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MESENCHYME HOMEOBOX 2 REGULATION OF FETAL ENDOTHELIAL 

PROGENITOR CELL FUNCTION 

 

 In the United States, 10% of pregnancies are complicated by diabetes 

mellitus (DM). Intrauterine DM exposure can have long-lasting implications for 

the fetus, including cardiovascular morbidity. Previously, we showed that fetal 

endothelial colony forming cells (ECFCs) from DM pregnancies have decreased 

vessel-forming ability and increased senescence. However, the molecular 

mechanisms responsible for this dysfunction remain largely unknown. The 

objective of this thesis was to understand how Mesenchyme Homeobox 2 

(MEOX2) interacts with pathways that regulate cell cycle progression and 

migration, and how this interaction results in impaired vasculogenesis in DM-

exposed ECFCs.  

 We tested the hypothesis that upregulated MEOX2 in DM-exposed 

ECFCs decreases network formation through impairments in senescence, cell 

cycle progression, migration, and adhesion. MEOX2 is a transcription factor 

which inhibits angiogenesis by upregulating cyclin dependent kinase inhibitors. 

Here, data show that nuclear MEOX2 is increased in DM-exposed ECFCs. 

Lentiviral-mediated overexpression of MEOX2 in control ECFCs increased 

network formation, altered cell cycle progression, increased senescence, and 

enhanced migration. In contrast, MEOX2-knockdown in DM-exposed ECFCs 
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decreased network formation and migration, while cell cycle progression and 

senescence were unchanged.  

 Adhesion and integrin expression defects were evaluated as mechanisms 

by which MEOX2 altered ECFC migration. While MEOX2-overexpression did not 

alter adhesion or cell surface integrin levels in control cells, MEOX2 

overexpression in DM-exposed ECFCs resulted in an increase in α6 integrin 

surface expression. Similarly, MEOX2-knockdown in DM-exposed ECFCs did not 

alter adhesion, though did reduce α6 integrin surface expression and total 

cellular α6 mRNA and protein levels. 

 Together, these data suggest that alterations in cell cycle progression and 

senescence are not responsible for the disrupted vasculogenesis of DM-exposed 

ECFCs. Importantly, these data suggest that altered migration may be a key 

mechanism involved and that altered cell surface levels of the α6 integrin may 

modify migratory capacity. Moreover, these data suggest that the α6 integrin may 

be a previously unrecognized transcriptional target of MEOX2. Ultimately, while 

initially believed to be maladaptive, these data suggest that increased nuclear 

MEOX2 in DM-exposed ECFCs may serve a protective role, enabling vessel 

formation despite exposure to a DM intrauterine environment.  

 

Laura S. Haneline, MD, Chair  
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CHAPTER 1: INTRODUCTION 

Overview of Diabetes Mellitus 

Obesity and diabetes epidemic  

 Currently, the United States and several other countries worldwide are 

suffering from an obesity epidemic (Fig. 1.1). This trend toward increased body 

mass index (BMI) affects individuals of all ages (1). Further, this increase in 

obesity is tied to an increase in the occurrence of type 2 diabetes mellitus (DM) 

(2). The American Diabetes Association defines diabetes as “a group of 

metabolic diseases characterized by hyperglycemia resulting from defects in 

insulin secretion, insulin action, or both (3).” According to the Center for Disease 

Control’s National DM Statistics Report for 2014, 29.1 million Americans, or 9.3% 

of the American population, have DM. This percentage can be further broken 

down into the 21 million diagnosed patients (Fig. 1.2), and the perhaps more 

alarming, 8.1 million undiagnosed cases. Additionally, it is estimated that in 2012, 

86 million Americans 20 years and older suffered from prediabetes. In 2012, 

there were 1.7 million new DM cases diagnosed, demonstrating that the 

occurrence of this disease continues to increase at an alarming rate (4).  

 Clinically, there are two common types of DM, which account for the 

majority of American cases. Type 1 DM (T1DM) makes up 5-10% of cases and is 

characterized by an autoimmune destruction of pancreatic β-cells. Without these 

insulin-producing cells, insulin production ceases, and patients ultimately become 

dependent upon exogenous insulin for survival. Type 2 DM (T2DM), accounts for 

90-95% of cases, and results from the progressive loss of insulin sensitivity in 
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liver, adipose, and skeletal muscle tissues. This loss of insulin sensitivity results 

in elevated fasting plasma glucose levels. To compensate for this hyperglycemic 

state, pancreatic β-cells increase insulin secretion, often resulting in a 

hyperinsulinemic state, which is characteristic of T2DM patients. Over time, this 

increased demand for insulin secretion results in β-cell exhaustion, and a partial, 

or often complete, failure of insulin production (3, 5, 6). 

 Clinical complications of DM extend far beyond states of hyperglycemia 

and hyperinsulinemia. DM patients are predisposed to developing microvascular 

and macrovascular complications, which often manifest in conditions of 

hypertension, heart disease, stroke, retinopathy, and kidney disease, among 

other complications (4, 7). Additionally, in 2012, an estimated 246,000 American 

deaths were attributed to DM (8). The economic burden of these complications is 

substantial. In 2012, an estimated $245 billion dollars were spent as either direct 

or indirect costs of DM (4, 8). It is evident that this disease poses numerous life-

threatening risks to patients, and that this epidemic is of great clinical and 

economic distress. 
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Figure 1.1. The rate of overweight and obese Americans is increasing. 
There has been an increase in both overweight and obese Americans aged 20-
74 years between 1960-2014. Notably, obesity increased from 15% in 1976-
1989, to 30.9% in 1999-2000. Red line indicates extremely obese individuals 
(BMI ≥ 40.0). Blue line indicates obese individuals (BMI ≥ 30.0). Black line 
indicates overweight individuals (BMI 25.0-29.9). Adapted from Fryar et al. (9). 
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Figure 1.2. The rate of DM is increasing in the United States. There has been 
an increase in the percentage of the American population diagnosed with DM 
between 1958-2014. The rate of diagnosed diabetes increased from 0.93% in 
1958 to 7.02% in 2014. Adapted from the National Diabetes Statistics Report 
2014 (4). 
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Adverse fetal effects caused by maternal DM during pregnancy 

 Obesity and DM in women of childbearing years is of particular concern. It 

is now estimated that 33% of pregnant mothers are obese (1). Further, as many 

as 10% of pregnancies are complicated by DM (10). Hyperglycemia associated 

with this disease poses a risk to not only afflicted mothers, but children as well. 

DM during pregnancy often results in fetal exposure to a hyperglycemic 

intrauterine environment, as glucose readily crosses the placenta, but maternal 

insulin is unable to traverse this barrier (10). The fuel-mediated toxicity 

hypothesis is now widely accepted and explains that when increased metabolic 

nutrients (fuels) are passed from the mother to the fetus, there can be 

devastating teratogenic effects (11). Specifically with intrauterine exposure to 

hyperglycemia, the fetal pancreas produces additional insulin to handle the 

excess glucose loads (10). States of hyperglycemia, followed by 

hyperinsulinemia can lead to a multitude of adverse fetal effects that are 

immediately recognized upon delivery. Depending upon the developmental stage 

at exposure, the fetus can suffer consequences including congenital anomalies 

(12-15), prematurity (14, 16, 17), macrosomia (14, 18-21), respiratory distress 

(14, 22, 23), and hypoglycemia (14, 24, 25).  

Extending beyond the immediate neonatal effects, there can be long-term 

consequences of a DM intrauterine environment (26-33). According to the Barker 

hypothesis, also termed developmental programming, changes in the intrauterine 

environment during crucial developmental timeframes can lead to alterations in 

anatomical structure and physiological responses to stimuli (34, 35). These 
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alterations, in turn, can result in a predisposition to disease development 

throughout the lifespan of offspring from DM pregnancies (36). Studies show that 

children of DM mothers are more likely to develop the metabolic syndrome, 

insulin resistance, type 2 DM, obesity, and high blood pressure (28, 37-46). The 

long-term effects of intrauterine exposure to diabetes is now also an area with 

increasing research interest, as well as clinical concern, as both the immediate 

and long-term consequences of fetal exposure to DM contribute to poor 

prognoses and increased chronic diseases that significantly impede the quality of 

life for afflicted individuals. 

 Some of the most convincing evidence regarding the adverse effects of 

exposure to a DM environment in utero stems from studies conducted in the 

Pima Indian population. Interestingly, this population has an exceptionally high 

rate of T2DM. Studies revealed that offspring born to mothers suffering from DM 

during pregnancy had a six-fold increased risk of developing T2DM during 

adolescence when compared to individuals born to non-DM mothers. In contrast, 

the rates of juvenile T2DM among children born to non-DM were negligible (Fig. 

1.3) (44). Additionally, children born to DM mothers had an increased prevalence 

of obesity and higher systolic arterial blood pressure (39, 45) compared to 

individuals born to non-DM mothers. Apart from the DM intrauterine environment, 

some have argued that these adverse effects could be linked to genetics. 

However, evidence from the Pima Indians seems to argue in favor of the 

intrauterine environment. This population has a very homogenous genetic 

background. Further, the rates of DM are higher in offspring of DM mothers when 
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compared to offspring whose fathers had DM (44). Although the existence of a 

genetic predisposition for DM has been well established (47), these results 

suggest that environmental factors also play a critical role in the development of 

DM in the Pima Indian population.  

 There is also compelling evidence regarding the devastating effects of 

intrauterine exposure to DM outside of the Pima population. A longitudinal study 

examining white children at 6, 7, 9, and 11 years of age found that large for 

gestational age offspring of DM mothers are predisposed to develop the 

metabolic syndrome. Among these children, 50% were at risk for developing the 

metabolic syndrome, and an additional 15% met diagnostic criteria for the 

disease (38). Further, a record-linkage study of Swedish men reported that in 

utero exposure to DM resulted in higher offspring BMI at age 18 years. However, 

siblings born during healthy pregnancies did not have this increased BMI, 

suggesting that the intrauterine environment strongly affects long-term health 

outcomes (48). Finally, the relationship between a DM intrauterine environment 

and blood pressure in a mixed population of European, African, and Hispanic 

descent at 10-16 years of age was examined. Results indicated that the offspring 

of DM mothers have both higher systolic and mean arterial blood pressure, while 

diastolic blood pressure remained unchanged (40). Taken together, these studies 

suggest that the intrauterine environment impacts long-term offspring health. 

Further, exposure to a DM intrauterine environment predisposes offspring to 

develop chronic metabolic and cardiovascular complications, which can be 

recognized during adolescence. While there is compelling evidence of the origin 
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of these diseases, the molecular mechanisms responsible for the 

pathophysiology, remain largely unknown. 
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Figure 1.3. Pima Indian children born to DM mothers have a greater 
prevalence of DM than those born to non-DM mothers. Children born to 
diabetic mothers are more likely to be diagnosed with T2DM at each age range 
than those born to non-DM mothers. Black bars represent non-DM children. Grey 
bars represent DM children. Adapted from Pettitt et al. (44). 
 

 

 

 

 

 

 

 



 

10 

Endothelial Colony Forming Cell Model 

Endothelial colony forming cells  

 The overarching hypothesis of this thesis is that many of the 

cardiovascular complications experienced by children of DM mothers stem from 

the inability of the child’s stem and progenitor cells to maintain vascular health 

either by efficiently repairing damaged blood vessels or forming new vessels. 

Endothelial colony forming cells (ECFCs) are one of the progenitor cell subsets 

involved in these processes (49, 50). ECFCs are an endothelial progenitor 

population that circulate in peripheral and umbilical cord blood (UCB) (49-51). 

While this population of cells may be harvested from either source, ECFCs are 

enriched in UCB at 33-36 weeks gestational age, and this enrichment is 

maintained throughout the remainder of the pregnancy (51). Additionally, higher 

numbers of endothelial progenitors are found in UCB compared to adult 

peripheral blood (49, 52, 53). A hierarchy of ECFCs exists, and UCB has a larger 

proportion of high proliferative potential ECFCs (49, 54, 55). This population 

allows ECFCs from UCB to expand ex vivo, forming larger colonies with a higher 

proliferation rate, and forming network structures on matrigel matrix more quickly 

than ECFCs isolated from adult peripheral blood (49, 55). Given these data, UCB 

is an ideal source from which to harvest ECFCs. While ECFCs are utilized as a 

form of regenerative therapy (56, 57), it is our objective to extend their use. We 

aim to use these cells to better understand the pathophysiology behind the 

maladaptive phenotypes observed in children exposed to intrauterine DM.  
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Negative impact of a DM intrauterine environment on fetal ECFCs 

 Upon recognition that exposure to a DM intrauterine environment resulted 

in several adverse long-term clinical manifestations, research studies began to 

focus on the cellular mechanisms involved in these disorders. Of particular 

interest to our laboratory is the predisposition for hypertension experienced by 

individuals whose mothers had T2DM during pregnancy (39, 40, 45). Early 

studies from the Haneline laboratory indicate that ECFCs from uncomplicated 

pregnancies exposed to hyperglycemic conditions (10 and 15mM dextrose) 

display a dysfunctional phenotype (58). Specifically, when grown in vitro for 7 

days under hyperglycemic conditions, ECFCs exhibit diminished colony 

formation resulting from increased senescence and decreased proliferation (58). 

