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Abstract Introduction: The growing public threat of Alzheimer’s disease (AD) has raised the urgency to
quantify the degree of cognitive decline during the conversion process of mild cognitive impairment
(MCI) to AD and its underlying genetic pathway. The aim of this article was to test genetic common
variants associated with accelerated cognitive decline after the conversion of MCI to AD.
Methods: In 583 subjects with MCI enrolled in the Alzheimer’s Disease Neuroimaging Initiative
(ADNI; ADNI-1, ADNI-Go, and ADNI-2), 245 MCI participants converted to AD at follow-up.
We tested the interaction effects between individual single-nucleotide polymorphisms and AD diag-
nosis trajectory on the longitudinal Alzheimer’s Disease Assessment Scale-Cognition scores.
Results: Our findings reveal six genes, including BDHI, ST6GALI, RAB20, PDS5B, ADARB?2, and
SPSBI, which are directly or indirectly related to MCI conversion to AD.

Discussion: This genome-wide association study sheds light on a genetic mechanism of longitudinal
cognitive changes during the transition period from MCI to AD.

© 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).
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1. Introduction

Alzheimer’s disease (AD) is a progressive, neurodegenera-

tive disorder that imposes social, psychological, and financial
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E-mail address: hzhuS@mdanderson.org be 13.8 million by 2050 [1]. This prediction, coupled with a
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lack of disease-modifying treatments, is estimated to have cu-
mulative costs of more than $20 trillion by 2050 for the care of
AD patients [2]. To date, extensive efforts have been made to
delineate a set of risk factors that affect the development of
AD. In particular, genome-wide association studies (GWASs)
have been used to identify genetic variants that may contribute
to AD. Most GWASs of AD have focused on the detection of
single-nucleotide polymorphisms (SNPs) that are associated
with the susceptibility of developing AD [3-8]. The early
onset of AD is known to result from mutations in one of
three genes: the amyloid precursor protein (APP), presenilin
1 (PSEN1), or presenilin 2 (PSEN2) [9,10]. The inheritance
of the €4 allele of the apolipoprotein E (APOE) has a
substantial impact on the late onset of sporadic AD [11,12].
Recent GWASs have identified additional AD-related genes,
including clusterin (CLU), complement receptor 1 (CR1),
and phosphatidylinositol-binding clathrin assembly protein
gene (PICALM) [13,14], whereby those genes alter
production of the amyloid B peptide (AB) [15-17].

In the present study, we aimed to detect genetic common
variants associated with accelerated cognitive decline after
the conversion of mild cognitive impairment (MCI) to AD.
MClI is a clinical syndrome characterized by insidious onset
and progression of cognitive impairments. It is often consid-
ered as a transitional stage between normal aging and AD,
because approximately 50% of MCI patients develop AD in
5 years from diagnosis [18]. Critically, therapeutic interven-
tions and disease-modifying drugs appear to be more effective
during the MCI or early stage of AD than at the more severe
stages of AD [19-21]. As such, it is an ongoing quest to
delineate a set of risk factors that affect conversion from
MCI to AD. Recent GWASs have focused on the following
phenotypes related to MCI-AD progression: binary outcome
indicating MCI-AD conversion, time to conversion from
MCI to AD, and cognitive decline. For example, Hu et al.
(2011) found novel loci to be associated with longitudinal
cognitive changes of MCI patients [22] and those loci were
also associated with time to conversion from MCI to AD.
Here, we only focus on an MCI-AD conversion group to iden-
tify genetic common variants contributing to rapid cognitive
decline after an MCI patient develops AD.

We analyzed the Alzheimer’s Disease Neuroimaging
Initiative (ADNI; ADNI-1, ADNI-2, and ADNI-GO) cohort
data. Among them, there remained 245 participants who
converted to AD at follow-up. Longitudinal Alzheimer’s
Disease Assessment Scale-Cognition (ADAS-Cog) scores
were used to measure cognitive function including memory,
language, praxis, and orientation domain scores indicated
greater cognitive impairment. To identify SNPs associated
with longitudinal cognitive changes, we tested interaction
effects between individual SNPs and AD diagnosis trajec-
tory (MCI = 0, AD = 1) on the longitudinal ADAS-Cog
scores. To account for individual variability of (1) baseline
ADAS-Cog score and (2) the effect size of AD diagnosis tra-
jectory, random effects for intercept and slope of AD diag-
nosis trajectory were incorporated in our model.

