may be positively 

associated with failure time (i.e. time to death). Another example, again from the HIV 

infection, comes from studies in subjects under combined antiretroviral treatment (cART) 

aimed at identifying predictors of HIV-related mortality while considering non HIV-related 

deaths as a competing event. As time from HIV seroconversion to cART initiation is shorter 

for patients with higher HIV progression rates, and thus they have higher risk of dying from

2

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



HIV-related causes, left truncation time (i.e. time to cART initiation) is expected to be 

positively associated with failure time (i.e. time to death). Additionally, dependent left 

truncation may be present in studies with transplant registry data. In such studies, centers do 

not usually collect data for patients who died while waiting for matched donors. Since there is 

clinical evidence that a longer transplant waiting time is associated with a worse prognosis, 

left truncation time (i.e. transplantation time) may be associated with survival time. To our 

knowledge, the issue of dependent left truncation has not been explored in the context of the 

semiparametric competing risks models. This issue has been addressed in the case of the 

classical survival analysis with a single endpoint for the Cox proportional hazards model 

(Matsuura and Eguchi, 2005) and in the competing risks setting by modeling the cause-

specific hazard under the assumption of a truncated Weibull distribution for the cause-specific 

hazard (Anzures-Cabrera and Hutton, 2010).

In this work we investigate the robustness of the methods to account for independent

left truncation, when applied to dependently left-truncated competing risks data. Our focus

is on the basic semiparametric competing risks models, that is, the proportional cause-

specific hazards model and the Fine-Gray model. Specifically, we study the degree and the

pattern of the induced bias in the effect estimates as well as the levels of the empirical

coverage probabilities, under various scenarios, through extensive simulation experiments.

The structure of the paper is as follows. In section 2 we provide some notation and briefly

introduce competing risks data, the proportional cause-specific hazards and the Fine-Gray

model. In sections 3 and 4 we present simulation studies exploring various scenarios with

regard to left truncation under both models. Finally the paper concludes with a discussion

in section 5.

2. DATA AND MODELS

Competing risks data are time-to-event data from studies where participants are at risk

of more than one mutually exclusive events or causes of failure. For example, in cohort

studies focusing on AIDS related mortality in HIV infected individuals, non-AIDS related

cause of death act as a competing event (van der Helm et al, 2013). The term competing
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risks also includes data where the possible causes of failure are not mutually exclusive but the

interest lies in the first occurring event (Putter et al, 2007; Bakoyannis and Touloumi, 2012).

An example, again from HIV studies, is the occurrence of either treatment interruption or

initiation of a new antiretroviral regimen as the first major chance in combined antiretroviral

therapy (Touloumi et al, 2006).

At this point, it is useful to introduce some notation. Let T denote failure time and C

the cause of failure. For simplicity and without loss of generality, we consider two causes of

failure, with C = 1 denoting the cause of interest and C = 2 the competing cause of failure.

Also, let W and U be the left truncation and right censoring times, respectively. After

recruitment in the study, one can only observe X = min(T, U). Throughout this article, we

assume that T is independent of U , possibly conditional on some covariate Z.

The basic identifiable quantity from competing risks data is the cause-specific hazard,

which is defined as

λj(t) = lim
h→0

Pr(t ≤ T < t+ h,C = j|T ≥ t)

h
, j = 1, 2.

This quantity represents the instantaneous failure rate of a specific cause, in the presence

of the competing cause of failure (Kalbfleisch and Prentice, 2002). Another identifiable

quantity is the cumulative incidence of a specific cause, in the presence of the competing

cause of failure, which is defined as

Fj(t) = Pr(T ≤ t, C = j) =

∫ t

0

λj(s) exp

{
−
∫ s

0

[λ1(v) + λ2(v)]dv

}
ds, j = 1, 2.

The cumulative incidence of a specific cause of failure is a function of the cause-specific haz-

ards for all possible causes. Unlike the classical survival setting, where there is a one-to-one

relationship between the effect of a covariate on the hazard and on the cumulative incidence,

in the context of competing risks a one-to-one relationship does not exist. Consequently, the

effect of a covariate may be quite different on the two quantities (Gray, 1988; Putter et al,

2007; Bakoyannis and Touloumi, 2012). In the remaining of this section we briefly present the

standard semiparametric models for the cause-specific hazard and the cumulative incidence

function.
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2.1 Proportional cause-specific hazards model

The most popular method for modeling the cause-specific hazard is the semiparametric

Cox proportional hazards model. This model has the form:

λj(t; z) = λ0j(t) exp(z′βj), j = 1, 2, (1)

where λ0j(t) is a completely unspecified baseline cause-specific hazard function, z represents

the vector of covariate values and βj the corresponding effects on the cause-specific hazard

of the j-th type of failure in the logarithmic scale. Estimation of this model is based, in the

absense of tied failure times, on maximizing the partial likelihood (Kalbfleisch and Prentice,

2002):

L(β1, β2) =
2∏
j=1

kj∏
i=1

exp(z′iβj)∑
l∈R(tji)

exp(z′lβj)
, (2)

where kj is the total number of failures from cause j and R(tji) the set of individuals at

risk (risk set) just before the time of failure of i-th individual from the j-th cause of failure

(tji). Estimation of each βj (j = 1, 2) can be achieved by maximizing the j-th factor of (2).

