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ABSTRACT 

Bacteroides fragilis, a human pathogen, helps in the formation of intra-abdominal abscesses 

and is involved in 90% of anaerobic peritoneal infections. Phosphonopyruvate decarboxylase 

(PnPDC), a thiamin diphosphate (ThDP)-dependent enzyme, plays a key role in the formation of 

2-aminoethylphosphonate, a component of the cell wall of B. fragilis. As such PnPDC is a 

possible target for therapeutic intervention in this, and other phosphonate producing organisms. 

However, the enzyme is of more general interest as it appears to be an evolutionary forerunner to 

the decarboxylase family of ThDP-dependent enzymes. To date, PnPDC has proved difficult to 

crystallize and no X-ray structures are available. In the past we have shown that ThDP-

dependent enzymes will often crystallize if the cofactor has been irreversibly inactivated. To 

explore this possibility, and the utility of inhibitors of phosphonate biosynthesis as potential 

antibiotics, we synthesized phosphonodifluoropyruvate (PnDFP) as a prospective mechanism-

based inhibitor of PnPDC. Here we provide evidence that difluorophosphonopyruvate indeed 

inactivates the enzyme, that the inactivation is irreversible, and is accompanied by release of 

fluoride ion, i.e., PnDFP bears all the hallmarks of a mechanism-based inhibitor. Unfortunately, 

the enzyme remains refractive to crystallization. 
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1. Introduction 

Phosphonates, i.e., compounds having a C–P bond, are found in archaea, bacteria and 

eukaryotes and it has been suggested that they are important intermediates in the global 

phosphorus cycle.1, 2 The relative stability of the C–P bond makes phosphonolipids and 

phosphonoglycans less susceptible to enzymatic hydrolysis than phosphates, thereby providing a 

selective advantage in phosphate-limited environments.2 As phosphonates are structurally similar 

to phosphate esters and carboxylates, that same stability can also contribute to biological activity, 

with antibacterial, antiviral, antiparasitic and herbicidal activity all having been attributed to 

phosphonates.1, 3  

 

As shown in Scheme 1, there are two enzymes that are common to the biosynthesis of virtually 

all biogenic phosphonates.4, 5 The first, PEP mutase, catalyzes the conversion of 

phosphoenolpyruvate (PEP, 1) to phosphonopyruvate (PnP, 2). This reaction is 

thermodynamically unfavorable6 so a second enzyme, phosphonopyruvate decarboxylase 

(PnPDC), is used to introduce an irreversible step.7 Phosphonoacetaldehyde (PnAA, 3), the 
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product of the decarboxylation reaction, is subsequently converted to a variety of phosphonic 

acid natural products. 

Some of these products have found therapeutic use. Fosfomycin, a broad-spectrum antibiotic, 

is used in the treatment of cystitis.8 Plumbemycin5 and dehydrophos9 also act as antibiotics while 

phosphinothricin, as its tripeptide with two alanine residues (bialaphos), is a natural herbicide.10 

2-Aminoethylphosphonate (2-AEP) is used by microorganisms in a variety of ways. For many, it 

provides a source of useable carbon, nitrogen and phosphorus.11 For others, 2-AEP provides a 

counterpart to the lipid polar head group, phosphoethanolamine, that is resistant to chemical and 

enzymatic hydrolysis.12 Still others use it in the synthesis of bioactive compounds such as 

argolaphos, a broad-spectrum antibacterial phosphonopeptide.13 It is also notable that several 

well-known mammalian and plant pathogens produce phosphonates. Fosfomycin, for example, 

although it does have a therapeutic use, is produced by Pseudomonas syringae, a plant pathogen 

which infects fruit-bearing trees.14 Naegleria fowleri, known colloquially as the "brain-eating 

amoeba", causes meningoencephalitis in humans, and has been shown to produce 

phosphonates.15 In Bacteroides fragilis, a human pathogen involved in abscess formation, a 2-

AEP-containing capsular polysaccharide has been identified as the major virulence factor,12 

while the genes for 2-AEP biosynthesis have been identified in Trypanosoma cruzi, the causative 

agent of Chagas’ disease.16  

Since phosphonate metabolism is not present in humans or higher plants/animals, it offers a 

promising target for drug design against these phosphonate producing and using pathogens. 

