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ABSTRACT OF THE DISSERTATION  

TUNABLE, ROOM TEMPERATURE THZ EMITTERS BASED ON NONLINEAR 

PHOTONICS 

by 

Raju Sinha 

Florida International University, 2017 

Miami, Florida 

Professor Nezih Pala, Major Professor 

The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range 

from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. 

The increasing interest in the development of ultra-compact, tunable room temperature 

Terahertz (THz) emitters with wide-range tunability has stimulated in-depth studies of 

different mechanisms of THz generation in the past decade due to its various potential 

applications such as biomedical diagnosis, security screening, chemical identification, life 

sciences and very high speed wireless communication. Despite the tremendous research 

and development efforts, all the available state-of-the-art THz emitters suffer from either 

being large, complex and costly, or operating at low temperatures, lacking tunability, 

having a very short spectral range and a low output power. Hence, the major objective of 

this research was to develop simple, inexpensive, compact, room temperature THz sources 

with wide-range tunability. 

We investigated THz radiation in a hybrid optical and THz micro-ring resonators 

system. For the first time, we were able to satisfy the DFG phase matching condition for 
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the above-mentioned THz range in one single device geometry by employing a modal 

phase matching technique and using two separately designed resonators capable of 

oscillating at input optical waves and generated THz waves. In chapter 6, we proposed a 

novel plasmonic antenna geometry – the dimer rod-tapered antenna (DRTA), where we 

created a hot-spot in the nanogap between the dimer arms with a very large intensity 

enhancement of 4.1×105 at optical resonant wavelength. Then, we investigated DFG 

operation in the antenna geometry by incorporating a nonlinear nanodot in the hot-spot of 

the antenna and achieved continuously tunable enhanced THz radiation across 0.5-10 THz 

range. In chapter 8, we designed a multi-metallic resonators providing an ultrasharp 

toroidal response at THz frequency, then fabricated and experimentally demonstrated an 

efficient polarization dependent plasmonic toroid switch operating at THz frequency. 

In summary, we have successfully designed, analytically and numerically 

investigated novel THz emitters with the advantages of wide range tunability, compactness, 

room temperature operation, fast modulation and the possibility for monolithic integration, 

which are the most sought after properties in the new generation THz sources.  
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CHAPTER 1 

Introduction 
 

1.1 Motivation 

The Terahertz (1012 Hz) region of the electromagnetic spectrum covers the frequency range 

from roughly 300 GHz to 10 THz, which is in between the microwave and infrared regimes. 

Due to its unique properties, potential applications of terahertz (THz) technology in 

security screening, chemical identifications, biomedical diagnostics, life sciences, sensing, 

quality control of semiconductor devices, space research and tactical imaging are becoming 

a reality [1-7]. THz radiation can penetrate non-metallic materials such as paper, plastic, 

fabric and leather, which makes it useful for security monitoring applications. This 

property also allows us to detect sketches underlying paintings, track hidden defects inside 

a material and to see murals hidden underneath coats of plaster in historic buildings without 

affecting the artifacts. Unlike the x-ray and ultraviolet spectrum, THz radiation does not 

pose any ionization hazard to biological tissues, which makes it attractive for biological 

and medical applications. Since energy of the THz frequencies coincide with the energy 

levels of molecular rotations and vibrations of DNA, proteins and even chemical 

explosives, THz spectrum provides characteristic unique fingerprints, which allows us to 

differentiate between biological tissues and identify different explosives as well. In 

addition, the THz spectrum can be utilized to indicate tissue conditions by checking 

hydration level. One significant impediment in realizing these applications is the cost and 

complexity associated with THz sources. Hence, developing a room temperature THz 

emitter with wide-range tunability, compactness and simple alignment is inevitable. 
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 The increasing interest in the development of novel THz sources has stimulated in-

depth studies of microscopic mechanisms of THz field generation in conventional 

semiconductors, electro-optic materials, and an extensive search for new materials and 

devices to be employed in THz generation and detection. Table 1.1 summarizes the state-

of-the-art THz emitters for different spectral ranges of operation, THz output powers, 

physical sizes, operating temperatures and tunability. Although the free electron laser 

covers moderate tuning range with high output power, it is not only too expensive and 

bulky but also complex to be employed. Again, solid-state electronic laser like gun diode 

provides moderate output power but comes with poor tuning range. Comparatively, 

quantum cascade laser (QCL) is compact and provides mW level output power with 

moderate tuning range but operates below room temperature. Although recently room 

temperature QCL is demonstrated, higher power with wide tuning range employing that 

approach has yet to be demonstrated [8]. Despite the tremendous research and development 

efforts, all the available state-of-the-art THz emitters suffer from either being large, 

complex and costly, or operating at low temperatures, lacking tunability, having a very 

short spectral range and a low output power. Hence, developing a simple, tunable, compact 

THz source operating at room temperature is still a challenging task. 

 Among all the major approaches of designing the THz emitters, the use of optical 

methods has been the most popular technique for generating the THz radiation. They 

include photoconductive antenna, optical parametric oscillation, optical rectification and 

difference frequency generation (DFG) [9-12]. However, optical to THz conversion 

through the DFG process using second order nonlinear material ( χ(2) ) suffers from low 
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conversion efficiencies due to the Manly-Rowe quantum limit [13-15]. So far, THz wave 

generation through DFG phenomenon is designed and realized mostly in nonlinear bulk 

materials, which provide very low output power [16]. In order to achieve efficient and 

enhanced THz generation, DFG is employed recently in different potential resonant 

structures e.g. rib waveguide, dielectric strip embedded within metallic slot waveguide, 

photonic crystal waveguide, waveguides with nonlinear polymer cladding, triply resonant 

photonic resonators, silicon slot embedded ridge waveguide [17-20]. However, none of the 

THz emitters has tunability over the whole 0.5-10 THz range of interest, rather they are 

designed to achieve efficient generation either at a single THz frequency or across a short 

spectral range due to the difficulty of satisfying DFG phase matching condition for the 

large wavelength range of 600-30 µm (0.5-10 THz) in one single device geometry.  

Table 1.1 | State-of-the-art THz Emitters. Different state-of-the-art THz emitters are 
summarized in terms of spectral range, power, size, working temperature and tunability 
option. 
 

THz Emitters 
Range 
(THz) 

Power 
(W) 

Size 
Temp

. 
Tunability 

Free Electron Lasers 0.12-4.75 5k-15k Bulky R.T. Tunable 
Backward Wave 
Oscillator 

0.3-1.3 1m-50m
 
 Table Top R.T. Tunable 

Quantum Cascade 
Laser [21-24] 

1.2-5 0.1m-
100m 

Small < 169 
K 

Tunable 

Quantum Cascade 
Laser [8, 25] 

1-4.6 5µ-
 
32µ Small R.T. Tunable 

Gas Laser 0.9-3 1m-
 
30m Table Top R.T. Discrete lines 

Resonant Tunneling 
Diodes 

0.1-1 0.1µ-100µ Medium R.T. Not tunable 

Gunn Diode Devices 0.01-0.2 0.1m-1 Medium R.T. Tunable 
     

 In this dissertation, we have proposed a novel approach employing the DFG process 

in order to achieve efficient and enhanced THz generation in the 0.5-10 THz range with 
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tunability resolution of 0.05 THz in one single device geometry [26, 27]. The proposed 

approach makes use of an optical microring resonator with a high value of second order 

nonlinearity (χ(2)) in order to facilitate the DFG via nonlinear mixing with the choice of 

two appropriate input infrared optical waves. Enhanced THz generation is ensured by 

designing the optical resonator in such a way that both the input optical waves get resonated 

inside the ring. Efficient coupling of infrared waves from bus to the nonlinear resonator is 

ensured by satisfying the critical coupling condition. Moreover, the challenge of satisfying 

DFG phase matching condition across the THz range in one single device geometry has 

been overcome by employing the modal phase matching technique with the design of 

another microring resonator solely dedicated to sustain the generated THz waves. High 

resistivity (HR) Si is chosen to guide THz radiation due to its transparency in much of the 

THz range and high refractive index, which facilitates to concentrate THz waves in much 

smaller sizes than that of ordinary optical fibers. 

 In comparison to microring resonators, microdisk resonators with the same 

dimensions provide higher quality factors with smaller radiation losses due to the absence 

of inner cylindrical boundaries. In other words, the supported modes exhibit stronger 

confinement by featuring weaker penetration to the surrounding air and being closer to the 

resonator center. Moreover, the surface roughness scattering losses are also reduced due to 

the absence of inner cylindrical boundary. Therefore, we have proposed another THz 

emitter with the same spectral range and tunability resolution using individual microdisk 

resonators for both the input optical waves and generated THz waves [28, 29]. Both the 

THz emitters are investigated in detail with analytical model and numerical simulation 
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results. They are Silicon on Insulator (SoI) technology compatible enabling the monolithic 

integration with Si CMOS electronics including plasmonic THz detectors. 

Plasmonic nanostructures have the unique ability to strongly localize and enhance 

electromagnetic fields in nanoscale volumes by enabling resonant coupling of 

electromagnetic waves to the oscillations of a metal’s conduction band electrons, which is 

commonly known as surface plasmons [30-37]. These excitations provide strong 

confinement of electromagnetic energy far beyond the diffraction limit [38-44]. It is 

possible to enhance inherently weak nonlinear DFG process by employing the extremely 

large localized electric fields produced by surface plasmons [39]. In this dissertation, we 

have further proposed, designed and investigated in detail Au-AlN-SiO2 core shell 

nanostructures, AlN nanodot coupled with plasmonic nanogap antenna and AlN thin film 

coupled plasmonic grating resonators to achieve plasmonic resonance enhanced DFG 

across 0.5-10 THz range with continuous tunability. Then we proposed a novel plasmonic 

antenna type geometry – the dimer rod-tapered antenna (DRTA) with a huge field intensity 

enhancement in the nanogap between the dimer arms and exploited the hot-spot for tunable 

DFG THz generation across the desired interest. We further explored another potential 

plasmonic nanostructure consisting of nonlinear film coupled Aluminum grating 

resonators to achieve enhanced DFG THz radiation with continuous tunability across the 

0.5-10 THz range. The beauty of these proposed plasmonic device structures lies in the fact 

that the small dimensions of the nanostructures with respect to the spatial extents of the 

input optical waves and the output THz waves, makes the required DFG phase matching 

conditions irrelevant [45, 46]. We believe, the proposed THz emitters in this dissertation, 
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will open new avenues to demonstrate efficient, promising, inexpensive and on-chip 

integrated THz structures for all-optical and optoelectronic devices. 

 In addition, we have designed and fabricated a multi-metallic plasmonic micro-

structure and experimentally demonstrated a polarization angle dependent THz switch. We 

expect that the strong and ultra-sharp toroidal resonance of the studied plasmonic structure 

will make it a reliable platform for various applications including THz spectroscopy, 

biochemical sensing, medical and security imaging. 

1.2 Aim and Scope of this Dissertation 

The major objective of this dissertation is to develop tunable, compact, room temperature, 

efficient and enhanced THz emitters across the whole 0.5-10 THz range. Chapter 2 

provides a literature review of different THz generation approaches and the theory of 

nonlinear optics including difference frequency generation (DFG) phenomenon in 

nonlinear media.  

Chapter 3 describes a novel approach employing the DFG process in micro-ring 

resonators in order to achieve efficient and enhanced THz generation in the 0.5-10 THz 

range with tunability resolution of 0.05 THz. The proposed emitter was analytically and 

numerically investigated with detailed design steps for phase matching condition. Chapter 

4 describes another potential THz emitter based on micro-disk resonators with detail 

analytical and numerical simulations. Spherical nonlinear plasmonic core-shell structures 

were investigated in detail for tunable DFG THz generation across the same range in 

chapter 5. Chapter 6 proposes a novel plasmonic antenna geometry, the dimer rod-tapered 

antenna (DRTA) and describes tunable DFG THz radiation by incorporating nonlinear 
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nanodot in the hot-spot between the dimer arms of the antenna. Chapter 7 provides another 

potential plasmonic structure with nonlinear optical material (NLO) film layer coupled Al 

based grating resonators with numerical simulations for tunable DFG in the above-

mentioned THz range. Chapter 8 details experimental demonstration of a polarization angle 

dependent switch operation at THz frequency in a micro-fabricated multi-metallic structure 

showing extremely sharp toroidal resonance.   

In chapter 9, we summarize the contribution of this dissertation and propose lab-

on-a-chip THz spectrometer for point-of-care bio-sensing applications. 

 

1.3 References 

1. Tonouchi, M. (2007). Cutting-edge terahertz technology. Nature photonics, 1(2), 97-
105. 
 

2. Chen, H. T., Padilla, W. J., Zide, J. M., Gossard, A. C., Taylor, A. J., & Averitt, R. D. 
(2006). Active terahertz metamaterial devices. Nature, 444(7119), 597-600. 
 

3. Mueller, E. R. (2006). Terahertz Radiation Sources for Imaging and Sensing 
Applications-New techniques are being used to generate emissions at terahertz 
frequencies. Photonics Spectra, 40(11), 60-69. 

 
4. Hoheisel, M. (2006). Review of medical imaging with emphasis on X-ray detectors. 

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, 
Spectrometers, Detectors and Associated Equipment, 563(1), 215-224. 
 

5. Woolard, D. L., Brown, R., Pepper, M., & Kemp, M. (2005). Terahertz frequency 
sensing and imaging: A time of reckoning future applications?. Proceedings of the 
IEEE, 93(10), 1722-1743. 
 

6. Quema, A. V., Goto, M., Sakai, M., Ouenzerfi, R. E., Takahashi, H., Murakami, H., 
Ono, S., Sarukura, N., & Janairo, G. (2004). Onset detection of solid-state phase 
transition in estrogen-like chemical via terahertz transmission spectroscopy. Applied 
physics letters, 85(17), 3914-3916. 
 



8 
 

7. Linden, K. J., Neal, W. R., Waldman, J., Gatesman, A. J., & Danylov, A. (December, 
2005). Terahertz laser based standoff imaging system. In Applied Imagery and Pattern 
Recognition Workshop, 2005. Proceedings. 34th (pp. 8-pp). IEEE. 
 

8. Lu, Q. Y., Bandyopadhyay, N., Slivken, S., Bai, Y., & Razeghi, M. (2013). Room 
temperature terahertz quantum cascade laser sources with 215 µW output power 
through epilayer-down mounting. Applied physics letters, 103(1), 011101. 
 

9. Park, S. G., Weiner, A. M., Melloch, M. R., Sider, C. W., Sider, J. L., & Taylor, A. J. 
(1999). High-power narrow-band terahertz generation using large-aperture 
photoconductors. IEEE journal of quantum electronics, 35(8), 1257-1268. 
 

10. Kawase, K., Hatanaka, T., Takahashi, H., Nakamura, K., Taniuchi, T., & Ito, H. (2000). 
Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric 
oscillation of periodically poled lithium niobate. Optics Letters, 25(23), 1714-1716. 
 

11. Ahn, J., Efimov, A. V., Averitt, R. D., & Taylor, A. J. (2003). Terahertz waveform 
synthesis via optical rectification of shaped ultrafast laser pulses. Optics Express, 
11(20), 2486-2496. 
 

12. Sasaki, Y., Yuri, A., Kawase, K., & Ito, H. (2002). Terahertz-wave surface-emitted 
difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal. 
Applied Physics Letters, 81(18), 3323-3325. 
 

13. Lee, Y. S. (2009). Principles of terahertz science and technology (Vol. 170). Springer 
Science & Business Media. 
 

14. Suhara, T., & Fujimura, M. (2013). Waveguide nonlinear-optic devices (Vol. 11). 
Springer Science & Business Media. 
 

15. Waldmueller, I., Wanke, M. C., & Chow, W. W. (2007). Circumventing the Manley-
Rowe quantum efficiency limit in an optically pumped terahertz quantum-cascade 
amplifier. Physical review letters, 99(11), 117401. 
 

16. Majkić, A., Zgonik, M., Petelin, A., Jazbinšek, M., Ruiz, B., Medrano, C., & Günter, 
P. (2014). Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and 
quasi-phase matching in organic crystals OH1. Applied Physics Letters, 105(14), 
141115. 
 

17. Saito, K., Tanabe, T., Oyama, Y., Suto, K., & Nishizawa, J. I. (2009). Terahertz-wave 
generation by GaP rib waveguides via collinear phase-matched difference-frequency 
mixing of near-infrared lasers. Journal of Applied Physics, 105(6), 063102. 

 



9 
 

18. Chen, T., Sun, J., Li, L., & Tang, J. (2012). Proposal for efficient terahertz-wave 
difference frequency generation in an AlGaAs photonic crystal waveguide. Journal of 
Lightwave Technology, 30(13), 2156-2162. 

 
19. Baehr-Jones, T., Hochberg, M., Soref, R., & Scherer, A. (2008). Design of a tunable, 

room temperature, continuous-wave terahertz source and detector using silicon 
waveguides. JOSA B, 25(2), 261-268. 

 
20. Bravo-Abad, J., Rodriguez, A. W., Joannopoulos, J. D., Rakich, P. T., Johnson, S. G., 

& Soljačić, M. (2010). Efficient low-power terahertz generation via on-chip triply-
resonant nonlinear frequency mixing. Applied Physics Letters, 96(10), 101110. 

 
21. Williams, B. S. (2007). Terahertz quantum-cascade lasers. Nature photonics, 1(9), 517-

525. 
 

22. Mottaghizadeh, A., Gacemi, D., Laffaille, P., Li, H., Amanti, M., Sirtori, C., Santarelli, 
G., Hänsel, W., Holzwart, R., Li, L.H., & Linfield, E.H. (2017). 5-ps-long terahertz 
pulses from an active-mode-locked quantum cascade laser. Optica, 4(1), 168-171. 

 
23. Kundu, I., Dean, P., Valavanis, A., Chen, L., Li, L., Cunningham, J.E., Linfield, E.H., 

& Davies, A.G. (2017). Quasi-continuous frequency tunable terahertz quantum cascade 
lasers with coupled cavity and integrated photonic lattice. Optics Express, 25(1), 486-
496. 

 
24. Xu, L., Curwen, C., Chen, D., Reno, J., Itoh, T., & Williams, B. (2017). Terahertz 

metasurface quantum-cascade VECSELs: theory and performance. IEEE Journal of 
Selected Topics in Quantum Electronics. 