The analysis can be performed using standard software, by considering individuals with the

competing cause of failure as censored observations and fitting the Cox proportional hazards

model (Kalbfleisch and Prentice, 2002; Putter et al, 2007; Bakoyannis and Touloumi, 2012).

With left-truncated and right-censored data, the model can be fitted by adjusting properly

the risk set so that each individual is included only after the time of recruitment in the study

(i.e. R(tji) = {l : wl < tji ≤ xl}) (Lai and Ying, 1991).

2.2 Fine-Gray model

The standard way to directly model the cumulative incidence is the Fine-Gray model

(Fine and Gray, 1999). This model is based on a different type of hazard, the subdistribution

hazard, which was first introduced by Gray (Gray, 1988). The subdistribution hazard of the

5
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cause of interest is defined as:

λsub1 (t) = lim
h→0

1

h
Pr [t ≤ T < t+ h,C = 1|T ≥ t ∪ (T ≤ t ∩ C = 2)]

= −d log[1− F1(t)]/dt. (3)

It is clear from (3) that there is a one-to-one correspondence between subdistribution hazard

of a specific cause and the corresponding cumulative incidence function. Fine and Gray

assumed a proportional hazards model for the subdistribution hazard, of the form:

λsub1 (t; z) = λsub01 (t) exp(z′βsub1 ), (4)

with no specification of the positive-valued function λsub01 (t). In (4), z represents the vector

of covariate values and βsub1 the corresponding effects on the subdistribution hazard of the

cause of interest in the logarithmic scale. The cumulative incidence of the cause of interest

can be expressed, based on (3) and (4), as:

F1(t; z) = 1− exp

[
− exp(z′βsub1 )

∫ t

0

λsub01 (u)du

]
.

Fitting the model (4) in randomly right-censored competing risks data requires partial likeli-

hood maximization and inverse probability of censoring weighting (IPCW) (Fine and Gray,

1999; Robins and Rotnitzky, 1992). The time-dependent weight associated with the i-th

observation is:

ŵi(t) = ri(t)
ĜC(t)

ĜC [min(t,Xi)]
,

where ri(t) = I[min(Ti, t) ≤ Ui] and ĜC(t) is the Kaplan-Meier estimator of the right censor-

ing distribution Pr(U > t). The above weight can be modified, to account for the dependence

of the censoring distribution on covariates. This model can be fitted in standard software

as Stata and R (e.g. using the stcrreg command in Stata and the function crr of the

package cmprsk in R). However, under independent left truncation, the weights ŵi(t) re-

quire modification to incorporate the left truncation distribution (Zhang et al, 2011; Geskus,

2011). Zhang et al. (Zhang et al, 2011) proposed a modified weight, under the assumption

6

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



of independence between T and (W,U) given Z, of the form:

ŵi(t|Zi) = ri(t)
Ŝ[min(X−i , t

−)|Zi]b̂(t)
b̂[min(Xi, t)|Zi]Ŝ(t−)

,

where b̂ = n−1
∑

i I(Wi ≤ t ≤ Xi) and Ŝ(t) the Kaplan-Meier estimator of the overall survival

function under independent left truncation. The weight can be modified to allow for the

dependence of left truncation and right censoring distributions on some covariates. Geskus

(Geskus, 2011) also addressed the issue of independent left truncation (i.e. independence

between T and (W,U)) by multiplying the left truncation distribution with the original

weight used by Fine and Gray (Fine and Gray, 1999):

ŵi(t) = ri(t)
ĜC(t)

ĜC [min(t,Xi)]

Ĥ(t)

Ĥ[min(t,Xi)]
,

where Ĥ(t) is the Kaplan-Meier estimator of the left truncation distribution. The methods

to account for independent left truncation in the context of the Fine-Gray model are not

readily available in standard software, except from R (Geskus, 2011).

It is important to mention that, in general the proportional cause-specific hazards model

and the proportional subdistribution hazards model (i.e. the Fine-Gray model) cannot hold

simultaneously (Latouche et al, 2007). In other words, in general the proportionality as-

sumption will be true for one out of the two models at most, for a given cause of failure.

