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ABSTRACT OF THE DISSERTATION

TWO DIMENSIONAL LATTICE GAUGE THEORY WITH AND WITHOUT

FERMION CONTENT

by

Dibakar Sigdel

Florida International University, 2017

Miami, Florida

Professor Rajamani Narayanan, Major Professor

Quantum Chromo Dyamics (QCD) is a relativistic field theory of a non-abelian gauge

field coupled to several flavors of fermions. Two dimensional (one space and one time) QCD

serves as an interesting toy model that shares several features with the four dimensional

physically relevant theory. The main aim of the research is to study two dimensional QCD

using the lattice regularization.

Two dimensional QCD without any fermion content is solved analytically using lattice

regularization. Explicit expressions for the expectation values of Wilson loops and the

correlation of two Polyakov loops oriented in two different directions are obtained. Physics

of the QCD vacuum is explained using these results.

The Hamlitonian formalism of lattice QCD with fermion content serves as an approach

to study quark excitations out of the vacuum. The formalism is first devloped and techniques

to numerically evaluate the spectrum of physical particles, namely, meson and baryons are

described. The Hybrid Monte Carlo technique was used to numerically extract the lowest

meson and baryon masses as a function of the quark masses. It is shown that neither the

lowest meson mass nor the lowest baryon mass goes to zero as the quark mass is taken to

zero. This numerically establishes the presence of a mass gap in two dimensional QCD.
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CHAPTER 1

Motivations

Quantum Chromodynamics (QCD) is the study of relativistic quantum field theory which

deals with the strong interaction between fundamental particles, namely quarks and gluons.

These make up nuclear matter in the universe [1–4]. There are six flavors of quarks (up,

down, strange, charm, top and bottom). Each one of these flavors interact with the same

non-abelian gauge field background. The non-abelian gauge field is known as the color

field. From experimental evidence, it has been found that the associated non-abelian group

is the special unitary group, SU(N) with N = 3. Moreover, each flavor of quark is assigned

N(= 3) color degrees of freedom and there are (N2−1)(= 8) types of gluon fields that make

up the single non-abelian gauge field. The study of the strong interaction distinguishing it

from other interactions viz: electromagnetic and gravitational interaction is usually referred

as the study of Quantum Chromodynamics. There are several fundamental features of the

theory:

1. There are no free parameters [2–4].

2. Scale invariance of the theory present at the classical level is broken upon quantiza-

tion [2–4]

3. Chiral symmetry of the theory present at the classical level is broken upon quantiza-

tion [2–4].

4. Quarks and gluons are confined at low temperatures and low densities resulting in

baryonic matter (protons, neutrons, etc) and mesonic matter (pions, etc) [2–4]

5. There is a deconfinement temperature which is currently under experimental verifica-

tion above which there is quark and gluonic matter [5].

6. There is a critical density of matter (probably close to the density present inside

neutron stars) above which chiral symmetry is expected to be restored [6].

Much of the phenomena listed above are not accessible in perturbation theory because of

strong nature of the interaction. A widely used non-perturbative technique is Lattice Gauge

Theory [7–9]. Two dimensional (one space and one time) non-abelian gauge theory coupled
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to fermions serves as an interesting toy model that shares several features with the four

dimensional physically relevant theory. Studies in the direction of non-abelian gauge theory

in two dimensions were pioneered by ’t Hooft [10,11]. Our research also goes in non-abelian

gauge theory in two dimensions with the aim of studying the physical properties of two

dimensional Quantum Chromodynamics. The physics of confinement is usually investigated

using Wilson loops [7–9] whereas the deconfinement transition is studied by using Polyakov

loops [8, 9]. Wilson loops are associated with a current loop that encloses a finite surface.

The net color flux passing through this surface is proportional to the area of the surface

in a confining theory, and the coefficient of the area term is the string tension. Polyakov

loops are current loops that wind around the entire periodic space and do not enclose a

surface. The Polyakov loops act as an order parameter that separates the confined phase

from the deconfined phase at finite temperature. Unlike the four dimensional theory, there

is no two dimensional analogue of deconfinement transition. Therefore, the Polyakov loops

themselves will not reveal any new physics insights but correlations of Polyakov loops will

reveal some new physics insights. A new aspect studied in this thesis is the correlation of

two Polyakov loops oriented in two different directions.

The Hamiltonian formalism of a field theory can be converted to a path integral

formalism following Feynman. The Euclidean version of the path integral can be studied in

close analogy with stastical mechanics. [12–15]. The path integral formalism is an essential

part of the lattice formulation of relativistic quantum field theories [8, 9]. The partition

function of the theory without any fermionic content can be explicitly computed [16, 17]

and the result is a simple function of the physical area of the torus and certain invariants

of the group, SU(N), called Casimirs. We will carry this one step further and compute

the correlation of Polyakov loops in two different directions. The computed correlation of

Polyakov loops is only a function of the representations of two Polyakov loops and the size

of the torus. The expectation value of the correlation of Polyakov loops in two different

directions gives information about the energy needed to produce such a state out of the

vacuum. If for some specific choice of the two Polyakov loops, the energy turns out to be

2



negative, such a state would be favored as the vacuum state of the theory. The primary

aim of this research is to provide an answer to the vacuum structure.

We will return to the Hamlitonian formalism of the two dimensional gauge theory to

study the spectrum of physical particles in two dimensional gauge theory. Since the theory

is confined, the physical particles, like in four dimensional QCD, are mesons and baryons.

The Hamiltonian formalism developed as part of this thesis will enable us to extract the

lightest meson and baryon. We will extract the masses as a function of the quark masses

at different spatial extents and different lattice spacings. Using this information, we will

be able to extract the spectrum at infinite spatial extent and the continuum. Thesis will

provide an answer to the question of the mass gap in QCD – the lightest masses when the

quark mass is set to zero. In addtion, it will also extract the leading dependence on quark

mass.

3



CHAPTER 2

Basics of gauge theory on the lattice

2.1 Introduction

The Hamiltonian associated with a Relativistic Quantum Field Theory (QFT) contains all

the information needed to obtain the full particle spectrum of the theory. That is to say,

one can formally write down the eigenvalue problem of the Hamiltonian:

H|n〉 = En|n〉; n = 0, 1, 2, · · · . (2.1)

where En is the energy associated with the state |n〉 which contains all the information

about the required quantum numbers. Let us assume that the states are ordered such that

0 < E0 < E1 < E2 < · · · . The finite temperature partition function is

Z(β) = Tre−βH =
∑
n

e−βEn . (2.2)

where β is the inverse temperature. We will interpret the finite temperature as a Euclidean

time direction for the sake of computing observables in the following sense: Let β be divided

into two intervals; τ and β − τ with 0 < τ < β. Let

ψ =

∞∑
n=0

an|0〉〈n| (2.3)

denote the creation of a specific state from the vacuum. The propagation of this state over

an Euclidean time τ at a given β is

Gψ(τ, β) =
1

Z(β)
Trψe−τHψ†e−(β−τ)H . (2.4)

In the zero temperature limit, β →∞, the propagation of this state simplifies to

Gψ(τ,∞) =
∞∑
n=0

ana
∗
ne
−τ(En−E0). (2.5)

4



The large Euclidean time behavior will be dominated by the lowest energy state Ek for which

aka
∗
k 6= 0. Therefore, by carefully choosing states, ψ, one can obtain information above the

energy eigenstates by studying propagation at large Euclidean time at zero temperature.

Using the standard Feynman Path Integral [18] one can convert the above expressions to

involve a d-dimensional Euclidean action.

Focusing on the problem at hand for this thesis, the gauge invariant Euclidean Yang-

Mills action in d-dimensions is given as

S[A] =
1

4g2

∫
ddx

∑
TrFµνFµν (2.6)

where,

Aµ(x): Non-abelian Gluon Field and an element of the underlying Lie Algebra governing

the non-abelian group

Fµν = ∂µAν−∂νAµ+i[Aµ, Aν ]: Field Tensor where the first two terms are the usual Abelian

part and the commutator in the third term arises from the non-abelian nature.

g: gauge coupling.

A local gauge transformation takes

Aµ(x)→ −ig(x)∂µg
−1(x) + g(x)Aµ(x)g−1(x) (2.7)

with g(x) being an element of the non-abelian group. Under this transformation, the field

tensor transforms covariantly:

Fµν(x)→ g(x)Fµν(x)g−1(x), (2.8)

and therefore the action is gauge invariant.

Since the action is a dimensionless quantity, dimensional analysis of the quantities in

(2.6) shows that the dimension of g is [M ]−d+4. Hence, g is dimensionless in 4-dimensions

and has positive mass dimensions for d < 4. Therefore, theories are physically interesting

only in d ≤ 4 because of renormalizability constraints [4].

5



The Euclidean parititon function is

Z =

∫
DA e(−SYM (A)). (2.9)

The integral is over all gluon fields and one needs to properly define the limits such that

one obtains finite results. The procedure to get finite result is referred to as regularization

and we will use a lattice for this purpose.