Intriguingly, the antibiotic action of dehydrophos provides a clue as to how this problem may be 

approached. Dehydrophos acts as a “Trojan horse” in that is taken into the cell by peptide 

permeases, whereupon it is activated by intracellular proteases to unmask methyl 
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acetylphosphonate (MAP),4, 17 a substrate analogue of pyruvate,18 and a potent mechanism-based 

inhibitor of both the E1 subunit of the pyruvate dehydrogenase complex19 and 1-deoxy-D-

xylulose-5-phosphate (DXP) synthase.20 The inhibition is attributed to the reaction of these 

thiamin diphosphate (ThDP)-dependent enzymes with MAP producing a stable phosphonate 

analogue of the reaction intermediate, -lactylThDP. The analogue binds tightly and, in effect, 

irreversibly, to its targets.19 -Fluoropyruvate, another substrate analogue, also inactivates the 

pyruvate dehydrogenase complex by a ThDP-dependent mechanism.21, 22 However, in this 

instance, addition of ThDP to fluoropyruvate is followed by decarboxylation, generating a 

carbanion and leading to elimination of fluoride. The resulting vinyl alcohol tautomerizes to give 

acetyl-ThDP which likely reacts with a nucleophile in the active site thereby inactivating the 

enzyme.21, 22  

Given that phosphonopyruvate decarboxylase, which catalyzes the irreversible step in 

phosphonate biosynthesis,7 is also a ThDP-dependent decarboxylase, it would appear to be an 

ideal target for similar mechanism-based inhibitors. One such compound, shown in Scheme 2, is 

3-phosphono-3,3-difluoropyruvate (PnDFP, 4) an analogue of the natural substrate, 

phosphonopyruvate (3). It is expected that PnDFP will be accepted by the enzyme and react with 

the ThDP ylid to provide intermediate (5). However, following decarboxylation, the resulting 

carbanion (6) will eliminate fluoride to produce an inactive enol-ThDP complex (7). Potentially 

this could tautomerize to yield an phosphonofluoroacetyl-ThDP complex (8) but, regardless, the 

enzyme will remain inactivated. 
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In this paper we describe the synthesis and testing of 4 with the PnPDC from Bacteroides 

fragilis (BfPnPDC). PnDFP proved to be a potent inhibitor of the enzyme, and showed all the 

characteristics of a mechanism-based inhibitor. 
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2. Results 

2.1  Synthesis of 3-phosphono-3,3-difluoropyruvate (PnDFP, 4)  

 

PnDFP (4) could be obtained in three steps from diethyl difluoromethylphosphonate (9) by 

deprotonation with freshly prepared lithium diisopropylamide (LDA) at −78 °C (Scheme 3). The 

resulting difluoromethyllithium could be reacted with diethyl oxalate ((CO2Et)2), followed by 

acidic work up to give the desired product in its hydrate form (10a) in 60% yield. The hydrate 

10a can be partly converted to the ketone (10b) by bulb-to-bulb distillation (ratio 10a:10b after 

distillation = 1:1.1).  

The final deprotection was a two-step process. First, the phosphonic acid moiety was deprotected 

using TMSBr/allylTMS for 24 h at 60 °C. The relatively high temperature and long reaction time 

were necessary due to the large electron withdrawing effect of the CF2 group. Next, the ester was 

saponified at pH > 10 in aqueous NaOH, and the final product passed through Dowex 50Wx8, 

H+ form, in order to remove excess base. The pH was adjusted to 7 using aqueous NaOH and the 

sodium salt of 4 was isolated by lyophilisation as a colorless powder. 
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2.2  Expression, purification and kinetic characterization of BfPnPDC 

The expression and purification of the C-terminal His-tagged BfPnPDC proceeded smoothly 

and in good yield. The steady state kinetics of BfPnPDC were determined using a modified 

coupled assay.12, 23 In a typical assay for a pyruvate decarboxylase (PDC), the coupling enzyme is 

a yeast alcohol dehydrogenase (YADH), that catalyzes the reduction of acetaldehyde and the 

concomitant oxidation of NADH, thus allowing the reaction to be followed 

spectrophotometrically at 340 nm. Phosphonoacetaldehyde (3), the product of the BfPnPDC 

reaction, is not a substrate for YADH. However, the phosphono group can be removed by 

phosphonoacetaldehyde hydrolase (Phtase) which then allows further reaction with YADH. 