However, even under non-proportionality, the effect estimates in both models can be seen

as time-averaged log hazard ratios (Latouche et al, 2007; Sruthers and Kalbfleisch, 1986;

Grambauer et al, 2010). In practice, the choice between modeling the cause-specific hazard

and the cumulative incidence is a matter of clinical relevance. Modelling the cause-specific

hazards is more relevant when the interest is focused on identifying predictors or potential

causes of a particular disease (Andersen et al, 2012). On the other hand, modelling the

cumulative incidence is more suitable in settings where the objective is to evaluate the ef-

fect of an intervention in the general population, or to identify factors affecting the disease

prognosis, or in quality of life studies (Fine and Gray, 1999; Andersen et al, 2012). The two

simulation studies presented in the remaining of this article, assume that either the propor-
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tional cause-specific hazards model is true (simulation study 1) or the Fine-Gray model is

true (simulation study 2).

3. SIMULATIONS STUDY 1: PROPORTIONAL CAUSE-SPECIFIC HAZARDS MODEL

The robustness of the standard risk set adjustment when applied to dependently left-

truncated data, in the context of the proportional cause-specific hazards model, was studied

through a series of simulation experiments.

3.1 Data generation and analysis

For simplicity, only two causes of failure were considered with C = 1 denoting the cause

of interest. Covariate Z was generated assuming either a Bernoulli distribution, with success

probability of 0.4, or a standard normal distribution depending on the scenario. The assumed

cause-specific hazard for the cause of interest was assumed to be:

λ1(t; z) = 0.75 exp(β1z)t0.5. (5)

The corresponding hazard for the competing cause of failure was:

λ2(t; z) = 0.6 exp(βz)t0.5. (6)

The overall (i.e. from any cause) hazard function, based on (5) and (6), was:

λ(t; z) = 1.5[0.5 exp(β1z) + 0.4 exp(βz)]t1.5−1. (7)

The overall hazard function (7) corresponds to the Weibull distribution with parameters

λ = 0.5 exp(β1z) + 0.4 exp(βz) and v = 1.5, and so failure time T was simulated from

the corresponding distribution. Cause of failure C was simulated conditional on T with

probability:

Pr(C = 1|t, z) =
0.5 exp(β1z)

0.5 exp(β1z) + 0.4 exp(βz)
.

In fact C is independent of T given Z, since time cancels out in the above ratio. Left

truncation time was simulated from:

Pr(W ≤ w|t) = 1− exp{−h0 exp[−θ log(t)]w},

8
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with t denoting the actual failure time. Under this simulation setup, there is a positive

association between failure and left truncation times, with the strength of association being

proportional to θ. This is derived from the fact that left truncation time was simulated from

the exponential distribution with the hazard being inversely associated with failure time.

This setup imitated plausible clinical settings where left truncation is positively associated

with failure time, as in the examples from the HIV infection provided in the introduction

section. Scenarios with θ = 0 correspond to independent left truncation. Censoring time was

simulated independently of failure and left truncation times from the exponential distribution

with parameter equal to 0.25.

The different scenarios were defined according to: a) the effects β1 and β of the covariate

Z on the cause-specific hazards of the cause of interest λ1(t; z) and of the competing cause of

failure λ2(t; z), respectively; b) the baseline hazard h0 of the left truncation time and c) the

dependence of left truncation time on failure time (θ). More specifically, we assumed that

the effect of the covariate Z on the cause-specific hazard of interest (β1) was moderate or

strong (i.e. β1 equal to 0.5 or 1 in the case where Z was binary and 0.25 or 0.5 when Z was

continuous). The effect of Z on λ2(t; z) ranged from very strong negative to very strong pos-

itive (β ∈ {−1,−0.5, 0, 0.5, 1} in scenarios with binary Z and β ∈ {−0.5,−0.25, 0, 0.25, 0.5}

in scenarios with continuous Z). The baseline hazard of left truncation time was assumed

to be low (h0 = 1), moderate (h0 = 2) or high (h0 = 3). The lower the baseline hazard of

left truncation the longer the entry time. Finally, the left truncation time assumed to be

independent (θ = 0), moderately dependent (θ = 0.4) or strongly dependent (θ = 0.8) on

failure time. The combination of the above parameter values defined 180 different simulation

scenarios.

For each scenario 1,000 datasets were generated, each consisting of 1,000 individuals.

A median percent of 71.84% of the 1,000 individuals was finally included in each dataset;

the rest of the individuals were excluded as their failure or censoring time was smaller than

their corresponding entry time [i.e. min(T, U) ≤ W ]. The proportional cause-specific hazards

model for the endpoint of interest was fitted to each dataset to estimate β1, with the standard

9
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risk set adjustment to account for left truncation. The assessment of the bias in the effect

estimates after applying this approach was based on the relative bias [100 × (
¯̂
β1 − β1)/β1],

whereas the corresponding overall accuracy, incorporating both bias and variance, and the

coverage of the 95% confidence interval were evaluated through the mean squared error

(MSE) and the empirical coverage probability (ECP), respectively (Burton et al, 2006).

MSE was defined as (
¯̂
β1−β1)2 + [SE(β̂1)]

2, where SE(β̂1) is the empirical standard deviation

of the estimates from all the simulations within each scenario, and the ECP as the proportion

of datasets in which the interval β̂1 ± 1.96

√
V̂ar(β̂1) included the true effect (β1).