To obtain the Yang-Mills action on a d-dimensional lattice, we introduce a d-dimensional

hyper-cubic lattice Λ with lattice spacing a as

Λ = [n = (x, k) = (x1, x2...xd−1, k)] . (2.10)

Where, xi = 1, 2, ...., Li with i = 1, 2, 3...d− 1 and k = 1, 2, ...., Ld. We will assume periodic

boundary conditions in all d directions in order to reduce finite volume effects in space and

realize the finite temperature partition function. The elements n are called sites and the line

connecting two neighboring sites are called links. The gauge fields, Aµ(x), in the continuum

at the location x and the direction µ are associated with parallel transporters on links by

Uµ(n) = exp [iAµ(n)] (2.11)

The Wilson action in terms of elementary closed loops called plaquettes is given by

SG[U ] =
β

N

∑
n∈Λ

∑
µ<ν

Re[Tr[1− Uµν(n)]] (2.12)

with β = 2N
g2

and

Uµν(n) = Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n) (2.13)

6



is the elementary plaquette at site n. The elementary plaquette reduces to the continuum

action in the limit of small gauge fields. Furthermore, under a gauge transformation,

Uµ(n)→ g(n)Uµ(n)g−1(n+ µ̂) (2.14)

we see that the elementary plaquette transforms convariantly:

Uµν(n)→ g(n)Uµν(n)g−1(n) (2.15)

and the Wilson action is gauge invariant.

The partition function on our finite periodic lattice is

Z =

∫
D[U ]e−SG[U ], (2.16)

which is a finite and well defined quantity. Insertion of states to compute propagator

corresponds to the computation of the expectation value

< O >=
1

Z

∫
D[U ]e−SG[U ]O[U ] (2.17)

where O(U) is the operator of interest that creates the appropriate state at some time and

destroys it a time, τ , later. Since the action is gauge invariant, it follows that O(U) has to

be gauge invariant for it to be a physical observable.

2.2 Wilson loops and Polyakov loops

It follows from the gauge transformation property of Uµ(n) that the parallel transporter

associated with any closed loop on the lattice will transform covariantly. Therefore, its trace

will be gauge invariant. We define the trace of a product of link variables along a closed

loop as

L[U ] = Tr

 ∏
(n,µ)∈L

Uµ(n)

 . (2.18)

7



Here L is a closed loop of links on the lattice and the product in (2.18) runs over all

these links in the order in which they appear in the loop. There are two types of loops

on a periodic lattice: loops that can be smoothly deformed to a point and loops that wind

around the periodic lattice. The first type is usually referred to as Wilson loops and the

second type is referred to as Polyakov loops. Wilson loops enclose an area and therefore

their expectation value is related to the flux through that loop. If the theory confines, the

flux will be proportional to the area and result in a string tension. If the theory does not

confine, the flux is usually proportional to the perimeter like in electromagnetism. Polyakov

loops do not enclose an area but can be used as an order parameter to study the transition

from a confined phase to a deconfined phase.

Figure 2.1: Gauge field configuration

Consider a rectangular Wilson loop with spatial extent, R, and Euclidean time extent,

T . We can view this as creating a state from vacuum at some time, propagating the state

for a Euclidean time, T and then destroying the state. The state itself has a linear extent of

R and can be thought of a string of length R since it is the product of parallel transporters

along a spatial line. For large T , we expect

〈W (R, T )〉 ∝ e−TV (R) (2.19)

8



The potential energy associated with the string of length R is V (R). In a theory like

electromagnetism, we expect V (R) ∝ 1
R . In a confining theory, V (R) ∝ R and it behaves

like a string with a non-zero tension.

Thus from the large-T behavior of the Wilson loop, we can calculate the static quark-

antiquark potential where the correction terms are exponentially suppressed. There is

indefinite linear rise in the potential as the charges are separated which signals the confine-

ment. That is to say, for large R, V (R) ∼ σR, where σ is called the string tension. From

above equations, the leading term is

− ln(〈W (R, T )〉) ∼ σTR (2.20)

and is the ‘area law’ [9] for large T and R . In a nonconfining theory, the potential energy

should become a constant at large distance. In that case the leading term has the form

− ln(〈W (R, T )〉) ∼ e0(T +R) (2.21)

which is a ‘perimeter law’ [9] for large T and R.

Consider a gauge group of the form SU(N). Such a group has a non-trivial center

called ZN . In addition to local gauge transformations, the Wilson action is also invariant

under a global transformation of the form:

Uµ(n)→ ei
2πkµ
N Uµ(n); kµ ∈ [0, N − 1], (2.22)

since the center of the group commutes with all elements and leaves Wilson loops invariant.

But, it does transform the Polakov loop and therefore the expectation value of the Polyakov

loop is zero. If the center of the group is spontaneously broken, we will see the Polyakov

loop behave as an order parameter and this is referred to as the measure of the deconfining

transition.

9



2.3 Continuum limit

The Yang-Mills functional integral (2.12) contains a single parameter ‘g’ called the bare

gauge coupling. The continuum limit is obtained by taking the number of lattice points,

L → ∞, and varying g(L) such that physical observables remain invariant. It is not a

priori clear that this will happen in practice. If it does happen, we refer to the theory as

“renormalizable” and the Yang-Mills theory is an example of such a theory. Furthermore,

it is known to be an asymptotically free theory, implying that g → 0 as L → ∞. It is

customary to define, a = 1
L and refer to a→ 0 as the continuum limit.

Let P (g(a), a) be a physical observable which in the limit a → 0 obtains its physical

value P0. Callan and Symanzik [19–21], following early suggestions for QED by Stuckelberg,

Peterman, GellMann, and Low [22, 23] formulated the requirement of constant physics in

a differential equation

dP (g(a), a)

ln a
=

(
∂

∂ ln a
+

∂g

∂ ln a

∂

∂g

)
P (g, a) = 0. (2.23)

Here the coefficient function of the second term is called the β-function,

β(g) ≡ − ∂g

∂ ln a
. (2.24)

Above equation determines how the coupling g depends on a along with an integration

constant. Using perturbation theory, we can expand the β-function in a power series around

g = 0. For SU(N) and nf massless quarks

β(g) = −β0g
3 − β1g

5 +O(g7),

β0 =
1

(4π)2

(
11

3
N − 2

3
nf

)
,

β1 =
1

(4π)4

(
34

3
N2 − 10

3
Nnf −

N2 − 1

N
nf

)
.

(2.25)

One can show that the first two coefficients of the expansion are universal and independent

of the regularization scheme. In general, however, the β-function depends on the details of

10



the regularization. Keeping only the first two terms, the differential Eq. (2.24) with (2.25)

can be solved using separation of variables to get

a(g) =
1

ΛL
(β0g

2)
− β1

2β20 exp

(
− 1

2β0g2

)
(1 +O(g2)). (2.26)

The integration constant ΛL comes automatically to set the scale by fixing the value of g

at some a. Inverting the relation (2.26), we can obtain the coupling g as a function of a

which is called running coupling,

g(a)−2 = β0 ln(a−2Λ−2
L ) +

β1

β0
ln(ln(a−2Λ−2

L )) +O(1/ ln(a2Λ2
L)). (2.27)

Therefore a change in a induces a corresponding change in g such that physical ob-

servables remain independent of the scale-fixing procedure. The value of ΛL (the subscript

L refers to the lattice regularization). Different regularizations will result in different Λ.
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CHAPTER 3

Two dimensional lattice gauge theory without fermion content

3.1 Introduction

Two dimensional non-abelian gauge theories are particularly simple to study but reveal

a wealth of physics insights. Migdal [16] studied this theory in the context of recursion

equations since these equations become exact in two dimensions. Gross and Taylor [17]

showed that the partition function of two dimensional QCD is a string theory. Gross and

Witten [24] started from the lattice theory with the standard Wilson action on an infinite

lattice and showed factorization to independent plaquettes prompting a possible connection

between infinite volume gauge theories and matrix model in a certain limit [25]. Unlike the

four dimensional theory, this theory is always in the confined phase.

In chapter two we study the behavior of Wilson loops and Polyakov loops in SU(N)

gauge theory on a two dimensional torus [8, 9]. A certain gauge fixing form referred as

the maximal tree [26] is used to rewrite the action in terms of elementary plaquette (flux

on elementary lattice squares) variables and two Polyakov loop variables. There is also a

constraint imposed by the theory being defined on a two dimensional torus.

In the absence of fermions, the partition function, the expectation value of Wilson

loops and the expectation value of Polyakov loop correlations can be computed analytically.

Because of translational invariance, correlation between Polyakov loops in two different

directions is only a function of the size of the torus and the representation carried by the

Polyakov loop. Focussing on SU(2), we use numerical diagonalization to compute the energy

eigenvalues associated with the insertion of Polyakov loops in two different directions. We

will show that there is one particular insertion that lowers the energy compared to the

vacuum and therefore the true vacuum contains the insertion of this operator [27].