Accordingly, the Phtase from P. putida was also expressed and affinity purified. Its utility in the 

coupled assay was verified using authentic phosphonoacetaldehyde and YADH.  

The his-tagged BfPnPDC exhibited Michaelis-Menten type kinetics with its natural substrate, 

phosphonopyruvate, with no evidence of the allosteric activity often observed with the yeast 

pyruvate decarboxylases.24, 25 The Km value was determined to be 2.9 ± 0.2 µM with a kcat value of 

10.1 ± 0.3 s-1. These values are in excellent agreement with those measured for the untagged 

enzyme.12 The PnPDC from Streptomyces viridochromogenes Tü494 had a similar Km value but 

a 10-fold lower value for kcat.
23 Overall, the data provide a kcat/Km of 3500 mM-1s-1 for the reaction 

of BfPnPDC with its natural substrate. By comparison, PDC from Zymomonas mobilis has a 

kcat/Km value for pyruvate of 440 mM-1s-1,26 ~8-fold lower, while at 45 mM-1s-1, Saccharomyces 

cerevisiae PDC has a kcat/Km value almost 80-fold lower than that of BfPnPDC.27 It has been 

suggested that much of the difference in catalytic efficiency results from the presence of the 

“phosphono” group which is the major source of enzyme-substrate binding energy.12 
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2.3  Reaction of PnDFP with BfPnPDC 

In control experiments the inhibitor was tested against both Phtase and YADH. No inhibition 

was observed. By contrast, PnDFP proved to be an excellent inhibitor of BfPnPDC. The low Km 

value for phosphonopyruvate precluded standard inhibition assays so IC50 values were obtained 

at phosphonopyruvate concentrations of 3 µM (~Km) and 30 µM (10×Km). Using the Cheng-

Prusoff equation the Ki value for PnDFP was determined to be 0.60 ± 0.05 M. 

2.3.1 PnDFP irreversibly inactivates BfPnPDC 

To determine if the inhibition was (i) time-dependent and (ii) irreversible, a dilution study was 

performed. A mixture of enzyme (6 M) and 4 (50 M) was incubated at 30 °C before an aliquot 

was diluted 1:100 into an assay mixture containing saturating PnP. No activity was observed at 

any of the time points tested. Reducing the inhibitor concentration to 10 M gave similar results. 

Further, no enzyme activity was recovered after overnight dialysis. Taken together this indicates 

that the inhibitor binds both rapidly and, in effect, irreversibly.  

2.3.2 Titration of BfPnPDC with PnDFP monitored by UV-Vis spectroscopy. 

The first step in the reaction of ThDP-dependent enzymes is generally the formation of a 

covalent nucleophilic adduct between the C2 atom of the thiazolium ring of ThDP and the 

carbonyl group of the substrate.28 The reaction continues via a series of covalently bound ThDP-

complexes, many of which can be observed by both UV spectrophotometry and circular 

dichroism (CD) spectrosopy.29 Assuming PnDFP is a mechanism-based inhibitor of BfPnPDC 

(Scheme 2), it may be expected that titration of the inhibitor would provide a “signature” UV or 

CD signal. This proved to be true as the addition of PnDFP to the enzyme resulted in a yellow 

color.  
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Figure 1. The titration of BfPnPDC (~50 M) with PnDFP (4) monitored by UV-Vis 

spectroscopy. The peak at 280 nm is due to ThDP.  

Accordingly the titration of BfPnPDC (~50 M) with 4 (0-50 M) was monitored via UV-

Visible spectrophotometry and it was found that the color change was reflected in an increase in 

absorbance at 440 nm (Figure 1). The intensity increased linearly until a plateau was reached at 

around 35 M inhibitor (see inset Figure 1), suggesting that (i) the enzyme was saturated with 

inhibitor and (ii) the concentration of enzyme may be lower than expected on the basis of 

Bradford measurements. The latter is not unexpected as variation in concentrations arising from 

the Bradford method are common.30 Unfortunately, interference due to the presence of ThDP in 

the storage buffers renders OD280 measurements even less reliable.  