3.2 Results

Results from simulation experiments are presented in Figures 1-4. Each Figure depicts

the percent of bias in the effect estimate as well as the associated MSE and ECP, according

to the baseline hazard of left truncation time (h0), the association between left truncation

and failure times (θ) and the effect of the covariate Z on the hazard of the competing cause

of failure [λ2(t; z)]. Simulation results when the covariate of interest is a binary variable

[Z ∼ B(0.4)] with a moderate effect on the cause-specific hazard of interest λ1(t; z) (that

is β1 = 0.5) are presented in Figure 1. The first row of this Figure corresponds to a high

baseline hazard of left truncation (h0 = 3), which implies relatively short entry times. The

median percent of individuals included in the analyses under these scenarios was 82.43%. As

expected, in the case where left truncation was independent of failure time (θ = 0; light grey

lines), there was no bias in the effect estimate of interest and the corresponding ECP were at

the nominal level (range of relative bias: 0.43% to 1.00%; range of ECP: 0.942 to 0.950). In

the scenarios with moderate level of dependence of left truncation on failure time (θ = 0.4,

grey lines), there were low levels of bias ranging from -9.30% to -0.37%. The corresponding

figures for MSE and ECP were 0.009 to 0.017 and 0.932 to 0.951, respectively. The absolute

levels of bias were higher and the corresponding ECP lower when the effect β of the covariate

on the cause-specific hazard of the competing cause of failure [λ2(t|z)] was higher. When the

association between left truncation and failure times was more pronounced (θ = 0.8, black

10
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lines) the degree of bias was higher and the ECP lower, ranging from -20.56% to -1.56% and

from 0.852 to 0.954, respectively. The consequences of late entry in those scenarios were

more striking when the effect of Z on the occurrence of the competing cause of failure was

higher.

The second and third row of Figure 1 correspond to medium (h0 = 2) and low (h0 = 1)

baseline hazard of the left truncation time, respectively. The median percent of individuals

included in the analyses in the scenarios with medium and low baseline hazard of entry

time were 71.95% and 50.33%, respectively. In both cases, across the various scenarios (i.e.

ranging the values of θ and β), the results regarding percent of bias, MSE and ECP for the

estimator of interest β̂1 showed similar patterns as in the case of a high baseline hazard of left

truncation time. However, as expected, as lower the baseline hazard of left truncation, that

is, the longer the entry times, the larger the percents of bias and the higher the MSE. Overall,

the percent of bias ranged from -25.37% to 0.31% and from -30.66% to 1.27%, in the case

of medium and low baseline hazard of left truncation time, respectively. The corresponding

figures for MSE ranged from 0.009 to 0.030 and from 0.013 to 0.044, and for the ECP from

0.803 to 0.952 and from 0.812 to 0.955.

Simulation results when the covariate of interest Z is again binary, but its effect on the

cause-specific hazard of interest λ1(t; z) is stronger (β1 = 1) are presented in Figure 2. In this

case, dependent left truncation had less striking effects on relative bias but more pronounced

effects on MSE and empirical coverage probability, due to the higher absolute bias in the

estimate β̂1 when β1 = 1. In those settings, relative bias ranged from -20.2% to -2.65%, MSE

from 0.010 to 0.060 and ECP from 0.680 to 0.944. The pattern of relative bias, MSE and

ECP remained similar, with regard to β and θ.

In general, patterns for the three measures of performance were similar when considering

a continuous covariate [Z ∼ N(0, 1); Figures 3-4]. However, biases were lower in absolute

value and empirical coverage probabilities closer to the nominal level. Specifically, when

the effect of Z on λ1(t; z) was moderate (β1 = 0.25), bias ranged from -28.57% to 1.72%,

MSE from 0.009 to 0.024 and ECP from 0.913 to 0.961. The corresponding figures when the
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effect of Z was strong (β1 = 0.5) were -19.45% to 1.27%, 0.009 to 0.026 and 0.880 to 0.955,

respectively.

4. SIMULATIONS STUDY 2: FINE-GRAY MODEL

The robustness of the proper weighting method to account for both independent right

censoring and left truncation in the Fine-Gray model (Geskus, 2011) under dependently

left-truncated competing risks data, was studied through a series of simulation experiments.

4.1 Data generation and analysis

Data were generated in a similar way as in the Fine and Gray paper (Fine and Gray,

1999). The assumed cumulative incidence of the event of interest was:

F1(t; z) = 1−
[

1 + exp(−t)
2

]exp(zβsub
1 )

. (8)

The corresponding subdistribution hazard of the event of interest, under the above cumula-

tive incidence function, was:

λsub1 (t; z) = λsub01 (t) exp(zβsub1 ),

where λsub01 (t) = exp(−t)/[1 + exp(−t)]. The cause of failure, based on (8), was simulated

from:

Pr(C = 1|z) = 1− 0.5exp(zβsub
1 ).