2. Materials and methods
2.1. Alzheimer’s Disease Neuroimaging Initiative

The study population was obtained from the ADNI data-
base (www.loni.usc.edu/ADNI). The ADNI study has aimed
to detect and monitor the early stage of AD by investigating
serial magnetic resonance imaging, positron emission tomog-
raphy, genetic, biochemical biomarkers, and neuropsycholog-
ical and clinical assessment. The Principal Investigator of this
initiative is Michael W. Weiner, MD, VA Medical Center and
University of California, San Francisco. The ADNI began in
2004 and recruited 400 subjects with MCI, 200 subjects
with early AD, and 200 cognitively normal elderly from
more than 50 sites across the United States and Canada.
This multisite, longitudinal study was financially supported
as $67 million by National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, the
Food and Drug Administration, and 13 private pharmaceutical
companies. This initial phase, called ADNI-1, was extended
with ADNI-GO in 2009. ADNI-GO investigated the existing
ADNI-1 cohort and included 200 participants diagnosed as
having early MCI. In 2011, ADNI-2 began to study partici-
pants from the ADNI-1/ADNI-GO and added 150 elderly con-
trol subjects, 100 early MCI participants, 150 late MCI
participants, and 150 MCI patients. For up-to-date informa-
tion, see www.adni-info.org.

2.2. Data description

In the sample of this study, we considered White partici-
pants who had developed AD from MCI at the baseline. Dur-
ing 120 months of follow-up, 245 MCI patients progressed
to AD before study completion and the remaining 338
MCI patients did not convert to AD before study end. We
considered only 245 patients who developed AD by their
follow-up. The data included basic demographic and clinical
information at the baseline: age, education length, and
gender. Their ADAS-Cog scores were recorded about every
9 months in average with the mean follow-up duration of
48 months. Genotyping for the ADNI-1, ADNI-GO, and
ADNI-2 data was performed using the Human 610-Quad
BeadChip, Illumina Human Omni Express BeadChip, Illu-
mina Omni 2.5 M (whole-genome sequencing [WGS] Plat-
form), respectively. It was completed on all ADNI
participants using the genotyping protocol whose details
are described in [23] and http://adni.loni.usc.edu/methods/
genetic-data-methods.

2.3. Quality control and genotype imputation

We performed quality control (QC) steps on the raw ge-
notype data to ensure that only high-quality data were
included in the final analysis. QC procedures included (1)
call rate check per subject and per SNP marker, (2) gender
check, (3) sibling pair identification, (4) the Hardy-
Weinberg equilibrium test, (5) marker removal by the minor
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allele frequency, and (6) population stratification. We also
calculated an inbreeding coefficient (F) that represents the
expected percentage of homozygosity. There were no sub-
jects with excessive heterozygosity (|[F| > 0.15) [53]. The
second line preprocessing steps included removal of SNPs
with (1) more than 5% missing values, (2) minor allele fre-
quency smaller than 5%, and (3) Hardy-Weinberg equilib-
rium P value < 10°° The previously mentioned
procedures were carried out in PLINK version 1.9 [24]
with visualization performed in R (http://www.r-project.
org/) using the qqman package (http://cran.r-project.org/
web/packages/qqman/).

Genotype imputation was conducted to estimate unob-
served genotypes. MaCH software [25] was used with
NCBI 1000 Genomes build 37 (UCSC hgl9) as the reference
panel. We used different imputation quality metric R* for
different minor allele frequency categories by following the
recommendations given in Beecham et al. [26]. After the
imputation step, 242 subjects and 8,092,642 SNPs remained
in the present study. Strict QC procedures were followed:
(1) removal of individuals with 10% missing genotypes,
removal of SNPs with (2) more than 2% missing values, (3)
minor allele frequency smaller than 5%, and (4) Hardy-
Weinberg equilibrium P value < 107>, After the further
QC, 242 subjects and 5,908,215 SNPs remained. Their demo-
graphic information is summarized in Supplementary Table 1.