Additionally, hyperglycemia also decreased in vitro network formation on a 

matrigel matrix composed largely of laminin and collagen IV, indicating reduced 

ECFC functional capacity (58).  

 Because ECFCs exposed to acute hyperglycemic conditions exhibited 

profound dysfunctional phenotypes, the Haneline laboratory speculated that 

ECFCs exposed to intrauterine DM over the course of many months would 

display a similar, if not more severe pathophysiology. To test this hypothesis, 

ECFCs from DM human pregnancies were used to examine senescence, 

proliferation, and network-forming ability. Interestingly, ECFCs from DM 

pregnancies have decreased proliferation and increased senescence in vitro 

(58), suggesting DM exposure alters ECFC cell cycle progression. Further, 

ECFCs from DM pregnancies also exhibited reduced network formation in vitro 
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(59). Subsequent studies evaluated ECFC functional capacity in vivo. Using a 

xenograft transplantation assay, cellularized gel plugs containing either ECFCs 

from control or DM pregnancies were implanted into the flanks of 

immunodeficient mice. After 14 days, the plugs were removed and analyzed for 

vessel formation using anti-human CD31 staining. These studies indicated that 

ECFCs from DM pregnancies formed two-fold fewer chimeric vessels compared 

to ECFCs from uncomplicated pregnancies. Together these data demonstrated 

that ECFCs from DM pregnancies have significantly impaired vasculogenic 

function (58).  

Due to the numerous long-term adverse effects of intrauterine exposure to 

DM, a need exists to elucidate the molecular mechanisms involved. Currently, 

our laboratory aims to identify cellular and molecular alterations in ECFCs from 

DM pregnancies, which have the potential to be used as biomarkers to identify 

at-risk individuals or therapeutic targets to correct clinical ailments.  

The role of integrins in cellular adhesion and migration  

 Cellular migration is a result of complex, direct interactions between a cell 

and the extracellular matrix (ECM) and environmental cues such as cytokines 

and chemokines (60). This physical contact between a cell and the ECM occurs 

through dynamic signaling proteins known as integrins (60-62). Integrins are 

composed of heterodimers that contain an α-subunit and a β-subunit. Each 

subunit has an extracellular and a cytoplasmic domain (Fig. 1.4) (61, 63, 64). The 

extracellular domain binds specific motifs within ECM proteins, allowing the cell 

to adhere to the ECM. The cytoplasmic domain is responsible for signaling to 
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cytoskeletal proteins and inducing changes in signaling cascades to regulate 

actin polymerization and initiate migration (61-63).  

 Integrin-mediated adhesion is a dynamic process. For an endothelial cell 

to migrate, adhesion complexes must temporarily form, but also break down, 

allowing for motility through detachment from the ECM (60, 61, 65-67). In 

endothelial cells, this process is largely regulated by the activation of small Rho 

GTPases. During a process known as cellular polarization, chemotactic and 

cytokine stimuli initiate a local activation of signaling cascades to establish a 

leading edge of a cell (60, 68). In endothelial cells, these stimuli include vascular 

endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), 

angiopoietins, fibroblast growth factor-2, hepatocyte growth factor, platelet-

derived growth factor, epidermal growth factor, transforming growth factor-β 

(TGF-β), interleukins, tumor necrosis factor-α (TNF-α), platelet-activating factor, 

ephrins, soluble adhesion molecules, endoglin, and angiogenin (60). At the 

leading edge of a polarized cell, active cell division cycle protein 42 (Cdc42) 

induces the formation of filipodia, which sense the above listed migration stimuli 

(60, 61, 65-67). The cell next sends out extensions through active Ras-related 

C3 botulinum toxin substrate 1 (Rac-1)-dependent formation of lamellipodia (60, 

61, 65-67). These protrusions attach to the ECM through integrin interactions, 

leading to contraction of the cell body (60, 61, 65-67). Phosphatases then cause 

the trailing edge of the cell to detach from the ECM, and the cell moves forward 

(Fig. 1.5) (60, 61, 65-67). 
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 Migration is a critical step in establishing vascular networks. Migration of 

endothelial cells is essential during developmental vasculogenesis, but also for 

blood vessel repair and angiogenesis (56). During wound repair, endothelial cell 

monolayers compose the luminal surface of blood vessels. When this cell layer is 

disrupted, new endothelial cells migrate to repair the damaged area. Often, this 

process is mediated by growth factors such as VEGF and bFGF. Release of 

these growth factors at the site of injury results in endothelial cells bordering the 

wound to migrate into the injured area. This migration is a result of the growth 

factors binding directly to the integrins present on the endothelial cells, initiating 

the process of cellular polarization (60, 61, 65-67, 69, 70). Additionally, the 

growth factors may also bind to their specialized receptors present on the 

endothelial cell, leading to activation of intracellular signaling cascades. These 

growth factor mediated-cascades cross-talk with the integrin signaling cascades, 

resulting in polarization and cellular migration as described above (69, 70). 

These leading endothelial cells transmit the migratory signal to cells located 

further from the leading edge, and effectively direct a sheet migration (68, 71). 

 In normal physiology, most endothelial cells are quiescent (60, 68). 

However, when a tissue is deprived of nutritional content or exposed to hypoxic 

conditions, and therefore not adequately supported by pre-existing blood vessels, 

new vessels form (60, 68). During this process of angiogenesis, VEGF is 

produced by endothelial and vascular smooth muscle cells. This potent 

chemokine modulates the Notch/Dll4 pathway and directs endothelial cell 

migration via paracrine pathways. Ultimately, activation of the Notch/Dll4 
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pathway leads to the initiation of a tip cell, which directs the newly sprouting 

vessel. Other stalk cells follow behind the tip cell, creating a mature vessel (60, 

68). 

 Endothelial cells express a wide variety of laminin-binding integrins which 

enable cellular adhesion and migration, including α1, α2, α3, α6, α7, β1, and β4 

(64, 72). Each heterodimer has a specific location and function within the 

vasculature. For example, endothelial cells located in large blood vessels and the 

microvasculature express α2β1,α3β1, and α6β1, while α1β1 is only found in 

small vessels (72-77). The α6β4 heterodimer is located at the basement 

membrane of small vessels (72, 77, 78), while the α2β1 heterodimer is located 

on the cellular borders of the endothelium, and is believed to be responsible for 

regulating endothelial lining permeability (72, 75). The heterodimers α1β1, α2β1, 

and α6β1 have been implicated in in vitro network formation and in vivo 

angiogenesis (72, 79-82).  

 While each integrin subunit is of great importance to endothelial 

physiology, of particular interest is α6, which is known to participate in endothelial 

cell adhesion, migration, and network formation (83-85). Specifically, in ECFCs, a 

reduction in α6 expression decreased adhesion, migration, and network 

formation in vitro, as well as reduced reperfusion, capillary density, and ECFC 

incorporation into microvasculature in a murine hind limb ischemia model (85). 

Further, expression of the α6 integrin in endothelial cells is known to be regulated 

by transcription factors, as well as growth factors and inflammatory cytokines (86, 

87). In CD34+ endothelial progenitor cells, α6 expression was upregulated by 
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VEGF (84). Conversely, in mature endothelial cells, TNF-α and interleukin 1β 

reduced α6 integrin expression (83). Taken together, these data demonstrate a 

critical role of α6 integrin expression in endothelial cell function. 
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Figure 1.4. Integrins are composed of heterodimers. Each integrin 

heterodimer contains an α-subunit and a β-subunit. Each subunit contains an 

extracellular domain, which binds ECM proteins, and a cytoplasmic domain, 

which is responsible for directing intracellular signaling cascades.  



 

18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. Major steps of endothelial cell migration. Endothelial cell 
migration occurs in 6 sequential events: i) Cdc42-dependent filipodia sense 
stimuli; ii) Rac1-dependent formation of lamellipodia resulting in forward cell 
extension; iii) Attachment of the lamellipodia to the ECM; iv) Contraction of the 
cell body enabling forward momentum; v) Release of ECM at rear of the cell; and 
vi) Recycling of the adhesive and signaling structures. Adapted from Lamalice et 
al. (60). 
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The role of Mesenchyme Homeobox 2 (MEOX2) as a Transcription Factor 

MEOX2 regulates cell cycle progression 

 RNA microarray data from the Haneline laboratory suggested that the 

gene MEOX2 was differentially expressed in ECFCs from control and T2DM 

pregnancies. Following literature review, MEOX2 was considered a potentially 

interesting protein for subsequent studies. MEOX2 is a transcription factor that 

promotes senescence through both direct binding to the promoter regions of 

cyclin dependent kinase inhibitors (CDKIs), such as p16 and p21, and DNA-

binding independent mechanisms (88, 89). Cellular senescence is a state in 

which dividing cells exit the cell cycle and proliferation ceases. Normal cell cycle 

progression is regulated by phosphorylation events mediated by cyclin 

dependent kinases (CDKs) (90). However, during cellular senescence, CDKIs 

bind to the CDKs and prevent them from associating with cyclin proteins (91). 

This results in the inhibition of cyclin dependent kinase activation, preventing the 

phosphorylation of the retinoblastoma (Rb) protein (90, 91). Without this crucial 

phosphorylation step, G1/S phase progression is prevented (90, 91). As a result, 

cell cycle progression is halted and cells are unable to proliferate (Fig. 1.6) (91). 

 When MEOX2 was overexpressed in human umbilical vein endothelial 

cells (HUVECS), the homeodomain region of MEOX2 bound directly to the 

homeodomain binding site in the p16 promoter (88). The mechanism by which 

MEOX2 regulates p21 is not as clear. One study showed that MEOX2 

upregulation of p21 occurs in a DNA binding-independent manner (88). However, 

other studies demonstrated that when MEOX2 was overexpressed in HUVECs 
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that MEOX2 bound directly to an AT-rich site in the p21 promoter (92). 

Irrespective of the mechanism, however increased MEOX2 expression enhanced 

senescence (88) and decreased proliferation (89) in these studies. 

 Another study sought to identify novel downstream targets in MEOX2-

overexpressing HUVECs by conducting an RNA microarray. This study revealed 

that MEOX2 regulates a multitude of downstream proteins, including additional 

CDKIs, p19 and p57 (93). While these targets have yet to be verified, they are 

known to act in a similar manner as p16 and p21 (94). Further, the microarray 

data revealed that MEOX2 also regulates genes involved in cell adhesion, 

chemotaxis, and signal transduction, including β integrin subunits (93). 

Verification of these targets could lead to the identification of novel pathways 

regulated by MEOX2 and enable a more complete understanding of the 

mechanistic function of this protein. 
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Figure 1.6. Regulation of the cell cycle. Cells enter S phase by activating 
CDK4/6 and CDK2. Activation occurs when CDKs complex with cyclin proteins. 
In G1 phase, CDK4/6-cyclin D complex is activated, and thus deactivates Rb by 
phosphorylation. Next, E2F factors regulate expression of pro-proliferative 
signals including cyclin D, and allow cells to enter S phase. Activation of CDK2-
cyclin E complex causes the hyperphosphorylation of Rb, resulting in a full 
release of E2F. Expression of the E2F target gene, cyclin A, mediates 
progression through S phase. CDKIs including p16, p19, p21, and p57 inhibit the 
activity of CDKs. Adapted from Strauss et al. (91). 
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MEOX2 regulates migration  

 In addition to cell cycle regulation, a limited number of studies have 

examined the role of MEOX2 in cellular migration. Some evidence in vascular 

smooth muscle cells (VSMCs) demonstrated that MEOX2 inhibits migration in a 

dose-dependent manner, though the molecular mechanism was not investigated 

in detail. In VSMCs from both rabbits and rats, a higher multiplicity of infection 

(MOI) of viral particles containing a MEOX2 construct led to decreased migration 

in scratch wound healing and transwell migration assays (95, 96). Further, in 

HUVECs, increasing adenoviral transduction of both human and rat MEOX2 

constructs decreased migration at increasing MOIs (93). While these studies 

provided interesting initial insights into a potential link between MEOX2 

expression and migration, limitations exist. Neither study presented data 

confirming MEOX2 overexpression at the protein level. While these studies did 

utilize viral infection methods, without confirmation of protein overexpression, it is 

difficult to determine the merit of the functional readouts presented in the later 

assays. It is evident that additional studies of both MEOX2 overexpression and 

knockdown must be conducted to assess the regulatory role of MEOX2 in 

migration. Work in this thesis directly addresses this current knowledge gap. 