Conditional on the cause of failure (C), failure time (T ) was simulated from

Pr(T ≤ t|C = 1, z) =
1−

[
1+exp(−t)

2

]exp(zβsub
1 )

1− 0.5exp(zβsub
1 )

Pr(T ≤ t|C = 2, z) = 1− exp[− exp(zβ)t].

Left truncation time was simulated from:

Pr(W ≤ w|t) = 1− exp{−h0 exp[−θ log(t)]w},
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with t denoting the actual failure time. Censoring time was simulated independently of

failure and left truncation times from the exponential distribution with parameter equal to

0.25.

The different scenarios were defined as in Section 3.1 (i.e. βsub1 ∈ {0.5, 1} or ∈ {0.25, 0.5}

and β ∈ {−1,−0.5, 0, 0.5, 1} or ∈ {−0.5,−0.25, 0, 0.25, 0.5} in scenarios with binary or

continuous Z, respectively; h0 ∈ {1, 2, 3}; θ ∈ {0, 0.4, 0.8}), resulting again in 180 different

simulation scenarios. For each scenario 1,000 datasets were generated, each consisting of

1,000 individuals. A median percent of 66,76% of the 1,000 individuals was finally included

in each dataset. The Fine-Gray model for the endpoint of interest was fitted to each dataset

to estimate βsub1 , using the weighting approach for independently left-truncated competing

risks data proposed by Geskus (Geskus, 2011).

4.2 Results

Results from simulation experiments are presented in Figures 5-8. Each Figure depicts

the percent of bias in the effect estimate as well as the associated MSE and ECP, according

to the baseline hazard of left truncation time (h0), the association between left truncation

and failure times and the effect of the covariate Z on Pr(T ≤ t|C = 2, z) (β). Simulation

results when the covariate of interest is a binary variable [Z ∼ B(0.4)] with a moderate

effect on the subdistribution hazard of the cause of interest λsub1 (t; z) (that is βsub1 = 0.5) are

presented in Figure 5. The first row of this Figure corresponds to a high baseline hazard of

left truncation (h0 = 3), which implies relatively short entry times. The median percent of

individuals included in the analyses under these scenarios was 77.61%. As expected, in the

case where left truncation was independent of failure time (θ = 0; light grey lines), there was

no bias in the effect estimate of interest and the corresponding ECP were close to the nominal

level (range of relative bias: -0.05% to 1.14%; range of ECP: 0.930 to 0.949). However, in

the scenarios with moderate level of dependence of the left truncation on the failure time

(θ = 0.4, grey lines), estimates were in general biased (range of relative bias: -33.11% to

36.68%). The corresponding figures for MSE and ECP were 0.046 to 0.088 and 0.720 to 0.939,
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respectively. The low ECP were not only due to the bias in the effect estimate but also due to

the serious underestimation of the standard error (SE) of β̂sub1 (range of bias in SE estimate:

-23.22% to -21.09%). The absolute levels of bias were higher and the corresponding ECP

lower when the absolute effect β of the covariate on Pr(T ≤ t|C = 2, z) was higher. When the

dependence between left truncation and failure times was more pronounced (θ = 0.8, black

lines) the degree of bias was higher and the ECP lower, ranging from -61.38% to -79.35% and

from 0.316 to 0.888, respectively. Moreover, bias in the SE estimate ranged from -41.43%

to -32.94%. The consequences of late entry in those scenarios were more striking when the

absolute effect of Z on Pr(T ≤ t|C = 2, z) was stronger.

The second and third row of Figure 5 correspond to medium (h0 = 2) and low (h0 = 1)

baseline hazard of left truncation time, respectively. The median percent of individuals

included in the analyses in the scenarios with medium and low baseline hazard of entry

time were 67.25% and 46.97%, respectively. In both cases, across the various scenarios (i.e.

ranging the values of θ and β), the results regarding percent of bias, MSE and ECP for the

estimator of interest β̂sub1 showed similar patterns as in the case of high baseline hazard of the

left truncation time. However, as expected, as lower the baseline hazard of left truncation,

that is, the longer the entry times, the larger the percents of bias and the higher the MSE,

although levels of the ECP were similar. Overall, the percent of bias ranged from -72.67%

to 87.24% and from -77.81% to 97.76%, in the case of medium and low baseline hazard of

left truncation time, respectively. The corresponding figures for MSE ranged from 0.021 to

0.349 and from 0.037 to 0.503, and for the ECP from 0.320 to 0.942 and from 0.342 to 0.939.

Simulation results when the covariate of interest Z is again binary, but its effect on the

subdistribution hazard of the cause of interest λsub1 (t; z) was stronger (βsub1 = 1) are presented

in Figure 6. In this case, dependent left truncation had less striking effects on relative bias

but more pronounced effects on MSE, due to the higher variability of the estimator (SE

estimates not shown), and on ECP, due to the greater underestimation of the SE of the

estimate β̂sub1 (range of bias in SE estimate: -54.00% to -16.82%). In those settings, relative

bias ranged from -15.07% to 47.33%, MSE from 0.041 to 0.546 and ECP from 0.285 to 0.939.
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The pattern of relative bias, MSE and ECP remained similar, with regard to β and θ.