12



3.2 Gauge field configuration

Consider a L1 × L2 periodic lattice where one dimension is Euclidean time and an-

other dimension is space. There are (2L1L2) SU(N) link variables which are denoted by

Ugµ(n1, n2) with 0 ≤ n1 < L1 and 0 ≤ n2 < L2 where µ = 1, 2. These link variables obey

the periodic boundary conditions,

Ug1 (n1, L2) = Ug1 (n1, 0);Ug2 (L1, n2) = Ug2 (0, n2); 0 ≤ n1 < L1; 0 ≤ n2 < L2. (3.1)

The above gauge field configuration is obtained from one representative gauge field config-

uration, Uµ(n1, n2), by a gauge transformation:

Ug1 (n1, n2) = g†(n1, n2)U1(n1, n2)g(n1 + 1, n2);

Ug2 (n1, n2) = g†(n1, n2)U2(n1, n2)g(n1, n2 + 1). (3.2)

where g(n1, n2) is a periodic function defined on the lattice sites. A choice for the represen-

tative guage field configuration is:

• U1(n1, n2) = 1; for 0 ≤ n1 < L1 − 1 and 0 ≤ n2 < L2

• U2(0, n2) = 1; for 0 ≤ n2 < L2 − 1

• U1(L1 − 1, 0) = T1;

• U2(0, L2 − 1) = T2;

• U2(n1 + 1, n2) = Up(n1, n2)U2(n1, n2); for 0 ≤ n1 < L1 − 1; and 0 ≤ n2 < L2.

• U1(L1 − 1, n2 + 1) = U †2(L1 − 1, n2)U †p(L1 − 1, n2)U1(L1 − 1, n2); for 0 ≤ n2 < L2 − 1.

13



Figure 3.1: Gauge field configuration

The integration over all 2L1L2 number of Ugµ variables can be split into

• ((L1L2) − 1)Up(n1, n2) variables for all 0 ≤ n1 < L1; 0 ≤ n2 < L2 except (n1, n2) =

(L1 − 1, L2 − 1);

• T1 and T2;

• ((L1L2) − 1)g(n1, n2) variables for all 0 ≤ n1 < L1; 0 ≤ n2 < L2 except (n1, n2) =

(L1 − 1, L2 − 1); which is set to identity.

Consider the largest Wilson operator W = T1T2T
†
1T
†
2 . This operator can be expressed

as the product of all the plaquette operators inside the Wilson loop as:

W = T1T2T
†
1T
†
2 =

0∏
n2=L2−1

0∏
n1=L1−1

Up(n1, n2) (3.3)

Such that

[
T2T1T

†
2T
†
1

] 0∏
n2=L2−1

0∏
n1=L1−1

Up(n1, n2)

 = 1 (3.4)
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Figure 3.2: Largest Wilson loop

where the product is path ordered. Above equation is a constraint on the plaquette

variable, Up(L1 − 1, L2 − 1) which is not present in the set of integration variables.

We take the action as a function of single plaquette variables and is dependent on the

coupling constant β ;

eSg =

L1−1∏
n1=0

L2−1∏
n2=0

fp[Up(n1, n2);β]. (3.5)

where fp is a class function. The characters (traces) in the different irreducible representa-

tion form a basis for a class function and therefore,

fp[Up(n1, n2);β] =
∑
r

β̃r(β)χr(Up(n1, n2)). (3.6)

The class function is real and therefore the coefficients in the character expansion have to

obey β̃r(β) = β̃r̄(β).ie. β̃r(β) is real.
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While taking continuum limit, we keep physical coupling g2 fixed and we set β by

taking lattice spacing a→ 0 as;

β =
1

g2a2
. (3.7)

We keep the size of the torus fixed as we take the continuum limit by setting dimensionless

area

A =
L1L2

β
= (aL1)(aL2)g2 (3.8)

fixed as we take a→ 0 and (L1L2)→∞ .

3.3 Partition function

We use all L1L2 plaquettes to define our partition function by keeping the restriction as in

(3.4) on integral over T1 and T2. The finite volume partition function is defined as

Z(β;L1L2) =

L1−1∏
n1=0

L2−1∏
n2=0

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

∫
dT1dT2δ

[
W (L1L2), T1T2T

†
1T
†
2

]
.

(3.9)

To express the partition function in more convenient form, first we consider the integral

involving variables T1 and T2:

I(T1T2) =

∫
dT1dT2δ

[
W (L1L2), T1T2T

†
1T
†
2

]
(3.10)

We use the completeness relation [Hamermesh:1962gp]

δ(U, V ) =
∑
rαβ

drD
r
αβ(U)Dr

βα(V †) =
∑
r

drTr(UV †),

(3.11)
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which is a delta function defined on the group with U, V ∈ SU(N). The sum runs over all

representations, r, with Dr
αβ being representation of U labeled r and dr being the dimension

of that representation. In addtion, we use orthogonality relation [28]

∫
DUDr

αβ(U)Ds
γδ(U

†) = δrs
δαδδβγ
dr

, (3.12)

to get

∫
dT1dT2δ[W,T1T2T

†
1T
†
2 ] =

∑
r

1

dr
χr(W ). (3.13)

Using the result in (3.13), the partition function reduces to the form

Z(β;L1L2) =

L1−1∏
n1=0

L2−1∏
n2=0

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

[∑
r

1

dr
χr(W (L1, L2))

]
.

(3.14)

Now we are left with integrals independent of T1 and T2 . By simple rearrangements we get

it as

Z(β;L1L2) =
∑
r

1

dr

L1−1∏
n1=0

L2−1∏
n2=0

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]χr(W (L1, L2)).

(3.15)

Using the identity that follows from (3.12),

∫
DUχs(U)χr(V U

†W ) = δsr
χr(VW )

dr
, (3.16)

we can integrate out all Up(n1, n2), one after another, to obtain

Z(β;L1L2) =
∑
r

[
β̃r(β)

dr

]L1L2

=
[
β̃0(β)

]L1L2∑
r

[
β̃r(β)

drβ̃0(β)

]L1L2

(3.17)
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The final expression for the partition function has a simple interpretation. A simple

choice for β̃r(β) is based on the heat kernel action:

β̃r(β) = dre
−C

(2)
r
Nβ ; β̃0(β) = 1. (3.18)

where C
(2)
r is the quadratic Casimir in the r representation. Inserting this into the expression

for the partition function results in

Z(β;L1L2) =
∑
r

e
−C

(2)
r L1L2
Nβ . (3.19)

Since L1L2
β is the physical area, we see that the partition function is a function of the area

with different representations weighted according to the Casimirs. In the next section,

we will obtain expressions for Wilson loops and correlations of Polyakov loops in order to

extract physical informattion about the pure gauge theory.
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CHAPTER 4

Observables and results from analytical calculations

4.1 Wilson loops

Consider a K1 × K2 rectangular loop with corners at (0, 0), (K1 − 1, 0), (0,K2 − 1) and

(K1 − 1,K2 − 1) and with 0 < K1 ≤ L1 − 1 and 0 < K2 ≤ L2 − 1. As in the case of the

physical size of the torus defined in (3.8), to keep the size of the loop fixed as we take the

continuum limit, we define a dimensionless area of the loop

X =
K1K2

β
= (aK1)(aK2)g2. (4.1)

The area X is fixed when a→ 0 and (L1L2)→∞. The Wilson loop operator is given by

W (K1,K2) =

K2−1∏
i2=0

 0∏
i1=K1−1

Up(i1, i2)

 . (4.2)

Starting from (3.15), the expectation value for Wilson Loop can be expressed as

〈
χr(W (K1K2))

dr

〉

=

∏L1−1
n1=0

∏L2−1
n2=0

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

[∑
r′

1
d
r
′
χr′ (W (L1, L2))

]
χr(W (K1K2))

dr

Z(β;L1L2)

.

(4.3)

As in the case of the partition function, we can use (3.16) and integrate out all Up(n1, n2)

which does not appear in W (K1,K2). For this we separate the whole region into four dif-

ferent parts: Region -I,II,III, and IV. Only plaquettes from region - I appear in W (K1,K2).