 
25. Jung, S., Kim, J.H., Jiang, Y., Vijayraghavan, K., & Belkin, M.A. (2017). Terahertz 

difference-frequency quantum cascade laser sources on silicon. Optica, 4(1), 38-43. 
 

26. Sinha, R., Karabiyik, M., Al-Amin, C., Vabbina, P.K., Güney, D.Ö., & Pala, N. (2015). 
Tunable Room Temperature THz Sources Based on Nonlinear Mixing in a Hybrid 
Optical and THz Micro-Ring Resonator. Scientific Reports, 5, 9422. 

 
27. Sinha, R., Karabiyik, M., Al-Amin, C., Vabbina, P.K., & Pala, N. (2014, March). 

Nonlinear optical resonators for tunable THz emission. In SPIE OPTO (pp. 898505-
898505). International Society for Optics and Photonics. 

 
28. Sinha, R., Karabiyik, M., Al-Amin, C., Vabbina, P.K., Shur, M., & Pala, N. (2014, 

May). Microdisk resonators for difference frequency generation in THz range. In SPIE 
Sensing Technology+ Applications (pp. 910208-910208). International Society for 
Optics and Photonics. 

 



10 
 

29. Sinha, R., Karabiyik, M., Ahmadivand, A., Al-Amin, C., Vabbina, P.K., Shur, M., & 
Pala, N. (2016). Tunable, Room Temperature CMOS-Compatible THz Emitters Based 
on Nonlinear Mixing in Microdisk Resonators. Journal of Infrared, Millimeter, and 
Terahertz Waves, 37(3), 230-242. 

 
30. Maier, S. A. (2007). Plasmonics: fundamentals and applications. Springer Science & 

Business Media. 
 

31. Ahmadivand, A., Sinha, R., Vabbina, P.K., Karabiyik, M., Kaya, S., & Pala, N. (2016). 
Hot electron generation by aluminum oligomers in plasmonic ultraviolet 
photodetectors. Optics express, 24(12), 13665-13678. 

 
32. Ahmadivand, A., Gerislioglu, B., Sinha, R., Karabiyik, M., & Pala, N. (2017). Optical 

Switching Using Transition from Dipolar to Charge Transfer Plasmon Modes in 
Ge2Sb2Te5 Bridged Metallodielectric Dimers. Scientific reports, 7, 42807. 

 
33. Ahmadivand, A., Sinha, R., Karabiyik, M., Kaya, S., & Pala, N. (2016, May). Fractal 

aluminum Cayley-trees to design plasmonic ultraviolet photodetectors. In SPIE 
Defense+ Security (pp. 98362Y-98362Y). International Society for Optics and 
Photonics. 

 
34. Ahmadivand, A., Sinha, R., Kaya, S., & Pala, N. (2016). A molecular plasmonic Fano-

router: Using hotspots in a single-stone ring-like structure. Optics Communications, 
367, 123-129. 

 
35. Ahmadivand, A., Sinha, R., & Pala, N. (2015). Hybridized plasmon resonant modes in 

molecular metallodielectric quad-triangles nanoantenna. Optics Communications, 355, 
103-108. 

 
36. Ahmadivand, A., & Pala, N. (2015). Plasmon resonance hybridization in self-

assembled copper nanoparticle clusters: Efficient and precise localization of surface 
plasmon resonance (LSPR) sensing based on Fano resonances. Applied spectroscopy, 
69(2), 277-286. 

 
37. Ahmadivand, A., Sinha, R., Karabiyik, M., Vabbina, P.K., Gerislioglu, B., Kaya, S., & 

Pala, N. (2017). Tunable THz wave absorption by graphene-assisted plasmonic 
metasurfaces based on metallic split ring resonators. Journal of Nanoparticle Research, 
19(1), 3. 

 
38. Alvarez-Puebla, R., Liz-Marzán, L. M., & García de Abajo, F. J. (2010). Light 

concentration at the nanometer scale. The Journal of Physical Chemistry Letters, 1(16), 
2428-2434. 

 



11 
 

39. Gramotnev, D. K., & Bozhevolnyi, S. I. (2010). Plasmonics beyond the diffraction 
limit. Nature photonics, 4(2), 83-91. 

 
40. Ahmadivand, A., Sinha, R., & Pala, N. (2016). Resonance coupling in plasmonic 

nanomatryoshka homo-and heterodimers. AIP Advances, 6(6), 065102. 
 

41. Ahmadivand, A., Sinha, R., Kaya, S., & Pala, N. (2016). Rhodium plasmonics for deep-
ultraviolet bio-chemical sensing. Plasmonics, 11(3), 839-849. 

 
42. Ahmadivand, A., Pala, N., & Güney, D.Ö. (2015). Enhancement of photothermal heat 

generation by metallodielectric nanoplasmonic clusters. Optics express, 23(11), A682-
A691. 

 
43. Ahmadivand, A., Sinha, R., Gerislioglu, B., Karabiyik, M., Pala, N., & Shur, M. (2016). 

Transition from capacitive coupling to direct charge transfer in asymmetric terahertz 
plasmonic assemblies. Optics Letters, 41(22), pp.5333-5336. 

 
44. Ahmadivand, A., Sinha, R., & Pala, N. (2015, August). Graphene plasmonics: multiple 

sharp Fano resonances in silver split concentric nanoring/disk resonator dimers on a 
metasurface. In SPIE Nanoscience+ Engineering (pp. 954713-954713). International 
Society for Optics and Photonics. 

 
45. Kauranen, M., & Zayats, A. V. (2012). Nonlinear plasmonics. Nature Photonics, 6(11), 

737-748. 
 

46. Zhang, Y., Manjavacas, A., Hogan, N. J., Zhou, L., Ayala-Orozco, C., Dong, L., Day, 
J.K., Nordlander, P., & Halas, N. J. (2016). Toward surface plasmon-enhanced optical 
parametric amplification (SPOPA) with engineered nanoparticles: a nanoscale tunable 
infrared source. Nano letters, 16(5), 3373-3378. 

 

 

 

 

 

 

 

 

 



12 
 

CHAPTER 2 

Background and State of the Art 

 

2.1 Review of THz Generation Approaches 

Presently, there is no single electronic device able to oscillate in the bandwidth 0.5–10 

THz. Only resonant tunneling diodes were able to oscillate around 700 GHz; other 

microwave and millimeter wave active devices, such as Gunn diodes or Impatt diodes, 

being not able to exceed oscillating frequencies beyond 400–500 GHz [1]. InP Gunn 

oscillators are able to generate 30 mW at 193 GHz; 3 mW at 300 GHz and more than 1 

mW at 315 GHz; while a GaAs tunnel injection transit time diode produces 10 mW at 202 

GHz [2]. Therefore, multiplication circuits are used to generate THz frequencies. A 

multiplier consists of a nonlinear electronic device, such as a Schottky varactor diode 

placed between an input and an output-matching network. Unfortunately, the output power 

is much lower than that of the input, which is a serious drawback for the THz frequency 

range. An input with a power of 200–300 mW at 100 GHz can be produced by HEMT 

amplifiers, but a multiplier with a high-order of multiplication from 100 GHz up to 1–3 

THz is not feasible due to the very high losses.  

Traditionally, gas lasers generate continuous wave (CW) THz signals in the 

frequency domain 0.9–3 THz with output powers in the range of 1–30 mW: A gas laser 

consists of a carbon dioxide laser that pumps a cavity filled with a gas such as CH4; N2; 

etc., which dictates the lasing frequency. The gas sources show no tunability and are very 

large, with dimensions exceeding 2-5 m. Free-electron lasers generate either CW or pulsed 
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high power THz radiation, but they are very costly and have very large dimensions, 

functioning in large rooms containing many additional facilities. Therefore, only a few are 

operating in the world. However, backward wave oscillators (BWO) are based on the same 

principles as an electron laser and are able to deliver a few mW in the range of 0.6–1.3 

THz. In contrast with THz gas lasers, BWO are frequency tunable (for example, between 

0.78 and 0.97 THz or 1 and 1.25 THz) with a high sweeping rate. BWO requires a water 

cooling system and high bias voltages of 1–6 kV at 25–45 mA. The weight of a BWO 

(without the cooling system and the power supplies) is more than 15 kg. However, THz 

gas lasers and BWOs are commercially available, being the only CW THz sources that can 

be bought from the market. They are both bulky and need a lot of accessories such as high 

power supplies, water-cooling systems [3].  

Heterodyne mixing (photomixing) of two individual optical CW lasers (one of them 

being tunable) in a photoconductor produces a photocurrent with a frequency equal to the 

difference between the frequencies of the two lasers. When this difference frequency is 

within the THz range of frequencies the photocurrent is propagated along the transmission 

line or is radiated in free-space with the help of an antenna. There are two types of 

photomixers: discrete-element photomixers and distributed photomixers. Discrete-element 

photomixers are photoconductors, such as micrometric photoconductive gaps or MSM 

interdigitated structures, with a large bias field applied between their electrodes, 

illuminated by the two lasers sources and placed at the driving point of an antenna or an 

antenna array [4, 5]. Despite all the efforts the THz power obtained using photomixers is 

still very low: about 1 mW at 1 THz and 0.2 mW at 2 THz. The reason is that the optical 
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heterodyne process in photoconductors has a very poor efficiency. Another very important 

problem of photomixers is the synthesis of the difference of the optical frequencies. This 

is done with two CW semiconductor lasers, which are phase-locked, one of the lasers being 

tunable. The synthesis of optical difference frequencies is generally implemented with 

quite complicated setups [6]. 

Continuous tunable CW THz frequencies can also be obtained by parametric light 

scattering from the stimulated polariton scattering in nonlinear crystals. Optical nonlinear 

crystals such as LiNbO3 or MgO doped LiNbO3 produce stimulated polariton scattering 

when they are strongly pumped with a ns pulsed laser in the near-infrared region. The 

envelope of the THz signal generated in the way indicated above is a pulse with a duration 

of 3–4 ns; so that the THz signal oscillating at a ps scale can be viewed as a CW source 

with a large range of tunability (0.7–3 THz) and high peak powers (100 mW). However, 

since the pump is a bulky Q-switch Nd:YAG laser and since the distance between the 

mirrors of the optical cavity is 15 cm (only the nonlinear crystal is 6:5 cm long) this THz 

source is not miniaturized, but fits on a tabletop [7, 8]. 

One of the most exciting approaches to generate tunable THz radiation is the 

quantum cascade lasers (QCLs). Quantum cascade laser idea was proposed in 1971 [9] as 

a FIR radiation source and experimentally demonstrated in 1994 [10]. In a quantum 

cascade laser the light produced by one carrier transition between two levels is amplified 

due to photon-assisted tunneling of a single type of carriers in a sequence of coupled 

quantum wells (superlattice) that has a staircase-like band energy. The number of 

amplification stages dictates the output power. The radiation frequency is determined by 
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the energy difference of sub-bands between which radiative/lasing transitions occur. The 

first quantum cascade laser working in the THz range was reported in 2002 [11]. This laser 

delivers about 2 mW power at 4.4 THz and operates at 50 K. The output power decreases 

dramatically with increasing temperature and becomes nearly zero at room temperature.  

Recently, intracavity difference-frequency generation (DFG) in mid-infrared QCLs 

(THz DFG-QCLs) allowed demonstration of electrically pumped monolithic 

semiconductor sources operable at room temperature in the 1–5 THz range. With the 

introduction of the Cherenkov waveguide scheme [12], the power output of THz DFG-

QCLs has been dramatically improved. THz quantum cascade laser with a spectral 

tunability from 1.0 to 4.6 THz and power of 32 µW at room temperature has been 

demonstrated [13]. It is based on difference frequency generation in a heterostructure 

comprising over 60 layers and Cerenkov phase-matching scheme along with integrated 

dual-period distributed feedback gratings. More recently, UT Austin group demonstrated 

a ridge waveguide quantum cascade laser operating at room temperature and electrically 

tunable between 3.44 and 4.02 THz with the maximum output power of 6.3 µW [14]. The 

realization of a quantum cascade laser at THz frequencies encounters a series of difficulties 

and limitations due to the very large values of the wavelength. Among them are very large 

free-carrier absorption losses and the necessity of growing a very thick heterostructure. The 

4.4 THz quantum laser mentioned above had 104 periods, each period containing 7 coupled 

quantum wells, each quantum well having two AlGaAs barriers (with a thickness of 1–4 

nm) and one GaAs well (10–20 nm thick), resulting in a total number of 728 quantum 

wells. It is not at all easy to manufacture such a heterostructure.  
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Among all the major approaches of designing the THz emitters, the use of optical 

methods especially difference frequency generation (DFG) has been the most popular 

technique [15-24]. Z. Ruan et. al. investigated a metallic slot waveguide with a dielectric 

strip embedded within in order to achieve enhanced THz generation from DFG, but the use 

of metallic structures incurred extra losses for both the optical and THz waves and most 

importantly it was designed to generate a single DFG frequency at 3 THz [15]. K. Saito et. 

al. reported another scheme for efficient THz wave generation utilizing a GaP ridge 

waveguide embedded in a silicon slot waveguide. However, they employed birefringence 

phase matching technique, which led to perfect phase matching for only a single DFG 

frequency at 2.26 THz [23]. A. Andronico et.al. proposed a room temperature THz emitter 

based on DFG in a triply resonant Au/AlAs/GaAs/AlAs/Au microcylinder [20]. However, 

it has a very short spectral range between 2.4 and 6 THz. T. Baehr-Jones et. al. proposed a 

silicon based source employing nonlinear polymer for radiation in the 0.5-14 THz regime 

[25]. However, it was not possible to cover the abovementioned range of THz generation 

in one single device geometry due to the challenges associated with satisfying DFG phase 

matching conditions. Therefore, they proposed seven different devices with dimension 

variations to generate THz in the range of 0.5-2 THz, 2-2.5 THz, 2.5-3 THz, 3-3.5 THz, 

3.5-5 THz, 5-6 THz, and 6-14 THz, respectively.   

This short review presents that there is a strong need for research efforts to realize 

continuously tunable, room temperature, compact THz emitters covering the whole THz 

spectral range and delivering a few mW output power. The research works presented in 

this dissertation address this need and aims to design tunable and compact THz emitters 
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based on nonlinear photonics combined with silicon photonics and surface plasmon 

photonics. 

2.2 Fundamentals of Nonlinear Optics 

“Physics would be dull and life most unfulfilling if all physical phenomena around 

us were linear. Fortunately, we are living in a nonlinear world. While linearization 

beautifies Physics, nonlinearity provides excitement in Physics.” [26] 

2.2.1 Maxwell Equations in Nonlinear Optical Media 

Nonlinear optics is the study of the behavior of light in nonlinear media, where the 

dielectric polarization responds nonlinearly to the applied electric field strength of the light. 

The physical laws with electromagnetic radiation can be summarized by the famous 

Maxwell equations, [26-30] 

0
t

t

ρ∇ ⋅ =
∂∇× = −
∂

∇ ⋅ =
∂∇× = +
∂

D

B
E

B

D
H J

     (2.1)  

where the electric quantities D and E are the electric displacement field and the electric 

field, respectively. The magnetic quantities B and H are the magnetic flux density and the 

magnetic field, respectively. The quantities associated with the medium itself are ρ, the 

free charge density, and J, the free current density. These electric quantities, D and E, are 

related with each other through the electric polarization field, P, which is defined by the 
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material response to external electromagnetic radiation. Similarly, magnetic quantities are 

connected through magnetization, M, of the medium [26-27]. 

0

0

ε
µ

= +
= +

D E P

B H M
     (2.2) 

With the assumption of no free charge and no free currents in a nonmagnetic media, 

we take the curl of ∇×Eand combine Eq. (2.1) and (2.2) and reach to the following 

expression, 
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In nonlinear optics, the optical response or the polarization field is described in 

terms of the applied electric field strength with the following expression, 
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 where ε0 is the permittivity of free space,(1)χ , (2)χ , and (3)χ are known as linear, second-

order nonlinear optical and third-order nonlinear optical susceptibilities, respectively. 

Now, after substituting Eq. (2.4) into Eq. (2.3), the wave equation becomes 

2 2
2

2 2 2 2
0

1 NL

c t c t

ε
ε

∂ ∂∇ − =
∂ ∂

E P
E    (2.5) 

where (1)1ε χ= + is a dimensionless quantity, known as relative permittivity or dielectric 

constant of the medium. The reason why the polarization plays a vital role in the description 
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of nonlinear optical phenomena is that a time-varying polarization can act as the source of 

new components of the electromagnetic field, as expressed by the above equation. This 

expression can be interpreted as an inhomogeneous wave equation in which the 

polarization associated with nonlinear response drives the electric field. Since, 2 2/NL t∂ ∂P  

is a measure of the acceleration of the charges that constitute the medium, this wave 

equation is consistent with Larmor’s theorem of electromagnetism, which states that 

accelerated charges generate electromagnetic radiation [29]. This equation thus describes 

the wave that will be generated from the nonlinear polarization.  

2.2.2 Nonlinear Optical Processes 

Here, we will describe the nonlinear optical processes associated with second-order 

susceptibility, χ(2). To illustrate the nonlinear frequency conversion processes, let us 

consider a circumstance in which two optical waves oscillating at frequencies ω1 and ω2 

are incident upon a second-order nonlinear optical medium, which we can express as, 

1 1 2 2( ) exp( ) exp( ) . .t E i t E i t c cω ω= − + − +E    (2.6) 

Nonlinear polarization contributed by second-order susceptibility is given by [29], 
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It is clearly observed that the polarization term now constitutes all different 

frequencies other than the input frequencies. Thus, this second-order nonlinear 

polarization, coupled into the wave Eq. (2.5), acts as a source to generate electric field at 

this new frequencies. The complex amplitudes of the various frequency components of the 

polarization term are summarized below with the appropriate name of the physical process, 

that each term represents, 
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2 0 2
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1 2 0 1 2
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2.2.2.1 Difference Frequency Generation 

Difference frequency generation (DFG) is a second order nonlinear optical process, in 

which two optical waves at frequency ω1 and ω2 interact with a nonlinear optical medium 

to generate an output wave at the difference frequency ω3=ω1-ω2 [30]. Geometry of the 

interaction and photon energy level diagram for DFG are illustrated in Figure 2.1. 