2.3.3 Titration of BfPnPDC with PnDFP monitored by CD spectropolarimetry. 

CD was also used to monitor a similar titration of BfPnPDC with 4, with results shown in 

Figure 2. Two maxima were observed. The first, around 315 nm, has been attributed to formation 

of the 1',4'-iminopyrimidine tautomer of enzyme-bound ThDP29, 31 or intermediates related to 
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C2-adducts of ThDP.32-34 The second maximum, around 440 nm, has been attributed to 

formation of a charge transfer band, likely arising from an interaction of a  bond on the C2 side-

chain of ThDP and the positively charged thiazolium ring as donor and acceptor, respectively.29 

As with the UV data, the CD data at 440 nm showed a linear increase with inhibitor 

concentration, again with a plateau around 35 M inhibitor (Figure S1). 

 

Figure 2. The titration of BfPnPDC (~50 µM) with PnDFP (4) monitored by CD 

spectropolarimetry. 

2.4  Reaction of PnDFP with BfPnPDC releases fluoride ion. 

The postulated mechanism for the reaction of PnDFP with the ThDP of BfPnPDC (Scheme 2) 

requires the elimination of a fluoride ion. To test this hypothesis, a fluoride ion-selective probe 

was used to analyze the products of the titration of the enzyme (~100 µM) with PnDFP (100 

mM). Figure 3 shows a linear relationship between added 4 and release of fluoride ion. This 1:1 

relationship is clear over the range 0-50 M 4, but tapers off around 75 µM. This value is 



  

 12 

consistent with that obtained for UV-Vis and CD studies, again suggesting that the concentration 

of enzyme may be lower than anticipated.  

 

 

Figure 3:  Fluoride ion analysis of the titration of PnPDC (~100 M) with PnDFP (4). 

2.4  Screening for crystals of BfPnPDC 

Attempts were made to crystallize BfPnPDC in the presence and absence of 4. All attempts 

were unsuccessful. 
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3. Discussion 

Biosynthesis of phosphonates is important to many pathogenic organisms.12, 14-16 Given that 

they are not produced in higher plants, animals and humans, it seemed as though the 

phosphonate biosynthetic pathway would be worth exploring as a target for novel antibiotics. An 

important consideration is that two enzymes, PEP mutase and PnPDC, catalyze the first two 

steps in the biosynthesis of virtually all known phosphonates (Scheme 1). Accordingly, by 

focusing on these enzymes it is possible to envisage a general strategy to interfere with all 

phosphonate biosynthesis. PnPDC was chosen as our initial target as it (i) carries out an 

irreversible biosynthetic step and (ii) is of fundamental interest in that it is thought to closely 

resemble the fused domain common ancestor of all ThDP-dependent enzymes.35, 36 To date, only 

two PnPDCs, those from Bacteroides fragilis (BfPnPDC)12 and Streptomyces viridochromogenes 

Tü494 (SvPnPDC)23 have been fully characterized. The former is from a human pathogen while 

the latter organism produces the natural herbicide bialaphos and the antibiotic, streptazolin. 

Another PnPDC, that from Streptomyces hygroscopicus, has been purified but not well 

characterized.37 Confusingly, gel filtration analysis has suggested that the native enzymes existed 

as a homotrimer, a homodimer and a homotetramer, respectively. The oligomeric status could be 

clarified by an X-ray structure but, as yet, no PnPDC has been crystallized. It was hoped that 

formation of an inhibitor:ThDP adduct may facilitate crystallization, as has been observed for 

other ThDP enzymes such as benzoylformate decarboxylase33, 38 and benzaldehyde lyase.39, 40 

In the first instance we proposed that 3,3-difluoro-3-phosphonopyruvate (PnDFP, 4) would act 

specifically as mechanism-based inhibitor for PnPDC. To explore this possibility the sodium salt 

of PnDFP was synthesized in three steps from diethyl difluoromethylphosphonate (Scheme 3). 

An alternative strategy employing dibromodifluoromethane as the starting material41-45 was also 

successful, although the yields were much more variable. Concomitantly we were able to express 
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and purify BfPnPDC as a C-terminal his-tagged variant, and used a coupled assay to confirm that 

its kinetic data were identical to that of the wild type enzyme. Testing showed that 4 was a potent 

inhibitor of BfPnPDC, with a Ki value in the sub-micromolar range. 

Silverman46 has defined several criteria, most of which should be met by 4, in order for it to be 

characterized as a mechanism-based inhibitor. These include (a) time-dependent inactivation, (ii) 

saturation kinetics, (iii) substrate protection, (iv) irreversible inactivation, (v) 1:1 stoichiometry 

of binding, (vi) involvement of a catalytic step and (vii) that binding occurs at the active site. 

