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Abstract 

Objectives This laboratory study aimed to: a) compare the fluoride dose-response of different caries lesions created 

in human and bovine enamel (HE/BE) under pH-cycling conditions, and b) investigate the suitability of Knoop and 

Vickers surface microhardness (K-SMH/V-SMH) in comparison to transverse microradiography (TMR) to 

investigate lesion de- and remineralization. 

Materials and Methods Caries lesions were formed using three different protocols (Carbopol, 

hydroxyethylcellulose-HEC, methylcellulose-MeC) and assigned to 24 groups using V-SMH, based on a 2 (enamel 

types)×3 (lesion types)×4 (fluoride concentrations used during pH-cycling–simulating 0/250/1100/2800 ppm F as 

sodium fluoride dentifrices) factorial design. Changes in mineral content and structural integrity of lesions were 

determined before and after pH-cycling. Data were analyzed using three-way ANOVA. 

Results BE was more prone to demineralization than HE. Both enamel types showed similar responses to fluoride 

with BE showing more remineralization (as change in integrated mineral loss and lesion depth reduction), although 

differences between tissues were already present at lesion baseline. Carbopol and MeC lesions responded well to 

fluoride, whereas HEC lesions were almost inert. K- and V-SMH correlated well with each other and with the 

integrated mineral loss data, although better correlations were found for HE than for BE, and for MeC than for 

Carbopol lesions. Hardness data for HEC lesions correlated only with surface zone mineral density data. 

Conclusion BE is a suitable surrogate for HE under pH-cycling conditions. 

Clinical Relevance The in vitro modelling of dental caries is complex and requires knowledge of lesion behavior, 

analytical techniques and employed hard tissues. 

 

Keywords: dental caries, pH-cycling, human enamel, bovine enamel, transverse microradiography, surface 

microhardness 
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Introduction 

 

Bovine enamel (BE) has often been considered a suitable substitute for human enamel (HE) in the study of dental 

caries [1]. BE has many obvious advantages over HE, e.g. it is more readily available, easier to obtain due to ethical 

aspects, its larger size allows for the preparation of specimens with a more uniform enamel thickness, and its lack of 

prior cariogenic challenges and topical and systemic fluoride exposure should, at least in theory, provide a tissue of 

lesser biological variation than HE. Several morphological and compositional differences between the two tissues 

have been reported and were summarized recently [2]: BE is more porous [3], softer [4] contains more carbonate 

[5], but less fluoride [6] than HE. Their prism arrangement differs [7, 8], especially in the inner third of the enamel 

[9], and crystallites are larger [10] but prism diameters smaller [9] in BE. Similar radio-densities were reported [11], 

and a subsequent study [12] showed not only a greater presence of interprismatic substance but also “fibril-like” 

structures around prisms in BE. Greater porosity, solubility and presence of interprismatic enamel would suggest 

that lesions progress faster in BE than HE, which, in deed, has been reported by many researchers [2, 13-17], 

although relative differences varied considerably between laboratories, highlighting that biological variation within 

tissues should not be overlooked and especially in larger studies [2]. However, little is known about potential 

differences in the tissues’ susceptibility to fluoride and remineralization. A recent study [18] highlighted that BE 

may be more prone to remineralization than HE, although the study was somewhat limited in scope. No differences 

between tissues were found in their fluoride response under net demineralizing conditions in two other pH-cycling 

studies [19, 20], highlighting the need for a more comprehensive study. 

Several interrogation techniques are being utilized in caries research to monitor changes in, for example, 

lesion mineral content or structural integrity, however, rarely in combination. Crudely, these techniques can be 

divided into destructive and non-destructive as well as being direct or indirect measures of mineral content. Among 

those techniques are the ‘gold standard’ transverse microradiography (TMR), Knoop and Vickers microhardness 

either used perpendicular (K-SMH, V-SMH) or parallel to the hard tissue surface, polarized light and confocal laser 

scanning microscopy (both used parallel to the surface), and quantitative light-induced fluorescence (used 

perpendicular to the surface). Researchers have either shown good [4, 21, 22] or poor correlations [23, 24] between 

TMR and SMH, depending on the extent of demineralization and lesion mineral distribution. However, previous 
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studies either utilized lesions created using only one protocol, or different lesions in the absence of any treatments, 

thereby providing scope for further research. 