2.4. Statistical analysis

To identify the SNPs that were associated with ADAS-Cog
score changes over time after AD conversion from MCI, we
ran linear mixed-effects models with ADAS-Cog score trajec-
tory measured across time as longitudinal responses. Fixed
main effects included gender (1 = male; 0 = female), length
of education, age at the baseline, follow-up time trajectory,
AD diagnosis trajectory (0 = MCI; 1 = AD), and each
SNP. We included a random intercept to account for individ-
ual variability of baseline ADAS-Cog scores. A random slope
of the AD diagnosis trajectory was added to take into account
its variability across subjects. We tested a (fixed) interaction
effect between each SNP and the AD diagnosis trajectory.
To test the interaction effect, we used an approximate F-test
based on the Kenward-Roger approach [27]. The first five
PC scores from all the 22 chromosomes were also included
to address the population stratification issue [28]. The prin-
cipal component analysis was conducted using PLINK pack-
age. Quantile-quantile (QQ) plots and Manhattan plots were
produced using the gqgman package in R. Regional plots
(see Supplementary Figs. 2—6) were generated to graphically
show the GWAS results within a given genomic region using
Locus Zoom 1.1 [29]. All SNPs within 200—400 kb of identi-
fied SNPs by our GWAS were plotted with their —log;q(P)
value. Their degree of linkage disequilibrium (LD) with
each SNP was color-coded.

We ran sensitivity analyses to examine if our results were
robust to model specification. We compared the estimation

Table 1

Meaningful single-nucleotide polymorphisms (SNPs) associated with
accelerated cognitive decline and the corresponding regression coefficients
for the interaction effects. Minor allele frequency (MAF) is the frequency
where the second most common allele occurs in a population

SNP Chr Gene MAF Coefficient SE F value P value

0.93 30.54 9.48 X 107®
0.64 26.83 4.92 X 1077
0.60 24.40 1.52 X 107°
0.59 2436 1.55 X 107°
1.18 24.00 1.92 X 10°°
0.94 23.03 2.83 X 107°
0.96 22.80 3.24 X 107°

rs17090219 18 0.093 5.15
1s3936289 3 ST6GALI 0.256 3.34
rs56378310 13 RAB20 0.424 —2.98
rs192470679 13 PDS5B  0.300 2.89
rs11121365 1 SPSBI  0.062 5.76
152484 3 BDHI 0.095 4.53
rs10903488 10 ADARB2 0.083 4.58

NOTE. The SNPs mentioned in table have been reported to be related to
Alzheimer’s disease (AD) directly/indirectly. The regression coefficient, SE
(standard error), and F-test statistic value are shown for the interaction effect
of each of the SNPs and the AD diagnosis trajectory. A positive coefficient
value implies that cognitive decline gets accelerated after AD conversion as
the number of minor alleles of the corresponding SNP increases.

and test results for the top meaningful SNPs (Table 1) by
changing the included covariates. We considered two
reduced models: all covariates (1) without the length of ed-
ucation and (2) without the length of education and gender.
We also conducted a sensitivity analysis using the full model
on a subsample consisting of subjects whose baseline ages
were greater than 60.

3. Result
3.1. Participant characteristics

To avoid the possible bias caused by population stratifica-
tion, this study was restricted to White participants from the
ADNI-1 and ADNI-2/ADNI-GO cohorts. There were 242
White MCI-AD converters after the QC steps. Supplementary
Table 1 lists the characteristics of the study participants.