PnDFP is clearly an analogue of the substrate, PnP, and shows the qualities necessary to call it a 

mechanism-based inhibitor. Indeed, its reaction with BfPnPDC was sufficiently rapid to preclude 

the dilution assay normally used to demonstrate that time-dependent inactivation was 

accompanied by saturation kinetics. Nonetheless we could show that inactivation could not be 

reversed by either dilution or exhaustive dialysis. Increasing the substrate concentration from 3 

M to 10 M saw the IC50 value increase from 1.3 to 14 M, thereby satisfying the criterion of 

substrate protection. 

Titration of the enzyme with PnDFP resulted in the formation of a yellow color which could be 

monitored at 440 nm by both UV-Vis spectrophotometry (Figure 1) and CD spectroscopy 

(Figure 2). Both methods provided clear evidence of a 1:1 relationship between enzyme and 

inhibitor concentration. A similar color was observed by Merski and Townsend47 during the 

reaction of D-glyceraldehyde-3-phosphate with N2-(2-carboxyethyl)arginine synthase, a ThDP-

dependent enzyme involved in clavulanic acid biosynthesis. In that instance the yellow 

chromophore was attributed to the formation of an acryloyl-ThDP adduct, which is not dissimilar 

to the adduct predicted for PnPDC in Scheme 2.47 In addition to the maximum at 440 nm, the CD 

spectra showed a second maximum at 315 nm. There are several instance where the Jordan group 

has demonstrated that this band arises from formation of the 1',4'-iminopyrimidine tautomer of 
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enzyme-bound ThDP or enzyme bound C2-adducts of ThDP.29, 31-34 Thus, observation of the 

band at 315 nm provides further evidence for 4 binding at the active site.  

Perhaps the most important criterion for a mechanism-based inhibitor is the involvement of a 

catalytic step. For 4 we were able to confirm this by using an ion-selective electrode to establish 

that enzyme inactivation was accompanied by the release of a fluoride ion. Figure 3 shows that, 

when BfPnPDC was titrated with 4, there was a 1:1 relationship between the concentration of 

free F- and added inhibitor. Taken together, all data point to PnDFP being a potent mechanism-

based inhibitor of phosphonopyruvate decarboxylase. At this time it is not clear which ThDP 

complex (7 or 8, Scheme 2) is responsible for the inhibition, and analogues of both keto and enol 

complexes have been reported on ThDP-dependent enzymes.29 It is notable that 8 is an analogue 

of acetylthiamin diphosphate which may expected to be hydrolyzed. Two observations mitigate 

against this. First, there is no rapid loss of the absorbance at 440 nm and second, there is no rapid 

regeneration of active enzyme. It appears that, while acylthiamin diphosphate intermediates can 

hydrolyze rapidly on some enzymes, on others, such as pyruvate oxidase48 and benzoylformate 

decarboxylase49, it can be quite slow. PnPDC would seem to fit into the latter category. Another 

possibility is that the equilibrium lies in favor of 8, which is subsequently attacked by an active 

site nucleophile. Such a mechanism was proposed for the inactivation of the E1 subunit of the 

pyruvate dehydrogenase complex.22 It was hoped that this issue could be resolved by 

crystallography but, unfortunately, X-ray quality crystals are not yet available. Screening for 

suitable conditions is continuing.  

While inhibition of PnPDC is the prime focus of this paper, it must be remembered that PnP is 

also a substrate of PEP mutase (Scheme 1). There remains the possibility that 4 could be 

converted into difluoroPEP and, given that monofluoroPEP inhibits several PEP utilizing 

enzymes,50 there is a good chance that difluoroPEP would behave similarly. Even assuming that 
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difluoroPEP acts as a substrate for the PEP enzymes, subsequent transformations would result in 

the formation of fluorinated pyruvate analogs which are also toxic. It is also important to note 

that PEP mutase is not found in higher organisms and, therefore, no fluorinated PEP or 

subsequent products will be formed in mammalian cells. Given this, and the success of 4 as a 

PnPDC inhibitor, future work will focus on the development of 4 as an in vivo inhibitor of 

phosphonate biosynthesis.  
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4. Experimental section 

4.1 General methods 

A plasmid (bf-Pyrdecarb-pET3A)
12

 containing recombinant phosphonopyruvate decarboxylase  

from Bacteroides fragilis (BfPnPDC)was a gift of Dr. Debra Dunaway-Mariano (University of 

New Mexico, Albuquerque, NM). A plasmid containing recombinant C-terminal His-tagged 

phosphonoacetaldehyde hydrolase (Phtase) from Pseudomonas putida (pET22Phtase-His)23 was 

a gift of Prof. Georg A. Sprenger (University of Stuttgart, Germany).  