Consequently, the aims of the present in vitro study were two-fold: a) to compare the fluoride dose-

response of different caries lesions created in HE and BE under pH-cycling conditions, and b) to investigate the 

suitability of K-SMH and V-SMH in comparison to TMR to investigate caries lesion de- and remineralization.  

 

 

Materials and methods 

 

Study Design 

 

The present study followed a 2 (enamel types) × 3 (lesion types) × 4 (fluoride concentration) factorial design, thus 

resulting in a total of 24 experimental groups. Early caries lesions, utilizing three different lesion creation protocols 

(Carbopol, HEC, MeC), were created in enamel specimens prepared from human and bovine permanent enamel. 

Lesions were allocated, based on V-SMH, in order to have uniform baseline surface microhardness 

(demineralization) to four groups of different fluoride concentrations used during the 10 d pH-cycling phase. 

Changes in mineral content and structural integrity of the lesions were determined before and after pH-cycling by K-

SMH, V-SMH and TMR. 

 

 

Specimen Preparation 

 

Enamel specimens were obtained from human permanent (predominantly molars and premolars, only buccal and/or 

lingual surfaces were used) and bovine incisor teeth (only buccal surfaces were used). Human teeth were extracted 

mainly for orthodontic reasons and were obtained from dental offices located in the State of Indiana, USA (water 

fluoridation at 1 ppm F). Bovine teeth were obtained from Tri State Beef Co. (Ohio, USA), from cattle with an 

average age of three years (range: 18 months to five years) and which stem from several states in the USA [personal 

communication with Tri State Beef Co.]. Both human and bovine teeth are received at the present, first author’s 
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laboratories approximately monthly; however, determinations of origin, exact age and other characteristics of the 

donor (human or animal) are impossible due to the large number of teeth received. 

Tooth crowns were cut into 4 × 4 mm specimens using a Buehler Isomet low-speed saw. The teeth were 

stored in deionized water containing thymol during the sample preparation process. Specimens were ground and 

polished to create flat, planar parallel dentin and enamel surfaces using a Struers Rotopol 31/Rotoforce 4 polishing 

unit (Struers Inc., Cleveland, Pa., USA). The dentin side of the specimens was ground flat to a uniform thickness 

with 500-grit silicon carbide grinding paper. The enamel side of the specimen was serially ground using 1,200, 

2,400 and 4,000 grit paper. The specimens were then polished using a 1 µm diamond polishing suspension on a 

polishing cloth until the enamel surface had a minimum of a 3 × 4 mm highly polished facet across the specimen. 

Resulting specimens had a thickness range of 1.7 – 2.2 mm. This polishing procedure ensured the removal of surface 

enamel (approx. 200 – 300 µm, depending on the natural curvature of the enamel surface) which may contain 

relatively high concentrations of artificially introduced trace elements (e.g. F, Sr) that would otherwise compromise 

the comparison between tissues. The specimens were assessed under a Nikon SMZ 1500 stereomicroscope at 20× 

magnification for cracks, hypomineralized (white spots) areas or other flaws in the enamel surface that would 

exclude them from use in the study. Prepared specimens were stored at 100% relative humidity at 4 °C until use. All 

specimens were prepared by the same, well-trained technicians using standard operating procedures. 

 

 

Artificial Caries Lesion Creation 

 

In vitro incipient caries lesions were prepared using three protocols. 

For the Carbopol lesions, a modification of the method to create ‘low-R’ lesions as described by Lippert et 

al. [25] was used. Sound enamel specimens were immersed in a demineralization solution containing 0.1 M lactic 

acid, 4.1 mM CaCl2 × 2 H2O, 8.0 mM KH2PO4 and 0.2% w/v Carbopol 907 (BF Goodrich Co., USA), pH adjusted 

to 5.0 using KOH, for 6 d. 

For the hydroxyethylcellulose lesions (HEC), a modification of the method described by Amaechi et al. 

[26] was used. An HEC gel was prepared by solubilizing hydroxyethylcellulose (Sigma 54290, Cellosize® QP-40, 
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80-125 cP) in a pH 4.5 (KOH) adjusted 0.05 M lactic acid solution at a ratio of 140 g HEC per liter lactic acid 

solution. The final pH of the HEC gel was approx. 5.5. Specimens were demineralized for 14 d. 