Conservation of energy requires that for a photon generated at difference frequency (ω3), 

a photon at the higher input frequency (ω1) must be destroyed and another photon at the 

lower input frequency (ω2) must be created. According to the photon energy level 

description of DFG, atom in the nonlinear medium first absorbs a photon at ω1 and jumps 

to the highest virtual level and then decays by a two photon emission process, that is further 

stimulated by the presence of the input ω2 field. 
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Figure 2.1 | Difference frequency generation. (a) Geometry of the interaction (b) Energy 
level description. 

 

In this dissertation, we used DFG phenomenon to generate tunable THz radiation. 

We kept the input idler wave fixed at 1550 nm wavelength and then varied the input pump 

waves from 1546 nm to 1474 nm to achieve continuously tunable THz radiation across 0.5-

10 THz. 

2.2.2.2 Nonlinear Optical Materials 

In order to observe successful DFG in THz range, nonlinear optical materials possessing 

the property of high second-order nonlinear susceptibility, χ(2), need to be used in the 

designed platform. Some commercially available popular nonlinear materials and polymers 

such as aluminum nitride (AlN), potassium titanyl phosphate (KTP), gallium selenide 

(GaSe), Barium titanate (BaTiO3), Lithium Niobate (LiNbO3), Potassium Niobate 

(KNbO3), monopotassium phosphate (KH2PO4, KDP), lithium tri-borate (LBO), β-barium 

borate (BBO) and SEO100 polymer from Soluxra Company can be considered for the 

designed THz emitters. Throughout this dissertation, for all the designed THz emitters, we 

have used optical properties of AlN for the nonlinear optical material due to its easy 

processing and being readily available. 
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2.2.2.3 Manley-Rowe Quantum Limit 

According to Manly-Rowe relations, in DFG, annihilation of a number of photons at pump 

frequency ω1 is associated with the creation of the same number of photons at THz 

frequency ωT and idler frequency ω2 [31-33]. This introduces an upper limit of the optical 

to THz conversion efficiency, also known as quantum efficiency. The highest achievable 

conversion efficiency is defined by the ratio of the generated wave frequency, ωT, to the 

input pump wave frequency, ω1. For instance, if we assume input optical pump wave at 

200 THz frequency is used to generate 0.5 THz DFG, then the upper limit of optical power 

to THz power conversion efficiency is 0.25%. For 10 THz DFG, the efficiency rises up to 

5%. 
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CHAPTER 3 

Tunable Room Temperature THz Sources based on Nonlinear Mixing in a Hybrid 

Optical and THz Micro-ring Resonator 

3.1 Proposed Device 

Compactness, broad tunability, simple alignment, and stable THz output are sought after 

properties in the new generation THz sources. We propose a tunable, compact room 

temperature THz source that could radiate in 0.5‒10 THz with a tunability resolution of 

0.05 THz. Figure 3.1 shows the proposed hybrid tunable THz source device with a 3D 

schematic and cross-section. The hybrid device consists of an optical ring resonator (orange 

colored) with the outer radius of 360 µm, width of 0.6 µm, thickness of 0.5 µm for the 

investigated case and with a material (e.g. AlN, BaTiO3, LiNbO3, polymer) having second 

order nonlinear susceptibility (χ(2)). We employ an optical straight bus waveguide placed 

at close proximity to the nonlinear ring in order to carry in the appropriate input infrared 

pump and idler waves so that it could generate DFG in the desired THz regime. These input 

waves will couple via evanescent field waves to the nonlinear ring where they are enhanced 

due to high Q factor of the resonator. The enhanced input waves make multiple round trips 

in the ring with resonant optical modes and generate THz waves via DFG phenomenon 

while interacting with the nonlinear material. Since the nonlinear ring cannot sustain the 

generated THz waves within itself due to their longer wavelength compared to input 

infrared, we added a THz ring resonator made of high resistivity Si with the same outer 

radius of 360 µm, 200 µm width and 120 µm thickness underneath the nonlinear ring 

resonator. The generated THz waves propagate in the THz ring with resonant THz modes 
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satisfying phase matching condition. Optical and THz resonators are separated by an 

insulation layer of 1 µm thick SiO2 ring with same width of optical ring so that optical 

waves could propagate and interact well with the nonlinear material in nonlinear ring 

without being depleted via evanescent coupling to the THz ring with high-index Si. An 

engineered THz straight waveguide is placed underneath the input bus waveguide with the 

same insulation layer of SiO2 so that it could out-couple the THz waves from the THz ring 

resonator and guide them to any point of interest including an antenna for out-coupling to 

free space. The device could be permanently bonded with quartz glass or borosilicate 

substrate. By keeping the idler input wave fixed at 1550 nm and varying the pump wave 

from 1546 nm to 1474 nm at each 0.4 nm interval satisfying resonance condition of the 

ring, the proposed THz source could emit THz radiation in 0.5 to 10 THz range with 

tunability resolution of 0.05 THz. 

 

 

Figure 3.1. Proposed tunable THz source. (a) 3D schematic of the THz source device 
based on a hybrid nonlinear optical and THz micro-ring resonator. (b) Cross-sectional 
schematic of the proposed source device. 
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3.2 Results and Discussion 

In this section, the design process of the micro-ring resonators and phase matching are 

presented. Then simulation results of the source device carried out in commercial 

simulation tools based on FDTD and FEM are presented in detail. Following, the expected 

output power of the proposed emitter is calculated analytically for selected nonlinear 

optical materials using the DFG theory. Finally proposed fabrication plan along with the 

attempted efforts and challenges are described.  

3.2.1 Design of Micro-Ring Resonators 

Micro-ring resonator is now considered as one of the most important building block of 

integrated photonics and has gained widespread interest over the past few years. It consists 

of a waveguide in a closed loop, commonly in the shape of a ring or racetrack. When 

placing the loop within close proximity of an input waveguide, light can be coupled into 

the cavity via evanescent field and light waves can propagate to circulate around the 

periphery of the cavity. Resonance take place because of the constructive interference for 

light whose phase change after each full trip around the closed loop is an integer multiple 

of 2π, i.e., in phase with the incoming light. Waves that do not meet this resonance 

condition are transmitted through the input waveguide. Resonance wavelength of the ring 

is defined by [1], 

   2 efm f effm R nλ π=     (3.1) 

where m, λm, Reff, and effn  are resonant azimuthal mode number, resonant wavelength with 

mode number m, effective radius of the ring and effective mode index of the material in 
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the ring respectively. Minimum attenuation for the optical wave propagation in the ring 

resonator can be achieved if it is properly designed. One of the important parameters for 

designing a ring resonator is free spectral range (FSR), which is defined as the distance 

between two consecutive resonant peaks in the ring. The lower the FSR the higher the 

number of resonant absorption peaks in the ring for a particular bandwidth. The lower FSR 

is needed because tunability resolution of the source device is directly related to the number 

of resonant peaks in optical region. The relation between FSR and radius of the ring is 

defined by [1], 

2 g eff

c
FSR

n Rπ
=     (3.2) 

where c is the speed of light, gn is the group index and effR is the effective radius of the 

ring. Group index takes into account the dispersion of the ring waveguide and is defined 

by [1], 

eff
g eff m

dn
n n

d
λ

λ
= −     (3.3) 

To calculate the group index, one needs to find the dispersion of the nonlinear 

waveguide. By using the eigenmode solver of finite element method based simulation tool, 

we investigated the effective mode indices of fundamental optical modes in the nonlinear 

optical waveguide considering the cross-section structure illustrated in Fig. 3.2(a). An 

isolation layer of SiO2 with 1 µm thickness was used underneath the optical waveguide to 

prevent the evanescent coupling for the optical signal into the THz Si waveguide. We used 

the refractive index of aluminum nitride for the nonlinear waveguide in the eigenmode 
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simulation. With a fixed waveguide height of 0.5 µm, we simulated the effective mode 

indices of the nonlinear waveguide for three different waveguide widths of 0.6 µm, 0.8 µm 

and 1.0 µm. Simulated dispersion characteristics of the nonlinear waveguide for the input 

infrared waves ranging from 1350 nm to 1560 nm is shown in Fig. 3.2(c). It is observed 

that effective mode indices of the fundamental optical mode in the optical waveguide 

decrease with the increase in wavelength. Also, effective index for the fundamental mode 

of a specific wavelength decreases with a decrease in width of the waveguide while we 

keep the height constant.  Equation (3.2) suggests that group index and effective radius of 

the ring is inversely proportional. So we look forward to minimizing the radius of the ring 

resonator by maximizing the group index. Group index of the waveguide can be calculated 

from the dispersion curves shown in Fig. 3.2(c) by applying equation (3.3). We found the 

group indices as 2.43, 2.51 and 2.65 for three different waveguide widths of 1 µm, 0.8 µm 

and 0.6 µm, respectively with 0.5 µm height. It is evident that smaller waveguide dimension 

gives larger group index. However, for the width smaller than 0.6 µm, it becomes very hard 

to confine the infrared input waves in the waveguide. Thus 0.6 µm width and 0.5 µm height 

values were chosen for the nonlinear waveguide which resulted the fundamental mode of 

1550 nm shown in Fig. 3.2(b). For the investigated device, the tunability resolution or FSR 

of the nonlinear ring was set to 0.05 THz. By applying the group index of 2.65 and FSR of 

0.05 THz in equation (3.2), we calculated outer radius of the nonlinear optical ring 

resonator to be 360 µm.  
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Figure 3.2 | Dispersion of nonlinear optical waveguide. (a) Cross-sectional schematic of 
the waveguide used to investigate optical mode indices by employing eigenmode solver. 
(b) Optical mode at 1550 nm with effective index of 1.5693 for 0.6 µm wide and 0.5 µm 
thick optical waveguide. (c) Simulated effective mode indices for three different 
waveguide widths (W=0.6 µm, 0.8 µm and 1.0 µm) of optical waveguide with a fixed 
height (H=0.5 µm) for 1350 nm to 1560 nm optical range. 

 

If the gap between the bus waveguide and ring resonator is set at critical coupling 

condition, transmitted power in the bus waveguide drops to zero at resonant frequencies. 

This happens only when the coupled power is equal to the power loss in the ring (κ2=1-α2), 

where κ2 is defined as the fraction of power coupling between the bus waveguide and the 

micro-ring resonator and α is the amplitude after wave attenuation over one round trip in 

the ring [1]. In order to achieve efficient difference frequency generation in 0.5-10 THz, 

critical coupling needs to be maintained over 1474 nm to 1550 nm infrared waves in the 

nonlinear ring resonator. For this infrared band, we simulate the amplitude transmission α 

in the nonlinear ring with radius of 360 µm to be 0.99. Critical coupling is achieved at a 
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gap of 600 nm providing κ2 to be 0.02. Simulated transmission spectrum of the nonlinear 

optical ring resonator with 360 µm radius and 600 nm coupling gap is presented in Fig. 

3.3(a). We also show the Q factor for different coupling gap in Fig. 3.3(b). At critical 

coupling gap, we found the optical Q factor to be 620,000 near 1550 nm. When the 

coupling gap is increased beyond this critical point, the ring is operated in a weakly coupled 

regime leading to improved Q factors around 1,500,000 which are expected to correspond 

more closely to the resonator’s intrinsic quality factor.  

Mode number for the resonant optical modes in the resonator can also be estimated 

by applying resonant wavelengths observed in transmission spectrum and their respective 

effective indices from Fig. 3.2(c) in equation (3.1). For instance, 1550 nm optical wave, 

we found the resonant mode number to be (1, 2288). Here '1' and '2288' represent radial 

and azimuthal mode number respectively. κ2 is defined as the fraction of power coupling 

between the bus waveguide and the micro-ring resonator. The waveguide power coupling 

coefficient κ2 and the propagation power loss coefficient κp
2 can be estimated from 

transmission spectrum of the ring resonator to be 2 ( ) [1 ] /FWHM FSRκ π γ= × × −  and 

2 2 ( ) /p FWHM FSRκ π γ= × × , where γ  is defined as the minimum power transmission 

in the through-port and FWHM is the full width at half maximum of the resonant peak [2]. 

To be compared with the losses in straight waveguides, which is often quoted in dB/cm, 

the propagation loss in a microring resonator can be expressed as 

2
1010 log (1 ) / (2 )p effRκ π− × − , where 2πReff is the perimeter of the microring resonator [2]. 

From the transmission spectrum of the critically coupled ring resonator over the infrared 

range of our interest, we calculated the FWHM, FSR and γ  to be 2.5±0.1 pm, 0.4±0.01 



33 
 

nm and 0.001±0.0005. The estimated κ2 and κp
2 are 0.019±0.0014, 0.0012±0.0004 

respectively and the corresponding propagation loss is 0.023±0.01 dB/cm. Using the value 

of minimum power transmissionγ , we also found high extinction ratios of 30±3 dB for the 

ring resonator over the infrared range of our interest. 

 

Figure 3.3 | Transmission spectrum of optical ring resonator. (a) Transmission 
spectrum of the nonlinear optical micro-ring resonator with 360 µm radius, 0.6 µm width 
and 600 nm critical coupling gap. The Q factor and FSR are extracted to be 620,000 and 
0.05 THz respectively. Numbers (red) at each absorption peak represent resonant mode 
number (radial, azimuthal) in the ring resonator for that wavelength. (b) The dependence 
of Q factors on the coupling gap of micro-ring resonator. 

 

3.2.2 Phase Matching Condition 

Satisfying the phase matching condition (PMC) is the most challenging part of the design. 

Only if this condition is satisfied, the generated THz will co-propagate with the optical 

waves and show coherent amplification. Phase matching condition can be written as, 
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1 1 2 2
3

3

o on n
n

ω ω
ω
−=      (3.4) 

where 1 2 3, ,ω ω ω are input pump, idler and the generated THz angular frequencies 

respectively and 1 2 3, ,o on n n  are effective indices at pump, idler and THz frequencies, 

respectively. Since we have already designed the nonlinear optical waveguide, the THz 

waveguide can now be engineered to meet the PMC. By applying the effective indices of 

infrared input waves obtained from Fig. 3.2(c) in equation (3.4), we find that the effective 

indices of THz modes have to be in the range of 2.6 to 2.7 for phase matching. Hence, THz 

waveguide must be designed in such a way that it supports and confines the THz modes 

with effective indices lying in this region. 

It is well known that Si can be used to guide radiation in the near-infrared (NIR), 

and that high resistivity Si is relatively transparent in much of the THz. Thus, high 

resistivity Si waveguides were chosen to guide THz for its high refractive index and it can 

concentrate modes with much smaller than the size of the modes of ordinary optical fibers 

and can be efficiently coupled to nonlinear materials or polymers [3, 4]. Loss tangent and 

attenuation coefficient of Si at any frequency can be calculated using the formulae 

0tan 1/ ( )Siδ ωε ε ρ=  and ( tan ) /Si Siα π ε δ λ=  respectively, where ρ  is resistivity of Si 

and 0ε , Siε  are permittivity of free space and relative permittivity of Si respectively. For 

low impurity concentration Siε  is almost a real value, which is approximately equal to the 

high frequency relative permittivity. We estimate the loss tangent at 1 THz for 10k cmΩ⋅  
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high resistivity Si with 11.67Siε =  to be 51.54 10−×  and the attenuation coefficient to be 

0.55 m-1.  

We investigated the dispersion of THz Si waveguides for different dimensions to 

find a suitable waveguide dimension with required THz mode effective indices for phase 

matching. For THz waveguide with a fixed height of 120 µm, we simulated effective 

indices of five different THz frequencies by varying the waveguide width from 120 µm to 

280 µm. The simulated results are shown in Fig. 3.4(a) for 0.5, 0.8, 1.0, 1.5 and 2.0 THz. 

It is clearly observed that for THz wave with smaller frequency and larger wavelength like 

0.5 and 0.8 THz, effective mode indices increase rapidly with a small increase in 

waveguide width. But if one goes further to higher frequencies of THz waves, the change 

in effective indices becomes nearly insignificant for a small increase in waveguide width. 

This is due to the smaller wavelength for which it is easier to confine the wave and find a 

particular mode index in that large waveguide. Waveguide width of 200 µm is chosen for 

which effective mode indices are in the range 2.6 to 2.7 for all the five different THz waves 

presented in Fig. 3.4(a). THz modal profiles are simulated by eigenmode solver in the 

engineered THz waveguide with 200 µm width and 120 µm height to show the confinement 

of THz waves with required mode indices. Modal profiles in the THz waveguide are shown 

in Fig 3.4(b), 3.4(c), 3.4(d) and 3.4(e) for 0.5, 1.0, 1.5 and 2.0 THz respectively.  
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Figure 3.4. | Engineering THz waveguide satisfying phase matching condition. 
(a)Simulated effective indices of the THz high resistivity Si waveguide with a fixed height 
of 120 µm by varying the waveguide width from 120 µm to 280 µm, showing the change 
in effective indices in THz waveguide for 0.5, 0.8, 1.0, 1.5 and 2.0 THz. Showing THz 
modal field profiles in the THz waveguide cross-section for (b) 0.5 THz (c) 1.0 THz (d) 
1.5 THz and (e) 2.0 THz. 

 

3.2.3 Numerical Simulations by FDTD and FEM 

A two-tier approach was adopted for THz generation simulations due to the large physical 

dimensions of the entire device for the 0.5‒10 THz range. First, a smaller hybrid micro-

ring resonator was designed and investigated by full 3D simulations using a commercially 

available FDTD tool and the results were compared with the ones obtained by 2D 

simulations. Once the accuracy of 2D simulations was confirmed, a larger hybrid micro-

ring resonator for 0.5‒10 THz range was designed and investigated. 

The first design includes a hybrid micro-ring resonator of 6 µm outer radius, with 

an optical ring resonator of 0.6 µm width and 0.5 µm thickness and input waveguides with 

the same dimensions. Underneath, a THz ring resonator and THz straight waveguides with 

the width of 3.5 µm and thickness of 2 µm were added to out-couple the generated THz 



37 
 

radiation. Optical and THz structures were separated by a 1 µm SiO2 thick layer. For this 

small ring resonator, critical coupling is achieved at a gap of 500 µm. Second order 

nonlinear optical susceptibility χ(2) was taken as 300 pm/V for the nonlinear optical ring 

resonator. Two optical beams at 1560 nm and 1350 nm were excited at two input straight 

optical waveguides respectively with electric field amplitude of 1×107 V/m and linewidth 

of 0.15 THz.  