1H, 13C, 19F and 31P NMR spectra were measured in CDCl3 or D2O on a Bruker Avance 400 

(1H: 400.27 MHz, 13C: 100.65 MHz, 19F: 376.50 MHz, 31P: 162.03 MHz) or DRX 400 (1H: 

400.13 MHz, 13C: 100.61 MHz, 31P: 161.98 MHz) spectrometer as indicated. The chemical shifts 

were referenced to residual CHCl3 (δH 7.24), HOD (δH 4.80); CDCl3 (δC 77.23) external H3PO4 

(85%) (δP 0.00) and FCCl3 (δF 0.00). Chemical shifts (δ) are given in ppm and coupling constants 

(J) in Hz. IR spectra were recorded on a Bruker VERTEX 70 IR spectrometer in ATR mode. 

Spectra for compounds 4 and 10a are provided as supplementary material. 

TLC was usually carried out on 0.25 mm thick Merck plates precoated with silica gel 60 F254. 

Spots were visualised by UV and/or dipping the plate into a solution of (NH4)6Mo7O24·4H2O 

(25.0 g) and Ce(SO4)2·4H2O (1.0 g) in 10% aqueous H2SO4 (500 mL), followed by heating with a 

heat gun. Flash (column) chromatography was performed with Merck silica gel 60 (230-400 

mesh). 

Diethyl difluoromethylphosphonate, bromotrimethylsilane, allyltrimethylsilane and diethyl 

oxalate were from Sigma Aldrich. THF was refluxed over potassium and distilled prior to use. 

Authentic samples of PnP (2) and PnAA (3) were prepared as their sodium salts using variations 
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on established methods. Details are provided in the supplementary material. All other chemicals 

and buffer components were used as purchased from Sigma-Aldrich, Acros, Fluka or Merck.  

4.2.1 Ethyl 3-(diethoxyphosphoryl)-3,3-difluoro- 2,2-dihydroxy-propanoate (10a):
51

  

nBuLi (3.1 mmol, 1.24 mL, 2.5 M solution in hexanes) was added dropwise to a solution of 

iPr2NH (334 mg, 3.3 mmol, 0.46 mL) in dry THF (3 mL) at −40 °C under argon. The mixture 

was stirred at this temperature for 15 min and afterwards cooled to −95 °C. Diethyl 

difluoromethylphosphonate (600 mg, 3.1 mmol, 0.50 mL), dissolved in dry THF (3 mL) was 

added dropwise and the resulting solution was stirred for 5 min at the same temperature. Diethyl 

oxalate (453 mg, 3.1 mmol, 0.42 mL) dissolved in dry THF (3 mL) was added and the solution 

was allowed to warm to −78 °C in the cooling bath, whereupon it turned pale yellow. Upon 

addition of glacial acetic acid (186 mg, 3.1 mmol, 0.17 mL) the solution became colourless 

again. After extraction with NaHCO3 solution (3 x 10 mL, sat.) the combined aqueous phases 

were washed with EtOAc (2 x 10 mL), were dried (Na2SO4) and concentrated in vacuo. The 

crude product was purified by bulb-to-bulb distillation (105-115 °C/0.49 mbar) to give a pale 

yellow, viscous liquid (569 mg, 60%). Subsequent flash chromatography (ethyl acetate 

(EtOAc)/hexanes = 2:1, Rf = 0.44) yielded the difluorinated phosphonate in its hydrate form 

(10a) as a colourless oil; 1H NMR (CDCl3, 400.13 MHz): δ 5.15 (br s, 1.5 H, 2 x OH), 4.37 (q, J 

= 7.2 Hz, 2 H, C(O)OCH2), 4.38 - 4.24 (m, 4 H, 2 x P(O)OCH2), 1.37 (td, JHH = 7.1 Hz, JHP = 0.7 