For the methylcellulose lesions (MeC), a modification of the method used by ‘Laboratory D’ as described 

by ten Cate et al. [27] was used. Sound enamel specimens were demineralized at pH 4.6 and 37 °C in 8% 

methylcellulose (Sigma M0387, aqueous, 1,500 cP, 63 kDa) covered with an equal volume of 0.1 M lactic acid, pH 

adjusted with KOH, for 7 d. 

For all protocols, demineralization was conducted at 37 °C and neither the gel nor the demineralization 

solution was replaced during the demineralization period. After lesion creation, specimens were rinsed with 

deionized water. Approx. half of the lesion surface was then covered using acid-resistant, colored nail varnish (Sally 

Hansen Advanced Hard As Nails Nail Polish, USA), protecting a lesion baseline area for subsequent TMR analysis. 

Specimens were stored at 100% relative humidity at 4 °C until further use. 

 

 

Lesion Surface Microhardness 

 

Specimens were mounted individually on 1-inch acrylic blocks using sticky wax. A total of eight lesion baseline 

indentations (2100 HT; Wilson Instruments, Norwood, Mass., USA) were placed in the uncovered lesion window of 

each specimen: four using a Knoop diamond indenter using a 50 g load (approx. 100 µm apart from each other), and 

four using a Vickers diamond indenter using a 200 g load (approx. 150 µm apart from each other and in close 

proximity to the Knoop indentations), each with a dwelling time of 11 s. The respective indentation loads and 

number of indentations per specimen were chosen based on standard operating procedures and reflect those typically 

employed in the main author’s laboratories [22, 28]. Knoop and Vickers hardness numbers were derived from the 

respective indentation lengths (Knoop – length of the long diagonal, Vickers – mean of both diagonals) and 

recorded. Human and bovine enamel lesions were each allocated, by lesion type, to four groups each based on V-

SMH so there was no significant difference in mean V-SMH between groups within enamel and lesion types. 

Although there were no inclusion/exclusion criteria per se, some enamel specimens had to be excluded from the 

study due to extensive demineralization or lack thereof after lesion creation. Hence, each experimental group (total 

of 24) contained between 13 and 15 specimens (n=15 was anticipated). 
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pH-cycling Phase 

 

The present pH-cycling model was loosely based on that by Amaechi et al. [29]. The daily cyclic treatment regimen, 

which was repeated for 10 d and shown in Table 1, consisted of two 30-min acid challenges (50 mM acetic acid, 

2.25 mM CaCl2 × 2 H2O, 1.35 mM KH2PO4, 130 mM KCl, pH adjusted to 4.5 using KOH) and four, 2-min sodium 

fluoride solution (0; 83; 367; 933 ppm F simulating 0; 250; 1100; 2800 ppm F dentifrices after 1:2 dilution) 

treatment periods with specimens stored in artificial saliva (2.20 g/l gastric mucin, 1.45 mM CaCl2 × 2 H2O, 5.42 

mM KH2PO4, 6.50 mM NaCl, 14.94 mM KCl, pH adjusted to 7.0 using KOH) all other times. The pH-cycling phase 

was conducted at room temperature and without stirring. Fluoride concentrations were chosen to mimic 0 (placebo), 

250, 1100 and 2800 ppm F dentifrices after 1:2 dilution. 

 

 

Post pH-cycling Surface Microhardness 

 

After pH-cycling, a second set of eight indentations were placed on each specimen, as described above and in close 

proximity to the lesion baseline indentations. V-SMH and K-SMH were recorded and changes vs. lesion baseline 

calculated for both Knoop and Vickers indenter types as follows: ΔSMH = SMHpost – SMHbase. The authors 

refrained from calculating changes in indentation lengths as this is uncommon for Vickers and for the sake of clarity, 

although some previous studies [4, 13, 21, 22] highlighted linear correlations between Knoop indentation lengths vs. 

ΔZ and L. 