Electric field profiles at different planes from the 3D simulation are analyzed in 

order to fully understand how the proposed device works. First, electric field at the 

generated THz frequency is observed on plane A in the THz ring resonator placed 

underneath the nonlinear optical resonator as indicated in Fig. 3.5(a). The field profile on 

that plane is presented in Fig. 3.5(d) which clearly shows that the DFG THz wave is 

confined to the THz ring resonator with resonant mode. Then we observed electric field on 

another plane B as marked in Fig. 3.5(c). This plane was chosen in order to observe and 

prove if the THz wave generated in the nonlinear ring is coupled to the bottom THz ring 

resonator and also if it out-couples to the THz straight receiver waveguide from the ring 

resonator. The electric field presented in Fig. 3.5(e) evidently shows that the THz wave 

generated in the optical ring is coupling to the THz ring resonator and again from there it 

is out-coupling to the THz receiver waveguide. We simulated the same design also in 2D 

using the same FDTD tool and obtained the exact same output characteristics proving their 

accuracy. 
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Figure 3.5 | Electric field profiles obtained from 3D simulation of a hybrid optical and 
THz micro-ring resonator THz source with 6µm radius. DFG is generated at 30 THz 
for two input optical waves at 1560 nm and 1350 nm. (a) Cross-section of the 3D THz 
source showing plane A in the THz ring resonator. (b) Showing 30 THz DFG field profile 
for plane A which is placed at XY plane in the THz ring resonator. It is clearly observed 
that the DFG THz is well confined in the ring with resonant mode. (c) Cross-section of the 
3D THz source showing plane B. This plane was selected in order to observe the coupling 
of the THz generated in the nonlinear ring to THz ring resonator and THz straight 
waveguide as well. (d) Electric field profile on plane B where it is clearly observed that the 
DFG THz is coupling to the THz ring resonator placed underneath the nonlinear ring. It is 
also shown that THz is out-coupling from the ring resonator to the straight THz waveguide.  

 

And finally power spectrum at the output straight THz receiver waveguide was 

analyzed in order to observe DFG peak. The output spectrum presented in Fig. 3.5(b) shows 

a clear DFG peak at 30 THz which is in good agreement with the theoretical calculations 
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for DFG process [5]. We found the linewidth of the generated THz waves to be 0.3 THz 

which is two times the bandwidth we set for the input infrared wave. Now we convert the 

3D multi-layer structure in 2D simulation for better computational efficiency. Since only 

one layer with ring resonator structure can be considered in 2D, we chose to simulate only 

the top nonlinear optical ring resonator coupled with two input waveguides at two opposite 

sides. The same χ(2) value of 300 pm/V was used in the nonlinear ring resonator and input 

waves were excited with same effective mode indices, electric field amplitude and 

linewidth at 1560 nm and 1350 nm respectively. Then this geometry was also simulated by 

the same 2D simulation tool and the exact same results were obtained proving the accuracy 

of 2D simulations.  

In the second step, the previously described DFG emitter with 360 µm radius 

nonlinear ring coupled to two input optical bus waveguides was simulated in 2D using 

FDTD tool for output spectrum. The gap between the input bus waveguide and ring 

resonator was kept at 600 nm for which critical coupling condition is satisfied. The same 

second order nonlinear optical susceptibility χ(2) of 300 pm/V was used for the nonlinear 

ring resonator. Electric field amplitude and linewidth of input waves were set to 1×107 V/m 

and 0.015 THz respectively. Resonant wavelengths obtained from the simulated 

transmission spectrum of the nonlinear ring resonator must be selected as inputs to generate 

a difference frequency in the ring. While the idler input wave was kept fixed at 1550 nm 

wavelength, another input pump wave was varied and set to 1542 nm, 1534 nm, 1526 nm, 

1519 nm, 1511 nm, 1503 nm, 1496 nm, 1488nm, 1481 nm and 1474 nm consequently to 

achieve difference frequency generation in the THz range of our interest. The simulated 
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output power spectra for those different simulations are shown in Fig. 3.6(a). Sharp DFG 

peak is observed near at 1 THz, 2 THz, 3 THz, 4 THz, 5 THz, 6 THz, 7 THz, 8 THz, 9 THz 

and 10 THz respectively in power spectra for those different input pump waves. We found 

the linewidth of the generated THz waves to be 0.03 THz which is two times the input 

pump bandwidth. Here we explain how the proposed source device operates while 

generating difference frequency at 5 THz only. For the input, 1550 nm idler wave with 

resonant mode number (1, 2288) and 1511 nm pump wave with resonant mode number (1, 

2388) were chosen to satisfy the resonant condition in the nonlinear ring resonator. These 

two optical wave pulses were excited at the two ends of the input bus waveguides as it is 

shown in Fig. 3.1(a). Since they satisfy the resonance condition, the input waves make 

multiple round trips in high Q ring resonator cavity with enhanced optical intensity 

resulting in efficient DFG process. According to the DFG theory, these two waves incident 

upon a nonlinear material should produce the difference frequency field at 5 THz. Indeed, 

the simulated power spectrum in the ring resonator shown in Fig. 3.6(a) clearly presents a 

sharp DFG peak at 5 THz. In the proposed THz source, we expect this generated THz in 

the nonlinear ring to couple to the THz ring placed underneath as it is shown for a small 

scale 3D simulation in Fig. 3.5(e). Since both the optical and THz waveguide are 

engineered satisfying phase matching condition, DFG THz will travel in THz ring cavity 

with resonant mode and experience coherent amplification. Electric field distribution in the 

THz Si micro-ring resonator with whispering gallery resonant mode is presented in Fig. 

3.6(b) for 5 THz DFG. THz straight waveguides placed at two opposite sides could out-

couple the THz from the ring and guide it to any point of interest. Now, keeping the idler 

optical fixed at 1550 nm and the pump optical wave could be varied around this wavelength 
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satisfying the resonance condition of the ring to attain difference frequency output in 0.5-

10 THz with tunability resolution of 0.05 THz at the receiver end. 

 

Figure 3.6 | 2D simulation result of the proposed THz source with 360 µm radius. (a) 
When one input beam was kept fixed at 1550 nm wavelength, another input wave was 
varied and set to 1542 nm, 1534 nm, 1526 nm, 1519 nm, 1511 nm, 1503 nm, 1496 nm, 
1488nm, 1481 nm and 1474 nm consequently, sharp DFG peak is observed near at 1 THz, 
2 THz, 3 THz, 4 THz, 5 THz, 6 THz, 7 THz, 8 THz, 9 THz and 10 THz respectively in 
power spectra at the receiver waveguide. (b) Showing electric field distribution in the THz 
ring resonator for 5 THz. At this frequency, we observe whispering gallery mode resonance 
that is why electric field is confined to the outer boundary of the ring resonator.   

 

3.2.4 Analytical Model for Output THz Estimation 

Difference frequency generation (DFG) is a second order nonlinear optical process which 

generates an electromagnetic wave of frequency 3ω  when two optical beams at slightly 

different frequencies 1ω  and 2ω  are incident upon a nonlinear material, such that the output 

frequency is the difference between the two input frequencies: 3 1 2ω ω ω= − . Let us assume 

that a strong undepleted pump optical wave ( )1 ,E z t  and an idler optical wave of ( )2 ,E z t  
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with amplitudes 1Eω  and 2Eω  are propagating along with the generated THz field of 

( )3 ,E z t  in z direction of the nonlinear medium [5], 
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where, 1 1 2 2 3 3
1 2 3, ,o on n n

k k k
c c c

ω ω ω= = =  and . .c c  stands for complex conjugate; 1 2,o on n and 

3n  are the effective mode indices for two optical beams and generated THz wave 

respectively. Second order nonlinear polarization is characterized by [6], 
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where, 123 1δ = , ijkδ  is symmetric under all permutations of its indices and vanishes unless 
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Now nonlinear polarization 3 ( , )NLP z t  acts as a source for the propagation of THz 

field ( )3 ,E z t  in the z direction. So the governing wave equation is, 
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By substituting equation (3.5) and (3.7) into the wave equation (3.8), we obtain 

( ) ( ) ( )1 2 3

2 (2) 2
3 3 *3

3 1 22 2
2  2

2
i k k k zd E z dE z

ik E E e
dz dz c

ω ω
ω ω

χ ω − − + = −     (3.9) 

Invoking the slowly varying envelope approximation [27], where the first term in 

equation (3.9) can be neglected since THz field amplitude 3Eω  does not change appreciably 

for the propagation distance of a wavelength, the wave equation is reduced to 

(2)
*3 3

3 1 2 3
3
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2
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where, 1 2 3k k k k∆ = − −   is the momentum mismatch. The amplitudes of the optical waves 

also vary slowly in the propagating direction and obey the similar wave equations, 
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We solve these equations to find the THz field variation over distance z by 

assuming the phase matching condition holds, therefore, 0k∆ =  and pump wave field 1Eω  

is undepleted. The amplified idler wave field and the DFG THz field can be written as,  

( )2 20 coshE z E gzω ω=     (3.13) 
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where 3 2 1g G G Eω ω ω=  and 20Eω  is the electric field of idler wave at 0z = .  

The THz field described in equation (3.14) is generated in the high Q optical ring 

resonator due to the interaction of two input infrared optical pump and idler waves carried 

in by the input waveguides placed at two sides of the nonlinear ring. We assume half 

circumference of the ring (C/2) to be the maximum travelled distance where two input 

waves interact with the nonlinear material resulting in THz generation without being 

changed due to out-coupling to the straight bus waveguides. This generated THz couples 

to the THz ring resonator where it is well confined with resonant mode. Then THz wave 

out-couples to the THz straight receiver waveguides placed at close proximity to the 

resonator. THz field at the receiver waveguide can be written as [1], 

3 2
20

2 3

sinh
2

o
d r

n gC
E i E

n
a

ωκ
ω

= −    (3.15) 

where a  and κ  are the total round trip attenuation and power coupling coefficient in the 

ring resonator and 20rE  is the initial electric field of idler wave in the ring resonator. If the 

area of the THz mode at the receiver waveguide is A and effn is the effective mode index 

for the generated THz wave in the waveguide, then THz output power at the receiver 

waveguide can be estimated by the following formula, 

2

02
eff

out d

n
P c E Aε ⋅=      (3.16) 
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We estimated the THz output power of the proposed device analytically by 

employing the above-mentioned analytical model that we developed. Both optical beams 

are assumed to be at a power level of 0.5 W in the input bus waveguides. Some 

commercially available popular nonlinear materials and polymers such as aluminum 

nitride, potassium titanyl phosphate (KTP), GaSe and SEO100 polymer from Soluxra 

company with χ(2) value of 5 pm/V, 27.4 pm/V, 108 pm/V and 500 pm/V respectively were 

used in the calculation. The THz output power of the device was estimated at 1 THz by 

considering the attenuation coefficient of 0.55 m-1 for high resistivity Si at 1 THz. For the 

analytical estimation, we used values of round trip attenuation and coupling coefficient to 

be 0.99 and 0.02 that we found while designing the ring resonator. We calculated THz 

output power at the receiver waveguide to be 2.2 µW, 66 µW, 1 mW and 27 mW, 

respectively for those same nonlinear materials employing equation (3.16). By considering 

the cross-sectional area of the THz receiver waveguide, output intensity at 1 THz was 

estimated to be 92 W/m2, 2.75 kW/m2, 43 kW/m2 and 1.1 MW/m2 respectively for those 

materials. 

3.2.5 Fabrication Efforts and Problems Faced 

The proposed microring resonators based THz emitter devices can be fabricated using 

standard nanofabrication tools and techniques. An undoped high resistivity (HR) Si wafer 

anodic-bonded to a borosilicate substrate is thinned to the thickness of the designed THz 

HR Si waveguide, 120 µm, and afterwards 1 µm SiO2 layer is grown on top of Si using the 

plasma-enhanced chemical vapor deposition (PECVD) to make the insulation layer 
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between optical and THz resonators. Optical nonlinear layer either could be sputtered for 

the AlN case or spun-cast for the polymer case. Finally, electron-beam lithography (EBL) 

and deep reactive ion etching (DRIE) can be used to construct the optical and THz 

microring resonators including input and output straight bus waveguides. The proposed 

process flow for fabrication is summarized in Fig. 3.7. 

 

Figure 3.7 | Proposed fabrication process flow of THz emitters. (a) Existing wafers. (b) 
Anodic bonding. (c) Wafer thinning to 120 µm and polishing. (d) 1 µm thick PECVD 
growth of SiO2. (e) 500 nm thick AlN deposition. (f) AlN etching. (g) DRIE of SiO2/Si.    
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We started the fabrication of the first batch of prototypes by considering AlN as 

nonlinear material due to its easy processing and being readily available. Here, 500 nm thin 

film of AlN is deposited on top of PECVD grown SiO2 layer of the pre-processed bonded 

wafer with atomic layer deposition (ALD) technique. We worked over a year on the 

optimization of the process recipes for AlN etching and deep reactive ion etching (DRIE) 

of high resistivity (HR) Si. Unfortunately, due to the very small gap between the optical or 

THz ring resonators and their respective straight waveguides compared to the thicknesses 

of those waveguides, we could not reach to our required features. We came to a 

understanding that it will require more process developments to reach to our requirement 

of high etching aspect ratio, which we could not pursue any longer due to financial budget 

limitation.  Here, we will briefly summarize the findings of our fabrication efforts and also 

the proposed solution to the problems faced at each step. 

For AlN etching process developments, we divided the work into three sections – 

mask fabrication, lithography to pattern and finally etching. With the help of stepper we 

prepared our mask. After the fabrication of mask, we found out that the test mask came out 

over biased. For instance, we designed the mask for ring resonator with 600 nm width and 

500 nm gap, instead it came out with 682 nm width and 417 nm gap, which was almost 

100 nm over biased (see Fig. 3.8b). In mask fabrication, the critical dimension was very 

difficult to control mainly due to two reasons: chromium etch rate and undercut was not 

constant for all the features and also it was shifting the feature size depending the area of 

the nearby exposed patterns (see Fig. 3.8c). Therefore, the proposed solution to these 
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problem is either we need to change our layout design file accordingly to compensate the 

bias or we outsource to fabricate this mask from a company with exact features we require.  

 

Figure 3.8 | SEM images of the fabricated test mask for AlN etching. (a) Disk resonator. 
(b) Ring resonator. (c) Tapered input grating. 

 

 In the lithography step, we used SPR 955-0.9 photoresist with 3000 rpm speed to 

get 970 nm thick photoresist on AlN/SiO2/Si chip. We used 1:1 (DI : Microposit) developer 

because it attacks AlN far slower than the TMAH (Tetramethylammonium hydroxide) 

based developers (e.g. AZ 726MIF) do. However, this chosen developer has poor 

selectivity to unexposed photoresist compared to TMAH based developers and also the 

developing rate varies significantly with age. First, we used Si chip to transfer the pattern 

with 0.27s exposure dose and the pattern came out precise with vertical sidewall as requires 

(see Fig. 3.9a). Then we used our AlN/SiO2/Si chip to transfer the patterns, but in this case 

it came out with non-vertical sidewall, which was unexpected (see Fig. 3.9b and Fig. 3.10). 

We figured out that the focus shift due to AlN film stress makes this difficult to achieve 

required features on AlN samples, which will likely be worse for bonded samples with 

borosilicate.  In Fig. 3.10, it is seen that in the same die we got different dimensions in the 
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center than in the edge due to the focus shift. Small die area helped to reduce the focus 

shift, but even 1 µm die caused variation. The AlN film stress was caused by the deposition 

technique and can be controlled if used suitable technique to achieved required properties.  

 

Figure 3.9 | SEM images of the patterned photoresist on Si and AlN chips. (a) Si sample 
came out with vertical sidewall. (b) AlN chip gave non-vertical sidewall. 

 

 

Figure 3.10 | SEM images in different area of the patterned photoresist on AlN 
samples. (a) In focus in the die center still gave 87.5° sidewall. (b) Out of focus in the edge 
of the die with sidewall degradation. (c) Die center in a different grating with poor sidewall. 

 

In order to achieve AlN thin films with very high quality and excellent surface 

morphology, radio frequency (RF) magnetron reactive sputtering is considered preferable 

compared to other available deposition techniques [7]. Also, sputtered AlN thin films are 

proven to be realized as excellent candidates for integrated optics for a variety of features 
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[8]. First, with optimized process settings, the sputter-deposited AlN thin films feature a 

columnar micrograin structure with highly c-axis orientation ([0002] direction) normal to 

the film plane, which is extremely preferred and essential for exploitation of the largest 

component of AlN’s χ(2) tensor (d33) in order to explore the fullest potential of nonlinear 

phenomena observed in AlN. Second, unlike other nitride deposition, AlN can be sputtered 

with very low process pressures, which allow to achieve micrometer thick films ensuring 

the fabrication of AlN waveguides with highly confined optical modes. Third, AlN 

sputtering process is thermally compatible with critical CMOS processes, since the 

equilibrium wafer temperature does not exceed 350 °C while sputtering. Finally, AlN can 

be sputter-deposited with excellent surface smoothness on a variety of crystalline and 

amorphous CMOS materials, such as, Si, SiO2, Si3N4 and even metals. 

With the transferred photoresist patterns, trial etching was performed using 

inductively coupled plasma (ICP) reactive ion etching (RIE) in Cl2/BCl3/Ar atmospheric 

conditions. We tried different power settings and gas flow combinations and found two 

relatively better recipes (see Fig. 3.11). Cross-sectional SEM images of AlN etching trials 

are shown in Fig. 3.11. Both the recipes gave non-vertical sidewall (64.7° for recipe 1 and 

68.4° for recipe 2) and we could not achieve the desired features due to poor selectivity 

(effective selectivity of 0.32:1 with recipe 1 and selectivity of 0.34:1 with recipe 2) of the 

photoresist and heavy resist erosion. Once the erosion reaches the film surface, the features 

widen considerably. The poor selectivity is a very common problem with AlN etching. 

Also the heavy resist erosion was observed due to enhanced resist etch rate at the optimal 

sputter angle. One of the other possible reasons might be thicker photoresist, which makes 
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lithography challenging suggesting thinner AlN would be feasible. We came to 

understanding that either we need to change our design to have around 300 nm thickness 

of AlN instead of 500 nm, or we can try different photoresist other than SPR 955-0.9. Also 

in order to improve selectivity, we can use a hard oxide mask instead of photoresist, in that 

case the selectivity will be very high around 5:1. The oxide mask would allow to use AZ 

726MIF developer, which is more repeatable and better characterized. 