Hz, 6 H, 2 x CH3), 1.35 (t, J = 7.2 Hz, 3 H, C(O)CH2CH3); 
13C NMR (CDCl3, 100.61 MHz): δ 

167.45 (d, JCP = 10.9 Hz, C=O), 115.77 (td, JCP = 198.8 Hz, JCF = 275.4 Hz, CF2), 92.76 (td, JCP = 

12.6 Hz, JCF = 27.4 Hz, C(OH)2), 65.95 (d, JCP = 6.6 Hz, 2 x OCH2), 64.24 (s, OCH2), 16.50 (d, 

JCP = 5.9 Hz, 2 x CH3), 14.13 (s, CH3); 
31P NMR (CDCl3, 161.98 MHz): δ 6.90 (t, JPF = 95.1 Hz); 

19F NMR (CDCl3, 376.50 MHz): δ −120.68 (d, JPF = 95.1 Hz); IR (ATR): ν = 3275, 2989, 1744, 
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1393, 1370, 1249, 1158, 1085, 1013 cm-1; Anal. calc. for C9H17F2O7P (306.20): C 35.50%, H 

5.60%, F 12.41%; found: C 35.31%, H 5.49%, F 12.16%. 

4.2.2 3,3-Difluoro-2,2-dihydroxy-3-phosphonopropanoic acid (4 as its sodium salt):  

Ethyl 3-(diethoxyphosphoryl)-3,3-difluoro-2-oxo-propanoate (10, 0.153 g, 0.5 mmol) was 

dissolved in dry 1,2-dichloroethane (DCE, 5 mL) under argon at room temperature. 

Allyltrimethylsilane (0.114 g, 1.0 mmol, 0.16 mL) and bromotrimethylsilane (0.459 g, 3.0 mmol, 

0.40 mL) were added quickly one after the other and the reaction mixture was heated at 60 °C for 

23 h. Then, all volatile compounds were removed in vacuo at room temperature. DCE (5 mL) 

was added and volatiles were removed a second time; first at room temperature and then at 

40 °C. The residue was dried in vacuo for 2 h and then dissolved in water (2 mL). The pH of the 

solution was adjusted to 10 and it was stirred at room temperature for 1 hour. Excess base was 

then removed by ion exchange chromatography (Dowex 50Wx8, H+ form, 12 mL, water as 

eluent). All acidic fractions were collected, neutralised (pH 7.1) with aqueous NaOH solution 

(0.5 M) and finally lyophilised to give a white powder of 3,3-difluoro-2,2-dihydroxy-3-

phosphonopropanoic acid (4) as its sodium salt (0.138 g, about 0.48 mmol); 1H NMR (D2O, 

400.13 MHz): no signals detected (despite some minimal impurities which can be quantified by 

means of an internal standard); 13C NMR (D2O, 100.61 MHz): δ  173.84 (s, C=O), 118.77 (td, JCP 

= 166.7 Hz, JCF = 270.3 Hz, CF2), C-2 signal of hydrate was not detected; 31P NMR (D2O, 161.98 

MHz): δ 6.30 (t, JPF = 80.1 Hz); 19F NMR (D2O, 376.50 MHz): δ −122.01 (d, JPF = 80.1 Hz). 

4.3 Expression and purification of phosphonopyruvate decarboxylase, phosphonoacetaldehyde 

hydrolase and acetolactate synthase. 
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The QuikChange site-directed mutagenesis kit (Stratagene) was used to replace the stop codon 

of BfPnPDC with a Xho1 restriction site. Subsequently the NdeI-XhoI fragment containing the 

modified BfPnPDC gene was inserted into pET24b (Novagen) to give the expression vector, 

pET24bBfPnPDC-His. The fidelity of the amplification and the presence of the changed 

nucleotides was confirmed by sequencing (University of Michigan DNA Sequencing Core 

Facility). 

Following transformation of the plasmids, pET24bBfPnPDC-His and pET22Phtase-His into E. 

coli BL21(DE3) cells, expression and purification of the enzymes was achieved using routine 

procedures.52 The enzymes were quantitated with the Bradford method53 using bovine serum 

albumin as the standard before being concentrated to ~15 mg/mL. BfPnPDC was stored at -80 °C 

and Phtase was stored at 4 °C in 50 mM HEPES (pH 8.0) containing 300 mM NaCl, 10 mM 

MgCl2, and 1 mM DTT. 