We calculate the expectation value in following steps:
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Figure 4.1: Lattice regions to facilitate Wilson loop calculation

〈
χr(W (K1K2))

dr

〉
=

1

Z(β;L1L2)

K1−1∏
n1=0

K2−1∏
n2=0︸ ︷︷ ︸

Region−I

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

χr(W (K1K2))

dr

×
L1−1∏
n1=K1

L2−1∏
n2=K2︸ ︷︷ ︸

Region−II

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

×
K1−1∏
n1=0

L2−1∏
n2=K2︸ ︷︷ ︸

Region−III

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

×
L1−1∏
n1=K1

K2−1∏
n2=0︸ ︷︷ ︸

Region−IV

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

∑
r′

1

dr′
χr′ (W (L1, L2))

 .
(4.4)
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We start with last term corresponding to region -IV with notation W (L1, L2) =

W (I, II, III, IV )

L1−1∏
n1=K1

K2−1∏
n2=0︸ ︷︷ ︸

Region−IV

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

∑
r′

1

dr′
χr′ (W (I, II, III, IV ))



=
∑
r′

[
β̃r′ (β)

dr′

]
︸ ︷︷ ︸
Region−IV

(L1−K1)K2
1

dr′
χr′ (W (I, II, III))

(4.5)

Inserting the value obtained from last integral (region-IV) to second last integral

(region-III) we obtain:

[
β̃r′ (β)

dr′

]
︸ ︷︷ ︸
Region−IV

(L1−K1)K2 K1−1∏
n1=0

L2−1∏
n2=K2︸ ︷︷ ︸

Region−III

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

∑
r′

1

dr′
χr′ (W (I, II, III))

=
∑
r′

[
β̃r′ (β)

dr′

]
︸ ︷︷ ︸
Region−IV

(L1−K1)K2
[
β̃r′ (β)

dr′

]
︸ ︷︷ ︸
Region−III

K1(L2−K2)
1

dr′
χr′ (W (I, II))

(4.6)

Inserting the value obtained from second last integral (region-III) to second integral (region-

II) we obtain:

[
β̃r′ (β)

dr′

]
︸ ︷︷ ︸

Region−IV,III

(L1−K1)K2+K1(L2−K2) L1−1∏
n1=K1

L2−1∏
n2=K2︸ ︷︷ ︸

Region−II

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

∑
r′

1

dr′
χr′ (W (I, II))

=
∑
r′

[
β̃r′ (β)

dr′

]
︸ ︷︷ ︸

Region−IV,III,II

[(L1 −K1)K2 +K1(L2 −K2) + (L1 −K1)(L2 −K2)]︸ ︷︷ ︸
(L1L2−K1K2)

1

dr′
χr′ (W (I))

(4.7)

Where W (I) = W (K1,K2).

21



Inserting the value obtained from second integral (region-II) to first integral (region-I)

we obtain an intermediate expression

〈
χr(W (K1K2))

dr

〉
=
∑
r′

[
β̃r′ (β)

dr′

]
︸ ︷︷ ︸

Region−IV,III,II

(L1L2−K1K2)

× 1

Z(β;L1L2)

×
K1−1∏
n1=0

K2−1∏
n2=0︸ ︷︷ ︸

Region−I

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

1

dr′
χr′ (W (K1,K2))

1

dr
χr(W (K1K2))

(4.8)

We use fp[Up(n1, n2);β] from (3.6) and perform integration for first region using the

Clebsch-Gordon series

χr(U)χr′ (U) =
∑
r′′

n(r, r
′
; r
′′
)χr′′ (U), (4.9)

where n(r, r
′
; r
′′
) is the number of times the representation, r

′′
, appears in the tensor product

r ⊗ r′ . Finally, we arrive at

〈
χr(W (K1K2))

dr

〉
=
∑
r′

[
β̃r′ (β)

dr′

]
︸ ︷︷ ︸

Region−IV,III,II

(L1L2−K1K2)

× 1

Z(β;L1L2)

×
∑
r

β̃r(β)

drdr′

∑
r′′

n(r, r
′
; r
′′
)

K1−1∏
n1=0

K2−1∏
n2=0︸ ︷︷ ︸

Region−I

∫
[dUp(n1, n2)]χr′′ (U)χr(W (K1K2))

︸ ︷︷ ︸∑
r
′′
n(r,r

′
;r
′′
)d
r
′′

drd
r
′

[
β̃
r
′′ (β)

d
r
′′

](K1K2)

=

∑
r′

[
β̃
r
′ (β)

d
r
′

](L1L2−K1K2)∑
r′′

n(r,r
′
;r
′′

)d
r
′′

drd
r
′

[
β̃
r
′′ (β)

d
r
′′

](K1K2)

∑
r′

[
β̃
r
′ (β)

d
r
′

]L2L2
.

(4.10)
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Using (3.17) we can write

〈
χr(W (K1K2))

dr

〉
=

∑
r′

[
β̃
r
′ (β)

d
r
′ β̃0(β)

](L1L2−K1K2)∑
r′′

n(r,r
′
;r
′′

)d
r
′′

drd
r
′

[
β̃
r
′′ (β)

d
r
′′ β̃0(β)

](K1K2)

∑
r′

[
β̃
r
′ (β)

d
r
′ β̃0(β)

]L2L2
.

(4.11)

One can proceed further and compute the correlations of multiple Wilson loops where

no two loops have a single plaquette in common and show that the correlations do not

depend on the separation. The indepenence of seperation is a consequence of the form

of the partition function in (3.9) where all plaquettes are independent except for a global

constraint that only depends on the area.

4.2 Polyakov loops

In order to consider the correlation between Polyakov loops oriented in different directions,

we start from (3.9) and consider expectation values of the form

〈χr1(T1)χr2(T2)〉 =
1

Z(β;L1L2)

L1−1∏
n1=0

L2−1∏
n2=0

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

×
∫
dT1dT2 δ

[
W (L1, L2), T1T2T

†
1T
†
2

]
︸ ︷︷ ︸∑
r drχr

[
W (L1,L2)T2T1T

†
2T
†
1

]
χr1(T1)χr2(T2).

(4.12)

As before, we use the definition of δ− function:

δ(U, V ) =
∑
r

drχr(U, V
†). (4.13)
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Using delta function we get intermediate expression

〈χr1(T1)χr2(T2)〉 =
1

Z(β;L1L2)

L1−1∏
n1=0

L2−1∏
n2=0

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

×
∫
dT1dT2

{∑
r

drχr

[
W (L1, L2)T2T1T

†
2T
†
1

]}
χr1(T1)χr2(T2).

(4.14)

First, we perform all Up(n1, n2) integrals. Integral (4.14) can be written as:

〈χr1(T1)χr2(T2)〉 =
1

Z(β;L1L2)

∫
dT1dT2χr1(T1)χr2(T2)

×
L1−1∏
n1=0

L2−1∏
n2=0

∫
[dUp(n1, n2)]fp[Up(n1, n2);β]

{∑
r

drχr

[
W (L1, L2)T2T1T

†
2T
†
1

]}
.

(4.15)

Using fp[Up(n1, n2);β] from (3.6) and using (4.13), we get

〈χr1(T1)χr2(T2)〉

=
1

Z(β;L1L2)

∑
r

dr

[
β̃r(β)

dr

]L1L2 ∫
dT1dT2χr1(T1)χr2(T2)χr(T2T1T

†
2T
†
1 ).

(4.16)

Next, consider the integral:

I(T1, T2) =

∫
dT1dT2χr1(T1)χr2(T2)χr(T2T1T

†
2T
†
1 ). (4.17)

Inserting the explicit expressions, χr(T2T1T
†
2T
†
1 ) =

∑
klmnD

r(T2)klD
r(T1)lmD

r(T †2 )mnD
r(T †1 )nk,

χr1(T1) =
∑

iD
r1(T1)ii and χr2(T2) =

∑
j D

r2(T2)jj into the integral above and separating

T1 and T2 variables one can get

I(T1, T2) =
∑
klmnij

∫
dT1D

r(T1)lmD
r(T †1 )nkD

r1(T1)ii︸ ︷︷ ︸
I(T1)

∫
dT2D

r(T2)klD
r(T †2 )mnD

r2(T2)jj︸ ︷︷ ︸
I(T2)

.

(4.18)
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Let us denote

I(T1) =

∫
dT1 Dr(T1)lmD

r1(T1)ii︸ ︷︷ ︸
matrix element of-Dr(T1)⊗Dr1 (T1)

Dr(T †1 )nk;

I(T2) =

∫
dT2 Dr(T2)klD

r2(T2)jj︸ ︷︷ ︸
matrix element of-Dr(T2)⊗Dr2 (T2)

Dr(T †2 )mn. (4.19)

We can decompose the direct product matrix Dr(T1) ⊗Dr1(T1) into its irreducible repre-

sentation parts:

Dµ(g)⊗Dν(g) = S−1D(g)S (4.20)

where,

D(g) =
⊕
λ

αλD
λ(g) (4.21)

αλ counts the number of times a particular representation matrix Dλ(g) repeats in the block

diagonal form of D(g) .