 

 

Transverse Microradiography 

 

One section per specimen, approximately 100 µm in thickness, was cut from the center of the specimen and across 

the baseline and post pH-cycling lesion windows using a Silverstone-Taylor Hard Tissue Microtome (Scientific 
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Fabrications Laboratories, USA). Sections which were found to be thicker than 120 µm (determined using drop 

gauge) were hand-polished using 2,400-grit silicon carbide paper to the required thickness. The sections were 

mounted, with an aluminum step wedge, on high resolution glass plates Type I A, Microchrome Technology Inc., 

San Jose, CA) and X-rayed at 20 kV and 30 mA at a distance of 42 cm for 65 min. The film was developed in 

Kodak d-19 developer for 3 min, placed in a stop bath (Kodak 146-4247) for 45 s, and then fixed (Kodak 146-4106) 

for 3 min. All plates were then rinsed in deionized water for 15 min and air-dried. Microradiographs were examined 

with a Zeiss EOM microscope in conjunction with the TMR software v.3.0.0.11 (Inspektor Research Systems BV, 

Amsterdam, The Netherlands). A window (approx. 400 × 400 µm), representative of the entire lesion area and not 

containing any cracks, debris or other alterations, was selected for analysis. Sound enamel mineral content was 

assumed not only to be equivalent between tissues [15] but also 87% v/v [30, 31]. Sectioning and initial TMR 

analyses (plate reading) were conducted by the same technicians. Final TMR analysis (actual determination of lesion 

parameters) was conducted by the present, first author. The variability of the repeated TMR analysis of sections was 

determined in a separate study. The standard deviation of the mean for any of the reported variables was found to be 

lower than 4 %. 

The following variables were recorded for each specimen/section: ΔZ – integrated mineral loss (product of 

lesion depth and the mineral loss over that depth); L – lesion depth (83% mineral; i.e. 95% of the mineral content of 

sound enamel); SZmax – maximum mineral density of the lesion surface zone; %R – percentage change in ΔZ values 

[32] which was calculated as %R = (ΔZbase – ΔZpost)/ΔZbase × 100. Changes from lesion baseline were calculated as 

follows: ΔΔZ = ΔZbase – ΔZpost; ΔL = Lpost – Lbase; ΔSZmax = SZmax,post – SZmax,base.  

 

 

Human and Animal Rights 

 

The manuscript does not contain clinical studies or patient data. This study was of pure laboratory nature and did not 

involve human subjects or animals. Human teeth were obtained from dental offices located in the State of Indiana, 

USA, after obtaining informed consent from the adult donors. Bovine teeth were obtained from a local 

slaughterhouse (Tri State Beef Co., Ohio, USA) which adheres to the “Humane Slaughter Act” (United States 

Federal Law). 
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Statistical Analysis 

 

The effects of enamel type, lesion type, fluoride concentration and their interaction on VHN, KHN, ∆Z, L, SZmax, 

ΔVHN, ΔKHN, ΔΔZ, ΔL, ΔSZmax, and %R were evaluated using three-way ANOVA. Where significant differences 

were indicated, the individual means were analyzed using Tukey's method to control the overall significance level at 

5%. Pearson correlation coefficients were calculated to investigate associations between all study variables. 

 

 

Results 

 

Lesion Baseline 

 

Table 2 provides the data and results of the statistical analyses for all lesion baseline variables for both HE and BE. 

The enamel type × lesion type interaction was statistically significant for all variables. Considering the TMR 

variables, lesions created in BE exhibited more demineralization, were deeper and, at least for HEC and MeC, also 

showed higher surface zone mineralization. However, relative differences between tissues varied depending on the 

lesion protocol. The hardness data showed good agreement between indenter and within lesion types; conversely, 

the overall findings for enamel types were not in agreement. For better visualization of differences between lesion 

and enamel types, Fig. 1 shows the mean mineral distributions for all baseline lesions. Differences between lesion 

types and to a lesser extent between tissues are apparent for all investigated lesion parameters. 

 

 

Post pH-Cycling 

 

Table 3 provides the data for all post-pH cycling lesion variables for both HE and BE. Online Resource 1 provides 

the results of the statistical analyses for all post pH-cycling lesion variables for both HE and BE. The enamel × 
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lesion × fluoride interaction was only significant for ΔKHN. For all other variables, the lesion × fluoride interaction 

was significant. Only ΔL and ΔKHN showed interactions involving enamel type, whereas ΔΔZ was the only 

variable for which enamel type was a significant source of variation (BE showing more remineralization than HE). 