MEOX2 regulates vessel-formation 

 Reports in the literature show mixed results regarding the role of MEOX2 

in vessel-formation. In HUVECs, MEOX2 overexpression was reported to be 

antiangiogenic (89, 92, 93, 97). For example, when HUVECs were transduced 

with an adenovirus expressing MEOX2, VEGF-induced network formation 
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decreased in a dose-dependent manner with increasing MOI compared to GFP-

expressing controls. These data suggest that higher levels of MEOX2 result in 

reductions in network formation (89). Additional studies in HUVEC revealed that 

MEOX2 inhibits nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κB) signaling via direct interaction with p65, a subunit of NF-κB. These 

studies demonstrated that MEOX2 binds to p65 in the nucleus through its 

homeodomain, and prevents p65 from binding to its consensus sequence. This 

repression of the NF- κB signaling cascade leads to decreased network 

formation in response to growth stimuli (92, 93).  

 Conversely, in human and mouse brain endothelial cells (BECs), MEOX2 

overexpression achieved by adenoviral infection up to 100 MOI positively 

correlated with network formation in an MOI dose dependent manner. At higher 

levels (500 MOI), MEOX2 had no effect on network formation. Further, MEOX2 

depletion in human BECs reduced network formation in vitro, while MEOX2 

heterozygous mice displayed reduced capillary length and hypoxia-induced 

angiogenesis in vivo. In each of these studies, MEOX2 expression was 

confirmed at the protein level (98). Taken together, these data suggest that there 

are differences in the function of MEOX2 across cells types. Additionally, dosage 

affects the function of MEOX2. However, it is evident that MEOX2 does 

participate in regulating angiogenesis both in vitro and in vivo.  

Finally, MEOX2 impacts angiogenesis and vascular remodeling in a 

variety of additional cell types. In adventitial fibroblasts, MEOX2 overexpression 

reduced vascular remodeling through decreased inflammatory cytokine 
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expression (99). MEOX2 expression also reduced perivascular adipocyte 

proliferation and differentiation through decreased focal adhesion kinase and 

extracellular signal-related kinase 1/2 activities and increased p53 signaling, 

inducing apoptosis (100, 101). In epithelial cells, MEOX2 interacted with TGF-β 

signaling molecules to contribute to the antiangiogenic response of this pathway. 

Specifically, MEOX2 and TGF-β synergized to maximally inhibit proliferation, an 

effect that was greater than that of either protein individually (102). 

MEOX2 involvement in a multitude of other processes 

 In addition to participating in cell cycle regulation and vessel-formation, 

MEOX2 is involved in a myriad of other processes. Early studies focused on the 

role of MEOX2 in development and found a requirement for MEOX2 in palate 

development (103, 104) and limb myogenesis (105, 106).  

 The role of MEOX2 in cancer progression seems to be tissue-specific. 

High MEOX2 expression is linked to poor survival in individuals with non-small 

cell lung cancer. Specifically, in these lung tumors, the promoter sequence of 

MEOX2 displayed lower expression of repressive histone markers despite 

comparable levels of DNA methylation in noncancerous tissues. Additionally, 

lung tumors had higher levels of MEOX2 protein. Although the exact mechanism 

is still uncharacterized, MEOX2 expression correlated with increased 

chemoresistance and ultimately decreased survival (107). However, in 

hepatocellular carcinoma, MEOX2 expression had the opposite effect on 

survival. Analysis of cancerous tissues revealed that MEOX2 mRNA and protein 

expression were lower than in noncancerous samples. Further, correlation 
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analysis of MEOX2 expression and clinical features revealed that lower MEOX2 

levels were associated with increased tumor invasion and ultimately poor survival 

rates (108). Together, these data suggest that although MEOX2 is involved in 

multiple physiological and pathophysiological processes the specific role of 

MEOX2 varies across cell and tissue type. 
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Hypothesis and Aims 

 
Hypothesis: Upregulated MEOX2 in ECFCs from DM pregnancies decreases 

network formation through impairments in senescence, cell cycle progression, 

migration, adhesion, and integrin signaling. 

 

Aim 1: Determine whether MEOX2 is increased in ECFCs from DM pregnancies. 

 

Aim 2: Determine whether MEOX2 regulates senescence, cell cycle progression, 

network formation, and migration of ECFCs. 

 

Aim 3: Determine whether MEOX2 regulates migration through differential 

integrin expression in ECFCs from DM pregnancies. 
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CHAPTER 2: MATERIALS AND METHODS 

Umbilical Cord Blood Collection 

 Following informed consent, umbilical cord blood samples were collected 

from healthy pregnancies and pregnancies complicated by T1DM and T2DM. All 

pregnancies were singleton gestations. Women with preeclampsia, hypertension, 

or other illnesses known to affect glucose metabolism were excluded. Infants 

born with identified chromosomal abnormalities were excluded. This protocol was 

approved by the Institutional Review Board at the Indiana University School of 

Medicine. 

Cell Culture 

 ECFCs were cultured from the umbilical cord blood by the Angio BioCore 

at the Indiana University Simon Cancer Center as previously described (58). 

Briefly, following harvest, umbilical cord blood was diluted 1:1 with phosphate 

buffered saline (PBS) and underlaid with an equal volume of Ficoll-Paque PLUS 

(GE Healthcare, Piscataway, NJ). Blood was centrifuged for 30 min at room 

temperature at 740g. Mononuclear cells (MNCs) were harvested and washed 

with Endothelial Basal Media-2 (EBM-2, Lonza, Walkersville, MD) containing an 

additional 10% fetal calf serum (FCS, Atlanta Biologicals, Flowery Branch, GA) 

and antibiotic-antimycotic solution (Corning, Manassas, VA). 

 MNCs were resuspended in Endothelial Growth Media-2 (EGM-2, Lonza) 

and plated in six-well dishes, which were pre-coated with type I collagen 

(Corning) at 5x106 cells per well. After 24 hr, adherent cells were washed with 

EGM-2. EGM-2 was changed daily for 7 days, and then every other day until the 
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first passage. Colonies of endothelial cells began to arise between days 5 and 8 

of culture. Cells were harvested using trypsin (Corning) and passaged when they 

reached confluency. 

 Early passage ECFCs (≤ passage 6) were used for experiments. For 

routine culture, ECFCs were grown in EGM-2 containing an additional 10% FCS 

and antibiotic-antimycotic solution. HeLa (ATCC, Manassas, VA) and Lenti-X 

293T cells (ATCC) were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

(Corning) containing 10% FCS and antibiotic-antimycotic solution. 

Western Blotting 

 Nuclear lysates were obtained using the NE-PER Nuclear and 

Cytoplasmic Extraction Reagents Kit (ThermoFisher, Waltham, MA). Whole cell 

lysates were obtained by lysing cells in radio-immunoprecipitation assay (RIPA) 

buffer containing Complete Protease Inhibitor Cocktail (Roche Applied Science, 

Indianapolis, IN). Equal amounts of lysate were loaded on precast 4-12% bis-tris 

gels (Life Technologies, Grand Island, NY), separated by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE), and transferred to 

nitrocellulose membranes (Bio-Rad, Hercules, CA). Membranes were 

immunoblotted with the following primary antibodies: mouse anti-Lamin A/C (Cell 

Signaling Technology, Danvers, MA), mouse anti-MEOX-2 [JJ-7] (Santa Cruz 

Biotechnology, Dallas, TX), rabbit anti-CDKN2A/p16INK4a [EP4353Y3] (Abcam, 

Cambridge, MA), rabbit anti-SP-1 (Cell Signaling Technology), rabbit anti-α6 

integrin (Cell Signaling Technology), and mouse anti-vinculin (Sigma Aldrich, St. 

Louis, MO). Membranes were incubated in secondary antibodies conjugated to 
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horseradish peroxidase (Bio-Rad). Blots were developed with Supersignal West 

Femto (ThermoFisher), exposed to film, and compiled in Adobe Photoshop CS6. 

Band intensity was quantified using ImageJ 1.45s. 

Generation of Lentivirus Encoding MEOX2 cDNA and short hairpin (sh) 

MEOX2 Constructs  

 The lentiviral vector plasmid (pUC2CL6IPwo), packaging accessory 

plasmids (pCD/NL2 and pCD/NL-BH), and envelope plasmid (pVSVG) were 

generous gifts from Helmut Hanenberg (Heinrich Heine University School of 

Medicine, Düsseldorf, Germany) (109, 110). MEOX2 cDNA (RC501948, OriGene 

Technologies Inc., Rockville, MD) was subcloned into pUC2CL6IPwo.The 

lentiviral vector plasmid (pGIPZ) containing an shMEOX2 construct was obtained 

from GE Dharmacon (Lafayette, CO) (RHS4430-200162184; Clone ID: 

V2LHS_207280). Both lentiviral vectors contain a puromycin resistance cassette, 

which enabled selection of transduced cells. Lentiviral particles were produced 

by transfection of Lenti-X 293T cells with the appropriate lentiviral vector (1.16 

μg/ml), a packaging accessory plasmid (1.16 μg/ml), and a VSVG envelope 

plasmid (1.67 μg/ml) using Fugene 6 (Roche Applied Science). The 

pUC2CL6IPwo vector required the use of the pCD/NL2 packaging plasmid, while 

the pGIPZ vector was tat-dependent and required the pCD/NL-BH packaging 

plasmid. Lentiviral supernatants were collected and filtered through a 0.45-μm 

asymmetric polyethersulfone filter unit (ThermoFisher). Supernatants were used 

immediately or stored at −80 °C for future use. 
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Lentiviral Transduction of ECFCs 

 ECFCs were plated at 250,000 cells per dish in 100mm type I collagen-

coated tissue culture dishes. The following day, lentiviral supernatant was added 

to each dish at dilutions of 1:2 to 1:10. The media was changed 24 hr after 

transduction, and cells were incubated overnight at 37°C. Transduced cells were 

selected in media containing 1 μg/ml puromycin (ThermoFisher) for 2 days. 

MEOX2 expression was evaluated by western blotting to confirm overexpression 

or knockdown. 

siRNA Transfection 

 ECFCs were transfected with short-interfering RNAs (siRNAs) (20 μM) 

using Lipofectamine RNAiMAX (ThermoFisher) according to the manufacturer’s 

instructions. ECFCs were transfected with either a nontargeting smart-pool 

siRNA (siControl) (D-001810-10-05, ON-TARGETplus, GE Dharmacon) or 

human MEOX2 siRNA (siMEOX2) (J-012176-08, ON-TARGETplus, GE 

Dharmacon). Media was changed after 24 hr. Cells were passaged 48 hr 

following transfection and plated for cell-cycle analysis, matrigel network 

formation, and transwell migration assays. MEOX2 expression was examined by 

western blotting to confirm knockdown 3 days following transfection. 
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Flow Cytometric Analysis of p16 Expression 

 ECFCs were harvested using trypsin, and permeabilized and fixed with 

Cytofix/Cytoperm (BD Biosciences, San Jose, CA). Cells were stained with PE-

conjugated, mouse anti-p16 (BD Biosciences), and analyzed on an LSRII 

(Becton Dickinson, San Jose, CA) in the Indiana University Simon Cancer Center 

Flow Cytometry Core. HeLa cells, which have detectable p16 at baseline, were 

used as a positive control. A minimum of 10,000 events was recorded per 

sample. Mean fluorescence intensity was quantified using FlowJo Single Cell 

Analysis Software vX.0.6. 

Senescence Assays 

 ECFCs were plated in type I collagen-coated six-well tissue culture plates 

at 10,000 cells per well. After 3 days, senescence-associated β-galactosidase 

staining was performed as previously described (58, 109). Briefly, cells were 

washed with PBS and fixed with 2% formaldehyde and 0.2% gluteraldehyde for 5 

min at room temperature. Cells were washed with PBS and stained for 24 hr with 

150mmol/l β-galactosidase solution, 2mmol/l MgCl2, 40 mmol/l trisodium citrate, 

5mmol/l potassium ferricyanide, 5 mmol/l potassium ferrocyanide, at pH 6, and 

containing X-Gal dye (5-bromo-4-chloro-3-indoyl-β-D-galactopyranoside) 

(Invitrogen, Grand Island, NY). β-galactosidase positive staining was determined 

by visual scoring of deep blue stained cells. At least 100 total cells per well were 

scored, and the percentage of β-galactosidase positive cells was determined. 
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Cell Cycle Analysis 

 ECFCs were plated in 100mm type I collagen-coated tissue culture dishes 

at 400,000 cells per dish. After 24 hr, cells were incubated with BrdU labeling 

reagent (Invitrogen) for 1 hr. Cells were stained as previously described (111). 

Briefly, cells were trypsinized, resuspended in 70% ice-cold ethanol, and placed 

at -20°C. After 16 hr, cells were centrifuged, resuspended in 2N hydrochloric 

acid, and incubated at room temperature for 25 min. Following an additional 

centrifugation, cells were resuspended in 50mM sodium borate pH 8.5 and 

incubated for 2 min at room temperature. Cells were stained using Alexa Flour 

488 mouse anti-BrdU (Invitrogen) for 90 min at room temperature and 7-AAD 

(Life Technologies) for 15 min at room temperature. Samples were analyzed by 

flow cytometry on the LSRII 407nm laser and a minimum of 10,000 events was 

recorded per sample. Analysis was performed using FlowJo Single Cell Analysis 

Software vX.0.6. 