To get the relation for matrix element level, we express the elements of matrix S as

the CG -coefficient of transformation. Let |l, i > be the basis for direct product matrix

Dr(T1) ⊗Dr1(T1) and |α(r, r1), λ, p > be the basis for invariant subspaces with respect to

representation matrix D(g): λ = label of irreducible representation and α = 1, ..., aλ. Then

transformation from basis |l, i > to |α(r, r1), λ, p > can be expressed as follows:

|α(r, r1), λ, p >=
∑
l,i

|l, i > < l, i|α(r, r1), λ, p >︸ ︷︷ ︸
CG-coff

. (4.22)

Thus equation (4.20) for T1 and T2 can be expressed as:

Dr(T1)lmD
r1(T1)ii =

∑
λ,p,q

< l, i|α(r, r1), λ, p > Dλ(T1)pq < α(r, r1), λ, q|mi >

Dr(T2)klD
r2(T2)jj =

∑
s,u,v

< k, j|β(r, r2), s, u > Ds(T2)uv < β(r, r2), s, v|l, j > . (4.23)
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The expression of I(T1) and I(T2) becomes:

I(T1) =
∑
λ,p,q

< l, i|α(r, r1), λ, p >< α(r, r1), λ, q|mi >
∫
dT1D

λ(T1)pqD
r(T †1 )nk

I(T2) =
∑
s,u,v

< k, j|β(r, r2), s, u >< β(r, r2), s, v|l, j >
∫
dT2D

s(T2)uvD
r(T †2 )mn.

(4.24)

using orthogonality relation:
∫
dT1D

λ(T1)pqD
r(T †1 )nk = δλr

dλ
δpkδqn and

∫
dT2D

s(T2)uvD
r(T †2 )mn =

δsr
ds
δunδvm, and putting back the expression of I(T1) and I(T2) in (4.18),

I(T1T2)) = a(r1, r2; r) =
∑
klmnij

1

drdr
< l, i|α(r, r1), λ, k >< α(r, r1), λ, n|mi >

× < k, j|β(r, r2), s, n >< β(r, r2), s,m|l, j > . (4.25)

Clearly this a(r1, r2; r) is a real number because by using the unitarity property of CG-

cofficients we obtain

< l, i|α(r, r1), λ, k >=< l, i|α(r, r1), λ, k >∗ . (4.26)

Finally we arrive at

〈χr1(T1)χr2(T2)〉 =
1

Z(β;L1L2)

∑
r

dr

[
β̃r(β)

dr

]L1L2

a(r1, r2; r). (4.27)

Using (3.17), the correlation between two Polyakov loops is

Mr1r2(A) = 〈χr1(T1)χr2(T2)〉 =

∑
r dra(r1, r2; r)

[
β̃r(β)

drβ̃0(β)

]L1L2

∑
r

[
β̃r(β)

drβ̃0(β)

]L1L2
. (4.28)

where

a(r1, r2; r) =
∑
klmnij

1

drdr
< l, i|α(r, r1), λ, k >< α(r, r1), λ, n|m, i >

× < k, j|β(r, r2), s, n >< β(r, r2), s,m|l, j > . (4.29)
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Clearly for fixed r the value of a(r1, r2; r) is symmetric w.r.t. label r1 and r2. Since for

adjoint representations, these coefficients are given as a(r1, r2; r̄). We can prove that

a(r1, r2; r̄) = a(r1, r2; r); (4.30)

because our representation is unitary and therefore M(A) is a real symmetric matrix.

4.3 Continuum limit

In order to take the continuum limit, we need to take a specific lattice action. Since the

continuum limit will not depend on the specific choice as long as it satisfies some essential

properties, the simplest choice is the heat kernel action given by [29]. In this section we will

investigate continuum limit of partition function (3.17) , Wilson loop (4.11) and Polyakov

loop (4.28) respectively.

4.3.1 Continuum limit of partition function

Heat kernel action [29] is given by

β̃r(β) = dre
− C2

r
Nβ . (4.31)

where C2
r is the quadratic Casmir in the r representation. The continuum limit of the

partition function (3.17) is

Z(A) =
∑
r

e−
1
N
C

(2)
r A. (4.32)
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4.3.2 Continuum limit of Wilson Loop

Similarly the continuum limit of expectation value of Wilson loop with dimensionaless area

X is

1

dr
< χr(W (X,A)) >=

∑
r′ ,r′′

n(r,r
′
;r
′′

)d
r
′′

drd
r
′

e
− 1
N
C

(2)

r
′ (A−X)− 1

N
C

(2)

r
′′ X∑

q e
− 1
N
C

(2)
q A

.. (4.33)

We can study few special cases using (4.33).

• Case - I : When A→∞

When A→∞, exponential terms in numerator on (4.33) can be expanded w.r.t r
′
,

∑
r′ ,r′′

n(r, r
′
; r
′′
)dr′′

drdr′
e
− 1
N
C

(2)

r
′ (A−X)

e
− 1
N
C

(2)

r
′′ X

=
∑
r′′

n(r, 0; r
′′
)dr′′

dr
e
− 1
N
C

(2)

r
′′ X +

∑
r′ 6=0,r′′

n(r, r
′
; r
′′
)dr′′

drdr′
e
− 1
N
C

(2)

r
′ (A−X)

e
− 1
N
C

(2)

r
′′ X

︸ ︷︷ ︸
=0,whenA→∞

=
∑
r′′

n(r, 0; r
′′
)dr′′

dr
e
− 1
N
C

(2)

r
′′ X .

(4.34)

Since n(r, 0; r
′′
) is number of times the representation r

′′
is repeated in direct product of

r
′

= 0 (trivial representation, d0 = 1) and r representation. Obviously ,

n(r, 0; r
′′
) = 1; r

′′
= r. (4.35)

Thus numerator becomes e−
1
N
C

(2)
r X . Similarly denominator on (4.33) gives us

e−
1
N
C

(2)
q A = 1 +

∑
q 6=0

e−
1
N
C

(2)
q A

︸ ︷︷ ︸
=0; when A→∞

. (4.36)
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Finally we get

1

dr
〈χr(W (X,∞))〉 = e

1
N
C

(2)
r X . (4.37)

• Case - II : When X → 0

1

dr
〈χr(W (0, A))〉 =

∑
r′

∑
r′′

n(r, r
′
; r
′′
)dr′′

drdr′

 e
− 1
N
C

(2)

r
′ A∑

q e
− 1
N
C

(2)
q A

.

(4.38)

Since the dimension of product representation is the product of individual representations,

we have

dim(r ⊗ r′) =
∑
r′′

n(r, r
′
; r
′′
)dr′′ = drdr′ . (4.39)

We get

1

dr
< χr(W (0, A)) >= 1.

(4.40)

• Case - III : When X → A

1

dr
< χr(W (A,A)) >=

∑
r′ ,r′′

n(r,r
′
;r
′′

)d
r
′′

drd
r
′

e
− 1
N
C

(2)

r
′′ A∑

q e
− 1
N
C

(2)
q A

. (4.41)

• Case - IV : When X →∞, A→∞

We start with (4.41) and take the limit A→∞. From numerator of (4.41),

∑
r′

n(r, r
′
; 0)

drdr′
+

∑
r′ ,r′′ 6=0

n(r, r
′
; r
′′
)dr′′

drdr′
e
− 1
N
C

(2)

r
′′ A

︸ ︷︷ ︸
=0;whenA→∞

.
(4.42)
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Since r
′′

= 0, which is trivial representation with dr′′ = d0 = 1. This representation is

repeated once if r
′

is adjoint representation of r.(Proved in appendix-I) ie. r
′

= r̄. So that

dr = dr′ . Hence contribution form numerator becomes 1
d2r

.

From denominator of (4.41);

∑
q

e−
1
N
C

(2)
q A = 1 +

∑
q 6=0

e−
1
N
C

(2)
q A

︸ ︷︷ ︸
=0;whenA→∞

= 1 (4.43)

∴
1

dr
〈χr(W (∞,∞))〉 =

1

d2
r

(4.44)

4.3.3 Continuum limit of Polyakov loop

The continuum limit of the correlation of Polyakov loops oriented in two different directions

in a torus of dimensionless area A is

Mr1r2(A) =< χr1(T1(A))χr2(T2(A)) >=

∑
r dra(r1, r2; r)e−

1
N
C

(2)
r A∑

q e
− 1
N
C

(2)
q A

(4.45)

• Case - I : When A→∞

In the limit of A→∞, numerator can be expanded as;

∑
r

dra(r1, r2; r)e−
1
N
C

(2)
r A = d0a(r1, r2; 0) +

∑
r

dra(r1, r2; r)e−
1
N
C

(2)
r A

︸ ︷︷ ︸
=0;whenA→∞

(4.46)

Obviously for trivial representation d0 = 1 and

a(r1, r2; 0) = δr10δr20 (4.47)
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Contribution from numerator is δr10δr20 and from denominator we get;

∑
q

e−
1
N
C

(2)
q A = 1 +

∑
q 6=0

e−
1
N
C

(2)
q A

︸ ︷︷ ︸
=0;whenA→∞

= 1 (4.48)

Therefore,

Mr1r2(∞) = δr10δr20 (4.49)

There is only one non-zero eigenvalue for this matrix which is one and all other eigenvalues

are zero.