Both Carbopol and MeC lesions responded to different fluoride concentrations as evident by both the hardness and 

mineral loss data, whereas HEC lesions responded poorly considering TMR variables. In HEC lesions, HE appeared 

to show a better fluoride dose-response than BE. In Carbopol and MeC lesions, differences were less apparent 

between tissues and to some extent also depending on the interrogation technique. In Carbopol lesions, for example, 

the hardness data would suggest a stronger response for HE than for BE, whereas the TMR data suggests otherwise 

(ΔΔZ, ΔL). In MeC lesions, BE responded more predominantly than HE, although these differences were not 

apparent in the ΔVHN data. The post pH-cycling mineral distributions (not shown) were virtually identical between 

HE and BE. Both tissues showed remineralization in the lesion body and of the surface zone in Carbopol and MeC 

lesions, whereas HEC lesions showed very little change from baseline. Laminations were only obvious in the 2800 

ppm F HE Carbopol group. 

 

 

Correlations 

 

Pearson correlation coefficients for baseline and post pH-cycling variables can be found in Table 4. At lesion 

baseline, there was little difference in Pearson correlation coefficients between HE and BE or Knoop vs. Vickers. 

For both indenter types, the strongest overall correlations were found in relation to SZmax,base, although all were 

significant. However, there were differences between lesion types, as the hardness data correlated well with the 

ΔZbase data for the Carbopol lesions. Considering the post pH-cycling data, correlations were somewhat stronger for 

HE than for BE. Again, hardness data correlated well with one another. The strongest correlations were observed for 

the hardness vs. ΔΔZ data and the weakest vs. the ΔL data. Again, there were differences between lesion types. 

Hardness/TMR correlations were strongest in MeC lesions and significant for all TMR variables, although strongest 

for ΔΔZ. In Carbopol lesions, only the hardness vs. ΔΔZ/ΔSZmax correlations were significant which were also 

weaker than for MeC lesions. In HEC lesions, hardness data correlated only with the SZmax,base/ΔSZmax data. 
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Discussion 

 

The present lesion baseline observations which highlighted that BE is more prone to demineralization than HE are in 

agreement with the aforementioned findings by other researchers. Potential explanations lie in differences in 

structure (e.g. greater porosity of BE) and inherent solubility (e.g. greater carbonate content of BE) – the former 

explains differences in lesion depth, whereas the latter can be held accountable for differences in mineral loss. 

Differences between tissues within lesion types were, however, not consistent (Table 2). In Carbopol lesions, 

percentage differences in ΔZbase between tissues (35.5%) were greater than those in ΔL (20.5%), whereas this 

relationship was reversed in HEC (18.7%/26.6%) and MeC (10.6%/21.4%) lesions. Similar differences were also 

observed for SZmax,base. Lesion creation protocols were inherently different and may have contributed to the relative 

differences as diffusion was more retarded in the ‘gel systems’, HEC and MeC, thus artificially reducing differences 

in solubility (rate limiting step is diffusion of dissolution products away from the lesion surface) but somewhat 

enhancing dissimilarities in porosity (as acid will be ‘forced’ to penetrate deeper to dissolve enamel). 

Differences in porosity would also suggest that BE is more prone to remineralization than HE. A recent 

study [18], albeit limited in scope in comparison to the present one, suggested that BE is more prone to surface 

rehardening and especially in the presence of elevated fluoride concentrations. The results of the present study, 

however, do not necessarily support these findings. In the statistical analyses (Online Resource 1), the factor 

‘enamel’ was only found to be significant for the variable ‘ΔΔZ’ but not for ‘%R’. This variable was introduced to 

account for differences in ΔZbase (Table 2) which was shown to be an important factor in remineralization (larger 

lesions will remineralize more) [17, 33]. There was, however, some indication that the ‘fluoride response 

differential’; i.e. the numerical differences in %R between 0 and 2800 ppm F for Carbopol and MeC lesions (Table 

3) were greater for BE than for HE. Likewise, changes in L were more pronounced with increasing fluoride 

concentrations in BE than HE, although these were not matched at baseline which makes comparisons difficult. 