Matrigel Network Formation Assay 

 ECFCs were plated in 100mm type I collagen-coated tissue culture dishes 

at 400,000 cells per dish. After 1 day in culture, cells were trypsinized and plated 

at 4,500 cells per well in triplicate in angiogenesis 15μ-slides (Ibidi USA, Inc., 

Madison, WI). Wells were coated with 10μl matrigel matrix (Corning) and cells 

were plated in EGM2. Phase contrast images were obtained using a Spot 

camera (Spot Imaging, Sterling Heights, MI) on an Axiovert 35 microscope 

(Zeiss, Thornwood, NY) at times indicated. The number of closed networks per 

well was scored and averaged for each condition. 
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Transwell Migration Assays 

 ECFCs were plated in 100mm dishes at 400,000 cells per dish. After 1 day in 

culture, cells were serum-starved in EBM-2 for 1 hr and then trypsinized. Cells 

were plated on type I collagen-coated 8.0μm pore size transwell inserts 

(Corning). ECFCs were plated at 3-5x104 cells per insert. The number of cells 

was kept constant for each replicate. Inserts were placed in 24-well dishes 

containing EGM-2, 10% FCS, and antibiotic-antimycotic solution, and incubated 

for 4 hr at 37°C. Transwell surfaces were wiped with cotton swabs to remove 

non-migrated cells and then fixed with cold 100% methanol for 15 min. After 

fixation, cells were washed with PBS and stained with 1% crystal violet in 10% 

acetic acid for 10 min at room temperature. After brief destaining, phase contrast 

images were obtained using a Spot camera on an Axiovert 35 microscope, and 

the number of migrated cells was scored. 

Adhesion Assays 

 ECFCs were plated in 100mm dishes at 400,000 cells per dish. After 1 day in 

culture, cells were trypsinized and plated in 96-well dishes coated with type I 

collagen (0.05mg/ml), type IV collagen (0.1 mg/ml) or laminin (0.1 mg/ml) (Sigma 

Aldrich) at 5,000 cells per well. Cells were fixed with 4% paraformaldehyde for 15 

min at 37°C, at time points denoted in the figure legends. After fixation, cells 

were washed with phosphate buffered saline and stained with 1% crystal violet in 

distilled water for 10 min. Cells were washed with distilled water, and the crystal 

violet stain was dissolved in 10% acetic acid. Plates were placed on a plate 
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rocker for 5 min. Absorbance was quantified using a VersaMax Tunable 

microplate reader (Molecular Devices, Sunnyvale, CA) at 590 nm. 

Flow Cytometric Analysis of Integrin Surface Expression 

 ECFCs were plated in 100mm type I collagen-coated tissue culture dishes at 

400,000 cells per dish. After 1 day in culture, cells were serum-starved in EBM-2 

for 1 hr and then stimulated for 4 hr in EGM-2 containing an additional 10% FCS 

and antibiotic-antimycotic solution. Cells were harvested by scraping using 

versene (Life Technologies) and resuspended in ice cold PBS containing 2% 

FCS. Cells were triple-stained in two groups for 30 min in the dark at 4°C. Group 

1 was stained with FITC-conjugated, anti-α1 integrin (BioLegend, San Diego, 

CA), APC-conjugated, anti-α3 integrin (BioLegend), and PE-conjugated, anti-α6 

integrin (BioLegend). Group 2 was stained with PE-conjugated, anti-α2 integrin 

(BioLegend), anti-α7 integrin (Abcam), and APC/Cy7-conjugated, anti-β1 integrin 

(BioLegend). Following staining with anti-α7 integrin (Abcam) cells were stained 

with Alexa Fluor 488 goat anti-rabbit (Jackson ImmunoResearch Laboratories, 

West Grove, PA). Samples were analyzed by flow cytometry on the LSRII 407nm 

laser and a minimum of 10,000 events was recorded per sample. Analysis was 

performed using FlowJo Single Cell Analysis Software vX.0.6.  

Real-Time Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR) 

 ECFCs were lysed in Qiazol (Qiagen, Valencia, CA), and RNA was purified 

using the miRNeasy kit (Qiagen). RNA was reverse transcribed using a qScript 

cDNA Master Mix Kit (Quanta Biosciences, Beverly, MA). Reverse-transcriptase 

PCR was performed on a Lightcycler 480 (Roche). Detection of α6 integrin, 
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hypoxanthine phosphoribosyltransferase (HPRT), and MEOX2 was performed 

using Lightcycler 480 SYBR Green I Master Mix (Roche). HPRT was used to 

normalize α6 integrin values using the 2-ΔΔCt method. The primer sequences used 

are provided in Table 2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

36 

Table 2.1. RT-PCR Primers 
Gene Primer Sequences 

α6 integrin 5′-TTTGAAGATGGGCCTTATGAA-3′ 
5′-CCCTGAGTCCAAAGAAAAACC-3′ 
 

HPRT 5′-CCTTGGTCAGGCAGTATAATCCA-3′ 
5′-GGTCCTTTTCACCAGCAAGCT-3′ 
 

MEOX2 5′-AGAGGAAAAGCGACAGCTCA-3′ 
5′-AAGTTCTCTGATTTGCTCTTTGGT-3′ 
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Chromatin Immunoprecipitation (ChIP) Assay 

 ECFCs were plated in 100mm type 1 collagen-coated tissue culture 

dishes at 1x106 cells per dish. After 24 hr, cell extracts were prepared by 

crosslinking DNA-protein complexes and isolating nuclei using the SimpleChIP 

Enzymatic Chromatin Immunoprecipitation Kit (Cell Signaling) according to the 

manufacturer’s protocol. Lysates were sonicated (4 cycles, 30 seconds on, 30 

seconds off) at 4°C using the Bioruptur Plus (Diagenode, Seraing, Belgium). 

Lysates were centrifuged to remove cell debris. Samples were incubated 

overnight with the following antibodies: mouse anti-flag M2 (Sigma Aldrich) or 

mouse anti-IgG isotype control (Cell Signaling Technologies). Two percent of the 

samples were used as input. DNA-protein complexes were collected with ChIP-

grade Protein G magnetic beads (Cell Signaling Technologies) for 2 hr at 4°C 

and washed 4 times with SimpleChIP Enzymatic Chromatin IP Kit wash buffers 

for 5 min at 4°C. DNA was eluted in SimpleChIP Enzymatic Chromatin IP Kit 

elution buffer by shaking for 30 min at 65°C. DNA was purified using the DNA 

Clean and Concentrator-5 Kit (Zymo Research, Irvine, CA) and analyzed by RT-

PCR, performed on a Lightcycler 480. The primer sequences used are provided 

in Table 2.2.  
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Table 2.2. ChIP Primers 
Gene Primer Sequences 

α6 integrin 5′-ACAACCCATCCTTGACTTGC-3′ 
5′-CCTTGTCCCCAGATCACCTA-3′ 
 

p16 5-AGGATTCCTTTTGGAGAGTCG-3′ 
5′-CCCAGACAGCCGTTTTACAC-3′ 
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Statistical Analysis 

 Data illustrated are mean ± SEM. Paired and unpaired t-tests and 

repeated measures 2-way ANOVAs were conducted when appropriate, as 

denoted in the figure legends. Graphpad Prism 6 was used for all statistical 

analyses, and significance was noted when p<0.05. 
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CHAPTER 3: RESULTS 

Aim 1: Determine whether MEOX2 is increased in ECFCs from DM 

pregnancies. 

MEOX2 RNA and total protein is not increased in ECFCs from DM pregnancies 

 Preliminary RNA microarray studies indicated that ECFCs from DM 

pregnancies had increased MEOX2 levels. To further validate this result in a 

larger population, RNA and protein were isolated from ECFCs from control and 

DM pregnancies followed by RT-PCR and western blotting, respectively. 

Surprisingly, no differences were detected in MEOX2 RNA between ECFCs from 

control and DM pregnancies (Fig. 3.1). Further, total protein was comparable 

between samples from control and DM pregnancies (Fig. 3.2). 
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Figure 3.1. MEOX2 RNA is not increased in ECFCs from DM pregnancies. 
RNA was harvested from ECFCs from control and DM pregnancies and RT-PCR 
was performed. Results were normalized to HPRT and to the mean control 
expression for MEOX2. n=15 control, n=17 DM, p>0.05 by unpaired t-test.  
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Figure 3.2. MEOX2 total protein is not increased in DM-exposed ECFCs. (A) 
Representative western blot. Whole cell lysates from ECFCs from control and 
DM pregnancies were separated by SDS-PAGE. Blots were probed for MEOX2 
and vinculin, as a loading control. (B) Quantitation of total MEOX2 expression. 
n=14 control, n=17 DM, p>0.05 by unpaired t-test.  
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Nuclear MEOX2 is increased in ECFCs from DM pregnancies 

 Although MEOX2 RNA and total protein did not differ between ECFCs 

from control and DM pregnancies, we sought to determine whether there was a 

difference in MEOX2 protein subcellular localization. Because MEOX2 is a 

transcription factor (88, 89) whose functional role occurs in the nucleus, we 

hypothesized that there would be increased nuclear MEOX2 in ECFCs from DM 

pregnancies. To determine whether nuclear MEOX2 is increased in ECFCs from 

DM pregnancies, western blotting analyses were conducted using nuclear 

lysates. As recently published, these data confirmed increased nuclear MEOX2 

in ECFCs from DM pregnancies compared to control samples (Fig. 3.3) (112). 

While some heterogeneity in MEOX2 levels was evident in DM-exposed 

samples, nuclear MEOX2 was consistently higher in these samples compared to 

controls. We speculate this heterogeneity may be due to the heterogeneity of the 

disease, as management of DM during pregnancy can vary drastically in an 

individual and across different pregnancies (113).  
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Figure 3.3. ECFCs from DM pregnancies have increased nuclear MEOX2.  
(A) Representative western blot. Nuclear lysates from ECFCs were separated by 
SDS-PAGE. Blots were probed for MEOX2 and SP-1, as a loading control. (B) 
Quantitation of nuclear MEOX2 expression. n=8 control, n=11 DM, *p<0.05 by 
unpaired t-test.  
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Aim 2: Determine whether MEOX2 regulates senescence, cell cycle 

progression, network formation, and migration of ECFCs. 

MEOX2 overexpression is sufficient to alter functional capacity of ECFCs 

MEOX2 is implicated in the upregulation of p16 to induce senescence in 

HUVECS (88). Previously, the Haneline laboratory showed that ECFCs from DM 

pregnancies have increased senescence, decreased cell cycle progression, and 

decreased network formation (58). Therefore, we questioned whether increased 

MEOX2 expression in control ECFCs was sufficient to induce impaired function. 

To test this hypothesis, MEOX2 was overexpressed in ECFCs from control 

pregnancies using a lentiviral vector. ECFCs transduced with an empty lentiviral 

vector were used as a control. Overexpression was confirmed by western blotting 

(Fig. 3.4).  The data from these studies were recently published (112). 

 Because p16 is a known mediator of senescence (94, 114), p16 

expression was examined using two methods. Initially, p16 expression was 

measured using western blotting techniques with nuclear lysates. MEOX2 

overexpression in control ECFCs resulted in an increase in p16 compared to 

ECFCs transduced with the empty vector (Fig. 3.4). While this result provided 

initial insight into p16 levels in a population of cells, it did not elucidate p16 

expression on a cell by cell basis. To further validate this result on a single-cell 

basis, flow cytometric analysis was employed to detect intracellular p16. The 

results indicated that control ECFCs transduced with the empty vector control 

have very low levels of p16 staining (Fig. 3.5). In contrast, a subset of ECFCs 

transduced with the lentivirus containing the MEOX2 cDNA have higher p16 
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levels. These data confirmed an increase in p16 in a subset of ECFCs that 

overexpress MEOX2. Additionally, β-galactosidase senescence assays showed 

that MEOX2 overexpression increased the number of senescent cells (Fig. 3.6) 

(112). Interestingly, when MEOX2 was overexpressed, similar levels of p16 

staining and senescent ECFCs were observed. We speculate that ECFCs with 

high p16 expression undergo senescence as a result of MEOX2 overexpression. 

 Our previous data demonstrate that ECFCs from DM pregnancies have 

reduced proliferation (58). Therefore, we questioned whether increased MEOX2 

was sufficient to alter cell cycle progression of control ECFCs. To examine cell 

cycle progression, cells were pulsed with BrdU for 1 hr and levels of BrdU and 7-

AAD were detected using flow cytometry. In control ECFCs with increased 

MEOX2 expression, an increase in the proportion of cells in the G1 phase and a 

decrease in the proportion of cells in the G2 phase were observed compared to 

control ECFCs (Fig. 3.7) (112). Surprisingly, the proportion of ECFCs in S phase 

was unaltered. Because MEOX2 overexpression increased senescence (Fig. 

3.6), a subsequent reduction in proliferation, as indicated by a reduction in the 

proportion of ECFCs in S phase was expected. 