• Case - I : When r2 = 0 or r1 = 0

For r2 = 0 and r1 = 0;

Mr10(A) =

∑
r dra(r1, 0; r)e−

1
N
C

(2)
r A∑

q e
− 1
N
C

(2)
q A

(4.50)

4.3.4 The special case of SU(2)

In order to obtain further insight into the correlation function between Polyakov loops in the

two directions, we focus on the SU(2) group. We start with general expression of continuum

limit of Polyakov loops which is a symmetric matrix M(A) from equation (4.45),

Mr1r2(A) =

∑
r dra(r1, r2; r)e−

1
N
C

(2)
r A∑

q e
− 1
N
C

(2)
q A

(4.51)

Let s, s1 and s2 label irreducible representations of SU(2) matrix. Then these labels

should be positive integer or an half integer. The casmir operator takes on a value of s(s+1)

for representation label s and dimension of representation is (2s+ 1). Therefore

Ms1s2(A) =

∑
s(2s+ 1)a(s1, s2; s)e−

s(s+1)
2

A∑
s e
− s(s+1)

2
A

(4.52)
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Where

a(s1, s2; s) =

∫
dT1dT2χr1(T1)χr2(T2)χr(T2T1T

†
2T
†
1 ) (4.53)

To calculate these cofficients a(s1, s2; s), we start with T1 as the diagonal matrix in its

fundamental representation

T1 =

 eiη 0

0 eiη

 ; η1 ∈ [0, π] (4.54)

The most general form of T2 in the fundamental representation is

T2 =

 cos θ2e
iα2 sin θ2e

iβ2

− sin θ2e
−iβ2 cos θ2e

−iα2

 ; θ2 ∈ [0,
π

2
];α2, β2 ∈ [0, 2π]. (4.55)

Let the eigen value of T2 is e±iη2 . Using the invariance of the trace,

cos η2 = cos θ2 cosα2; η2 ∈ [0, π] (4.56)

The product matrix T2T1T
†
2T
†
1 becomes:

T2T1T
†
2T
†
1 =

 cos2 θ2 + sin2 θ2e
−2iη1 − sin 2θ2(ei(α2+2η1+β2) − ei(β2+α2))

sin 2θ2(e−i(α2+2η1+β2) − e−i(β2+α2)) cos2 θ2 + sin2 θ2e
2iη1

(4.57)

Let e±iη be the eigen value of this marix. Then

cos η =
1

2
[2 cos2 θ + 2 sin2 θ cos 2η] = 1− 2 sin2 θ sin2 η1; η ∈ [0, π] (4.58)

For eigenvalue e±iψ in fundamental representation of matrix of SU(2) group, the character

of that matrix in any irreducible representation label j is given by

χr =
sin(j + 1

2)ψ

sin(ψ2 )
(4.59)
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From (4.53), we get

a(s1, s2; s)

=
2

π

∫ π

0
dη1 sin η1 sin(2s1 + 1)η1

∫ π

0
dθ2 sin 2θ2

sin(2s+ 1)η

sin η

∫ 2π

0

dα

2π

sin(2s2 + 1)η2

sin η2
(4.60)

Upon insertion of this expression into (4.52), we obtain the correlation between Polyakov

loops in two different directions for the case of SU(2). Since loops in two different repre-

sentations are correlated, we need to diagonalize, Ms1s2(A) to find the eigenstates of the

Polyakov loop operator. These eigenstates will be linear combinations of different repre-

sentations. In order to find these eigenstates, we need to use a numerical method since we

have a infinite dimensional matrix.

4.4 Numerical calculations

The Ms1s2 is a real symmetric matrix. It’s eigenvalues are real and eigenvectors are or-

thogonal. We calculate a(s1, s2; s) using (4.60), and insert the value in (4.51) to get a

matrix Ms1s2 . The quantity a(s1, s2; s) obeys a selection rule where s1 and s2 must satisfy

0 ≤ s1, s2 ≤ 2s. Thus for a value of s ≤ S , we get Ms1s2 as a (2S + 1)× (2S + 1) matrix.

We numerically diagonalize this finite matrix and increase S till a few low lying eigenvalues

have converged. The results are plotted as a function of the dimensionless area A.
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Figure 4.2: A plot of free energy e−F as a function of area ln(A/2)
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Figure 4.3: A plot of free energy e−F as a function of area A

In the large area limit, M00(∞) = 1 and all others are zero. Property of M says

that insertion of Polyakov loops in any nontrivial representation costs infinite amount of

energy. The matrix, M(A), for SU(2) at finite A has every entry in the range [−1, 1]. Upon

diagonalization at a fixed A, we have new normalized eigenvectors of the form

ξi(T (A)) =
∑
s

bsi (A)χs(T (A)), i = 0, 1, ... (4.61)
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where bsi is the contribution from the reprentation s to the i′th eigenvector. The corre-

sponding eigenvalues, λi(A), satisfy λi(A) > λi+1(A). Each eigenvector, ξi(θ;A), is an

even function of θ ∈ [−π, π] where e±iθ are the eigenvalues of T (A) in the fundamental

representation. The eigenvectors are normalized according to

2

π

∫ π

0
dθ sin2 θξi(θ;A)ξj(θ;A) = δij (4.62)

Only integer valued s contribute to the sum and therefore, ξi(θ;A) = ξi(π − θ;A).

The plot of the eigenvalues λi(A) shown in Fig. 4.3 has two main features:

1. There is one eigenvalues, λi(A) > 1, for all finite A and it approaches unity as A→∞.

2. All other eigenvalues are less than λ0(A) in magnitude and approach zero as A→∞

Since the expectation value of ξ0(T1(A))ξ0(T2(A)) is greater than unity, the true vac-

uum of the theory contains the insertion of this operator. Viewed as a function of θ,

ξ0(θ;A) will develop a peak at θ = 0 as we decrease A from infinity.

Our results show that the true vacuum of two dimensional Yang-Mills theory is not

trivial when the theory is defined in a finite area. Instead it favors the presence of a specific

Polyakov loop operator in each direction. We have computed the details of this Polyakov

loop operator using numerical techniques for the special case of SU(2).
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CHAPTER 5

Two dimensional lattice gauge theory with fermion content

5.1 Introduction

In this chapter, two dimensional QCD will be studied with the aim of extracting meson

and baryon masses with SU(3) gauge fields and two degenerate flavors of quarks. For this

purpose, it will be convenient to use the canonical formalism. After providing the details

of the canonical formalism, a numerical algorithm for the computation of the meson and

baryon masses will be presented. The numerical data so obtained will be used to extract

the behavior of the meson and baryon masses as a function of quark masses.

5.1.1 Canonical formalism

Canonical formalism involves the Hamiltonian and therefore we will work with the gauge

fields in the Weyl gauge. Since we are working on a periodic lattice in both the space and

Euclidean time direction, Weyl gauge corresponds to fixing all links in the time direction

to unity except the links that close the periodicity in the time direction.

Figure 5.1: Gauge field configuration
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Let (x, k) label a site on a L× β lattice with x being the space location and k being

the Euclidean time location. The space link variables will be labeled by U(x, k) and the

time link variables connecting (x, β) and (x, 1) will be labeled by V (x).

The standard Wilson plaquette gauge action with lattice gauge coupling, b, can be

written as

Sg = bN
L∑
x=1

n∑
k=1

(Sg(x, k))

Sg(x, k) = Tr
[
U(x, k)U †(x, k + 1) + U(x, k + 1)U †(x, k)

]
; k ∈ [1, β − 1]

Sg(x, n) = Tr
[
U(x, β)V (x+ 1) {V (x)U(x, 1)}† + V (x)U(x, 1) {U(x, β)V (x+ 1)}†

]
(5.1)

Figure 5.2: Fundamental plaquettes

5.2 Fermions on the lattice

In this section, the fermion doubling problem on the lattice will be discussed in general and

the solution because of Wilson will be presented. The solution will be used in the later

section to obtain the canonical formalism of QCD on a two dimensional lattice.
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The action for free fermion in an even dimensional Euclidean space-time is given by

S0
F [ψ, ψ̄] =

∫
ddxψ̄(x)(γµ∂µ +m)ψ(x). (5.2)

We use the Dirac basis for d-dimensions:

γj =

 0 σj

σj 0

 ; γd =

 0 i

−i 0

 ; γd+1 =

 1 0

0 1

 . (5.3)

Where j = 1, ....., d−1 with {σj , σk} = 2δjk;σ
†
j = σj . σ matrices have dimension, ns = 2

d
2
−1.