In general, patterns for the three measures of performance were similar when considering

a continuous covariate [Z ∼ N(0, 1); Figures 7-8]. However, biases were somewhat higher in

absolute value and ECP lower. Specifically, when the effect of Z on λsub1 (t; z) was moderate

(βsub1 = 0.25), bias ranged from -79.05% to 108.93%, MSE from 0.005 to 0.138 and empirical

coverage probability from 0.234 to 0.963. The corresponding figures for the case where

βsub1 = 0.5 were -24.10% to 54.61%, 0.006 to 0.152 and 0.179 to 0.955, respectively.

5. CONCLUSION

In this work we investigated the performance of the basic methods to account for inde-

pendent left truncation in the basic semiparametric competing risks models (Lai and Ying,

1991; Geskus, 2011), when applied to left-truncated competing risks data. The models that

were considered were the proportional cause-specific hazards model and the Fine-Gray model

for the cumulative incidence function. As expected, the basic methods to account for left

truncation were found to be valid when left truncation time is independent of the corre-

sponding failure time. In contrast, we have shown through extensive simulation experiments

that this approach is not robust in both models when the independence assumption is vio-

lated. More specifically, under dependence of the left truncation on failure time, the basic

methods to account for left truncation resulted in biased effect estimates and lower than the

nominal level empirical coverage probabilities. The degree of bias and coverage probability

reduction were more pronounced when the association between left truncation and failure

times was stronger. Moreover, lower hazard of the left truncation time (i.e. longer entry

times) was associated with more pronounced bias and lower empirical coverage probability

levels. Also, given the rest parameters, the degree of bias in the effect estimate and the level

of empirical coverage probability depended on the effect of the covariate under study on the

competing risk. This may be partially explained by the fact that if a covariate affects the

occurrence of the competing risk, it also influences the marginal distribution of the failure

time and consequently the probability of not observing an eligible individual. The effects of

dependent left truncation were found to be more pronounced in the context of the Fine-Gray
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model compared to the cause-specific hazards models, with regard to both bias in the effect

estimate and coverage of the corresponding 95% confidence interval. Additionally, standard

error estimates in this model were seriously underestimated under dependent left truncation.

The more pronounced effects of dependent left truncation on the Fine-Gray model compared

to the cause-specific hazards models, could be, at least partially, explained by the fact that

dependent left truncation should not only be taken into account in the subdistribution haz-

ard and the corresponding partial likelihood, but also in the weights used in the Fine-Gray

model. Indeed, in the independent left truncation setting, the proposed estimation meth-

ods for the Fine-Gray model incorporate adjustments in both the risk sets and the weights

(Geskus, 2011; Zhang et al, 2011).

Our work highlights the importance to consider the validity of the basic assumption of

independent left truncation when modeling competing risks data with delayed entry through

semiparametric models. In the special case where the dependence between failure and left

truncation time is attributed to a set of common and measured predictors, it is possible to

take those predictors into account, both in the model and in the weights, to achieve con-

ditional independence between entry and event times. However, the measured predictors

may not be sufficient to achieve that conditional independence. As in the classical survival

setting (Martin and Betensky, 2005), it is possible to test for quasi-independence (i.e. inde-

pendence in the observable region of the joint distribution of T and W ; T > W ) between

failure and left truncation time based on non- or semi-parametric methodology, but not for

full independence (over the whole support of the joint distribution of T and W ). Neverthe-

less, situation is more complicated in the competing risks setting as cause of failure should

additionally be taken into account. Further research is needed to develop appropriate tests

for quasi-independence, both overall and conditional on a set of covariates, in the competing

risks framework. Moreover, the need for the development of proper semiparametric methods

to explicitly adjust for dependent left truncation remains crucial since this complication is

frequent in biomedical research.
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Fisher, Roberto Muga.

CASCADE Collaborators: Australia PHAEDRA cohort (Tony Kelleher, David

Cooper, Pat Grey, Robert Finlayson, Mark Bloch) Sydney AIDS Prospective Study and Syd-
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CO3 Aquitaine cohort (Geneviève Chêne, Francois Dabis, Rodolphe Thiebaut), ANRS CO4 

French Hospital Database (Dominique Costagliola, Marguerite Guiguet), Lyon Primary In-

fection cohort (Philippe Vanhems), French ANRS CO6 PRIMO cohort (Marie-Laure Chaix, 

Jade Ghosn), ANRS CO2 SEROCO cohort (Laurence Meyer, Faroudy Boufassa); Ger-

many German HIV-1 seroconverter cohort (Osamah Hamouda, Claudia Kücherer, Bar-

bara Bartmeyer); Greece AMACS (Anastasia Antoniadou, Georgios Chrysos, Georgios L. 