 Given that MEOX2 overexpression in control cells led to increased 

senescence and altered cell cycle progression, it was predicted that 

overexpression of MEOX2 in control ECFCs would reduce network formation in 

vitro. Surprisingly, MEOX2 overexpression in control ECFCs increased the 

number of closed networks compared to the empty vector controls (Fig. 3.8 A 

and B). To verify that the alterations in network formation were due to MEOX2 
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protein levels, and not an inherent characteristic of the control ECFC phenotype, 

MEOX2 was also overexpressed in ECFCs from DM pregnancies. Data from 

these studies showed that MEOX2 overexpression in DM samples also 

increased the number of closed networks compared to the empty vector controls 

(Fig. 3.8 C and D) (112). Together, these data suggest that MEOX2 

overexpression is sufficient to induce changes in senescence, cell cycle 

progression, and network formation. However, there is a disconnect between the 

observed phenotypes. It was expected that the increased senescence and 

altered cell cycle progression observed with MEOX2 overexpression would result 

in reduced network formation. Because there were fewer cells progressing 

through the cell cycle, it was expected that there would be fewer actively 

proliferating cells available to form network structures, ultimately resulting in 

deficits in network formation. However, the data instead suggest that MEOX2 

regulation of senescence and cell cycle progression does not negatively impact 

overall vasculogenic function. 
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Figure 3.4. MEOX2 was overexpressed in control ECFCs using lentiviral 
transduction techniques. Representative western blot illustrating MEOX2 and 
p16 expression. Nuclear lysates were analyzed for MEOX2, p16, and SP-1 as a 
loading control. Numbers represent separate transductions of ECFCs from 
different pregnancies. 
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Figure 3.5. MEOX2 overexpression in control ECFCs increased p16 
expression. (A) Representative gating strategy of intracellular p16 expression in 
transduced ECFCs. p16 expression was measured by intracellular staining 
followed by flow cytometry. (B) Quantitation of p16+ cells by flow cytometry. n=4 
transductions, *p<0.001 by paired t-test. 
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Figure 3.6. MEOX2 overexpression in control ECFCs increased 
senescence. (A) Representative images from 3-day senescence-associated-β-
galactosidase assays with transduced ECFCs (100x magnification). Arrows 
denote location of senescent cells. Scale bars represent 100μm. (B) Quantitation 
of 3-day senescence-associated-β-galactosidase assays, n=4 transductions, 
*p<0.05 by paired t-test. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 



 

51 

 
 
Figure 3.7. MEOX2 overexpression in control ECFCs altered cell cycle 
progression. (A) Representative gating strategy to measure cell cycle 
progression of transduced ECFCs. Cell cycle analysis was conducted using flow 
cytometric analysis of BrdU and 7-AAD staining. (B) Quantitation of cell cycle 
analysis of transduced ECFCs, n=3 transductions, *p<0.001 by repeated 
measures 2-way ANOVA. 
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Figure 3.8. MEOX2 overexpression in control and DM-exposed ECFCs 
enhanced network formation. (A) Representative images from matrigel 
network formation assay with transduced control ECFCs at 8 hr post-plating (50x 
magnification). Scale bar represents 200μm. (B) Quantitation of matrigel network 
formation assay with transduced control ECFCs at 8 hr post-plating, n=3 
transductions, *p<0.05 by paired t-test. (C) Representative images from matrigel 
network formation assay with transduced DM-exposed ECFCs at 8 hr post-
plating (50x magnification). Scale bar represents 200μm. (D) Quantitation of 
matrigel network formation assay with transduced DM-exposed ECFCs at 8 hr 
post-plating, n=6 transductions, *p<0.05 by paired t-test. 
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MEOX2 is required to alter network formation, but not senescence or cell cycle 

progression 

 
To determine whether MEOX2 was required to induce changes in ECFCs 

from DM pregnancies, MEOX2 was depleted using either an shRNA or siRNA 

approach. shRNA methods were utilized when assays required long-term, stable 

knockdown of MEOX2, such as 3-day senescence assays. However, the shRNA 

transduction process was more labor intensive and was not as efficient as the 

transient siRNA knockdown methods. Therefore, when assays required only 

short-term knockdown of MEOX2, siRNA approaches were used. Nevertheless, 

knockdown was confirmed by western blotting for both approaches (Fig. 3.9). To 

determine the time of optimal MEOX2 knockdown by siRNA, time course 

experiments were conducted. Western blotting experiments revealed that optimal 

MEOX2 knockdown was achieved between days 3 and 4 following siRNA 

transfection (Fig. 3.10).  Data from these studies were recently published (112). 

 Following confirmed MEOX2 knockdown, ECFCs from DM and control 

pregnancies were analyzed for alterations in cellular and functional phenotypes. 

Despite average MEOX2 knockdown of greater than 90%, senescence of DM-

exposed ECFCs was no different to ECFCs transduced with the shControl vector 

(Fig. 3.11). Senescence assays were not conducted in control ECFCs because 

at baseline, these cells have negligible senescent cells. We speculated that 

detection below this already low threshold would be unlikely. Similarly, flow 

cytometric cell cycle analysis indicated that MEOX2 knockdown in ECFCs from 
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DM (Fig. 3 .12 A and B) and control (Fig. 3.12 C and D) pregnancies did not alter 

cell cycle progression (112).  

To examine whether MEOX2 knockdown improved network formation, 

matrigel assays were conducted. Because MEOX2 overexpression in control 

ECFCs resulted in an increase network formation, we hypothesized that MEOX2 

knockdown would lead to decreased vasculogenesis in vitro. Further, we 

expected to see a similar decrease in network formation upon MEOX2 

knockdown in ECFCs from DM pregnancies. Although MEOX2 knockdown in 

control ECFCs did not affect network formation (Fig. 3.13 A and B), MEOX2 

knockdown in ECFCs from DM pregnancies resulted in decreased network 

formation compared to siControls (Fig. 3.13 C and D), complimentary to the 

MEOX2 overexpression assays (Fig. 3.8) (112). We speculate that differences 

were not observed in the control ECFCs, because of the low baseline levels of 

MEOX2 protein, whereas ECFCs from DM pregnancies had higher MEOX2 

protein levels at baseline.  
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Figure 3.9. MEOX2 was knocked down in cells from DM pregnancies using 
shRNA or siRNA techniques. (A) Representative western blot depicting 
MEOX2 expression when knocked down by shRNA. Lamin A/C was used as a 
loading control. Numbers represent separate transductions of ECFCs from 
different pregnancies. (B) Representative western blot showing MEOX2 
expression when knocked down by siRNA. SP-1 was used as a loading control. 
Numbers represent separate transfections of ECFCs from different pregnancies. 
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Figure 3.10. siMEOX2 reduced MEOX2 protein levels following transfection. 
Representative western blot depicting MEOX2 knockdown in whole cell lysates 
from ECFCs from DM pregnancies on days 3, 4, 5, and 6 following transfection. 
Vinculin was used as a loading control.  
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Figure 3.11. MEOX2 knockdown in ECFCs from DM pregnancies did not 
alter senescence. (A) Representative images from 3-day senescence-
associated-β-galactosidase assays with transduced ECFCs (100x magnification). 
Arrows denote location of senescent cells. Scale bars represent 100μm. (B) 
Quantitation of 3-day senescence-associated-β-galactosidase assays, n=9 
transductions, p>0.05 by paired t-test. 
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Figure 3.12. MEOX2 knockdown in ECFCs from DM and control 
pregnancies did not alter cell cycle progression. (A) Representative gating 
strategy to measure cell cycle progression of transfected DM-exposed ECFCs. 
Cell cycle analysis was conducted using flow cytometric evaluation of BrdU and 
7-AAD staining. (B) Quantitation of cell cycle analysis of transfected DM-exposed 
ECFCs, n=9 transfections, p>0.05 by repeated measures 2-way ANOVA. (C) 
Representative gating strategy to measure cell cycle progression of transfected 
control ECFCs. Cell cycle analysis was conducted using flow cytometric 
evaluation of BrdU and 7-AAD staining. (D) Quantitation of cell cycle analysis of 
transfected control ECFCs, n=5 transfections, p>0.05 by repeated measures 2-
way ANOVA. 
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Figure 3.13. MEOX2 knockdown in ECFCs from DM pregnancies altered 
network formation. (A) Representative images from matrigel assay with 
transfected control ECFCs at 8 hr post-plating (50x magnification). Scale bar 
represents 200μm. (B) Quantitation of matrigel assay with transfected control 
ECFCs at 8 hr post-plating, n=5 transfections, p>0.05 by paired t-test. (C) 
Representative images from matrigel assay with transfected DM-exposed ECFCs 
at 8 hr post-plating (50x magnification). Scale bar represents 200μm. (D) 
Quantitation of matrigel assay with transfected DM-exposed ECFCs at 8 hr post-
plating, n=12 transfections, *p<0.01 by paired t-test. 
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MEOX2 alters migration in ECFCs 

 Together, the data indicate that MEOX2 is both sufficient and required 

to alter network formation, supporting a regulatory role in vasculogenesis. 

Surprisingly, however, the data also indicate that this regulation is independent of 

alterations to senescence and cell cycle progression. Inasmuch, other possible 

mechanisms by which MEOX2 regulates vasculogenesis in ECFCs were 

examined. Migration is a critical step in establishing vascular networks (56). 

Therefore, ECFC migratory capacity was examined in ECFCs from control and 

DM pregnancies. As presented in our recent publication, a 50% reduction in 

migration was observed in ECFCs from DM pregnancies when plated on 

collagen I (Fig. 3.14), congruent with our previously published network formation 

data (58). However, ECFCs from DM pregnancies had normal migration on 

collagen IV and laminin (Fig. 3.14) (112). 

 To determine if MEOX2 is sufficient to alter migration, MEOX2 was 

overexpressed in ECFCs from control and DM pregnancies. Interestingly, 

MEOX2 overexpression in ECFCs from uncomplicated pregnancies increased 

migration on collagen I (112) and laminin (Fig. 3.15), consistent with the 

observed increases in network formation (Fig. 3.8 A and B). In contrast, MEOX2 

overexpression in control cells did not affect migration on collagen IV (Fig. 3.15). 

Similarly, MEOX2 overexpression in DM-exposed ECFCs also increased 

migration on collagen I (Fig. 3.16), consistent with the observed increases in 

network formation (Fig. 3.8 C and D) (112). 
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 To determine if MEOX2 is required to alter migration, MEOX2 was 

knocked down in ECFCs from DM pregnancies. MEOX2 knockdown in DM-

exposed ECFCs decreased migration on collagen I (112) and laminin (Fig. 3.17), 

congruent with decreased network formation (Fig. 3.13 C and D). However, 

MEOX knockdown in DM-exposed ECFCs did not alter migration on collagen IV 

(Fig. 3.17).  

 Taken together, these data suggest that ECFCs from DM pregnancies 

have reduced migratory capacity on collagen I. Further, these data suggest that 

MEOX2 is both sufficient and required to alter migration on collagen I and 

laminin, but not on collagen IV. Although deficits in migratory capacity on laminin 

were not observed in DM-exposed ECFCs, we speculate MEOX2 is involved in 

regulating migration on this ECM. Specifically, we observed that MEOX2 

overexpression in control ECFCs increased migration on laminin, whereas 

MEOX2 knockdown in DM-exposed ECFCs decreased migration on laminin. It is 

conceivable that increased nuclear MEOX2 may enable maintained migration of 

these ECFCs despite exposure to a DM environment in utero.  
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Figure 3.14. ECFCs from DM pregnancies had reduced migration on 
collagen I, but normal migration on collagen IV and laminin. Representative 
images and quantitation of transwell migration assay with ECFCs from control 
and DM pregnancies (320x magnification). Scale bars represent 30μm, n=6 
control, 6 DM, *p<0.01 by unpaired t-test.  
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Figure 3.15. MEOX2 overexpression in ECFCs from uncomplicated 
pregnancies increased migration on collagen I and laminin. Representative 
images and quantitation of transwell migration assay with transduced ECFCs 
(320x magnification). Scale bars represent 30μm, n=5 transductions, *p<0.05, 
**p<0.005 by paired t-test.  
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Figure 3.16. MEOX2 overexpression in ECFCs from DM pregnancies 
increased migration on collagen I. (A) Representative images of transwell 
migration assay with transduced ECFCs (320x magnification). Scale bars 
represent 30μm. (B) Quantitation of transwell migration assay with transduced 
ECFCs, n=5 transductions, *p<0.05 by paired t-test.  
 
 
  



 

68 

 
Figure 3.17. MEOX2 knockdown in ECFCs from DM pregnancies decreased 
migration on collagen I and laminin. Representative images and quantitation 
of transwell migration assay with transfected ECFCs (320x magnification). Scale 
bars represent 30μm, n=6 transfections, *p<0.01, **p<0.005 by paired t-test.  
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Aim 3: Determine whether MEOX2 regulates migration through differential 

integrin expression in ECFCs from DM pregnancies. 