Spinors are placed at lattice points and fermionic degrees of freedom are ψ(n), ψ̄(n). The

naive derivative is

∂µψ(n)→ ψ(n + µ̂)− ψ(n− µ̂)

2
=

1

2
[δ(n

′
,n + µ̂)− δ(n′ ,n− µ̂)]ψ(n

′
). (5.4)

On this discritization for d-dimension, matrix elements of Dirac operator is

D(n|n′)αβ = mδαβδnn′

+
d∑

µ=1

(γµ)αβ
δ(n + µ̂,n

′
)− δ(n− µ̂,n′)

2

(5.5)

Where, α, β = 1, 2, ...Ns are Dirac indices. The fermion action is

S0
F [ψ, ψ̄] =

∑
n′ ,n

∑
α,β

ψ̄(n)αD(n|n′)αβψ(n
′
)β. (5.6)

Interactions with gauge fields are introduced by converting the derivative to a covariant

derivative by

D(n|n′)abαβ =

d∑
µ=1

(γµ)αβ
Uµ(n)abδn+µ̂,n′ − U

†
µ(n′)abδn−µ̂,n′

2a
+mδαβδabδnn′ . (5.7)

where a, b = 1, 2, ...Nc is color indices.
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One can use the Fourier basis to diagonalize the free Dirac operator and the operator

for a momentum pµ is

D(p) = m1 + i
d∑

µ=1

γµ sin(pµ). (5.8)

Dirac operator for massless fermions has a zero at p = (0, 0) in continuum limit. But it

has additional zeros for either pµ = 0 or pµ = π
a . Therefore, there are 2d zeros and it

will describe that many massless fermions. This problem is referred to as the doubling

problem [30].

In order to remove doublers, Wilson proposed adding an irrelevant term of the form

−(1/2)
∑

µ ∂µ∂µ to the Dirac Operator. With this term, the Wilson Dirac Operator takes

the form

D(n|n′)abαβ = (m+ d) δαβδabδnn′

− 1

2

d∑
µ=1

(1− γµ)αβUµ(n)abδn+µ̂,n′

− 1

2

d∑
µ=1

(1 + γµ)αβU
†
µ(n)abδn+µ̂,n′ .

(5.9)

The free Wilson Dirac operator in momentum space becomes

D̃(p) = m1 +

d∑
µ=1

γµ sin(pµ) +

d∑
µ=1

(1− cos(pµ))︸ ︷︷ ︸
Wilson term

. (5.10)

The massless operator still has a zero for pµ = 0. The Wilson term is zero at zero momentum

but it is not zero if one or more of the pµ = π. Therefore, the term acts like a mass term

for all other zeros of the naive Dirac operator.
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5.2.1 Wilson Dirac Operator on the two dimensional periodic Lattice in

Weyl gauge

In this section we set up the explicit matrix structure of Wilson Dirac operator on the two

dimensional periodic lattice in Weyl gauge. From (5.9), the matrix elements of Wilson

Dirac Operator can be written as:

D(x, k|x′ , k′)abαβ = (m+ d)δαβδabδxx′ δkk′

− 1

2
(1− γ1)αβ[U ]ab(x, k)δ(x+ 1, x

′
)δkk′

− 1

2
(1 + γ1)αβ[U †]ab(x, k)δ(x− 1, x

′
)δkk′

− 1

2
(1− γ2)αβ[V ]ab(x, k)δ(k, n)δ(k′, 1)δxx′

− 1

2
(1 + γ2)αβ[V †]ab(x, k)δxx′ δ(k, 1)δ(k′, n)

(5.11)

We define operators at a fixed time, k,

Bk = d+M − 1

2

(
T1(k) + T †1 (k)

)
Ck =

1

2

(
T1(k)− T †1 (k)

)
; C†k = −Ck.

(T1(k)ψ)(x) = U(x, k)ψ(x+ 1)

(T †1 (k)ψ)(x) = U †(x− 1, k)ψ(x− 1); T †1T1 = 1; (5.12)

Let us also define the unitary opetator, T2, by

(T2ψ)(x) = V (x)ψ(x). (5.13)
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The Wilson-Dirac operator can be written in the matrix form

Df =



B1 C1 0 0 0 0 · · · · · · T †2 0

C1 B1 0 −1 0 0 · · · · · · 0 0

−1 0 B2 C2 0 0 · · · · · · 0 0

0 0 C2 B2 0 −1 · · · · · · 0 0

0 0 −1 0 B3 C3 · · · · · · 0 0

0 0 0 0 C3 B3 · · · · · · 0 0

...
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
...

. . .
. . .

. . .
...

0 0 0 0 0 0 · · · · · · Bβ Cβ

0 T2 0 0 0 0 · · · · · · Cβ Bβ



(5.14)

5.3 Fermion determinant

In order to obtain an expression for the determinant of Df , we perform the following two

column manipulations:

D′f =



C1 B1 0 0 0 0 · · · · · · 0 −T †2

B1 C1 −1 0 0 0 · · · · · · 0 0

0 −1 C2 B2 0 0 · · · · · · 0 0

0 0 B2 C2 −1 0 · · · · · · 0 0

0 0 0 −1 C3 B3 · · · · · · 0 0

0 0 0 0 B3 C3 · · · · · · 0 0

...
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
...

. . .
. . .

. . .
...

0 0 0 0 0 0 · · · · · · Cβ Bβ

−T2 0 0 0 0 0 · · · · · · Bβ Cβ



(5.15)
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D′′f =



B1 0 0 0 0 · · · · · · 0 −T †2 C1

C1 −1 0 0 0 · · · · · · 0 0 B1

−1 C2 B2 0 0 · · · · · · 0 0 0

0 B2 C2 −1 0 · · · · · · 0 0 0

0 0 −1 C3 B3 · · · · · · 0 0 0

0 0 0 B3 C3 · · · · · · 0 0 0

...
...

...
...

. . .
. . .

. . .
...

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

0 0 0 0 0 · · · · · · Cβ Bβ 0

0 0 0 0 0 · · · · · · Bβ Cβ −T2



(5.16)

Let us define

αk =

 Bk 0

Ck −1

 ; k = 1, ...β,

δk =

 −1 Ck

0 Bk

 ; k = 1, ...β,

X =

 1 0

0 T2

 ;Y =

 T †2 0

0 1

 .

(5.17)

Then

Df (µ) =



α1 0 0 ... ... 0 δ1Y

δ2 α2 0 ... ... 0 0

0 δ3 α3 ... ... 0 0

... ... ... .. ... ... ...

... ... ... ... ... ... ...

0 0 0 ... ... αβ−1 0

0 0 0 ... ... δβ αβX


. (5.18)
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Using result from [31], we get

DetD =

 β∏
j=1

detαj

 det

(
X −

1∏
k=n

(−α−1
k δk)Y

)
. (5.19)

To understand the structure of −α−1
k δk, we plug the expression for them as:

−α−1
k δk = −

 Bk 0

Ck −1


−1 −1 Ck

0 Bk


=

 B−1
k −B−1

k Ck

CkB
−1
k −CkB−1

k Ck +Bk


= Tk.

(5.20)

where

Tk =

 B−1
k −B−1

k Ck

CkB
−1
k −CkB−1

k Ck +Bk

 .

(5.21)

The inverse of Tk is

T −1
k =

 Bk − CkB−1
k Ck CkB

−1
k

−B−1
k Ck B−1

k

 =

 0 1

1 0

 Tk
 0 1

1 0

 = ΛTkΛ, (5.22)

and

Λ = Λ†; Λ2 = 1; detTk = 1; T †k = Tk. (5.23)

Using, detαk = det(−Bk), one can arrive to the expression of fermion determinant,

detD =

 β∏
j=1

det(−Bj)

× det

[
T21−

(
1∏

k=n

Tk

)]
. (5.24)
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Again using properties of Λ and Tk, one can get

detD =

 β∏
j=1

det(−Bj)

 det

[
1− T2

(
n∏
k=1

Tk

)]
. (5.25)

By comparing (5.24) and (5.25), one can conclude that detDf is real and positive.

5.3.1 Properties of T

We define a matrix T by

T =

(
n∏
k=1

Tk

)
1T2. (5.26)

Where Tk and T2 are such that det(T2) = 1,det(Tk) = 1, T †k = Tk and T −1
k = ΛTkΛ. Where

Λ† = Λ,Λ2 = 1. Using these properties, it follows that det(T ) = 1 and T is nither hermitian

nor unitary and

T † = ΛT −1Λ. (5.27)

Since T is a finite square matrix, all its right eigenvalues are the same as its left eigenvalues.

Let R be the matrix formed by all the right eigenvectors and let D be the diagonal matrix

of all the eigenvalues. Then,

T R = RD (5.28)

Using above properties

R†T † = D†R† =⇒ D−1†(R†Λ) = (R†Λ)T (5.29)

Thus it appears that, R†Λ is the matrix formed by all the left eigenvectors of T . Since

the set of right and left eigenvalues are the same, it follows that for every eigenvalue Di,

we have another eigenvalue 1
D∗i

. Assuming that no eigenvalue has a magnitude of unity and
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|Di| > 1, let us assume that the columns of R is such that

D =

 C 0

0 1
C†

 (5.30)

Since T R = RD and detT = 1, it follows that

1 = detD =
detC
detC†

⇒ detC = detC† (5.31)

Also

D−1† =

 1
C† 0

0 C

 = ΛDΛ (5.32)

From (5.29), we get

D−1†(R†Λ) = (R†Λ)T =⇒ D(ΛR†Λ) = (ΛR†Λ)T (5.33)

Hence from (5.33), it is evident that, given the set of right eigenvectors R, (ΛRΛ) is a set

of left eigenvectors that results in the left eigenvalues in the same order as the left. It also

follows that ΛR†ΛR is a diagonal matrix.