3.2. SNPs associated with the time to conversion

After running a set of linear mixed-effects models for
each SNP, we examined if there existed population stratifica-
tion. The genomic inflation factor A is estimated as 1.000,
which suggests that there is no evidence of population strat-
ification. The QQ plot (Supplementary Fig. 1) shows no ev-
idence of population stratification, as most of the observed P
values do not deviate from the expected line (red line). The
plot implies that identified SNPs by our longitudinal GWAS
do not have a spurious association with the ADAS-Cog score
trajectory. Also, as the Manhattan plot shows in Fig. 1, we
observed that 56 SNPs had P values that were smaller than
a suggestive significance level in GWAS (P < 1 X 107°).
Within the same gene, we only present one of the most sig-
nificant genotyped SNPs in Supplementary Table 2.
Supplementary Figs. 2-6 and Fig. 2 present the regional
plots of the identified SNPs in Table 1. Sensitivity analyses
(Supplementary Table 3) showed that estimated coefficient
values and the corresponding P values in the primary
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Fig. 1. The Manhattan plot shows the individual —log;o(P values) against
base pair positions of 5,908,215 SNPs. Horizontal red and blue lines indicate
genome-wide (P < 5 X 10~%) and suggestive (P < 1 X 10~°) significance
levels, respectively. Abbreviation: SNPs, single-nucleotide polymorphisms.

analysis were similar to those in the reduced models and the
full model on the subsample (age > 60).

There were eight SNPs, including rs17090219 in
chromosome 18, that had the most significant interaction
effect with the presence of AD measured at every visit
(P = 9.48 X 10~®). The corresponding estimated coefficient
is 5.16 (Table 1), which suggests that the cognitive decline
tends to be accelerated after AD conversion as the number
of minor allele copies in rs17090219 increases. To visualize
the mean ADAS-Cog score trend for different SNP groups
(the number of copies of minor allele is 0, 1, or 2), we plotted
fitted locally polynomial regression (loess) curves. Fig. 3
shows loess plots of three different groups: O, 1, or 2 for
rs17090219. Fig. 3A suggests that cognitive performance
rapidly decreases as time goes by for subjects with two copies
of the minor allele in rs17090219. Other subject groups had
similar ADAS-Cog score trends to each other. Fig. 3B shows
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Fig.2. Aregional plot for association with cognitive decline. The purple dot
is the most significant SNP rs3936289 among SNPs in the region surround-
ing it within 200 kb. Dots are colored according to the range r* to show their
degree of LD with rs3936289. The blue line shows the estimated recombi-
nation rate. Abbreviations: LD, linkage disequilibrium; SNP, single-
nucleotide polymorphism.

that cognitive dysfunction is accelerated after AD conversion
for the two copies group. The main and interaction effects for
rs17090219 suggest that the mean ADAS-Cog score increases
by 6.64 for an additional copy of the minor allele, for any fixed
change in the other covariates. This is a novel locus that has not
been previously identified in other AD-related articles
showing direct/indirect association with AD.

Our GWAS identified 11 SNPs located within the PDSS5
cohesin associated factor B (PDS5B) gene. One of the signif-
icant SNPs within the PDS5B gene was rs192470679
(P = 1.55 X 10~%) with the corresponding estimated coef-
ficient 2.89 (Table 1). Fig. 4 shows the corresponding loess
plots of the three groups: 0, 1, or 2 for rs192470679.
Fig. 4A shows that cognitive decline is accelerated as time
goes by, especially for subjects who have two copies of the
minor allele in rs192470679. Inspection of the bottom figure
shows a clear difference among the mean ADAS-Cog score
trajectories on the relative time to AD conversion. For sub-
jects having zero or one copy of the minor allele, cognitive
decline is increased until AD conversion and it tends to
plateau after the conversion. ADAS-Cog scores keep rapidly
increasing in their changes for subjects who have two copies
of the minor allele. In particular, the additional copy of the
minor allele of rs192470679 is associated with a 3.28 in-
crease in the average ADAS-Cog score.