MEOX2 regulation of adhesion is not responsible for differences in migratory 

capacity  

 Results from the transwell migration studies indicated that MEOX2 

regulates migration on both collagen I and laminin. To form traction enabling 

forward momentum and ultimately cellular migration, a cell must first adhere to 

the ECM (27, 29-32). Therefore, it was hypothesized that the differences seen in 

the migration studies could be attributed to differences in ECM adhesion. 

Specifically, MEOX2 overexpression in ECFCs from control pregnancies would 

increase adhesion on collagen I and laminin, while MEOX2 knockdown in ECFCs 

from DM pregnancies would decrease adhesion on these ECMs.  

 To test these hypotheses, ECFCs were plated on either collagen I or 

laminin, and adhesion was measured using crystal violet staining at multiple time 

points. MEOX2 overexpression increased adhesion on collagen I at both the 15 

and 60 min time points (Fig. 3.18 A). However, adhesion was comparable at the 

30 and 45 minute time points. Because adhesion was increased at the earliest 

and latest time points, it was expected to also be increased at the intermediate 

time points. However, because adhesion did not differ at the intermediate time 

points, it is not believed that these data is physiologically relevant, but instead an 

experimental artifact. It is unlikely that cells would adhere to the ECM, release, 

and then adhere again at a later time point. Therefore, we interpret the data as 

displaying no relevant difference in adhesion on collagen I. Further, MEOX2 
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overexpression did not alter adhesion on laminin (Fig. 3.18 B). Similarly, MEOX2 

knockdown did not alter adhesion on either ECM (Fig. 3.19 A and B). Importantly, 

no differences in adhesion between ECFCs from control and DM pregnancies 

were observed (Fig. 3.20). Taken together these data suggest that altered 

adhesion does not account for the observed differences in migratory capacity in 

vitro.  
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Figure 3.18. MEOX2 overexpression in control ECFCs did not alter 
adhesion. ECFCs were plated on collagen I or laminin in 15 min intervals for 60 
min. Absorbance was quantified on a plate reader as a measure of adhesion. (A) 
Quantitation of absorbance with transduced control ECFCs plated on collagen I, 
n=5 transductions, *p<0.05 by 2-way ANOVA. (B) Quantitation of absorbance 
with transduced control ECFCs plated on laminin, n=3 transductions, p>0.05 by 
2-way ANOVA.  



 

72 

 
 
Figure 3.19. MEOX2 knockdown in DM-exposed ECFCs did not alter 
adhesion. ECFCs were plated on collagen I or laminin in 15 min intervals for 60 
min. Absorbance was quantified on a plate reader as measure of adhesion. (A) 
Quantitation of absorbance with transfected DM-exposed ECFCs plated on 
collagen I, n=3 transfections, p>0.05 by 2-way ANOVA. (B) Quantitation of 
absorbance with transfected DM-exposed ECFCs plated on laminin, n=3 
transfections, p>0.05 by 2-way ANOVA. 
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Figure 3.20. ECFCs from DM-exposed pregnancies had normal adhesion. 
ECFCs were plated on collagen I or laminin in 15 min intervals for 60 min. 
Absorbance was quantified on a plate reader as measure of adhesion. (A) 
Quantitation of absorbance of ECFCs on collagen I, n=3 control, 3 DM, p>0.05 
by 2-way ANOVA. (B) Quantitation of absorbance of ECFCs on laminin, n=6 
control, 6 DM, p>0.05 by 2-way ANOVA.  
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MEOX2 regulation of α2β1 heterodimer is not responsible for differences in 

migratory capacity 

 Because integrins are known to play a pivotal role in actin polymerization, 

which is required for normal cellular migration (61-63), integrin expression was 

examined. Integrins exists as heterodimers composed of an α-subunit and a β-

subunit. The combination of these subunits confers binding specificity for certain 

ECM proteins, including, but not limited to collagens, fibronectins, and laminins 

(61, 63, 64). Because MEOX2 regulates migration on both collagen I and laminin, 

it was hypothesized that a heterodimer that serves as a common receptor for 

these two ECMs may exist. Importantly, the α2β1 heterodimer is a common 

receptor for both collagen I and laminin, though it does not bind collagen IV (76, 

115-117). Because we observed alterations in migration on both collagen I and 

laminin, but not collagen IV, we speculated that MEOX2 expression may impact 

surface levels of α2β1. We hypothesized that MEOX2 overexpression in control 

ECFCs would increase α2β1 heterodimer levels, while MEOX2 knockdown in 

ECFCs from DM pregnancies would decrease α2β1 heterodimer levels. 

 To examine for the α2β1heterodimer, flow cytometric techniques were 

employed. ECFCs were starved for 1 hr in serum-free media, and subsequently 

stimulated for 4 hr in media containing serum and growth factors. Then, ECFCs 

were stained with an antibody that specifically detects the α2β1 heterodimer to 

quantify this receptor on a single-cell basis. The data demonstrated that MEOX2 

overexpression in control ECFCs decreased α2β1 heterodimer levels (Fig. 3.21 

A). However, MEOX2 knockdown in ECFCs from DM pregnancies did not alter 
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α2β1 heterodimer levels (Fig. 3.21 B). These data suggest that MEOX2 is 

sufficient to alter α2β1 heterodimer levels in control ECFCs, however MEOX2 is 

not required for cell surface levels of the α2β1 heterodimer in DM-exposed 

ECFCs.   

 While these data enabled an examination α2β1 heterodimer levels, there 

are limitations to this approach. The antibody used in these studies specifically 

recognized the α2β1 heterodimer, but did not give any insight into the levels of 

each subunit individually. Integrin heterodimers are formed intracellularly and 

subsequently transported to the cell surface (118, 119). Although α and β-

subunits are not present individually on the cell surface, multiple α and β-

subunits can combine to form 24 distinct heterodimers (118, 119). The presence 

or absence of surface expression of specific subunits, and thus heterodimers, is 

known to alter multiple cellular processes including migration (85, 118, 119). 

Therefore, examination of surface levels of individual α and β-subunits may 

provide additional insight into MEOX2 regulation of migration in ECFCs. 
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Figure 3.21. MEOX2 overexpression in control ECFCs reduced α2β1 
heterodimers, but MEOX2 knockdown in ECFCs from DM pregnancies did 
not alter α2β1 levels. (A) Representative dot plot (left panel), histogram (middle 
panel), and quantitation of mean fluorescence intensity (right panel) depicting 
α2β1 heterodimer levels in transduced ECFCs from control pregnancies. Empty 
vector-transduced ECFCs are depicted in red, MEOX2-overexpressing ECFCs 
are depicted in blue, and unstained negative controls are depicted in orange, n=3 
transductions, *p<0.05 by paired t-test. (B) Representative dot plot (left panel), 
histogram (middle panel), and quantitation of mean fluorescence intensity (right 
panel) depicting α2β1 heterodimer levels in transfected ECFCs from DM 
pregnancies. siControl-transfected ECFCs are depicted in red, siMEOX2-
transfected ECFCs are depicted in blue, and unstained negative controls are 
depicted in orange, n=3 transfections, p>0.05 by paired t-test. 
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MEOX2 alters α6 integrin subunit surface expression  

 Multiple integrin subunits, both α and β, are expressed in endothelial cells 

(35, 36). Studies in Aim 2 demonstrated that MEOX2 altered migration on both 

collagen I and laminin ECMs. Therefore, it was hypothesized that alterations in 

migration are the result of differential surface expression of integrin subunits.  

 Studies in Aim 2 suggest a correlation between MEOX2 regulation of 

migration and network formation. Broadly, we hypothesize that the observed 

differences in network formation are attributed to differential migration. These 

network formation assays were conducted on matrigel matrix, which is composed 

of 60% laminin, 30% collagen IV, and 10% enactin for structural support. Taking 

the matrigel composition into account, we focused our integrin studies on the 

laminin-binding integrins α1, α2, α3, α6, α7, and β1.  

 To examine ECFCs for differential surface expression of the above 

integrins, cells were stained with antibodies against each of the identified laminin-

binding integrins, and single-cell integrin surface expression was quantified by 

flow cytometry. In transduced control ECFCs, there was relatively low surface 

expression of α1 and α7, moderate surface expression of α3, and high surface 

expression of α2, α6, and β1 integrins. Further MEOX2 overexpression in ECFCs 

from control pregnancies did not alter surface levels of any of the measured 

integrins (Fig. 3.22). Conversely, in transfected ECFCs from DM pregnancies, 

there was relatively low surface expression of α1, moderate surface expression 

of α3, α6, and α7, and high surface expression of α2 and β1. Interestingly, 

MEOX2 knockdown in DM-exposed ECFCs decreased α6 surface levels (Fig. 
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3.23). Further these data support the hypothesis that MEXO2 regulates surface 

levels of the α6 integrin subunit as a compensatory response. It is conceivable 

that this would account for the observed differences in migration.  Interestingly, 

these data also suggest that there may be differences in laminin-binding integrin 

surface expression between control and DM ECFCs.  Notably in these studies, 

surface levels of the α7 integrin were relatively low in transduced control ECFCs, 

but markedly higher in transfected DM-exposed ECFCs.  Future studies are 

needed to examine this potential difference in integrin surface expression, which 

could serve to elucidate the mechanism responsible for observed differences in 

migration between control and DM-exposed ECFCs. 

 Interestingly, others have reported that α6 is involved in the regulation of 

endothelial cell migration, network formation in vitro, and vessel formation in vivo 

(85). As noted previously, increased nuclear MEOX2 in DM-exposed ECFCs 

appears to serve a compensatory role allowing for improved network formation. 

While an inherent difference in α6 surface levels between control and DM-

exposed ECFCs was not observed (Fig. 3.24), it is conceivable that the high 

levels of MEOX2 in ECFCs from DM pregnancies may maintain α6 integrin 

surface levels to allow for migration and network formation despite prior exposure 

to a DM intrauterine environment. 

 To further examine MEOX2 regulation of α6 surface expression, MEOX2 

was overexpressed in ECFCs from DM pregnancies. MEOX2 overexpression in 

DM-exposed ECFCs resulted in a modest increase in α6 surface levels (Fig. 

3.25). These data are complementary the MEOX2 knockdown experiments, also 
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performed in ECFCs from DM-pregnancies. Taken together, these data further 

reinforce the hypothesis that MEOX2 regulates α6 integrin surface expression in 

ECFCs from DM pregnancies. Future studies to understand why MEOX2 

overexpression impacts α6 integrin surface expression differently in control 

versus DM-exposed ECFCs may provide new insights into the effect of prior 

intrauterine exposure to the DM environment on ECFCs. 
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Figure 3.22. MEOX2 overexpression in ECFCs from control pregnancies did 

not alter integrin surface levels. Representative dot plot (left panels), 

histogram (middle panels), and quantitation of mean fluorescence intensity as a 

measure of integrin surface levels (right panels). Empty vector-transduced 

ECFCs are depicted in red, MEOX2-overexpressing ECFCs are depicted in blue, 

and unstained negative controls are depicted in orange, n=7 transductions, 

p>0.05 by paired t-test. 
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Figure 3.23. MEOX2 knockdown in ECFCs from DM pregnancies reduced α6 

integrin surface levels. Representative dot plot (left panels), histogram (middle 

panels), and quantitation of mean fluorescence intensity as a measure of integrin 

surface levels (right panels). siControl-transfected ECFCs are depicted in red, 

siMEOX2-transfected ECFCs are depicted in blue, and unstained negative 

controls are depicted in orange, n=8 transfections, *p<0.05 by paired t-test. 
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Figure 3.24. ECFCs from DM pregnancies did not have altered α6 integrin 
surface levels. Representative dot plot (left panel), histogram (middle panel), 
and quantitation of mean fluorescence intensity as a measure of α6 surface 
levels (right panels). ECFCs from control pregnancies are depicted in red, 
ECFCs from DM pregnancies are depicted in blue, and unstained negative 
controls are depicted in orange, n= 9 control, 9 DM, p>0.05 by unpaired t-test. 
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Figure 3.25. MEOX2 overexpression in ECFCs from DM pregnancies 
increased α6 integrin surface levels. Representative dot plot (left panel), 
histogram (middle panel), and quantitation of mean fluorescence intensity as a 
measure of α6 surface levels (right panels). Empty vector-transduced ECFCs are 
depicted in red, MEOX2-overexpressing ECFCs are depicted in blue, and 
unstained negative controls are depicted in orange, n= 9 transductions, *p<0.05 
by paired t-test. 
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MEOX2 regulates α6 integrin mRNA and total protein expression 

 The finding that modifying MEOX2 expression levels alters surface 

expression of the α6 integrin was exciting in that MEOX2 is a transcription factor 

that directly regulates the expression of several genes (88, 89). Though the α6 

subunit has not been reported as a transcriptional target of MEOX2, previous 

studies have shown that multiple transcription factors, including SP-1, SP-3, and 

NFI, regulate α6 integrin expression (37, 38). Additionally, the α6 integrin is 

known to express two isoforms, α6A and α6B. Each of these isoforms has a 

distinct mRNA transcript, which is generated by alternative splicing (120, 121). 