Perhaps further studies using different lesions and with a broader range of ΔZbase/Lbase are required to better 

understand any potential differences in the tissues’ respective fluoride dose-response. 

Two previous pH-cycling studies [19, 20] utilizing net de- rather than remineralizing models, did not 

highlight any differences between BE and HE in terms of their response to fluoride. This, together with other [2] and 
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especially the present observations perhaps highlights that while there are structural and chemical differences 

between BE and HE, these are easily overshadowed by the impact of differences in mineral distributions and extent 

of demineralization. Two of the chosen lesion protocols were previously shown to respond differently to fluoride 

under demineralizing conditions [34], and similar observations were made presently under net remineralizing 

conditions. HEC lesions do not appear to be suitable for short-term pH-cycling studies, and considerably longer 

periods are required to extract a fluoride response [29]. Carbopol and MeC lesions, on the other hand, seem more 

suitable, although they varied in their overall extent of remineralization and ability to differentiate between higher 

fluoride concentrations. These lesions showed considerable differences in their respective mineral distributions (Fig. 

1) – MeC were more demineralized closer to the lesion surface and therefore more easily remineralized, which is in 

agreement with findings by Lynch et al. [35]. Naturally, this all begs the question what resembles most closely a 

clinically relevant lesion – all three lesion protocols are justifiable, but do they mimic in vivo caries lesions? 

Artificial caries lesions are created using continuous demineralization protocols and are formed over short periods of 

time. In vivo caries lesions, however, are subject to multiple cycles of de- and remineralization with fluctuations in 

calcium and fluoride concentrations and pH and form over a considerably longer period of time. No comparative 

studies have been conducted yet and most likely because of the difficulty in standardizing in vivo demineralization 

conditions, which, of course, vary considerably between individuals which introduces aforementioned confounding 

factors and thereby limits the value of any such comparison. 

The present study has also shown that surface microhardness techniques could be used in the study of 

caries lesion de- and remineralization. However, this ‘recommendation’ cannot be generalized as significant 

correlations between ΔVHN/ΔKHN vs. ΔΔZ were only noted for Carbopol and MeC lesions, but not for HEC 

lesions (Table 4). In HEC lesions, only the hardness vs. (Δ)SZmax correlations were significant, albeit weak. This 

highlights the importance of lesion mineral distribution (Fig. 1) rather than ΔZ or L, as HEC lesions were, on 

average, considerably less demineralized and somewhat shallower than Carbopol lesions, yet HEC hardness TMR 

correlations were weaker. Hardness does not necessarily measure mineral content or changes thereof, hardness 

measures “structural integrity” [36] which may be indicative of (changes in) the mineral content of a lesion or not. 

Hence, the mineral distribution of a lesion needs to be investigated first before any assumptions about the validity or 

lack thereof of hardness measurements can be made. 
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Two other aspects are worth noting: Correlations were typically stronger for HE than for BE. One 

explanation may lie in the mismatch of lesion baseline variables, as HE lesions were less demineralized and 

shallower, thus artificially favoring correlations over BE as previous research has shown the disconnect between 

hardness and L in the study of deeper lesions [13] for example. Furthermore, there was, at least for MeC lesions, a 

strong correlation for ΔKHN vs. ΔZ. Knoop indentations are very shallow in depth, approx. 1/30 of the length of the 

long diagonal. This would equate to an approx. indentation depth of 4.7 µm for a KHN of 36 (mean of all MeC 

lesions post pH-cycling) which in turn compares to Lpost of 53.8 µm as measured by TMR. Considering that the 

hardness of a multi-layered material (such as a caries lesion) is affected by usually 7-10 times the indentation depth 

[37], it is perhaps not that surprising after all. Weaker correlations were shown for Carbopol lesions which one 

would expect given their greater extent of demineralization and depth in comparison to MeC lesions. 