Daikos); Greek Haemophilia cohort (Giota Touloumi, Nikos Pantazis, Olga Katsarou); Italy 

Italian Seroconversion Study (Giovanni Rezza, Maria Dorrucci), ICONA cohort (Antonella 

dArminio Monforte, Andrea De Luca.); Netherlands Amsterdam Cohort Studies among 

homosexual men and drug users (Maria Prins, Ronald Geskus, Jannie van der Helm, Han-

neke Schuitemaker); Norway Oslo and Ulleval Hospital cohorts (Mette Sannes, Oddbjorn 

Brubakk, Anne-Marte Bakken Kran); Poland National Institute of Hygiene (Magdalena 
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IDU Cohort (Patricia Garcia de Olalla, Joan Cayla), CoRIS-scv (Julia del Amo, Santi-

ago Moreno, Susana Monge), Madrid cohort (Julia Del Amo, Jorge del Romero), Valencia 

IDU cohort (Santiago Prez-Hoyos); Sweden Swedish InfCare HIV Cohort, Sweden (Anders 

Sönnerborg); Switzerland Swiss HIV Cohort Study (Heiner C. Bucher, Huldrych Günthard, 

Martin Rickenbach); Ukraine Perinatal Prevention of AIDS Initiative (Ruslan Malyuta); 

United Kingdom Public Health England (Gary Murphy), UK Register of HIV Seroconvert-

ers (Kholoud Porter, Anne Johnson, Andrew Phillips, Abdel Babiker), University College 

London (Deenan Pillay). African cohorts: Genital Shedding Study (US: Charles Morrison; 

Family Health International, Robert Salata, Case Western Reserve University, Uganda: Roy 

Mugerwa, Makerere University, Zimbabwe: Tsungai Chipato, University of Zimbabwe); In-

ternational AIDS Vaccine Initiative (IAVI) Early Infections Cohort (Kenya, Rwanda, South 

Africa, Uganda, Zambia: Pauli N. Amornkul, IAVI, USA; Jill Gilmour, IAVI, UK; Ana-
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toli Kamali, Uganda Virus Research Institute/Medical Research Council Uganda; Etienne

Karita, Projet San Francisco, Rwanda).

EuroCoord Executive Board: Julia del Amo, Instituto de Salud Carlos III, Spain;

Geneviève Chêne, University of Bordeaux II, France; Dominique Costagliola, Institut Na-

tional de la Santé et de la Recherche Mdicale, France; Carlo Giaquinto, Fondazione PENTA,

Italy; Jesper Grarup, Kbenhavns Universitet, Denmark; Ole Kirk (Chair), Københavns

Universitet, Denmark; Laurence Meyer, Institut National de la Santé et de la Recherche

Médicale, France; Olson, University College London, UK; Alex Panteleev, St. Petersburg

City AIDS Centre, Russian Federation; Lars Peters, Københavns Universitet, Denmark; An-

drew Phillips, University College London, UK, Kholoud Porter, University College London,

UK; Peter Reiss (Scientific Coordinator), Academic Medical Centre University of Amster-

dam, Netherlands; Claire Thorne, University College London, UK.

EuroCoord Council of Partners: Jean-Pierre Aboulker, Institut National de la Santé

et de la Recherche Médicale, France; Jan Albert, Karolinska Institute, Sweden; Silvia Asandi

, Romanian Angel Appeal Foundation, Romania; Geneviève Chêne, University of Bordeaux

II, France; Dominique Costagliola (chair), INSERM, France; Antonella dArminio Monforte,

ICoNA Foundation, Italy; Stéphane De Wit, St. Pierre University Hospital, Belgium; Peter

Reiss, Stichting HIV Monitoring, Netherlands; Julia Del Amo, Instituto de Salud Carlos

III, Spain; José Gatell, Fundació Privada Clnic per a la Recerca Bomèdica, Spain; Carlo Gi-

aquinto, Fondazione PENTA, Italy; Osamah Hamouda, Robert Koch Institut, Germany; Igor

Karpov, University of Minsk, Belarus; Bruno Ledergerber, University of Zurich, Switzerland;

Jens Lundgren, Københavns Universitet, Denmark; Ruslan Malyuta, Perinatal Prevention of
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sity College London, United Kingdom; Maria Prins, Academic Medical Centre, Netherlands;