 

Figure 3.11 | Cross-section SEM images for AlN etching results with two different 
recipes. Both the recipes provided poor vertical sidewall ~65° due to poor selectivity. 

 

Deep reactive ion etching (DRIE) technique was adopted to achieve the required 

high aspect ratio etching of high resistivity (HR) Si to fabricate THz resonators. The 

etching aspect ratio we targeted was around 200:1 (600 nm gap and 120µm deep etch). 

After having different trials, we found two relatively better recipes with aspect ratio of 

approximately 50:1 as shown in Fig. 3.12. Therefore, in order to reach the required features, 
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it demands significant recipe developments, which we could not pursue any longer due to 

financial budget limitation. 

 

Figure 3.12 | Cross-section SEM images for DRIE of HR Si samples. We achieved 
successful etching with the aspect ratio of around 50:1. 

 

3.3 Summary 

In summary, we have proposed and systematically investigated a novel tunable, compact 

room temperature terahertz (THz) source based on difference frequency generation in a 

hybrid optical and THz micro-ring resonator. We described detailed design steps of the 

source capable of generating THz wave in 0.5‒10 THz with a tunability resolution of 0.05 

THz by using high second order optical susceptibility (χ(2)) in crystals and polymers. The 

phase matching condition was successfully satisfied for the first time across 0.5-10 THz 

DFG range in single geometry device by engineering both the optical and THz resonators 

with appropriate effective indices. We have also successfully developed an analytical 

model estimating THz output power of the device by using practical values of susceptibility 

in available crystals and polymers. The proposed source can enable tunable, compact THz 
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emitters, on-chip integrated spectrometers, inspire a broader use of THz sources and 

motivate many important potential THz applications in different fields. 
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CHAPTER 4 

Tunable Room Temperature CMOS-Compatible THz Emitters based on Nonlinear 
Mixing in Microdisk Resonators 

4.1 Proposed Device 

A novel tunable, compact, room temperature THz emitter has been proposed which radiates 

in 0.5-10 THz range with tuning frequency resolution of 0.05 THz. Figure 4.1 presents 

schematic of the source device in three dimensional and cross-sectional view. The top 

orange colored microdisk resonator with outer radius and thickness of 390 µm and 0.5 µm 

respectively is made of a second order nonlinear material such as aluminum nitride or 

lithium niobate or any similar materials or polymers with χ(2) value. A straight bus 

waveguide with 0.65 µm wide and 0.5 µm thick is placed adjacent to nonlinear disk in 

order to carry in the required two near-infrared input pump and idler optical waves. The 

input beams carried by fibers can be coupled into the straight waveguides using grating 

couplers or tapered inlet waveguides. Critical coupling is achieved at the gap distance of 

550 nm between the microdisk resonator and straight waveguide. Another disk resonator 

made of high resistivity (HR) Si with 120 µm thickness is provided underneath the optical 

disk resonator with an isolation layer in order to support the DFG THz. The insulation layer 

is made of SiO2 with 1 µm thickness. A straight THz waveguide of 180 µm wide and 120 

µm thick is placed underneath the input bus waveguide to out-couple the THz beam from 

the cavity and guide it to any point of interest. Due to the large quality factor (Q ~ 106) of 

the proposed microdisk resonators to ensure large energy built-up inside the cavity, the 

coupling efficiency of generated THz wave from microdisk resonator to the receiver 

straight THz waveguide is found to be 10%.  
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Figure 4.1 | Schematic of the proposed device. (a) 3D structure of the proposed THz 
emitter consisting of nonlinear and THz microdisk resonator. (b) Cross-sectional view 
of the emitter.  

 

4.2 Results and Discussion 

The complete design steps of the device are presented here in detail satisfying phase 

matching condition for DFG. Then the concept of device operation is validated with a full 

scale 3D simulation of a smaller version of the proposed device. Afterwards we simulate 

the actual device to find DFG in the desired range and calculate power-normalized optical 

to THz conversion efficiency as well. We also developed an analytical model to estimate 

THz output power from the source device. Finally, we compared the performance of this 

THz emitter against the one designed with micro-ring resonators.   

4.2.1 Design of Microdisk Resonators 

Microdisk resonators with whispering gallery resonant modes exhibit tunability, narrow 

resonance linewidths and extraordinary optical field intensities that originally led to their 

use in integrated photonics applications as one of the most significant building blocks. If 

the round trip of a light wave inside the disk is equal to an integer number of wavelengths, 
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M, it couples into the resonator in phase with itself, which is known as the resonance 

condition. If M, λM, neff and R be the azimuthal mode number, corresponding resonant 

wavelength, effective index of the respective mode and radius of the disk, then resonance 

condition is defined by the following relation [1],  

2 eM ffM Rnλ π=        (4.1) 

In order to design any disk resonator free spectral range (FSR) is considered to be 

an important parameter, which is defined by the separation between two consecutive 

whispering gallery mode resonant frequencies. A smaller FSR ensures a larger number of 

resonant peaks in a particular frequency range resulting in a higher tunability resolution in 

the disk. FSR and radius of the disk resonator is inversely related by [1],  

                           / (2 )gFSR c Rnπ=                                               (4.2) 

where ng is the group index in the disk resonator and c is the speed of light in free space. 

Here we present detailed step by step design processes for microdisk resonators based THz 

source with tunability resolution of 0.05 THz in 0.5-10 THz range. First step is to design 

the nonlinear optical disk resonator. For the proposed device, tunability resolution is 

defined by the FSR of the nonlinear disk. Hence FSR is set to 0.05 THz. According to Eq. 

(4.2), radius of the disk can be calculated if we get to find group index of the resonant 

optical modes in the disk. Dispersion of the resonant modes in the disk is taken into account 

while estimating group index which is defined by the following equation [2],   

eff
g eff M

dn
n n

d
λ

λ
= −       (4.3) 
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The microdisk resonators have multiple sets of resonances with fundamental and 

higher order radial modes. For a fixed radius of the microdisk resonator, higher order radial 

resonant modes exhibit a larger FSR compared to the fundamental radial mode [3]. 

Therefore, the fundamental radial mode of microdisk is chosen in order to minimize the 

radius of the disk ensuring a smaller FSR between the resonant modes. Hence, effective 

indices of the first order radial whispering gallery modes (WGM) are numerically 

investigated in the nonlinear optical microdisk resonator [1]. Refractive index of aluminum 

nitride, which is 2.12 at 1550 nm, is considered in the simulation. By keeping the radius 

unchanged, effective mode indices in the disk are simulated for three different thicknesses 

of 0.4 µm, 0.5 µm and 0.6 µm. Figure 4.2 shows the simulation results of dispersion 

characteristics in the disk for the infrared input optical waves with wavelengths from 1470-

1550 nm. It is evident from the figure that effective indices of WGMs in the microdisk 

decrease with increasing wavelength and decreasing thickness. The group indices are 

calculated to be 2.41, 2.45 and 2.39 for the disk thicknesses of 0.4 µm, 0.5 µm and 0.6 µm 

respectively. The 0.5 µm thick optical microdisk resonator is chosen finally due to its larger 

group index, which results in smaller radius for the disk. The outer radius of the nonlinear 

optical resonator is estimated to be 390 µm by putting the values of group index and FSR 

into Eq. (4.2). The azimuthal mode number, M, of whispering gallery resonant modes for 

a certain wavelength in a microdisk resonator can be estimated numerically [1]. Figure 4.3 

shows the mode number with respect to the corresponding resonant wavelength for the 

designed nonlinear optical microdisk with 390 µm radius and 0.5 µm thickness. The 

distance between the two consecutive resonant modes is found to be 0.4 nm, which 

corresponds to FSR of 0.05 THz proving the accuracy of the design.  
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Figure 4.2 | Dispersion of microdisk resonators. Simulated effective indices of first order 
radial whispering gallery resonant modes for three different thicknesses (H=0.4 µm, 0.5 
µm and .06 µm) of nonlinear optical microdisk with radius of 390 µm. The effective index 
of the fundamental mode of input bus straight waveguide (WG) with 0.65 µm width and 
0.5 µm thickness is also shown. Effective mode indices of this waveguide closely match 
with the indices of 0.5 µm thick microdisk resonator.  

 

Whispering gallery resonant modes are excited in the microdisk resonator by the 

infrared waves propagating in the input bus straight waveguides. The fundamental and 

higher order radial resonances are possible in the disk due to the absence of the inner 

cylindrical boundary. A desired order radial mode of resonances can be excited efficiently 

in the microdisk only if the index matching between the radial mode and the bus waveguide 

mode is achieved [3, 4]. Therefore, the straight bus waveguide needs to be engineered to 

match its effective index with desired order cavity mode. Hence, fundamental mode 

effective indices in the input waveguide are investigated by varying its width while keeping 

the height fixed at 0.5 µm. For the 0.65 µm waveguide width, a close index match is found 

between the waveguide mode and the fundamental radial mode in the designed microdisk 

resonator with 390 µm radius and 0.5 µm thickness, which is shown in Fig. 4.2. Hence, 
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input bus waveguide with 0.65 µm width and 0.5 µm thickness is chosen for the proposed 

device. 

 

Figure 4.3 | Excited resonant modes inside microdisk resonator. Azimuthal mode 
number with respect to first order radial WGM resonant wavelength in the designed 
nonlinear optical disk resonator of 390 µm radius. 

 

Critical coupling condition is a fundamental property of resonators coupled to 

straight waveguides [5]. The resonator is considered to be critically coupled only when 

internal resonator loss is equal to the coupling loss. In that case at resonant frequencies, 

zero transmission occurs in the input straight bus waveguide due to the fact that round trip 

amplitude transmission τ becomes equal to the direct transmission coefficient r [5-7]. 

Maintaining critical coupling over 1474-1550 nm infrared optical waves in the nonlinear 

disk is necessary in order to achieve efficient DFG in 0.5-10 THz range. For this infrared 

band, value of amplitude transmission is numerically simulated and found to be 0.995 in 

the designed nonlinear disk resonator. Compared to the micro-ring resonator of same 

dimension, the amplitude transmission is higher in the disk resonator, mainly due to the 

absence of the inner cylindrical boundary [8]. The disk geometry permits the supported 
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mode to reside closer to the resonator center and decrease the radiation losses. Critical 

coupling is achieved at the gap distance of 550 nm between the disk resonator and bus 

waveguide at which coupling coefficient κ reaches to 0.1 satisfying τ = r. We find the field 

amplitude enhancement inside the disk to be 10.025 employing Eq. (4.5) mentioned in the 

analytical model section. 

Phase matching condition (PMC) must be met for efficient DFG operation. In this 

case, THz waves get coherently amplified while co-propagating with the input infrared 

optical waves. This condition can be defined by the following relation,  

                           1 1 2 2T Tn n nω ω ω= −      (4.4) 

where nT, n1 and n2 are the effective mode indices at ωT, ω1 and ω2 frequencies respectively. 

Modal phase matching technique has been adopted here in which effective mode indices 

of three interacting waves involving DFG phenomenon must satisfy Eq. (4.4). By applying 

the fundamental WGM effective indices of the input infrared waves observed in the 

designed nonlinear disk resonator into Eq. (4.4), it is found that effective indices of THz 

waves are required to be around the value of 2.46 in order to satisfy PMC for DFG in 0.5-

10 THz range. Therefore, THz microdisk resonator must be engineered to support the 

resonant WGM indices at THz frequencies of interest with the effective indices around 

2.46. High resistivity (HR) Si is chosen to guide THz radiation due to its transparency in 

much of the THz range and high refractive index which facilitates to concentrate THz 

waves in much smaller sizes than that of ordinary optical fibers [9-11]. It also makes the 

proposed THz emitter compatible with Si-CMOS technology.  
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Dispersion of first order radial THz WGM indices is investigated in HR Si 

microdisk resonator with varied thicknesses while keeping the radius unchanged at 390 

µm. For the simulation of HR Si microdisk resonator, a fixed refractive index of 3.42 is 

considered because it remains almost same over the THz region of interest. Figure 4.4 

shows the simulated results of effective indices for the disk thicknesses of 110 µm, 120 µm 

and 130 µm. Also shown the required effective indices which will satisfy phase matching 

condition over the whole 0.5-10 THz frequency range.  

 

Fig. 4.4 | Dispersion of THz microdisk resonators. Dispersion of first order radial 
resonant mode in THz HR Si microdisk resonator with radius 390 µm for different 
thicknesses (H=110 µm, 120 µm and 130 µm). 

 

As seen, effective indices with 120 µm thick microdisk resonator provide the 

closest match against required indices over the entire THz frequency range of interest. 

Therefore, THz microdisk resonator with 120 µm thickness and same outer radius of 390 

µm is chosen and placed underneath the nonlinear disk to support the DFG THz radiation. 

With the help of eigenmode solver in finite element method (FEM) based simulation tool, 

we simulated the THz wave modal profiles in the HR Si THz microdisk resonator to show 
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the WGM resonances with the required mode indices [12]. Fig. 4.5 shows the modal 

profiles in the THz disk resonator for 0.5, 0.6, 0.8 and 1 THz. 

 

Figure 4.5 | Resonant THz modal profiles inside the disk. First order radial whispering 
gallery resonant modes in HR Si THz microdisk resonator with appropriate effective 
indices satisfying phase matching condition. 

 

4.2.2 Numerical Simulations by FDTD and FEM 

In the proposed device, we expect the DFG THz in the top nonlinear disk to couple into 

the THz disk resonator which is especially designed to support THz radiation with resonant 

WGM indices satisfying phase matching condition. From where it will out-couple to the 

output receiver straight THz waveguide. Due to the large physical dimension of the 

designed emitter for DFG in 0.5-10 THz range and vast difference between the wavelength 

corresponding to the input and generated waves, a smaller version of the source device is 

designed and simulated in 3D with commercially available simulation tool based on FDTD 

and after that the extracted simulation results are analyzed to prove the concept [13]. Then 
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it is converted into a 2D model in order to investigate THz generation in the proposed 

device with better computational efficiency. 

      First we performed 3D simulation on a smaller source device which was designed to 

support 30 THz DFG, where nonlinear optical disk was of 6.5 µm radius and 0.5 µm 

thickness with input bus waveguide of 0.65 µm width and 0.5 µm thickness. Critical 

coupling was achieved when the gap between the bus waveguide and disk was kept at 500 

nm. Underneath, a THz disk resonator of same radius with 2 µm thickness and THz straight 

waveguides of 3 µm width and 2 µm thickness were added with a SiO2 insulation layer of 

0.25 µm thickness. The nonlinearity χ(2) was set to 100 pm/V in the top nonlinear disk. Two 

infrared pump and idler waves at 1550 nm and 1342 nm were excited in the input bus 

waveguides with 0.2 THz bandwidth and power level at 1 W each. According to the DFG 

theory, these two input waves should produce DFG at 30 THz. Simulation results obtained 

from this device are presented in Figure 4.6. Power spectrum shown in Fig. 4.6(b) was 

taken at the output straight THz waveguide which clearly confirms the generated peak at 

30 THz with linewidth of 0.4 THz. Then we monitored the electric field at 30 THz on plane 

A (see Fig. 4.6(a)), which is presented in Fig. 4.6(d). The field profile clearly shows first 

order radial WGM resonance, as expected. Then we observe electric field at 30 THz on 

plane B (see Fig. 4.6c), which is presented in Fig. 4.6(e). It is clearly evident that THz 

generated in the nonlinear disk is coupling to the HR Si disk provided underneath and also 

it is out-coupling to the output straight THz waveguide, as expected. Since 30 THz DFG 

having smaller wavelength couples from the nonlinear disk to HR Si disk through the oxide 

layer, it is expected that in the proposed device DFG in 0.5-10 THz range having larger 
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wavelengths should easily couple to the THz disk provided underneath. With the same 

input parameters, this geometry is simulated in 2D using the same simulation tool 

considering only the top nonlinear disk resonator with straight waveguide. The same output 

characteristics are found after the simulation, which validates the accuracy of the 2D 

simulations. 

In the simulation of the proposed THz emitter device, we kept the idler optical beam 

fixed at 1550 nm and set the pump beam varying between 1546-1474 nm at approximately 

0.4 nm interval satisfying WGM resonance condition of the nonlinear disk resonator, to 

obtain THz radiation in 0.5-10 THz range with a tuning frequency resolution of 0.05 THz. 

This resolution is limited by the FSR of the disk and could be improved by designing a 

disk with a larger radius following the Eq. (4.2). The proposed actual device was simulated 

in 2D using the same FDTD tool in order to prove the DFG in the desired THz range. We 

set the χ(2) value at 100 pm/V and input infrared power level at 1W each with 0.01 THz 

bandwidth. Then pump wave was varied and set at ten different position between 1546 nm 

to 1474 nm while keeping the idler at 1550 nm in the bus waveguide. The power spectra 

recorded at the end of the receiver straight waveguide from those simulations are presented 

in Fig. 4.7(a). Sharp DFG peaks are observed at the exact THz frequencies in 0.5-10 THz 

range that we expected from the chosen input waves according to DFG theory. The 

linewidth of the generated THz wave is found to be 0.02 THz, which is dictated by the 

bandwidth of the input infrared optical waves. It is possible to achieve sharper linewidth 

by reducing the input waves’ linewidth.  
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Figure 4.6 | 3D simulations performed on a smaller DFG emitter. Full 3D simulation 
results of a 6.5 µm radius emitter with two infrared input beams excited at 1550 nm and 
1342 nm. (a) Cross-section of the emitter indicating plane A inside the THz disk resonator 
in order to record WGM THz resonances. (b) Power spectrum at the end of the receiver 
THz straight waveguide, which shows a sharp DFG peak at 30 THz confirming DFG 
theory. (c) Cross-section of emitter indicating plane B. (d) Showing first order radial WGM 
resonance at 30 THz recorded on plane A inside the HR Si disk resonator (e) Electric field 
profile at 30 THz on plane B. 