In conclusion, BE appears to be a suitable surrogate tissue for HE under pH-cycling conditions. Hardness 

techniques have to be used with caution in the study of caries lesion de- and remineralization as correlations to TMR 

data were generally weak. Ideally, hardness techniques are to be used in combination with TMR as lesion mineral 

distribution and extent of demineralization ultimately determine their suitability. Lesion mineral distribution appears 

to outweigh any potential differences between HE and BE in terms of their fluoride response under net 

remineralizing pH-cycling conditions. 
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Table 1 Daily cyclic treatment regimen 

Duration Specimen Treatment 

2 min Fluoride Solution 

30 min Artificial Saliva 

30 min Acid challenge 

2 min Fluoride Solution 

30 min Artificial Saliva 

2 min Fluoride Solution 

30 min Artificial Saliva 

30 min Acid challenge 

2 min Fluoride Solution 

(overnight)1 Artificial Saliva 

1After the very last treatment or treatment day in week 1 (Friday), specimens were placed into artificial saliva for 30 

min before being rinsed under running deionized water and stored at approx. 100% relative humidity at 4°C until the 

next treatment day (Monday) or until post-pH cycling hardness measurements commenced. 

 



Table 2 Least square means ± standard error of the mean and results of the statistical analyses for all lesion baseline variables 

Enamel Lesion n VHNbase KHNbase ΔZbase [vol%min×µm] Lbase [µm] SZmax,base [vol%min] 

Human Carbopol 15 49±21 57±3 2577±61 91.3±1.7 56.0±0.8 

Bovine  15 28±2 30±3 3492±59 110.1±1.7 52.9±0.8 

Human HEC 13 104±2 107±3 1666±63 85.0±1.8 65.2±0.9 

Bovine  15 112±2 150±3 1977±66 107.6±1.9 71.3±0.9 

Human MeC 14 17±2 13±3 2103±62 57.5±1.8 39.5±0.8 

Bovine  15 19±2 15±3 2325±60 69.8±1.7 47.6±0.8 

Enamel 0.0092 

human > bovine 

0.015 

bovine > human 

<0.001 

bovine > human 

<0.001 

bovine > human 

<0.001 

bovine > human 

Lesion <0.001 

HEC > Carbopol 

> MeC 

<0.001 

HEC > Carbopol 

> MeC 

<0.001 

Carbopol > MeC > 

HEC 

<0.001 

Carbopol > HEC > 

MeC 

<0.001 

HEC > Carbopol > 

MeC 

Enamel × Lesion <0.001 <0.001 <0.001 0.013 <0.001 



1Significant differences within variables and lesion types but between enamel types are highlighted in bold. There were no statistically significant differences 

between fluoride concentrations within each group; hence groups are shown by enamel and lesion type only for better clarity. 
2p values for each factor, interaction between factors and grouping information using Tukey method. 
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Table 3 Least square means ± standard error of the mean for all post-pH cycling variables 

Enamel Lesion Fluoride 

concentration 

ΔVHN ΔKHN %R ΔΔZ 

[vol%min×µm] 

ΔL 

[µm] 

ΔSZmax 

[vol%min] 

HE 

 

 

 

BE 

Carbopol 0 

250 

1100 

2800 

0 

250 

1100 

2800 

-15.5±3.9 

-7.4±2.3 

9.7±3.2 

28.2±2.9 

-2.8±1.7 

0.0±1.9 

6.5±1.5 

20.4±3.0 

-19.4±2.5 

-6.0±4.9 

6.3±2.1 

25.5±3.5 

-7.2±4.0 

2.6±4.1 

11.7±3.4 

13.8±5.4 

8.6±4.7 

11.4±6.4 

28.3±1.5 

42.6±3.2 

7.2±4.0 

2.8±6.3 

35.4±3.0 

46.4±3.5 

267±127 

275±165 

701±51 

1169±142 

325±164 

202±241 

1160±108 

1586±136 

-8.6±2.9 

-11.9±4.2 

-8.3±1.6 

-13.1±5.5 

-6.6±3.0 

1.0±5.5 

-19.5±4.1 

-24.7±4.4 

0.7±1.7 

-2.1±1.1 

1.3±1.2 

7.3±2.6 

0.3±1.5 

1.5±2.8 

1.7±0.9 

2.6±1.4 

HE 

 

 

 