The α6A isoform contains 25 exons, while the α6B isoform only contains the first 

24 exons, which ultimately produce distinct proteins (120, 121). These protein 

isoforms differ in their cytoplasmic region (120), however both isoforms form 

heterodimers with the β1 and β4 subunits, and are present at cell surfaces (122).  

 Aim 1 studies indicated that MEOX2 was increased in the nucleus of 

ECFCs from DM pregnancies. Further, Aim 2 studies revealed a correlation 

between MEOX2 protein and α6 integrin surface levels in ECFCs from DM 

pregnancies. Given these data, we hypothesized that the α6 integrin may be a 

transcriptional target of MEOX2. To initially evaluate this possibility, α6 RNA and 

total protein were examined in ECFCs from control and DM-exposed ECFCs. 

RT-PCR primers were designed to span exons 5 and 6, enabling detection of 

both mRNA transcripts. Using RT-PCR, no inherent differences were detected in 

α6 integrin RNA levels between ECFCs from control and DM pregnancies (Fig. 

3.26 A).  In the future, it would be interesting to examine mRNA transcript levels 
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of α6A and α6B individually by designing primers that span exon 25, which is 

present in the α6A transcript, but not the α6B transcript. Western blotting 

revealed that ECFCs express both isoforms of the α6 integrin, as indicated by 

separate protein bands. The upper band of the doublet represents α6A, while the 

lower band represents α6B (122). Band intensity was quantified for each isoform 

individually. Interestingly, ECFCs from DM pregnancies had higher α6A total 

protein compared to ECFCs from control pregnancies, while α6B total protein 

levels were unaltered (Fig. 3.26 B-D). To test whether reducing MEOX2 

expression levels correlated with reductions in α6 integrin RNA and total protein 

levels, MEOX2 knockdown studies were conducted in DM-exposed ECFCs, as 

previously described. Reduction of MEOX2 expression in DM-exposed ECFCs 

decreased α6 RNA as well as the α6A and α6B protein isoforms (Fig. 3.27). 

These findings are consistent with the hypothesis that MEOX2 may 

transcriptionally regulate α6 integrin expression, ultimately resulting in differences 

in mRNA and protein. 
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Figure 3.26. ECFCs from DM pregnancies had normal α6 integrin RNA 
levels, but had increased α6A isoform total protein. (A) Quantitation of α6 
integrin RNA in ECFCs from control and DM pregnancies, n=8 control, 11 DM, 
p>0.05 by unpaired t-test. (B) Representative western blot. Whole cell lysates 
from control and DM-exposed ECFCs were separated by SDS-PAGE. Blots were 
probed for α6 integrin and vinculin, as a loading control. (C) Quantification of α6A 
isoform expression in ECFCs from control and DM pregnancies, n= 11 control, 
13 DM, *p<0.05 by unpaired t-test. (C) Quantification of α6B isoform expression 
in ECFCs from control and DM pregnancies, n= 11 control, 13 DM, p>0.05 by 
unpaired t-test. 
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Figure 3.27. MEOX2 knockdown in ECFCs from DM-exposed pregnancies 
decreased α6 integrin RNA and α6 integrin total protein. (A) Quantitation of 
α6 integrin RNA in transfected ECFCs from DM pregnancies, n=6 transfections, 
*p<0.05 by paired t-test. (B) Representative western blot. Whole cell lysates from 
transfected ECFCs from DM pregnancies were separated by SDS-PAGE. Blots 
were probed for α6 integrin, MEOX2, and vinculin, as a loading control. (C) 
Quantification of α6A isoform expression in transfected ECFCs from DM 
pregnancies, n=6 transfections, *p<0.05 by paired t-test. (C) Quantification of 
α6B isoform expression in transfected ECFCs from DM pregnancies, n=6 
transfections, *p<0.05 by paired t-test. 
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CHAPTER 4: DISCUSSION 

 Fetal exposure to a diabetic intrauterine environment can lead to a 

multitude of adverse effects throughout the life of a child (28, 37-46). While the 

predisposition for the development of chronic conditions is becoming widely 

accepted as a point of great clinical concern, the underlying molecular 

mechanisms contributing to the development of these disorders are largely 

unknown. In these studies, we found evidence that the transcription factor, 

MEOX2, is likely involved in regulating vascular network formation.  

Previously, in HUVECs MEOX2 was shown to increase cellular 

senescence, via upregulation of the cyclin dependent kinase inhibitors p16 and 

p21, and decrease proliferation, suggesting that MEOX2 serves a maladaptive 

role (88). In control ECFCs, MEOX2 overexpression increased p16 expression 

and senescence and decreased cell cycle progression. These findings are 

consistent with data reported in the literature (88). However, knockdown of 

MEOX2 in ECFCs from DM pregnancies did not alter senescence or cell cycle 

progression, suggesting that MEOX2 alone is not sufficient to alter senescence 

or proliferation in cells from DM pregnancies. ECFCs from DM pregnancies were 

exposed to long-term dynamic metabolic perturbations including hyperglycemia, 

hyperinsulinemia, and dyslipidemia over the course of 9 months. It is likely that 

these exposures caused alterations in the expression and/or function of 

additional proteins, which may also participate in the regulation of senescence 

and proliferation. Therefore, we speculate that altering MEOX2 levels 

independently of these additional proteins is not sufficient to induce changes in 
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the senescent or proliferation phenotypes. Nevertheless, MEOX2 impacted 

network formation. Specifically, overexpression of MEOX2 in ECFCs from control 

and DM pregnancies increased network formation. Conversely, MEOX2 

knockdown in ECFCs from DM pregnancies resulted in decreased network 

formation. These data suggest that MEOX2 does regulate ECFC network 

formation, but this regulation is independent of alterations in senescence or cell 

cycle progression. Moreover, instead of serving a maladaptive role in 

vasculogenesis, increased MEOX2 expression in ECFCs from DM pregnancies 

serves a compensatory mechanism to enhance network formation. 

Research addressing the role of MEOX2 in vasculogenesis is limited. 

Consistent with the data presented here, moderate MEOX2 overexpression 

positively correlated with network formation in human and mouse BECs (123). 

Further, MEOX2 depletion in human BECs and MEOX2 heterozygous mice 

reduced network formation in vitro and in vivo, respectively (98, 123). Taken 

together, these physiologically relevant data also suggest a protective role of 

MEOX2 in regulating vasculogenesis.  

Because our data suggest that MEOX2 regulation of DM-exposed ECFC 

network formation was not due to alterations in senescence or cell cycle 

progression, ECFCs were examined for migration differences. Migration is a 

critical step in establishing vascular networks (56). However, few studies 

examine the role of MEOX2 in cellular migration. In HUVECs, adenoviral 

infection with vectors containing either human or rat MEOX2 cDNAs decreased 

migration, though this phenotype was only observed at high concentrations of 
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viral particles per cell (93). In contrast, we show that MEOX2 overexpression in 

ECFCs from control and DM pregnancies increased migration, while MEOX2 

knockdown in ECFCs from DM pregnancies reduced migratory function. These 

data correlate with the observed effects of MEOX2 on ECFC network formation, 

suggesting a possible connection between MEOX2-regulation of these two 

phenotypes. In ECFCs, MEOX2 appears to enhance network formation in 

matrigel by increasing the migratory capacity of ECFCs. Given the apparent 

discrepancy between previous findings in HUVECs and our data, we speculate 

that MEOX2 function may differ across cell types (93) or under different 

experimental conditions. While HUVECs do contain ECFCs (50), the enrichment 

for ECFCs in the total cell population is highly variable between samples and 

dependent on culture methods. HUVECs are routinely studied as a source of 

differentiated endothelial cells, raising the possibility that differentiation status of 

endothelial cells may affect the role of MEOX2. Here, primary human ECFCs 

isolated from multiple uncomplicated and DM pregnancies were utilized to ensure 

reproducibility and to enhance the validity of the results. Given our previous data 

demonstrating that later passage ECFCs exhibit alterations in function (109), we 

consistently utilized early passage cells (<6). It is unclear whether a similar 

approach was taken in prior studies (93). Nevertheless, the consistency of our 

findings in numerous control and DM-exposed ECFCs support the supposition 

that MEOX2 has an important role in the regulation of migration and 

vasculogenesis.  
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To address the mechanisms responsible for the differences detected in 

migratory capacity, MEOX2 regulation of adhesion was examined. However, 

neither MEOX2 overexpression in control ECFCs, nor knockdown in ECFCs from 

DM pregnancies resulted in differential adhesion on collagen I or laminin. Taken 

together, these data suggest that differential adhesion is not responsible for the 

observed differences in ECFC migratory capacity in vitro. However, these studies 

have limitations. Adhesion studies monitored ECFC adhesion on a single ECM in 

a 2-dimentional setting, without any disturbance of flow. Thus, the results from 

this experimental setting may not directly correlate and recapitulate an in vivo 

vascular environment. It is conceivable that ECFC adhesion in a 3-dimensional 

matrix, which is impacted by several ECM proteins, as well as blood flow, would 

yield differing results. Therefore, we speculate that MEOX2 may regulate 

adhesion, but we were unable to detect differences due to our experimental 

system. Future analyses which more closely recapitulates the in vivo setting are 

needed to confirm our studies.  

To further explore the mechanism responsible for MEOX2 regulation of 

migration, integrin expression was examined. Interestingly, MEOX2 knockdown 

in ECFCs from DM pregnancies resulted in a decrease in α6 integrin surface 

levels. Further, following MEOX2 knockdown, α6 integrin RNA and total protein 

levels were reduced, suggesting that MEOX2 may regulate α6 integrin 

expression in ECFCs. 

To examine if MEOX2 was sufficient to alter α6 integrin expression, 

MEOX2 was overexpressed in ECFCs from control and DM pregnancies. 
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Interestingly, MEOX2 overexpression in control ECFCs did not alter α6 integrin 

surface levels. However, MEOX2 overexpression in ECFCs from DM 

pregnancies increased α6 integrin surface expression. Again, we suspect this 

apparent discrepancy in MEOX2 overexpression data may be attributed to the 

fact that ECFCs from DM pregnancies were exposed to many perturbations in 

utero. This chronic environmental stress likely alters the expression and function 

of additional proteins, potentially including transcription factor binding partners of 

MEOX2. Additionally, differences in the ratio of heterochromatin versus 

euchromatin in ECFCs from control and DM pregnancies may exist, thereby 

altering the availability of the α6 integrin promoter region for binding by 

transcription factors, including MEOX2. Importantly, a prior study from our lab 

reported alterations in DNA methylation of regulatory regions of the placenta-

specific 8 (PLAC8) gene in DM-exposed ECFCs (111). These data suggest that 

impaired epigenetic regulation in DM-exposed ECFCs may modify transcription 

factor functionality and gene expression. This same mechanism may explain why 

MEOX2 overexpression in control versus DM-exposed ECFCs have different 

effects on α6 integrin expression. Future studies to test this mechanism will be 

important.  

 Previous studies in mature endothelial cells demonstrated that reduced α6 

integrin expression decreased migration and network formation in vitro (85). 

These phenotypes align with those that we observe upon knockdown of MEOX2 

in ECFCs from DM pregnancies. Ultimately, detailed studies that directly assess  
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ECFC migration and network formation within the context of α6 integrin reduction 

are warranted. 

 Importantly, differential MEOX2 expression in humans has important 

clinical implications for diseases associated with vascular dysfunction (124-126). 

For example, reduced MEOX2 in heart capillary ECs, human coronary artery 

ECs, and brain ECs, is associated with increased cardiac dysfunction, coronary 

heart disease, and Alzheimer’s disease, respectively (98, 123, 127, 128). In 

addition to MEOX2, integrins also play an essential role in the development of 

these diseases. A loss of β1 integrin in cardiac myocytes can result in 

cardiomyopathy (129, 130). Furthermore, in Alzheimer’s disease, extracellular 

amyloid plaque composed largely of amyloid-β peptide binds to the α2β1 and 

αVβ1 heterodimers, promoting neurotoxicity and endothelial cell toxicity (131-

133). Because these disorders often result in poor quality of life, enhanced 

morbidities, and increased mortality, an improved understanding of whether 

MEOX2 has a direct pathologic role in the development of these diseases is of 

utmost importance. Our studies in DM-exposed ECFCs provide insight into the 

role of MEOX2 in the regulation of migration and network formation, as well as α6 

integrin expression. It is plausible that MEOX2 may regulate expression and/or 

function of other integrins in different disease states and cell types. Future 

mechanistic studies could be applied to other diseases resulting in vascular 

dysfunction from oxidative stress enabling a more complete understanding of 

these pathologic conditions, and ultimately resulting in future therapeutic 

advances.  
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 The overall objective of this thesis was to understand how MEOX2 

regulates cell cycle progression and migration, and how this interaction results in 

impaired vasculogenesis in ECFCs from T2DM pregnancies. Using primary 

human cells, key etiological factors that contribute to the pathophysiology of 

cellular dysfunction of ECFCs were examined. The use of primary human cells 

provides an important translational approach to understand the pathophysiology 

behind the impaired phenotypes of ECFCs from DM pregnancies. While initially 

believed to be maladaptive, MEOX2 may serve a protective mechanism, which 

enables increased vessel formation despite prior exposure to a diabetic 

intrauterine environment. Ultimately, the overarching objective of futures studies 

would be to evaluate MEOX2 as a potential therapeutic target to restore 

vasculogenesis, which would be of tremendous clinical value in preventative care 

measures. 
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CHAPTER 5: FUTURE DIRECTIONS 

Determine if MEOX2 alters the kinetics of vasculogenesis  

 The studies presented demonstrate that MEOX2 is both sufficient and 

required for network formation of ECFCs in vitro at an 8 hr time point. While 

these data provide exciting new insight into a role of MEOX2 during 

vasculogenesis, significant gaps in knowledge exist regarding the molecular 

mechanisms responsible. Recently, our laboratory developed a novel software 

program that enables kinetic analysis of vasculogenesis in vitro (59). Using this 

software, we identified two distinct phases of network formation. Specifically, 

during Phase 1 (0-5 hr post-plating), ECFCs exhibit enhanced movement to form 

increased network structures. During Phase 2 (5-10 hr post-plating), network 

structures stabilize (59). Additionally, we identified a novel measure of network 

connectivity, the branch-to-node ratio (59).  