 

Figure 4.7. | Simulation results of the proposed THz emitter. (a) Power spectra with 
DFG peaks in 0.5-10 THz range in the proposed THz emitter with 390 µm radius disk 
resonators. Output THz power was collected at the end of the receiver straight waveguide. 
(b) Power-normalized optical to THz conversion efficiency for both the microdisk and 
microring resonators based THz emitters.  
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4.2.3 Analytical Model for Output THz Estimation 

Difference-frequency generation (DFG) involves the interaction of two near-infrared 

optical waves at ω1 and ω2 in a nonlinear material and generates an electromagnetic wave 

at ωT which is the exact difference between two input frequencies [14]. Let us assume that 

a pump optical wave and an idler optical wave with amplitudes E1b and E2b are excited in 

the input bus waveguides (see Fig. 4.1(a)). Therefore, inside the cavity disk resonator the 

enhanced input wave fields can be described as [6],  

1,2 1,2 ; / (1 )c bE BE B rκ τ= = −      (4.5) 

where, B is the field enhancement factor inside the disk resonator, r is the transmission 

coefficient in the bus waveguide and κ, τ are the coupling coefficient and round trip 

amplitude transmission in the disk resonator respectively. Employing slowly varying 

amplitude approximation and introducing loss coefficients, we find the following coupled 

first order differential equations for the three waves involving the nonlinear DFG process 

[6, 15-17], 
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where α1, α2 and αT are the loss coefficients for pump, idler and THz waves, ETc is generated 

THz amplitude, x is the propagation distance and ∆k=k1-k2-kT represents phase mismatch. 

The Γ refers to the coupling coefficient in DFG process which is expressed as, 
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(2)
0 1 2/ (2 )T effcn n n Aχ µΓ =      (4.7) 

where µ0 is permeability of free space, Aeff is effective nonlinear interaction area and n1, n2,  

nT are effective mode indices at pump, idler and THz frequencies respectively. In order to 

solve Eq. (4.6) for DFG THz wave, we consider the input pump and idler powers to be 

undepleted mainly because only a fraction of pump powers contribute to generate THz 

radiation. Also we assume phase matching condition (∆k=0) is met by employing modal 

phase matching technique. Then we can estimate the THz field after one round trip 

propagation distance (L=2πR) inside the nonlinear disk resonator as [9, 15-17],  
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 (4.8) 

In the proposed emitter device, this generated THz field will couple into the THz disk 

provided underneath where it will be confined with resonant whispering gallery mode 

indices ensuring phase matching condition and finally the straight THz waveguide placed 

in closed proximity to the disk resonator will out-couple the DFG THz waves from the 

cavity and guide to the point of interest.  Hence, THz output power in the receiver 

waveguide can be written as [6], 

2
( )Tout cP E x Lκ= =       (4.9) 

4.2.4 Quantum-limited THz Conversion Efficiency 

According to Manly-Rowe relations, in DFG, annihilation of a number of photons at pump 

frequency ω1 is associated with the creation of the same number of photons at THz 
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frequency ωT and idler frequency ω2 [15, 18-19]. This introduces an upper limit of the 

optical to THz conversion efficiency. The highest achievable conversion efficiency is 

defined by the ratio of ωT to ω1. If P1b, P2b and Pout represent input pump powers in the bus 

waveguide and generated THz power respectively, we can calculate the power-normalized 

optical to THz conversion efficiency for the proposed emitter by η=Pout/P1b/P2b [15, 20-

22]. Conversion efficiency is calculated at each DFG frequency with the simulation results 

presented in Fig. 4.7(a). With P1b=P2b=1 W input pump powers, we achieve output power 

of 0.197 mW, 1.1 mW and 12.9 mW at 1 THz, 3 THz and 10 THz DFG respectively. The 

corresponding values of power-normalized conversion efficiency are found to be 1.97×10-

4 W-1, 1.1×10-3 W-1 and 1.29×10-2 W-1. We also analytically estimate the power normalized 

conversion efficiencies for those DFG frequencies by employing Eq. (4.9) and present 

those along with the simulated values in Fig. 4.7(b). As seen, there is a good agreement 

between the two. We plotted the simulated power-normalized conversion efficiencies for 

microring resonators based THz emitter as well in Fig. 4.7(b) [8]. In this case, the 

efficiencies were found to be 7.3×10-5 W-1, 5.4×10-4 W-1 and 6.2×10-3 W-1 at 1 THz, 3 THz 

and 10 THz DFG respectively. Thus, we have achieved to get two times higher 

enhancement in THz conversion efficiency with microdisk resonators compared to 

microring resonators. To the best of our knowledge, the efficiency of the proposed THz 

emitter is relatively higher than the recently reported values [15, 20-22]. 

4.3 Summary 

We have presented a detailed design of a novel tunable room temperature CMOS-

compatible THz emitter using microdisk resonators. A nonlinear optical disk resonator is 
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designed with FSR of 0.05 THz, which defines the tunability resolution of the device. 

Another microdisk resonator using the HR Si is engineered to support the whispering 

gallery resonant modes for the DFG THz waves with effective indices around 2.46 meeting 

the phase matching condition. Full 3D FDTD simulations are carried out for a smaller 

version of the proposed source to prove the concept. As seen from the simulation results, 

the THz radiation is generated at the top nonlinear disk due to mixing of the two infrared 

waves and couples to the bottom THz disk overcoming the SiO2 insulating layer. The THz 

radiation is resonated with the first order radial mode and out-couples to the receiver 

straight THz waveguide. The nonlinear mixing of the two appropriate infrared input waves 

in the proposed device has resulted in the sharp DFG peaks in 0.5-10 THz range as 

confirmed by the 2D simulations. We have achieved power-normalized conversion 

efficiency of 1.97×10-4 W-1 and 1.29×10-2 W-1 at 1 and 10 THz respectively. We believe, 

the proposed source can enable on-chip integrated THz systems. 
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CHAPTER 5 

Engineered Core-shell Nanostructures for Plasmon Enhanced Difference Frequency 

Generation in THz Range 

5.1 Proposed Device 

In this chapter, we have proposed and investigated in detail, for the first time, a spherical 

core-shell nanostructures utilizing plasmonic resonances in order to achieve enhanced 

difference frequency generation (DFG) across 0.5-10 THz range with continuous 

tunability. The proposed structure is composed of Au core acting as plasmonic nanocavity, 

which is encapsulated by an intrinsic second order (χ(2)) nonlinear optical (NLO) crystal 

(e.g. AlN, BaTiO3, LiNbO3, KTP, KbNO3) and an SiO2 outer layer preventing interparticle 

near-field coupling. Our simulations show that substantially intensified tunable THz output 

can be achieved when the proposed nanoengineered composite is exposed with appropriate 

input pump and idler waves. The spectral linewidth of the THz radiation can also be tuned 

by controlling the pulse width of the input optical waves. Here, we engineered the proposed 

structure with a resonance peak around 800 nm. In order to achieve continuously tunable 

THz generation across 0.5-10 THz range, we kept the idler fixed at 800 nm and varied the 

pump wave from 798.9 nm to 779.2 nm. DFG THz generation process through the 

proposed core-shell nanostructures are illustrated in Figure 5.1. 
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Figure 5.1 | Schematic illustration of DFG. Core-shell nanostructures are exposed with 
the resonant pump and signal optical waves, ωp and ωi respectively in order to achieve 
appropriate DFG in THz frequency. 
 

5.2 Design, Simulation Results and Discussion 

In this section, we present simulation results with detail design steps from engineering the 

core-shell structure with appropriate resonance peak to continuously tunable THz 

generation across 1-10 THz range. Here, we also provide a fair comparison of the proposed 

core-shell structure with Au as core against the bare nonlinear core and two other core-

shell nanostructures with NLO and SiO2 as core material. Detail numerical analysis of the 

proposed core-shell structures was performed using three-dimensional (3D) finite-

difference time-domain (FDTD) method (Lumerical package 2016) [1]. Perfectly matched 

layers (PMLs) were used as the boundaries, and the light source was a linear electrical 

plane wave. The nonlinear χ(2) value was set to 300 pm/V. The 3D grid sizes in all three 

axes were set to 5 nm. For simulation, we used AlN as nonlinear optical (NLO) material. 

Refractive indices of AlN, Au and SiO2 were taken from Pastrňák and Roskovcová, 

Johnson and Christy, and Palik, respectively [2-4]. 

The first design goal was to engineer the core-shell nanostructure in such a way that 

it supports resonances at the desired pump and idler frequencies around 800 nm, which is 
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done by selectively determining the size of the different layers of the structure. First, we 

engineered the bare NLO spherical core with the diameter size of 340 nm, as shown in 

Figure 5.2(a). The scattering cross-section of the engineered bare NLO core is presented in 

Figure 5.3, which shows a very wide plasmonic resonance with weak scattering peak 

around 800 nm. Recently, an engineered core-shell structure with NLO as core, Au and 

SiO2 as outer shells, has been reported for difference frequency generation at near infrared 

frequencies [5]. Hence, we engineered our first core-shell structures placing NLO as core. 

This structure consists of 260 nm diameter NLO nanoparticle with 50 nm encapsulation 

with Au layer and another 50 nm coating of SiO2 outer layer, as illustrated in Figure 5.2b. 

The scattering cross-section of the engineered core-shell structure is presented in Figure 

5.3, which corresponds to relatively stronger scattering dipole at 800 nm wavelength 

compared to bare NLO core. Difference frequency generation process can be enhanced 

significantly if the structure shows higher scattering either at input frequencies or at the 

generated frequency or both [5]. Now, if we choose NLO as a core, then the generated 

wave has to pass through the Au layer, which might cause losses. Hence, we tried to 

engineer the next core-shell structure with SiO2 as core. This engineered core-shell 

structure consists of 80 nm diameter of SiO2 sphere with 30 nm of Au coating and 80 nm 

of NLO outer shell, as shown in Figure 5.2(c). We calculated scattering of the core-shell 

structure, which exhibits a wide resonance around 800 nm and a stronger scattering 

compared to the other two designed structures, as shown in Figure 5.3. Then, we 

engineered the proposed core-shell structures selecting Au as core material. The proposed 

engineered structure consists of 100 nm diameter Au, 130 nm coating of NLO material and 

40 nm of SiO2 encapsulation layer, as illustrated in Figure 5.2(d). Scattering of the 
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proposed structure is presented in Figure 5.3, corresponding to a strong resonance peak 

around 800 nm. Thus the proposed oriented spherical core-shell structure provides the well 

confined and higher scattering plasmon resonance mode compared to the above-mentioned 

other oriented core-shell structures.  

 

Figure 5.2 | Schematic of the core-shell nanostructures. (a) Engineered bare NLO core. 
(b) Engineered core-shell nanostructure with NLO as core. (c) Engineered core-shell 
structure with SiO2 as core. (d) The proposed core-shell nanostructure with Au as core. 

   

According to DFG theory as described in Chapter 2, polarization due to second-

order nonlinearity acts as a source to generate DFG electric field wave, which is 

proportional to the amplitude of both the input pump and idler optical waves [6]. Therefore, 

the proposed core-shell structures require further investigation to ensure that the structures 

support resonance modes with high electric field enhancement. Hence we put a monitor in 

the middle of the structure to observe the electric field intensity at optical waves. The 

behavior of electric field intensity enhancement inside the bare NLO core and the core-
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shell structures, as mentioned in Figure 5.2, is presented in Figure 5.4. It is clearly evident 

from the figure that bare NLO core show the weakest input field intensity of 3.5 at its 

respective resonant peak. On the other hand, we achieved the highest field intensity 

enhancement of 490 at 800 nm resonance wavelength for the proposed core-shell structure 

with Au as core. The other two core-shell structures with NLO as core and SiO2 as core 

exhibit intensity enhancement of 36 and 120, respectively. The resonance electric field 

modes at 800 nm for all the investigated structures are summarized in Figure 5.5. For the 

bare NLO core, the mode profile is weakly concentrated inside the nonlinear core material 

while large amount of energy is outside the material coupled to air. Since, efficient DFG 

operation require a significant amount of energy of the resonant mode to be concentrated 

in the nonlinear material, this bare NLO core will show very weak DFG. On the other hand, 

for the proposed core-shell structures, it is clearly observed that plasmon resonance mode 

is strongly concentrated in the NLO material with very high electric field intensity. 

Therefore, it promises to show strong DFG compared to other structures.  

 

Figure 5.3 | Scattering of spherical core-shell structures. The proposed core-shell 
structures show strong scattering with resonance peak compared to other structures. 
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Figure 5.4 | Comparison of Intensity Enhancement. The proposed core-shell structure 
show highest intensity enhancement for input frequencies compared to other structures. 
 

 

Figure 5.5 | Resonant modal profiles. The proposed core-shell structure showing highly 
concentrated modal profiles in NLO with highest intensity enhancement. 

 

Finally, the engineered structures were simulated in 3D to achieve DFG in the 

desired THz range. The input electric field was taken as linear electrical plane wave with 

2 ps pulse length, 4 ps offset corresponding to 0.22 THz bandwidth. While the idler input 
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wave was kept fixed at 800 nm wavelength, the resonant scattering peak observed in Figure 

5.3, the pump input wave was varied and set to 797.9 nm, 795.8 nm, 793.7 nm, 791.6 nm, 

789.5 nm, 787.4 nm, 785.2 nm, 783.3 nm, 781.3 nm and 779.2 nm consequently to achieve 

difference frequency generation in the 1-10 THz range of our interest. The output THz 

power spectra achieved from the proposed core-shell nanostructure are shown in Figure 

5.6. The linewidth of the generated THz waves is found to be 0.44 THz, which is two times 

the input bandwidth selected. Hence, the spectral linewidth of the generated THz output 

can also be tuned by modulating the input bandwidth.  

 

Figure 5.6 | 3D simulation results of DFG in the proposed structure. Continuously 
tunable THz radiation was achieved by keeping the idler input fixed at 800 nm and varying 
the pump wave from 797.9 nm to 779.2 nm. 
 

 

Then, the proposed core-shell structure was compared against other mentioned 

structures in terms of DFG THz output power, which is summarized in Figure 5.7. Peak 

power of the DFG pulse was calculated by dividing the total energy of the pulse with full 

width half maximum (FWHM) pulse duration. From the figure, it is evident that 

approximately 104 times more power was achieved with the proposed core-shell structure 
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compared to bare NLO core. This is due to the highly concentrated plasmonic resonance 

with high intensity enhancement at the input frequencies in the proposed core-shell 

structure, as observed in Figure 5.5. 

 

Figure 5.7 | THz output power comparison. The proposed core-shell structure show 104 

times power enhancement compared to bare NLO core. 

 
5.3 Summary 

We have proposed and numerically investigated a core-shell nanostructure for plasmon 

enhanced difference frequency generation in 0.5-10 THz range with continuous tunability. 

The proposed structure was compared against bare NLO core, core-shell with NLO as core 

and core-shell with SiO2 as core, in terms of scattering, input field intensity enhancement, 

resonance modal profiles and THz output power. The proposed nanostructure showed 104 

times more THz output power compared to bare NLO core.  
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CHAPTER 6 

Plasmonic Nanogap Antenna Enhanced DFG in THz Range 

6.1 Proposed Device 

We have presented a novel plasmonic nanogap antenna geometry – the dimer rod-tapered 

antenna (DRTA) and created hot-spot in their gap, where the incident electric field intensity 

is enhanced by a factor of 4.1×105. The performance of this antenna structure was 

compared against widely used dimer rod type antenna (DRA) in terms of normalized 

scattering intensity and electric field intensity enhancement. As the intensity of the 

difference frequency generation (DFG) field wave is proportional to the square of the 

intensity of the fundamental optical waves, this DFG nonlinear process can be highly 

enhanced from the strongly intensified incident field wave in these structures [1].  In this 

work we propose, for the first time, to incorporate a second-order nonlinear optical crystal 

(e.g. AlN, BaTiO3, KNbO3, LiNbO3, KTP, electro-optic polymer) into the hot-spot of 

plasmonic nanogap antennas to achieve continuously tunable enhanced DFG across the 

0.5-10 THz range. The proposed structure is illustrated in Figure 6.1 with a three 

dimensional schematic. The detail numerical analysis of the proposed structures was 

carried out using commercial finite difference time domain (FDTD) method based 

commercial simulation tool. The plasmonic DRTA was engineered to support resonances 

with high electric field intensity enhancement at both the input pump and idler wavelengths 

around 1550 nm to facilitate DFG in the region of interest. Simulation results for the 

proposed device showed approximately hundred times enhancement in THz generation 

when compared with a standard DRA structure. Tunable THz output in the 0.5-10 THz 
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region was achieved by keeping the idler input wave fixed at 1550 nm wavelength and 

changing the pump wavelength from 1546 nm to 1474 nm. The spectral linewidth of the 

output THz radiation can also be tuned by controlling the pulse width of the input waves. 

 

Figure 6.1 | Proposed device structure. Three dimensional schematic of periodic clusters 
of plasmonic nanogap antenna coupled nonlinear nanodot structures on a quartz substrate. 

 

6.2 Design, Simulation Results and Discussion 

The proposed device consists of infinitely extended array of periodic clusters of DRTA 

coupled nonlinear nanodot structure on a quartz substrate. Each unit is separated by 2µm 

distance from each other in order to prevent interparticle coupling for the input infrared 

optical waves. First goal of this work was to design the DRTA structure with a detail 

comparison against the standard DRA structure by investigating in detail the optical 

properties of the structures. We used gold to construct our antenna structure. The problem 

of solving cluster arrays can be solved by treating a single unit with periodic boundary 

condition in the simulation. 3D FDTD nonlinear simulations were performed using 

commercial Lumerical package FDTD Solutions v8.15 [2]. Periodic boundary conditions 

were applied to both the x and y axis and perfectly matched layers (PMLs) were used at 
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the z axis boundaries. We used linear electrical plane wave as the input optical light source. 

The nonlinear χ(2) value was set to 10 pm/V. Regional mesh was used with a minimum 

mesh size of 0.5 nm in all three axes. We used refractive index of AlN, Au and quartz 

Pastrňák and Roskovcová, Johnson and Christy, and Palik, respectively [3-5]. In order to 

calculate and optimize the optical response of the proposed antenna structure, the Green’s 

tensor method was used by taking into account the influence of the substrate as well [6, 7]. 