BE 

HEC 0 

250 

1100 

2800 

0 

250 

1100 

-29.1±4.5 

-3.3±4.7 

7.3±5.0 

5.9±3.5 

-27.5±5.2 

4.6±4.3 

-5.4±7.2 

-49.7±6.3 

-22.4±5.5 

2.8±5.3 

5.5±6.6 

-65.3±7.4 

-29.7±14.0 

-32.2±10.6 

3.7±5.0 

9.9±4.5 

15.3±4.7 

14.3±4.0 

17.1±6.0 

14.0±7.5 

10.4±9.4 

111±80 

174±75 

272±89 

247±68 

406±136 

376±173 

273±151 

-6.8±2.9 

-6.7±2.9 

-5.6±2.7 

-4.8±4.4 

-12.9±4.8 

-11.1±6.7 

-3.8±5.3 

-5.6±2.9 

0.3±2.1 

6.5±1.2 

5.6±1.3 

3.2±1.8 

3.4±2.7 

1.0±2.0 



2 
 

2800 11.5±5.3 -34.6±10.1 26.1±19.1 492±280 -17.7±9.4 6.1±3.3 

HE 

 

 

 

BE 

MeC 0 

250 

1100 

2800 

0 

250 

1100 

2800 

5.1±2.5 

16.0±2.2 

44.9±2.6 

72.4±4.4 

2.1±1.6 

14.8±2.7 

45.7±3.0 

72.4±7.0 

-2.6±1.5 

6.7±1.8 

20.5±1.3 

32.6±3.1 

0.8±1.5 

17.4±3.1 

41.5±6.8 

57.5±6.1 

12.2±4.4 

27.7±2.5 

52.2±1.9 

57.6±2.3 

-1.8±5.3 

27.1±3.6 

59.7±2.2 

65.9±1.6 

322±101 

552±72 

1051±41 

1186±84 

-18±122 

644±94 

1421±103 

1468±62 

-4.2±1.8 

-8.2±2.4 

-14.9±2.1 

-12.2±2.2 

-0.7±3.1 

-2.4±3.4 

-17.5±3.0 

-18.1±1.5 

0.1±2.1 

1.9±1.8 

8.9±3.8 

18.3±4.3 

-1.1±2.5 

5.3±2.4 

8.4±3.0 

16.7±3.7 

 



Table 4. Pearson correlation coefficients for lesion baseline and post-pH cycling variables 

Variable interaction All BE HE Carbopol HEC MeC 

VHNbase KHNbase 0.92 0.94 0.92 0.64 0.55 0.55 

VHNbase ΔZbase -0.46 -0.48 -0.44 -0.64 -0.10 -0.28 

VHNbase Lbase 0.35 0.36 0.50 -0.49 0.03 0.24 

VHNbase SZmax,base 0.80 0.79 0.86 0.36 0.22 0.40 

KHNbase ΔZbase -0.42 -0.48 -0.39 -0.63 -0.09 -0.24 

KHNbase Lbase 0.37 0.34 0.54 -0.55 0.17 0.15 

KHNbase SZmax,base 0.80 0.78 0.88 0.28 0.43 0.33 

ΔVHN ΔKHN 0.68 0.68 0.74 0.63 0.49 0.74 

ΔVHN ΔΔZ 0.52 0.45 0.64 0.44 0.15 0.73 

ΔVHN ΔL -0.18 -0.17 -0.21 -0.17 -0.08 -0.47 

ΔVHN ΔSZmax 0.45 0.36 0.54 0.29 0.27 0.49 



ΔKHN ΔΔZ 0.47 0.41 0.61 0.39 0.10 0.74 

ΔKHN ΔL -0.14 -0.13 -0.17 -0.16 0.01 -0.50 

ΔKHN ΔSZmax 0.37 0.29 0.51 0.20 0.29 0.52 

1Significant interactions (p<0.05) are highlighted in bold. 

 



Fig. 1 Mean mineral distribution graphs of human (HE) and bovine enamel (BE) Carbopol, hydroxyethylcellulose 

(HEC) and methylcellulose (MeC) baseline lesions. 

 

Fig. 2 Means and standard deviations for all post-pH cycling variables by enamel type for Carbopol lesions. 

 

Fig. 3 Means and standard deviations for all post-pH cycling variables by enamel type for hydroxyethylcellulose 

lesions. 

 

Fig. 4 Means and standard deviations for all post-pH cycling variables by enamel type for methylcellulose lesions. 
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