4.4.1 Steady-state kinetic analysis of phosphonopyruvate decarboxylase  

The activity of purified BfPnPDC was determined using a coupled assay. The assay mixture 

contained, in a total of 1 mL, 100 mM HEPES (pH 7.0) 5 mM MgCl2, 0.2 mM NADH, 60 U/mL 

YADH, 100 μg phosphonoacetaldehyde hydrolase, and varying concentrations of 

phosphonopyruvate (0.5-15 µM). The reaction was carried out at 30 °C and initiated by the 

addition of BfPnPDC. Each assay was performed in triplicate. The kinetic parameters were 

determined by fitting the initial rate data to the Michaelis-Menten equation using the enzyme 

kinetics package from SigmaPlot 12.3. 

4.4.2 Determination of IC50 and Ki values for difluorophosphonopyruvate  
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Here the standard assay was used with the concentration of phosphonopyruvate held constant 

at 3 µM (~Km) or 30 µM (10×Km) while the concentration of 4 was varied. The IC50 value was 

determined by plotting the concentration of inhibitor (µM) against residual activity. The Ki was 

determined from the IC50 value using the Cheng-Prusoff equation (Equation 1).  

Ki = IC50/(1+([S])/ Km)      (1) 

4.4.3 Time-dependent inactivation of BfPnPDC 

BfPnPDC (6 M) and 4 (10 M or 50 M) were mixed in 50 mM HEPES (pH 8.0) containing 

300 mM NaCl, 10 mM MgCl2, and 1 mM DTT and incubated at 30 °C. At appropriate time 

intervals, an aliquot (10 L) was diluted 1:100 into a standard assay mixture containing 30 µM 

(i.e., saturating) phosphonopyruvate.  

4.5  Reaction of phosphonodifluoropyruvate with BfPnPDC monitored by UV-VIS 

spectrophotometry and circular dichroism (CD) spectropolarimetry 

BfPnPDC (~50 µM), in a 2 mL volume of BfPnPDC storage buffer, was titrated with 4 at 

concentrations ranging from 0-50 µM. PnDFP was introduced in 10 μL aliquots with each 

addition resulting in a 5 µM increase in inhibitor concentration. Spectra were obtained using a 1 

cm path length cell. After the addition of each of the inhibitor aliquots, the solution was gently 

mixed and allowed to sit for a minimum of 3 minutes at 25 ˚C. The reaction mixtures were 

monitored on a Cary 50 Bio UV-Vis spectrophotometer at 440 nm to ensure the reaction was 

complete, before a scan was recorded from 550–250 nm. The Abs440 titration curves were 

constructed using SigmaPlot 12.3. 
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The procedure was repeated using the Jasco J-810 CD spectropolarimeter. The reaction was 

initially monitored at 440 nm on a UV-VIS spectrophotometer to ensure the reaction was 

complete. Subsequently the mixture was then scanned from 550–250 nm on the CD 

spectropolarimeter. The data obtained for each inhibitor concentration was the average of five 

individual scans. Titration curves for the change in ellipticity at 440 nm were constructed using 

SigmaPlot 12.3. 

4.6  Fluoride ion analysis of the reaction of phosphonodifluoropyruvate with BfPnPDC 

Release of fluoride ions from the reaction of 4 with BfPnPDC was monitored using a fluoride 

ion-selective electrode. Samples containing BfPnPDC (~100 µM) were mixed with PnDFP (0-75 

µM) in a total volume of 1 mL. In addition, two controls were used. The first contained BfPnPDC 

buffer and water, and the second contained BfPnPDC buffer, 75 µM 4 and water in a total 

volume of 1 mL. After gentle mixing reactions were incubated at room temperature for 30 min. 

The enzyme was removed from the samples using 10,000 kDa cut-off microspin columns 

(Microcon, Millipore). Total ionic strength adjustment buffer II solution (TISAB II) was added 

to the samples to a final volume of 2 mL. The fluoride ion concentration in each sample was 

determined.  

4.7  Attempted crystallization BfPnPDC 

For crystallization trials the enzyme was concentrated to 15 mg/mL in 25 mM HEPES pH 7.0, 

containing 0.2 mM ThDP and 0.1 mM MgCl2. Screening was initiated by mixing the enzyme (in 

the presence and absence of 4) 1:1 with the conditions of Hampton Crystal Screen II. 
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