 First of all the incorporation of the high refractive index NLO nanodot into the hot-

spot of the Au nanogap antennas influences the plasmonic resonance mode of the nano-

antennas, since these are highly sensitive to changes in the dielectric environment. In 

particular, the plasmonic resonance mode experiences a red shift to higher wavelengths 

due to the increase in the surrounding effective dielectric constant [8, 9]. Therefore, the 

alone antenna structure needs to be engineered first for a smaller wavelength and then again 

investigated along with NLO nanodot to make sure it provides the resonance mode at the 

wavelength of our interest. It is well known that the resonance of DRA can be spectrally 

tuned by varying the length of the antenna arms [10, 11]. The dimension of the engineered 

DRA coupled NLO nanodot structure is illustrated in Figure 6.2(a). The engineered DRA 

is composed of two identical nanorod placed side by side with 20 nm gap in between them. 

Each nanorod is 280 nm in length, 40 nm in width and 40 nm in thickness. The scattering 

spectra of the alone antenna and antenna coupled with nanodot are shown in Figure 6.3. 

Polarization direction of the incoming light was chosen as parallel to the length of the 

antenna arm. Then antenna showed a resonance peak at 1475 nm and NLO nanodot coupled 

DRA exhibited a red shift in resonance to 1550 nm wavelength as expected.   
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Figure 6.2 | Geometry of antennas coupled with NLO nanodot on quartz substrate. 
(a) A standard dimer rod type antenna (DRA) with NLO nanodot in their nanogap. (b) The 
proposed novel antenna geometry – dimer rod-tapered antenna (DRTA) with NLO nanodot 
positioned in the hot-spot. 

 

Then the proposed DRTA coupled NLO nanodot structure was engineered with the 

dimension as illustrated in Figure 6.2(b), to support resonance scattering peak at 1550 nm 

wavelength. The rectangular part of the antenna arm is of 285 nm in length, 40 nm in width 

and 40 nm in thickness and the tapered arm size is of 40 nm in length. The scattering spectra 

of the proposed structure is shown in Figure 6.3, which shows the resonance of the DRTA 

at 1520 nm wavelength and it shifts to 1550 nm wavelength after coupling the NLO 

nanodot of 20 nm diameter.  

After confirming the resonance peak at the desired wavelength, the structures were 

further investigated to observe the electric field intensity enhancement in the hot-spot. We 

put a monitor in the middle of the antenna structure perpendicular to z axis observe the 

field intensity enhancement. The calculated intensity enhancement for both the DRA and 

proposed DRTA antenna coupled nanodot devices are summarized in Figure 6.4. The 

intensity enhancement for the proposed DRTA based structure was found to be of 4.1×105, 

while it was of 4×104 for DRA, which is 10.25 times smaller. Resonance modal profiles at 
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1550 nm for both the structure are shown in Figure 6.5, which correspond to dipole type 

resonances as seen from the Figure.  

 

Figure 6.3 | Normalized scattering of antennas. Scattering spectra are summarized for 
dimer rod type antenna (DRA) alone, DRA along with NLO nanodot, the proposed novel 
dimer rod-tapered antenna (DRTA) alone and DRTA antenna with NLO nanodot 
positioned in the hot-spot. 
 

 

Finally, the engineered DRTA coupled NLO nanodot structures were simulated in 

3D to achieve DFG in the desired THz range. The input electric field was taken as linear 

electrical plane wave with 2 ps pulse length, 4 ps offset corresponding to 0.22 THz 

bandwidth. While the idler input wave was kept fixed at 1550 nm wavelength, the resonant 

scattering peak observed in Figure 6.3, the pump input wave was varied from 1546 nm to 

1474 nm continuously to achieve tunable difference frequency generation in the 0.5-10 

THz range of our interest. The output THz power spectra achieved from the proposed 

DRTA based nanostructure are shown in Figure 6.6. The linewidth of the generated THz 

waves is found to be 0.44 THz, which is dependent on the spectral width of the input optical 

waves and found to be two times the input bandwidth selected. Hence, the spectral 
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linewidth of the generated THz output can also be tuned by modulating the input 

bandwidth.  

 

Figure 6.4 | Investigation of input optical field enhancement. The structure were 
engineered to have plasmonic resonance at 1550 nm wavelength. For that frequency, we 
observed electric field intensity enhancement of 4.1×105 and 4×104 for the proposed novel 
DRTA nanostructure and a standard DRA structure incorporated with nonlinear optical 
material in the middle of the antenna nanogap. 

 

Then, the proposed DRTA coupled NLO nanodot emitter was compared against 

standard DRA coupled emitter structure in terms of DFG THz output power, which is 

summarized in Figure 6.7. Peak power of the DFG pulse was calculated by dividing the 

total energy of the pulse with the full width half maximum (FWHM) pulse duration of the 

generated wave. From the figure, it is evident that approximately 100 times more power 

was achieved with the proposed antenna structure compared to using the standard DRA 

structure. This is due to the highly concentrated plasmonic resonance with high intensity 

enhancement at the input frequencies in the nanogap of the proposed novel antenna 

geometry, as observed in Figure 6.5. 
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Figure 6.5 | Plasmonic resonance modal profile. (a) Electric field intensity modal profile 
for the plasmonic resonance observed at 1550 nm wavelength with a standard dimer rod 
type antenna along with NLO nanodot positioned in the nanogap. (b) Field intensity 
resonant modal profile for the proposed dimer rod-tapered antenna structure. 
 

 

Figure 6.6 | 3D simulation results of DFG in the proposed structure. Continuously 
tunable THz radiation was achieved by keeping the idler input fixed at 1550 nm and 
varying the pump wave from 1546 nm to 1474 nm. 
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Figure 6.7 | THz output power comparison. The proposed antenna structure showed 
approximately two orders of enhancement in THz output power, when compared to 
standard DRA based emitter. 

 
6.3 Summary 

We have proposed and numerically investigated a novel plasmonic antenna geometry, 

DRTA, which showed a huge intensity enhancement of 4.1×105 creating a hot-spot in the 

nanogap between the dimer. Further, we have proposed a novel THz emitter by 

incorporating NLO nanodot particle in the hot-spot of the engineered DRTA for nanogap 

enhanced plasmonic resonance based difference frequency generation in 0.5-10 THz range 

with continuous tunability. The proposed structure was further compared against a simple 

DRA based emitter, in terms of scattering, input field intensity enhancement, resonance 

modal profiles and THz output power. The proposed nanostructure showed approximately 

100 times more THz output power compared to the DRA based emitter.  
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CHAPTER 7 

Difference Frequency Generation across THz Range by Film-Coupled Plasmonic 

Grating Resonators 

7.1  Proposed Device 

Because of their ability to strongly localize and enhance optical fields, plasmonic 

nanostructures have the potential to dramatically enhance the inherent nonlinear response 

of materials. In this work, we present the impact of this plasmonic interaction by 

investigating continuously tunable difference frequency generation (DFG) in the 0.5-10 

THz range from a platform of film-coupled plasmonic grating resonators. Figure 1 shows 

the three dimensional and cross-sectional view of the proposed THz emitter device. Here, 

200 nm of Al film layer and the engineered Al grating resonators are separated by a 20 nm 

thin nonlinear optical (NLO) material (e.g. AlN, BaTiO3, KNbO3, LiNbO3, KTP, BBO, 

electro-optic polymer) film. This nanoscale junction, with an ultra-smooth interface, forms 

a waveguide cavity resonator with a controllable large electric field enhancement, whose 

plasmon resonance can be easily tuned independently by adjusting the grating width and 

period [1]. The grating was engineered with 610 nm width, 715 nm period, 150 nm 

thickness and 50 µm length to support a plasmonic resonance at 1550 nm wavelength. We 

observed an electric field intensity enhancement of 620 for the resonant mode in the 

engineered resonators. High resistivity (HR) Si was chosen as substrate due to its 

transparency across the THz range of interest [2-5].   

 The proposed structure can be fabricated using the standard nanofabrication tools 

and techniques. 200 nm of Al can be deposited on top of an undoped high resistivity (HR) 
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Si wafer with electron-beam evaporation technique. Nonlinear layer of 20 nm could be 

either sputtered for the AlN case or spun-cast for the polymer case. Finally, electron-beam 

lithography (EBL) can be used to construct the periodic arrays of Al grating resonators 

with lift-off techniques. 

 

Figure 7.1 | Proposed device structure. (a) Three dimensional schematic of film-coupled 
plasmonic grating resonators. (b) Cross-sectional view of the same THz emitter device 
showing the dimension and material. 
 

7.2  Design, Simulation Results and Discussion 

The proposed device consists of infinitely extended array of periodic grating resonators 

coupled to thin NLO film. First task of this work was to design the plasmonic grating 

resonators in order to obtain the desired resonant mode at 1550 nm wavelength. 

Commercial Lumerical package FDTD Solutions v8.15 was used to investigate in detail 

the proposed grating based THz emitter device [6]. Since, the grating structures itself are 

in periodic fashion, only one periodical unit of grating was considered to observe optical 

properties and DFG generation with periodic boundary condition. This grating resonators 

geometry can be modelled in two dimension by considering the cross-section of the device 

as shown in Figure 7.1(b), which not only takes all the layers of the device into account but 
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also provides better computational efficiency.   Periodic boundary conditions were applied 

to the x axis and perfectly matched layers (PMLs) were used at the y axis boundaries. We 

used linear electrical plane wave as the input optical light source. The nonlinear χ(2) value 

was set to 100 pm/V. Regional mesh was used with a minimum mesh size of 0.5 nm in all 

axes around the metal grating and NLO and metal film layers. We used refractive index of 

AlN from Pastrňák and Roskovcová and refractive index for Al and high resistivity Si both 

from Palik [7, 8].  

 The geometry of film-coupled grating resonators result in a coupled plasmonic 

structure that behaves as an optical frequency patch antenna in such a way that the thin 

NLO gap layer between the metal film and metal grating defines a waveguide cavity 

resonator, where plasmons can propagate along the width and are reflected at the edges [9, 

10]. Therefore, both the grating width and the nonlinear film layer thickness determine the 

plasmon resonance frequency. More specifically, the grating width defines the cavity 

length, on the other hand the NLO film layer determines the effective index in the 

waveguide. We need to investigate in detail the resonance behavior, resonance electric field 

modal profile especially how it is concentrated and the intensity enhancement factor of the 

resonant mode. Therefore, the proposed film-coupled grating resonators were studied 

extensively in order to understand its behavior by varying the geometrical dimension of 

each layer. We observed that with all other dimension fixed, increasing NLO film layer 

thickness makes a blue-shift in the plasmon resonance. It was also found that the variation 

of the grating width affects only the resonance wavelength, while variation of the NLO 

layer thickness affects both the resonance and the field intensity enhancement factor. For 
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any structure, a resonant modal profile, which show better confinement inside the NLO 

layer along with high intensity enhancement, is mostly sought to achieve efficient and 

enhanced DFG. 

 Reflectance spectrum of the engineered grating structures is presented in Figure 

7.2. When the polarization of the incident electric field is oriented along the length of the 

grating (transverse electric, TE), no resonance is observed because the length of the 

waveguide is too long (50 µm) to support resonance around 1550 nm wavelength of 

interest. For the opposite polarization (transverse magnetic, TM), where electric field is 

oriented along the width of the grating, a strong minimum dip approaching zero is observed 

in the reflectance spectrum at 1550 nm, as seen from Figure 7.2. It indicates the film-

coupled grating resonators behave as a near-perfect absorber, where almost all the photonic 

energy incident on the structures is coupled into the gap region [11]. In order to provide 

more evidence to support this behavior, the power absorption profile was also calculated 

for the design system, as shown in Figure 7.3, which exhibits a peak with a value of 0.9995 

approaching unity. The electric field intensity modal profile is presented in Figure 7.4. Here 

the electric fields are mostly confined in the NLO film layer underneath the grating, as 

required for efficient operation of DFG, and it also makes sure that near field coupling 

between the grating resonators is minimized. Since the electric field intensity enhancement 

factor inside the NLO layer determines the enhancement of DFG operation, we put a 

monitor in the middle of the NLO film layer and the obtained intensity enhancement is 

presented in Figure 7.5. It shows maximum intensity enhancement of 620 at the resonant 

wavelength. 
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Figure 7.2 | Reflection spectrum. Reflection was calculated for the engineered film-
coupled grating resonators, which show a clear resonant dip approaching zero at 1550 nm 
wavelength. 

 

 

Figure 7.3 | Power absorption. The designed film-coupled resonators act as a near perfect 
absorber at the resonant wavelength, which is confirmed by the power absorption monitor 
showing a peak with a value of 0.9995 close to unity. 
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Figure 7.4 | Plasmonic resonance modal profile. Electric field intensity modal profile for 
the plasmonic resonance observed at 1550 nm wavelength with the engineered structure 
showing electric field confined in the NLO layer and the grating gap region. 
 

   

Figure 7.5 | Investigation of electric field intensity enhancement. The film-coupled 
grating resonators were engineered to have plasmonic resonance at 1550 nm wavelength. 
At that wavelength, we observed electric field intensity enhancement of 620. 

 

Finally, the engineered film-coupled grating resonator structures were simulated in 

3D to achieve DFG in the desired THz range. The input electric field was taken as linear 

electrical plane wave with 2 ps pulse length, 4 ps offset corresponding to 0.22 THz 

bandwidth. The amplitude of electric field was taken as 108 V/m. While the idler input 

wave was kept fixed at 1550 nm wavelength, the resonant absorption peak observed in 
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Figure 7.3, the pump input wave was varied from 1546 nm to 1474 nm continuously to 

achieve tunable difference frequency generation in the 0.5-10 THz range of our interest. 

The output THz power spectra achieved from the proposed grating based nanostructure are 

shown in Figure 7.6. The linewidth of the generated THz waves is found to be 0.44 THz, 

which is dependent on the spectral width of the input optical waves and found to be two 

times the input bandwidth selected. Hence, the spectral linewidth of the generated THz 

output can also be tuned by modulating the input bandwidth. Peak power of the DFG pulse 

can be calculated by dividing the total energy of the pulse with the full width half maximum 

(FWHM) pulse duration of the generated wave. We observed 119 µW, 553 µW and 678 

µW output power at 1 THz, 5 THz and 10 THz, respectively. The THz output power is 

summarized in Figure 7.7 in terms of NLO film layer thickness variation. With 20 nm 

thickness of NLO film layer, we achieved 5 times more in THz output power compared to 

50 nm NLO film layer thickness. 

 

Figure 7.6 | 3D simulation results of DFG in the proposed structure. Continuously 
tunable THz radiation was achieved by keeping the idler input fixed at 1550 nm and 
varying the pump wave from 1546 nm to 1474 nm. 
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Figure 7.7 | THz output power comparison in terms of NLO film layer thickness. 
Achieved 5 times more output power for 20 nm NLO film layer thickness than for 50 nm 
thickness. 

 

7.3 Summary 

We have proposed and numerically investigated NLO film-coupled Aluminum grating 

resonators acting as a near-perfect absorber in order to achieve enhanced difference 

frequency generation across the 0.5-10 THz range with continuous tunability. For the 

absorption resonance peak, it showed a maximum field intensity enhance of 620.  
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CHAPTER 8 

Application of THz Plasmonic Metasurfaces  

8.1 Terahertz Magnetoplasmonic Metasurface with Toroidal resonances for 

Switching Application 

In chapter 5, 6 and 7, we have designed different plasmonic resonance metasurfaces 

combined with NLO material with near infrared resonant frequencies to achieve tunable 

THz emission. These plasmonic metasurfaces can be engineered to excite sharp resonances 

at THz frequencies, which are highly sensitive to environmental perturbations and can be 

used towards switching and bio-sensing applications. In this chapter, we numerically 

analyzed, then fabricated and experimentally demonstrated a novel THz plasmonic 

metasurface based on multi-metallic unit cells as a THz switch. Here, instead of 

investigating conventional planar unit cells, we report on the observation of toroidal dipole 

using artificially engineered multi-metallic planar plasmonic resonators. The proposed 

resonators are designed with iron (Fe) and titanium (Ti) components acting as magnetic 

resonators and forming torus, respectively. The performed detail numerical analysis and 

then the experimental verifications confirm that the engineered plasmonic metasurfaces 

allow for the peculiar electromagnetic excitation of toroidal dipole in the THz domain with 

observed experimental quality factor of 18. 

8.1.1 Toroidal Dipole Resonance 

Recently, third family of electromagnetic multipoles have been reported, which are known 

as anapole or toroidal [1]. Between them, toroidal dipole mode are considered as the most 
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strong one, which can be viewed as a circular head to tail arrangements of magnetic dipoles, 

all squeezed into a single point as shown in Fig. 8.1. Toroidal resonant modes are peculiar 

localized electromagnetic excitations, which are categorized in different family of resonant 

modes far away from classical or conventional electromagnetic modes namely electric and 

magnetic dipole modes. These type of resonances can be identified as circular head to tail 

magnetic currents rotating around torus. The toroidal dipole is not a part of standard 

multipole expansion, despite corresponding to a unique current density. It is an elusive 

counterpart of the charge and magnetic dipoles, which is produced by currents flowing on 

the surface of a torus along its meridian as shown in Fig. 8.2b.  

 

Figure 8.1 | Three families of dynamic multipoles. The three columns on the left showing 
the charge-current distributions, which contribute to the classical electric and metallic 
multipoles and the unconventional toroidal multipoles. Figure reproduced from ref. 1, APS. 

 

8.1.2 Fabrication of Proposed Plasmonic Metasurface 

Two level lithography based microfabrication processes were developed by designing two 

different mask for Ti and Fe respectively to fabricate the proposed THz plasmonic 

metasurfaces as shown in Fig. 8.2a. In order to provide the required transparency in the 
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THz domain, undoped and high resistivity (HR) Si wafer (>10 kΩ.cm) with the crystal 

orientation of <100> was used as substrate [2, 3]. The wafer was sonicated consequently 

in acetone, isopropyl alcohol (IPA) and deionized (DI) water for 10 minutes each and 

finally dried by Nitrogen to make it ready for the fabrication process. We selected a 

negative photoresist (NLOF 2020) for lithography process. We spin-coated the photoresist 

in two steps with 100 rpm/s ramp, 500 rpm/s speed for 5 sec in first step and 500 rpm/s 

ramp, 3000 rpm/s for 45 sec in the final step. The photoresist thickness was obtained as 2 

µm. We prebaked the samples for 90 sec at 110°C and then exposed it for 5 sec with OAI 

(800) Mask Aligner. The exposed samples were post-baked for 90 more seconds at the 

same 110°C. Then we used MF26A developer for 20 sec to achieve our required feature. 