Also, there was an SNP rs10903488 (P = 3.24 X 1076)
within a gene known as adenosine deaminase, RNA-specific,
B2 (ADARB?2). 1Its regression coefficient was estimated as
4.58 (Table 1), which implies a greater rate of cognitive
decline as the number of minor alleles of rs10903488 in-
creases. Fig. 5SA shows that although cognitive deficit in-
creases for all participants over time, the rate of deficit
accrual is faster for participants with at least one copy of
the minor allele. There is a clear difference in the ADAS-
Cog score trend between one and two copies of the minor
allele groups on the relative time to conversion domain.
Cognitive decline tends to plateau after AD conversion in
the zero copy group, whereas the one or two copies groups
have accelerated progression of cognitive dysfunction. The
average ADAS-Cog score increases by 5.61 as the number
of minor alleles of rs10903488 increases by 1.

4. Discussion

In this GWAS of ADNI-1, ADNI-2, and ADNI-GO data,
we identified significant SNPs associated with ADAS-Cog
score changes over time after AD conversion from MCI at
the 1 X 107> suggestive significance level. We found six
genes including BDHI, ST6GALI, RAB20, PDS5B,
ADARB?2, and SPSBI that were directly or indirectly related
to AD.

There are two genes, PDS5B and ADARB?2, that have
direct association with AD. The PDS5B gene has been found
to be significantly associated with brain atrophy and episodic
memory scores [30,31] for cognitively normal, MCI, and
AD subjects. ADARB2 is one of the genes that influences
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rs17090219 = 0, 1, or 2). (B) The mean trend of ADAS-Cog score was plotted against relative time (in years) from the AD conversion for each group. Abbre-

viation: ADAS-Cog, Alzheimer’s Disease Assessment Scale-Cognition.

magnetic resonance imaging—derived temporal lobe volume
measures [32], where temporal lobe volume significantly
changes in aging and in AD [33]. Together these studies
demonstrate that the two genes affect cognitive deficit of
MCI patients through brain atrophy and brain volume
changes when the MCI patients develop AD.

There are four genes, BDHI, ST6Gall, RAB20, and
SPSBI that are associated with AD indirectly.

Our GWAS identified two SNPs located within the
3-hydroxybutyrate dehydrogenase, type 1 (BDHI) gene. Shi
et al. [34] identified that the BDHI gene was related to aging.
Aging is an important factor in AD studies, because risks of
age-related diseases, such as hypertension, diabetes mellitus,
heart attack, stroke, can be decreased in offspring of

long-lived parents [35]. The BDHI gene has effects on both
human aging and cognitive decline within the MCI patients.

AB, the main component of amyloid plaques, plays an
important role in developing AD. Sequential cleavage of
APP forms AP through B-secretase (BACEIl, B-site APP-
cleaving enzyme 1) and vy-secretase [36—40]. We found
three SNPs within the gene ST6 beta-galactosamide alpha-
2,6-sialyltranferase 1 (ST6Gall). It has been demonstrated
that cleavage and secretion of ST6Gall is affected by
BACEI1 and overexpression of ST6Gall increases soluble
APP secretion [40,41]. It suggests that ST6Gall plays an
important role in the APP pathway by affecting A
generation and being produced within the process of A
formation.
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Wyss-Coray et al. [42] demonstrated that certain inflam-
matory mediators strongly drive AD by their mouse models.
Genetic studies in mouse models suggest that multiple in-
flammatory mediators have great effects on AD-like patho-
genesis. More reviews can be found in Cummings et al.
[42]. One SNP, rs56378310, in a gene RAB20 (RAB20, mem-
ber Ras oncogene family) was identified at the suggestive
level (P < 1 X 107°). Liang et al (2012) found that
RAB20 and RAB32 (member Ras oncogene family) were
strongly upregulated in the acute phase of inflammation in
mice, which suggested that these RABs might participate
in subsequent inflammatory responses in the brain [43].