 In the future, more detailed mechanistic analysis of MEOX2 regulation of 

vasculogenesis could be conducted by utilizing these novel tools. We propose to 

use time-lapsed video microscopy combined with this software program to 

determine whether MEOX2 is sufficient and/or required to alter both Phase 1 

(early) and 2 (late) of vasculogenesis. Further, we aim to quantify network 

connectivity using the branch-to node measurement. Distinguishing between 

Phase 1 and Phase 2 network formation will further elucidate how MEOX2 

regulates migration and/or network stability pathways, and provide new 

mechanistic targets to examine. These, in combination with other measurements, 
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including the number of closed networks, will enable us to gain a more 

comprehensive understanding of the role of MEOX2 during vasculogenesis. 

Determine whether MEOX2 is sufficient and/or required to alter vessel 

formation in vivo 

 Here we present compelling data indicating that MEOX2 is both sufficient 

and required to induce changes in network formation in vitro. However, to further 

address the potential of MEOX2 to be utilized as a therapeutic target to restore 

vessel formation, the role of MEOX2 in in vivo vasculogenesis must be 

examined. We hypothesize that MEOX2 overexpression in control ECFCs will 

result in increased vessel formation in vivo, while MEOX2-knockdown in ECFCs 

from DM pregnancies will decease vessel formation.  

 To investigate whether MEOX2 expression alters vessel formation in vivo, 

we propose to utilize xenograft transplantation assays. Xenograft transplants of 

transduced control and DM-exposed ECFCs will be conducted in NOD/SCID 

mice as previously described (54, 58, 134-137). Transduced ECFCs will be 

suspended in collagen/fibronectin gel plugs. After polymerization, the gels will be 

coated with EGM2 media, and then subcutaneously implanted into the flanks of 

NOD/SCID mice. The right flank of each mouse will be implanted with plugs 

containing either MEOX2-overexpressing control ECFCs or MEOX2-knockdown 

DM-exposed ECFCs. The left flank of each mouse will be implanted with plugs 

containing ECFCs that have been transduced with empty vector controls. On day 

14, plugs will be removed, fixed with formalin, sectioned, and stained with mouse 

anti-human CD31.  
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 Significant progress was made toward achieving these studies. An animal 

protocol was approved by the Indiana University Institutional Animal Care and 

Use Committee. Additionally, preliminary studies were conducted to optimize 

culture and staining conditions.  

Determine whether MEOX2 regulates GTPase activity 

 Data in this thesis suggest that MEOX2 regulates migration of ECFCs. In 

order for an endothelial cell to migrate, adhesion complexes are dynamically 

formed and broken down to allow for motility through detachment from the ECM 

(60, 61, 65-67). This process is largely regulated by the phosphorylation and 

subsequent activation of small Rho GTPases (Fig. 1.5) (60, 68). We hypothesize 

that observed differences in migration may be attributed to differential activation 

of small Rho GTPases. Specifically, MEOX2 overexpression would increase 

active Cdc42 and Rac. Conversely, MEOX2 knockdown would decrease active 

Cdc42 and Rac. To test these hypotheses, an immunoprecipitation assay for 

GTP-bound Cdc42 and Rac in MEOX2 overexpressing and knockdown ECFCs 

will be conducted. These experiments will further elucidate MEOX2 regulation of 

migration and may explain the discrepancy between the observed differences in 

migration, but lack of differences in adhesion.  

Determine the mechanism by which nuclear MEOX2 is increased in ECFCs 

from DM pregnancies 

 In addition to understanding the role of MEOX2 in regulating the inherent 

functional differences between ECFCs from control and DM pregnancies, we are 

also interested in identifying the mechanism behind the upregulation of nuclear 
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MEOX2 in samples from diabetic pregnancies. The data presented in this thesis 

suggest that subcellular localization of MEOX2 is altered following exposure to 

DM in utero. Specifically, ECFCs from DM pregnancies have increased nuclear 

MEOX2 protein compared to ECFCs from control pregnancies (Fig. 3.2). We 

hypothesize that alterations from the DM intrauterine environment signal for a 

shuttling of MEOX2 from the cytoplasm to the nucleus. However, the precise 

stimulus for this movement remains unknown. To address this, we propose to 

expose ECFCs from control pregnancies to individual conditions routinely found 

in states of DM, including, hyperglycemia, hyperinsulinemia, hyperlipidemia, 

inflammatory cytokines, and reactive oxygen species. Following treatment with 

the aforementioned stimuli, protein will be harvested, and subcellular localization 

of MEOX2 will be examined. We propose that testing these conditions associated 

with DM will further elucidate a pathway by which MEOX2 is translocated to the 

nucleus, and provide a future targeted approach by which to conduct further 

mechanistic studies. 

Determine whether α6 integrin regulates migration and network formation 

of ECFCs 

 The data presented suggest that the α6 integrin may be a novel 

transcriptional target of MEOX2. Previously, α6 integrin was implicated in in vitro 

migration and network formation in endothelial cells (41). Additionally, we also 

showed that MEOX2 is involved in the regulation of these in vitro migration and 

network formation of ECFCs. In order to deterimine whether the observed 
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differences in migration and network formation of ECFCs are attributed to α6 

integrin levels, we propose to manipulate MEOX2 and α6 integrin protein level.  

 Initially, we propose to examine the role of the α6 integrin in ECFC 

migration and network formation. To address this, the α6 integrin will be knocked 

down in ECFCs from DM pregnancies. Following α6 knockdown, migration and 

network formation assay will be conducted. We hypothesize that a reduction of 

the α6 integrin will result in decreased migration and network formation in vitro. 

 If the α6 integrin is found to alter network formation in ECFCs, we next 

propose to examine the potential role of MEOX2 in regulating the effect of α6 on 

migration and network formation. For these studies, MEOX2 will be 

overexpressed in ECFCs from DM pregnancies using a lentiviral approach, 

leading to high levels of the α6 integrin, as shown in Fig. 3.25. Following MEOX2 

overexpression, DM-exposed ECFCs will be transfected with either a non-

targeting control or an si-α6 integrin construct to reduce α6 integrin expression. 

Then, migration and network formation assays will be conducted. We 

hypothesize this reduction of α6 integrin will result in decreased migration and 

network formation in vitro, providing further confirmation of the role of α6 integrin 

in MEOX2 regulation of vasculogenesis. 

 The data presented indicate that MEOX2 knockdown does not result in a 

complete loss in α6 integrin surface expression, but rather a modest reduction of 

less than 50%. Therefore, it is critical to account for the degree of α6 integrin 

knockdown in these studies. Initially, an siRNA approach will be utilized, and 

several different siRNA constructs against the α6 integrin will be tested. If of the 
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α6 integrin knockdown using siRNA is not consistent with levels observed in the 

MEOX2 knockdown studies, an shRNA approach will be used. Using an shRNA 

which contains a green fluorescent protein (GFP) construct would allow for 

sorting of low, medium, and high-expressing cells. GFP expression will inversely 

correlate with α6 integrin expression, and allow for selection of cells with a 

modest, but not complete reduction of the α6 integrin. 

Determine if MEOX2 binds to the α6 integrin promoter 

 The data in this thesis indicate that MEOX2 regulates expression of the α6 

integrin subunit in ECFCs. Because MEOX2 is a known transcription factor, it is 

interesting to speculate that the α6 integrin may be a previously unrecognized 

target of MEOX2. In order to determine if MEOX2 binds to the promoter region of 

the α6 integrin subunit, preliminary ChIP studies were conducted. Potential 

binding sites with the sequence, ATTA, were identified within the α6 integrin 

promoter, as this sequence is a known consensus sequence for MEOX2 (88). 

Additionally, MEOX2 is known to bind to the p16 promoter (88), which was 

selected as a positive control. DM-exposed ECFCs exhibit reduced proliferation 

(58), limiting large-scale in vitro expansion. To overcome this barrier, MEOX2 

overexpression was conducted in control ECFCs for assay optimization. Because 

ChIP experiments with MEOX2 have not previously been conducted, antibody 

optimization was required. In these studies, a flag-tagged MEOX2 construct was 

overexpressed in ECFCs from control pregnancies, enabling the potential for 

optimization of both a MEOX2-specific and a flag-specific antibody. While the 

MEOX2-specific antibody used in previous western blotting experiments was not 
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successful in immunoprecipitating the MEOX2 protein, an antibody against the 

flag-tag was successful for the MEOX2 immunoprecipitation. 

 Surprisingly, preliminary studies demonstrate a trend towards increased 

MEOX2 binding to the α6 integrin promoter following MEOX2 overexpression in 

control ECFCs (Fig. 5.1 A). Similarly, p16 also indicated a trend toward increased 

MEOX2 binding to the promoter region (Fig. 5.1 B). These pilot studies provide 

promising data supporting the possibility that the α6 integrin is a transcriptional 

target of MEOX2. Future studies will serve to increase the sample size with 

ECFCs from additional control pregnancies as well as DM-exposed ECFCs to 

determine if there is significant MEOX2 binding to the α6 integrin promoter. 

Further, additional sites within the α6 integrin promoter will be examined to 

determine if MEOX2 binding is specific to one site. The results of these studies 

will serve to further elucidate the mechanistic role of MEOX2 in regulating α6 

integrin expression. 
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Figure 5.1. MEOX2 overexpression in control ECFCs may increase MEOX2 

binding to the α6 integrin and p16 promoters. A flag-tagged MEOX2 construct 

was overexpressed in ECFCs from control pregnancies. (A) Quantitation of 

MEOX2 binding to the α6 integrin promoter (-650 to -568 upstream of 

transcription start site), n=3 transductions, p>0.05 by repeated measures 2-way 

ANOVA. (B) Quantitation of MEOX2 binding to the p16 promoter (-508 to -432 

upstream of transcription start site), n=3 transductions, p>0.05 by repeated 

measures 2-way ANOVA. 
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Identify additional potential transcriptional targets of MEOX2 

 The studies presented in this thesis indicate that the α6 integrin may be a 

previoulsy unrecognized transcriptional target of MEOX2. However, it is plausible 

to suspect that α6 integrin is not the only currently unidentified target of MEOX2. 

Given our preliminary success in utilizing ChIP methods to verify the α6 integrin 

as a potential transcriptional target of MEOX2, we propose to utilize ChIP 

sequencing to identify additional transcriptional targets. For these studies, we 

propose to utilize lentiviral transduction methods to overexpress a flag-tagged 

MEOX2 and an empty vector construct in ECFCs from control and DM 

pregnancies, which will enable immunoprecipitation with an antibody directed 

against the flag tag, as previously conducted.  

 Using a ChIP sequencing approach will enable unbiased sequencing to 

identify numerous potential transcriptional targets of MEOX2. However, in order 

to verify and narrow these targets, we also propose to utilize a microarray to 

determine whether expression levels of potential transcriptional targets are 

altered. We will utilize the same empty vector and flag-tagged MEOX2 

transduced ECFCs from control and DM pregnancies. During analysis, we will 

overlay our findings from our ChIP sequencing studies on the microarry results, 

to enable identification of genes that have both altered expression and binding of 

MEOX2. The expression of these targets will then be verified at a protein level. 

Following verification, these targets will be examined for a funcitonal role in 

migration and network formation using transwell and matrigel assays. 
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 Using these combined high throughput sequencing approaches will 

provide invaluable insight of additional transcriptional targets of MEOX2. 

Overexpressing MEOX2 in both control and DM-exposed ECFCs will enable 

comparisions of inherent differences in MEOX2 regulation of gene expression 

given prior exposure to intrauterine DM. Further, it is expected that this workflow 

will identify additional transcritpional targets of MEOX2, which may be 

responsible for differences in migration and network formation. In all, this process 

could reveal additional information regarding the mechanism by which MEOX2 

regulates vascuolgenesis in ECFCs. 
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