Using e-beam evaporation, we then deposited 300 nm of Ti layer with the rate of 2 Å/s 

(99.99% purity for Ti with process pressure ~5×10-7 Torr). The lift-off process was 

performed for 15 min by immersing the samples in acetone sonication bath. The the 

samples were plunged in remover PG for 120 min at 70 °C heat followed by IPA and DI 

water rinse. By following the same steps and using the second mask, we deposited Fe with 

e-beam evaporation tool (99.95% purity for Fe, pressure ~5×10-7 Torr).    

8.1.3 Experimental Results and Discussion 

Figure 8.2(a) represents the artistic 3D schematic view of the proposed THz plasmonic 

multi-metallic metasurfaces unit on a HR Si substrate explicitly mentioning the incident 

THz beam profile direction and electric field polarization. The device geometry with detail 

material specifications are demonstrated in Fig. 8.2b with a top-view profile. Figure 8.2c 

presents an SEM image of the fabricated arrays of unit cell with the gap distance of Dg=3 
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µm between central horizontal and peripheral curved resonators. The focused SEM image 

of the single plasmonic unit cell is shown in Fig. 8.2d. In calculating the optical 

characteristics of the proposed unit cell, experimentally obtained permittivity values for Fe 

by Ordal et al. for the satellite split curved resonators were used [4]. Room temperature 

natural oxide formation (Fe2O3) of a few nanometers on top of Fe curved structures were 

also considered for accurate calculation [5]. We used refractive index of Ti and Si both 

from Palik for the central resonator and substrate respectively [6]. The formation of circular 

magnetic fields in the center of the structure was achieved by exciting localized modes with 

an input THz beam in negative z axis direction as shown in Fig. 8.2a. The effective electric 

dipole moment experiences dramatic suppression by the excited strong electric resonance 

mode supported by the central Ti resonator and the weak magnetic resonance modes in the 

Fe curved resonators [7, 8]. For the magnetic resonance mode (m), it creates strong 

magnetic fields oscillating circularly in opposite direction at the edge of the Ti block and 

leads to excite weaker magnetic modes horizontal to the central Ti section as shown in Fig. 

8.3a [9]. On the other hand, Fig. 8.3b illustrates the formation of a head-to-tail 

configuration of the magnetic moments contributing to the desired toroidal dipole (T) 

around the center of the unit cell supported by the torus surface currents (j) along the 

meridian in circular fashion. The arrows specifically highlight the current and magnetic 

dipole moment direction as in close-loop manner. And due to the designed antisymmetric 

geometry of the proposed plasmonic metasurface, the required head-to-tail configuration 

for toroidal dipole mode was observed perpendicular to the central Ti block.       
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Figure 8.2 | Proposed switch based on THz plasmonic metasurfaces. (a) 3D schematic 
of the proposed unit cell of plasmonic metasurface. (b) A top-view schematic of the multi-
metallic unit cell with detail geometrical description. (c) The SEM image of fabricated 
proposed plasmonic structures in arrays for the unit cells with the gap spots between 
surrounding and central resonators of Dg=3 µm with L=240 µm, R=50 µm, W1=30 µm, and 
W2=40 µm. (d) The focused SEM images for each unit cell with Dg=3 µm. 

 

We can calculate the corresponding transmission of the magnetic radiation from the 

proposed multi-metallic resonators based arrays by taking into account both the scattered 

magnetic and incident electromagnetic fields. The effective contribution of the far-field 

scattering of the magnetic field (Hscat) can be described as [9, 10], 
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where k is the wave vector, Z0 is the impedance of the medium, ɛ0 is the permittivity of the 

vacuum, n is a unit vector in the direction of the incident THz beam, and finally, mc and 

Tc are the magnetic and toroidal  dipole moments, respectively, which are defined as [11], 
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where J is the induced current density over the entire volume of the area and c is the speed 

of the light in vacuum. The effect of the offset gaps (Dg) between the Fe curved and Ti 

central blocks on the electromagnetic response was first analysed to investigate the strong 

dependence of the magnetic response to the variation of geometrical parameters, as 

summarized in Figs. 8.3c(i)-8.3e(i). It will help us to understand the controlling mechanism 

for the position and sharpness of the induced magnetoplasmonic resonances by varying the 

offset gap. For Dg=3 µm, a sharp magnetic dipole mode minimum is observed at ~0.23 

THz (indicated by m in Fig. 8.3c) in the experimentally measured normalized transmission 

amplitude profile. On the other hand, toroidal dipole moment (T) minimum with ultrasharp 

and distinct linewidth was excited at ~0.203 THz as seen in Fig. 8.3c. In this case, the 

magnetic fields created in the curved Fe resonators and the close-loop magnetic dipole at 

the offset gap region cumulatively contribute to the formation of the required head-to-tail 

configuration for the toroidal resonance mode through the classical modes’ suppression as 

reported elsewhere [11-14]. It poses a serious challenge to excite this peculiar and 
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ultrasharp toroidal resonance mode by employing conventional planar structures. The 

proposed plasmonic metasurface unit cell enhances the induced toroidal mode due to the 

introduction of Fe in the curved section with the central Ti block, instead of using Ti all 

over. The strong electric and weak magnetic responses of the central Ti block help to 

prevent destructive interference of the strong magnetic moments supported by the curved 

magnetic resonators and the dipole moments supported by the central resonator. As a result, 

formation of a closed-loop head-to-tail magnetic moment configuration would be possible 

around the central part of the unit cell. Furthermore, the presence of the HR Si substrate 

below the multi-metallic unit cell resonator increases the asymmetry of the entire 

metasurface.  With the increase in the offset gap to 4 µm and 5 µm, we observed linewidth 

broadening and suppression of the toroidal mode, which dramatically reduced the 

sharpness of Q -factor of both the magnetic and toroidal resonance modes as seen in Fig. 

8.3d(i) and 8.3e(i). Figures 8.3c(ii)-8.3e(ii) summarize the SEM images of the samples 

with the offset gap variation. Here, we can see that our numerical simulation results (see 

8.3c(iii)-8.3e(iii)) are in pretty good agreement with the experimental results, which also 

validate our simulation methods. We also calculated the corresponding experimental Q-

factors as high as exp 14Q =m  and exp 18Q =T  for the magnetic and toroidal modes, respectively 

[7, 8, 15, 16].    

In order to confirm a resonance mode to be toroidal type, we need to investigate the 

magnetic field profiles along with surface current distribution. Simulated localized 

magnetic fields in the plasmonic metasurface as shown in figures 8.4a and 8.4b exhibit the 

intense magnetic field confinement at the centre of the proposed metasurface for the 
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toroidal resonance and at the edges in circular fashion for the magnetic resonance mode, 

respectively. In addition, we used the cross-sectional monitors for the magnetic field (H-

field) excitation across the plasmonic metasurface at both toroidal and magnetic resonant 

moments as illustrated in Figs. 8.4a(iii) and 8.4b(iii), respectively, which provide a better 

understanding of the formation of head-to-tail circular magnetic fields at the centre of the 

resonator. The surface current (j) was also simulated for both the resonant modes, which 

are shown in Fig. 8.4c. 

 

Figure 8.3 | Magnetic and toroidal resonance modes characterization. (a), (b) The 3D 
schematics of the magnetic (m) and toroidal (T) resonances, respectively. (c), (d), and (e) 
The electromagnetic response of the proposed THz plasmonic metasurfaces: (i) 
Experimentally obtained normalized transmission profiles for the arrays with varying three 
different offset gaps, (ii) the corresponding SEM images for different offset gaps between 
resonators, (iii) Numerically simulated transmission spectra for those three different offset 
gaps. 

 

Next, we investigated the effect of the geometrical variations in the magnetic 

curved resonators on the excited plasmonic response of the metasurface. To this end, by 

keeping the width of the central block fixed at W2=40 µm, we changed the widths of the 
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curved Fe resonators to W1=25 µm with the radii fixed to R=50 µm. Figure 8.5 summarizes 

both the simulation and experimental results for this geometry settings at three different 

offset gaps. With the reducing width of the Fe components, strength of the magnetic dipole 

moment (m) decays dramatically as expected and does not radiate as strongly as it did in 

the previous cases with larger width. Therefore, a significant decay in toroidal mode was 

observed due to slightly dominant behaviour of the excited classical electric dipolar and 

multipolar moments.  

 

Figure 8.4 | Numerical cross-examination for magnetic and toroidal resonances. The 
electromagnetic field of the proposed structure at (a) toroidal and (b) magnetic resonance 
modes. Simulated local |H|-field (A/m) for the toroidal and magnetic resonance modes 
highlighting the confinement and excitation regions in (i) linear and (ii) logarithmic scales. 
(iii) The cross-sectional vectorial maps for the magnetic field lines for those same resonant 
modes. (c) Numerically calculated surface currents (j) of the proposed plasmonic structure 
at resonant modes. 
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Figure 8.5 | Effect of gap size in toroidal and magnetic resonances in the proposed 
plasmonic metasurfaces. Normalized transmission profiles of the THz plasmonic system 
with three different offset gaps obtained (i) experimentally and (ii) numerically for (a) Dg=3 
µm, (b) Dg=4 µm, and (c) Dg=5 µm. The insets are the SEM images with the geometrical 
dimensions. 

 

It should be noted that despite of achieving prevailing response, both electric and 

magnetic multipolar moments are not still resonant in this frequency due to poor scattering 

efficiency [17, 18]. After comparing Fig. 8.5a and Fig. 8.3a, the dramatic decay in the 

corresponding Q-factor of the toroidal mode is obvious. In the same way, the magnetic 

dipole moment also decays significantly due to the dominant electric and magnetic 

classical multipolar modes. In this limit, increasing the offset gap distance between the 
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central and curved resonators gives rise to continuing decay in the Q-factor of both the 

induced modes (see Figs. 8.5b and 8.5c). For Dg=5 µm, the magnetic dipolar moment is 

almost disappeared and difficult to identify in the experimental transmission. Also, the 

minor blue-shift in the positions of both resonant dips is caused by the geometrical 

dimension variations, which can easily be described by Mie scattering theory [14].  

It should be noted that the exquisite properties of the proposed THz plasmonic 

metasurface is not limited to sustaining ultra-sharp toroidal response. The unique geometry 

of the multi-metallic resonators allows for highly sensitive polarization dependency to the 

angle of the incident beam. This feature allows for use of the proposed structure as a THz 

switch. Using the inherent and exotic anti-symmetry of the plasmonic unit cell, an efficient 

polarization-dependent plasmonic toroid switch can be realized. By choosing the best 

response from the previously studied structures with the highest Q-factor, we analyse the 

behaviour of a sample unit cell under incident THz beam polarization variations. Figure 

8.6a shows an artistic schematic of the metasurface and the angle (φ) and direction of the 

incident magnetic field (H). In Fig 8.6b, we plotted the experimentally measured 

normalized transmission spectra for a unit cell with the following geometrical parameters: 

Dg=3 µm, with L=240 µm, R=50 µm, W1=30 µm, and W2=40 µm, to achieve the highest 

possible Q-factor. In principle, for the incident magnetic beam in the longitudinal 

polarization limit (φ=90°) parallel to the central block (H║), the same toroidal dipolar dip 

is induced with high-Q around 0.2 THz and the beam transmissivity is extremely low. 

Rotating the angle of the polarization to φ=45°, we observed a drastic decay in the toroidal 

resonant mode dip. Eventually, for φ=0°, where the incident magnetic component entirely 
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transverse (H┴) to the central block, the toroidal dip is eliminated and the plasmonic 

metasurface acts as a transparent media at this frequency. As a result, the toroidal resonance 

characteristics disappeared. To understand the physics behind the disappearance of the 

toroidal mode, we should note the direction of the incident electric field component (E║) 

as well. For φ=0°, due to the antisymmetric geometry of the plasmonic unit cell, the 

incident electric field component becomes parallel (E║) to the central block and offset gaps. 

In this regime, the electric field becomes dominant and the required head-to-tail magnetic 

moment closed-loop cannot be formed around the central block of the micro-structure. 

Interestingly, however, a distinct magnetic dipolar moment around ~0.23 THz remains due 

to excitation of the dipolar magnetic resonances by the magnetic peripheral curves via 

transverse incident magnetic beam. One should note that the Q-factor of the induced 

magnetic dipolar moment in this regime is poorer than the ones in the previous regimes. 

Moreover, the transmission spectra (for the toroidal response) as a function of the magnetic 

component of the incident beam angle (φ) is plotted in Fig. 8.6c. Such a strong dependence 

of toroidal minimum can be exploited for fast and efficient on/off routing [19-25] and 

filtering purposes [26, 27]. As a key parameter, we also computed the corresponding 

modulation-depth (MD) for the proposed metasurface as a function of microstructure’s 

geometries, as shown in Fig. 8.6d. Here, the best MD was determined as ~96% for a 

resonator with the gap size of 3 µm and curved resonator width of 30 µm. The plotted 

diagram shows the strong dependency of the toroidal dipolar mode and subsequently MD 

on both geometrical and polarization. Ultimately, to verify this claim, we plotted the 

transmission spectra vs polarization angle in polar plane for the analysed unit cell in Fig. 
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8.6e. The obtained experimental and numerical data confirms the strong dependency of the 

transmission characteristics of the beam, especially to its angle of polarization direction. 

 

Figure 8.6 | Experimental results for the proposed THz switch. (a) A perspective 
schematic for a metasurface consisting of arrays of compositional plasmonic metasurface 
unit cells. (b) Experimentally measured normalized transmission amplitude for both 
toroidal and magnetic responses of the plasmonic unit cell under different magnetic 
polarization angles 0° ≤ φ ≤ 90°. (c) Toroidal response of the unit cell as a function of 
incident beam’s component angle. (d) The MD percentage as a function of both W1 and Dg, 
showing the highest value around ~96%. (e) The polar plot for both experimentally and 
numerically obtained transmission spectra for the toroidal resonant mode. 
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CHAPTER 9 

Conclusions and Future Direction 

9.1 Conclusions 

In this dissertation, we have presented novel approaches to achieve enhanced difference 

frequency generation (DFG) across the whole spectral range (0.5-10 THz) of THz 

radiation. Each of the proposed THz emitters has the advantages of wide range tunability, 

compactness, room temperature operation, fast modulation and the possibility for 

monolithic integration, which are the most sought after properties in the new generation 

THz sources. First, we investigated THz radiation in a hybrid optical and THz micro-ring 

resonators system. For the first time, we were able to satisfy the DFG phase matching 

condition for the above-mentioned THz range in one single device geometry by employing 

a modal phase matching technique and using two separately designed resonators capable 

of oscillating at input optical waves of shorter wavelengths and generated THz waves of 

longer wavelengths. In comparison to microring resonators, microdisk resonators with the 

same dimensions are expected to provide higher quality factors with smaller radiation 

losses due to the absence of inner cylindrical boundaries. Therefore, we investigated 

another potential THz emitter by using microdisk resonators. Due to the fact that micro-

ring or micro-disk resonators are resonated at certain frequencies over a frequency range 

of interest, the difference between the two consecutive resonant frequencies, namely free 

spectral range imposes a limiting factor of minimum tunability resolution in the designed 

THz emitters, which demanded further research to design THz emitters with continuously 

tunability across the THz range of interest.  
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Further, we explored numerous coupled plasmonic nanostructures to create 

extremely large localized fields with plasmonic resonance mode, because it is possible to 

enhance inherently weak DFG process by employing the highly intensified input fields. 

Here, we proposed a novel antenna geometry – the dimer rod-tapered antenna (DRTA), 

where we created a hot-spot in the nanogap between the dimer arms with a huge intensity 

enhancement of 4.1×105 at resonant frequency. Then, we investigated DFG operation in 

the antenna geometry by incorporating a nonlinear nanodot in the hot-spot of the antenna 

and achieved continuously tunable enhanced THz radiation across 0.5-10 THz range. We 

have also proposed and investigated in detail spherical core-shell plasmonic nanostructures 

for continuously tunable DFG THz radiation in the same range. Finally, we investigated 

and designed another THz emitter by coupling aluminum grating resonators to a thin film 

of nonlinear layer.   

In addition, we designed a multi-metallic resonators providing an ultrasharp 

toroidal response at THz frequency, then fabricated and experimentally demonstrated an 

efficient polarization dependent plasmonic toroid switch operating at THz frequency.  

9.2 Future Direction 

Seeing the strong need for advanced THz devices to bring THz technology into life, we 

will continue pursuing research opportunities to investigate the tunable THz sources and 

to integrate them with compact THz detectors to create on-chip THz spectrometer systems.  
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9.2.1 Demonstrating Biosensing Capabilities by Integrating Microfluidic Channel 

with the Proposed THz Emitters  

Ultra-compact, label-free, non-invasive, safe, fast detection technique with high sensitivity 

and selectivity, simplicity of sample preparation steps are the most demanding features in 

any kind of sensing devices. THz absorption spectroscopy has emerged as a successful 

method to noninvasively identify minute amounts of biomolecules or biochemical 

substances [1-3]. Certain volatile organic compounds also exhibit absorption signatures in 

THz region, which makes them potential candidates as biomarkers for certain diseases in 

THz absorption spectroscopy [4]. Acetaldehyde is considered tracer for lung cancer, 

alcoholism and liver related diseases; isopropyl alcohol is a tracer for lung cancer; acetone 

is a tracer for dietary fat losses, congestive heart failures, diabetes and lung cancer; 

methanol is a biomarker for nervous system disorder; and ethanol is a tracer for the 

production of gut bacteria [5-7]. Again, it has been reported that polyomavirus capsid and 

virus-like particles show dramatically different and distinctive absorption spectrum 

compared to capsomeres in THz range [8]. Hence, it demands for further investigation into 

the potential possibility of finding THz spectral signatures of other viruses with the use of 

THz spectroscopy. Here, we propose to develop an ultra-compact lab-on-a-chip THz 

spectrometer by integrating our proposed THz emitters with microfluidic channel and 

CMOS compatible THz detector, where microfluidic channel will be employed as an 

absorption cell for different biomolecules, biochemical substances, volatile organic 

compounds and viruses or virus-like structures. 
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Figure 9.1 | Proposed ultra-compact Lab-on-a-chip THz spectrometer. The proposed 
THz emitters can be monolithically integrated to THz detector coupled with a microfluidic 
channel for point-of-care testing.  
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