Our GWAS identified two SNPs including rs11121365
and rs12069701 located in a gene called, SplA/ryanodine re-

ceptor domain and SOCS box containing 1 (SPSB1). SPSBI,
SPSB2, and SPSB4 regulate ubiquitination and proteasomal
degradation of inducible nitric oxide (NO) synthase in acti-
vated macrophages [44]. They, in result, negatively control
NO production and limit cellular toxicity. Togo et al.
(2004) suggest that NO pathways contribute to pathogenesis
of neurodegeneration in AD and other neurodegenerative de-
mentias by involving in microvasculopathy and neuroin-
flammation [45]. A large amount of NO is produced by the
inducible NO synthase [46], which thus has been linked to
AD, asthma, cancer, cerebral infarction, inflammatory bowel
disease, arthritis, and endotoxin shock [47,48]. It shows that
SPSBI contributes to the development of AD through NO
pathways.
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Other than the identified SNPs at the 1 X 107" signifi-
cance level in a region of LD of rs3936289 (see Fig. 2),
two SNPs including rs114805931 have P values as
1.25 X 10°. Fig. 2 shows regional association for the re-
gions around rs3936289 within ST6GALI1. Their P values
are plotted based on the —log 10 scales, and the color repre-
sents the range in r* to show their degree of LD with
rs3936289. They are located within the gene CACNAID
whose disruption caused by copy number variations may
result in a dysregulation in Ca’* homeostasis and affect
the development of AD [49]. Also, Kim and Rhim (2011)
found that CACNAID was upregulated by AB,s_35, which
suggested that CaV1.3 had an impact on the pathogenesis
of AD [50].

In 2011, a GWAS in South Asians identified that SNPs at
ST6GAL1 might increase risk to develop type II diabetes by
being involved in post-translational modification of cell-
surface components by glycosylation, glycosylation through
addition of sialic acid residues is reported to influence both
insulin action and cell surface trafficking [51]. Whitmer
et al. (2009) found that among older patients with type II dia-
betes, a history of severe hypoglycemic episodes was associ-
ated with a greater risk of dementia [52]. It suggests that
ST6GAL1 may be related to the pathogenesis of AD through
type II diabetes.

After identifying the relevant genes to cognitive
decline, we examined if the genes are associated with
the risk of MCI by running logistic regression using the
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baseline diagnosis of ADNI-1, ADNI-GO, and ADNI-2
subjects. We included age, gender, length of education,
and ADAS-Cog score at the baseline as covariates.
Among the identified SNPs, 11 SNPs within the PDS5B
gene were associated (P < .05) with the risk of MCI
with/without considering the presence of APOE €4 allele
as an additional covariate. In particular, the P values of
rs192470679 were .024 and .028, respectively, for the
APOE ¢4 allele excluded and included models. It suggests
that the PDS5B gene is associated with cognitive dysfunc-
tion in both early and transition stages of MCI.

In summary, we detected six genes that putatively associ-
ated with accelerated cognitive decline of MCI subjects after
they developed AD. The genes had been implicated in other
AD or AD-related disease studies. This GWAS sheds light
on what genetic factors have impact on the ADAS-Cog score
changes within MCI-AD conversion subjects. It allows bet-
ter understanding of the underlying mechanism and pathol-
ogy of accelerated cognitive impairment of AD patients
within their transition period from MCI, which further
may help to develop future treatments targeting the identi-
fied genetic loci. Although the associations were significant
at the 1 X 107 suggestive level, a bigger sample size could
ensure more significant results. Also, a follow-up study is
recommended as future works to examine if the identified
genes are replicated in other samples.
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RESEARCH IN CONTEXT

1. Systematic review: We used PubMed and Google
Scholar to review the literature related to genetic as-
sociation analyses of Alzheimer’s disease (AD).
Also, we used them to search for articles showing
any interesting relationship between our significant
loci to AD and AD-related diseases.

2. Interpretation: We identified new six genes that could
be associated with accelerated cognitive decline of
mild cognitive impairment (MCI) subjects after their
conversion to AD. The genes had been implicated in
other AD or AD-related disease studies. Our study
suggests that the genetic factors have affected the
ADAS-Cog score changes within MCI-AD conver-
sion subjects. It helps to understand the underlying
mechanism of accelerated cognitive impairment of
AD patients within their transition period from MCI.

3. Future directions: A follow-up study should be taken
as future works to examine if the identified genes are
replicated in other and bigger samples.
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