Aza Rakhmanova, St. Petersburg City AIDS Centre, Russian Federation; Jürgen Rockstroh,
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Christine Schwimmer, University of Bordeaux II, France; Martin Scott, UCL European Re-
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Figure 1. Simulation results regarding relative bias (%), mean squared error (MSE) and empirical coverage 
probability (ECP) for the estimator of the effect of covariate Z on the cause-specific hazard of interest, 

according to the baseline hazard of left truncation time (h0), the association between left truncation and 

failure times (θ) and the effect of the covariate Z on the cause-specific hazard of the competing cause of 
failure λ2(t;z) (β). Light grey, grey and black lines correspond to independent (θ=0), moderately dependent 
(θ=0.4) and strong dependent (θ=0.8) left truncation on failure time, respectively. Results under a binary 

covariate [Z∼B(0.4)] with a moderate effect (β1=0.5).  
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Figure 2. Simulation results regarding relative bias (%), mean squared error (MSE) and empirical coverage 
probability (ECP) for the estimator of the effect of covariate Z on the cause-specific hazard of interest, 

according to the baseline hazard of left truncation time (h0), the association between left truncation and  

failure times (θ) and the effect of the covariate Z  
on the cause-specific hazard of the competing cause of failure λ2(t;z) (β). Light grey, grey and black lines 

correspond to independent (θ=0), moderately dependent (θ=0.4) and strong dependent (θ=0.8) left 
truncation on failure time, respectively. Results under a binary  

covariate [Z∼B(0.4)] with a strong effect (β 1 =1).  
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Figure 3. Simulation results regarding relative bias (%), mean squared error (MSE) and empirical coverage 
probability (ECP) for the estimator of the effect of covariate Z on the cause-specific hazard of interest, 

according to the baseline hazard of left truncation time (h0), the association between left truncation and 

failure times (θ) and the effect of the covariate Z on the cause-specific hazard of the competing cause of 
failure λ2(t;z) (β). Light grey, grey and black lines correspond to independent (θ=0), moderately dependent 

(θ=0.4) and strong dependent (θ=0.8) left truncation on failure time, respectively. Results under a 
continuous covariate [Z∼N(0,1)] with a moderate effect (β1=0.25).  
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Figure 4. Simulation results regarding relative bias (%), mean squared error (MSE) and empirical coverage 
probability (ECP) for the estimator of the effect of covariate Z on the cause-specific hazard of interest, 

according to the baseline hazard of left truncation time (h0), the association between left truncation and 

failure times (θ) and the effect of the covariate Z on the cause-specific hazard of the competing cause of 
failure λ2(t;z) (β). Light grey, grey and black lines correspond to independent (θ=0), moderately dependent 

(θ=0.4) and strong dependent (θ=0.8) left truncation on failure time, respectively. Results under a 
continuous covariate [Z∼N(0,1)] with a strong effect (β1=0.5).  

635x461mm (600 x 600 DPI)  

Communications in Statistics - Simulation and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Figure 5. Simulation results regarding relative bias (%), mean squared error (MSE) and empirical coverage 
probability (ECP) for the estimator of the effect of covariate Z on the subdistribution hazard of interest, 
according to the baseline hazard of left truncation time (h0), the association between left truncation and 

failure times (θ) and the effect of the covariate Z on Pr(T<t|C=2,z) (β). Light grey, grey and black lines 
correspond to independent (θ=0), moderately dependent (θ=0.4) and strong dependent (θ=0.8) left 

truncation on failure time, respectively. Results under a binary covariate [Z∼B(0.4)] with a moderate effect 

(β1
sub=0.5).  
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Figure 6. Simulation results regarding relative bias (%), mean squared error (MSE) and empirical coverage 
probability (ECP) for the estimator of the effect of covariate Z on the subdistribution hazard of interest, 
according to the baseline hazard of left truncation time (h0), the association between left truncation and 

failure times (θ) and the effect of the covariate Z on Pr(T<t|C=2,z) (β). Light grey, grey and black lines 
correspond to independent (θ=0), moderately dependent (θ=0.4) and strong dependent (θ=0.8) left 

truncation on failure time, respectively. Results under a binary covariate [Z∼B(0.4)] with a strong effect 

(β1
sub=1).  
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Figure 7. Simulation results regarding relative bias (%), mean squared error (MSE) and empirical coverage 
probability (ECP) for the estimator of the effect of covariate Z on the subdistribution hazard of interest, 
according to the baseline hazard of left truncation time (h0), the association between left truncation and 

failure times (θ) and the effect of the covariate Z on Pr(T<t|C=2,z) (β). Light grey, grey and black lines 
correspond to independent (θ=0), moderately dependent (θ=0.4) and strong dependent (θ=0.8) left 

truncation on failure time, respectively. Results under a continuous covariate [Z∼N(0,1)] with a moderate 

effect (β1
sub=0.25).  
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Figure 8. Simulation results regarding relative bias (%), mean squared error (MSE) and empirical coverage 
probability (ECP) for the estimator of the effect of covariate Z on the subdistribution hazard of interest, 
according to the baseline hazard of left truncation time (h0), the association between left truncation and 

failure times (θ) and the effect of the covariate Z on Pr(T<t|C=2,z) (β). Light grey, grey and black lines 
correspond to independent (θ=0), moderately dependent (θ=0.4) and strong dependent (θ=0.8) left 

truncation on failure time, respectively. Results under a continuous covariate [Z∼N(0,1)] with a strong effect 

(β1
sub=0.5).  
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