5.3.2 Partition function

In this section we want to construct the partition function using determinant obtained in

(5.24). The property of T studied in previous topics help us to explore symmetry property

under Euclidean time reversal and center transformation. Consider Nf flavor theory with

degenerate fermions. The partition function for Nf flavour of fermions can be expressed as

Z =

∫
dU(x, k)dV (x)eSg(detDf )Nf

=

∫
dU(x, k)dV (x)eSg

 n∏
j=1

det(−Bj)

Nf

det[1− T ]Nf

46



(5.34)

Taking the term

det[1− T ]Nf = det[1− C]Nfdet

[
1− 1

C†

]Nf
. (5.35)

into expression of partition function, we get

Z =

∫
dU(x, k)dV (x)eSg

 n∏
j=1

det(−Bj)

Nf

det[1− C]Nfdet

[
1− 1

C†

]Nf
.

(5.36)

Taking this partition function we go through following steps to investigate symmetry

property of partition function.

Partition function under Euclidean time reversal

Consider two gauge field configurations that are related by Euclidean time reversal: U(x, k)→

U(x, n − k + 1) and V (x) → V †(x). Under this transformation, we want to observe how

different quantities in (5.36) are affected. These are summarized in the following steps:

• Gauge action Sg remains invariant.

•
∏n
j=1 det(−Bj) remains invariant.

• det[1− T ] becomes det[1− T †].

The first two are easy to see. To see that the last one is true, note that

T =

(
n∏
k=1

Tk

)
Td ⇒

 1∏
k′=n

Tk

 T †d = Td

T †d
 1∏
k′=n

Tk

 T †d
∴ T → TdT †T †d .

(5.37)
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Therefore all eigenvalues of T goes to its complex conjugate and it follows that

det[1− T ]⇒ det[1− T †]. (5.38)

Above three facts helps us to see that the partition function is real. Let the eigenvalues of

R, namely, Di be arranged such that |Di+1| > |Di|. We can write

det[11− C]Nfdet[1− 1

C†
]Nf

=

(
K∏
i=1

(1−Di)

)Nf  K∏
i=j

(1− 1

D∗j
)

Nf

=

 K∏
i=1

Nf∑
si,ri=0

 K∏
i=1

(
C
Nf
si C

Nf
ri

(−Di)Nf−si
(−D∗i )ri

)
.

(5.39)

We can write the partition function (5.36) as

Z =

 K∏
i=1

Nf∑
si,ri=0

Z{siri}. (5.40)

where {si, ri} represent different sets (s1, ...sK ; r1, ...rK) of all possible combinations made

by picking number of flavors from 0, 1, 2...Nf . Each

Z{siri} =

∫
dUi(x, k)dUd(x)eSg

 n∏
j=1

det(−Bj)

Nf

×(det(−C))Nf
K∏
i=1

(
C
Nf
si C

Nf
ri

1

(−Di)si(−D∗i )ri

)
. (5.41)

Partition function under global ZN transformation

Consider gauge fields related by a center transformation:

V (x)→ ei
2πk
N V (x); k = 0, ..., N − 1. (5.42)

Under this transformation:
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• Gauge action Sg remains invariant

• det(−Bj) remains invariant

• All eigen values of T are multiplied by phase ei
2πk
N .

The last statement follows from the following reasoning:

Td(x)→ ei
2πk
N Td(x) (5.43)

Further we have defined matrix T as

T =

(
n∏
k=1

Tk

)
1Td. (5.44)

Which implies under this transformation all eigen values of T are multiplied by phase ei
2πk
N

i.e.,

Di → ei
2πk
N Di. (5.45)

This implies

det(−C)→ det(−C) (5.46)

With all these contributions Z{siri} transforms as

Z{siri} → ei
2πk
N

[
∑K
i (ri−si)]Z{siri}. (5.47)

Averaging over all k will result in a zero unless
∑K

i=1(ri − si) is a multiple of N .

A double expansion

Setting

K∑
i=1

(ri − si) = NQ, (5.48)
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K∑
i=1

(si + ri) = P. (5.49)

we see that P is the quark number (number of quarks and anti-quarks) and Q is the baryon

number. Where range of P goes from 0 to 2KNf . We can write

Z =
∑
P,Q

ZPQ; (5.50)

with

ZPQ =

 K∏
i=1

Nf∑
si,ri=0

 δ

(
K∑
i=1

(ri − si)−NQ

)
δ

(
K∑
i=1

(ri + si)− P

)
Z{siri} (5.51)

5.3.3 Special cases: Z00, Z20, Z31

In this section we will calculate the ratios of Z20, Z31 over Z00 which appear as expectation

value of some operator product. This is the benefit that we obtain from special structure

of the partition function (5.50) and (5.51).

Calculation of Z00

For P = 0 and Q = 0, using (5.48) and (5.49), the possible values of si and ri are 0. Which

means the collection of configurations {si, ri} which includes the configurations satisfying

above equations is only one configuration {s1 = 0, s2 = 0...sK = 0; r1 = 0, r2 = 0..., rK = 0}

{si, ri} = {(0, 0, 0....0; 0, 0, 0, ..., 0)}. (5.52)

Therefore we end up with

Z00 = Z{siri} =
∫
dUi(x, k)dUd(x)eSg

(∏n
j=1 det(−Bj)

)Nf
×(det(−C))Nf

∏K
i=1

(
C
Nf
0 C

Nf
0

1
(−Di)0(−D∗i )0

)
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For Nf = 2:

Z00 =

∫
dUi(x, k)dUd(x)eSg

 n∏
j=1

det(−Bj)

2

(det(−C))2 (5.53)

Calculation of Z20

For P = 2 and Q = 0, using (5.48) and (5.49), the possible values of si and ri are 1. Which

means the collection of configurations {si, ri} which includes the configurations satisfying

above equations are

s1 = 1, r1 = 1 rest of all si, ri = 0

s1 = 1, r2 = 1 rest of all si, ri = 0

.........

s1 = 1, rK = 1 rest of all si, ri = 0

... and so on ...

sK = 1, rK = 1 rest of all si, ri = 0

Thus in total there are K2 configurations in {si, ri}. Let us consider the first config-

uration: s1 = 1, r1 = 1. With Nf = 2,the specific form of Z{siri} is

Z{siri} =

∫
dUi(x, k)dUd(x)eSg

 n∏
j=1

det(−Bj)

2

×(det(−C))2
K∏
i=1

(
C2
siC

2
ri

1

(−Di)si(−D∗i )ri

)
. (5.54)

Consider the relevant term,
∏K
i=1

(
C2
siC

2
ri

1
(−Di)si (−D∗i )ri

)
. Expanding it to K terms and by

plugging all si and ri one can get

K∏
i=1

(
C2
siC

2
ri

1

(−Di)si(−D∗i )ri

)
= 4

(
1

D1D∗1

)
. (5.55)
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Similarly considering other relevant terms one can obtain the total contribution de-

noted as ζ20.

ζ20 = 4

[(
1

D1D∗1
+ ...+

1

D1D∗K

)
+ ...+

(
1

DKD∗1
+ ...+

1

DKD∗K

)]
. (5.56)

i.e.

ζ20 = 4
K∑
ij

1

DiD∗j
. (5.57)

Finally, with this result Z20 can be expressed as

Z20 =

∫
dUi(x, k)dUd(x)eSg

 n∏
j=1

det(−Bj)

2

(det(−C))2

4
K∑
ij

1

DiD∗j

 . (5.58)

Using (5.53) and (5.58), the ratio Z20
Z00

becomes

Z20

Z00
=

∫
dUi(x, k)dUd(x)eSg

(∏n
j=1 det(−Bj)

)2
(det(−C))2

(
4
∑K

ij
1

DiD∗j

)
∫
dUi(x, k)dUd(x)eSg

(∏n
j=1 det(−Bj)

)2
(det(−C))2

. (5.59)

Obviously,

Z20

Z00
=

〈4

K∑
ij

1

DiD∗j

〉 . (5.60)

Calculation of Z31

For P = 3 and Q = 1, using (5.48) and (5.49), the possible values of si and ri are: 0 for all

si and (1, 1, 1) or (1, 2) for ri. Which means the collection of configurations {si, ri} which

includes the configurations satisfying above equations are of two types:

• Type -I: ri = (1, 1, 1), all si = 0
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There are total of K(K−1)(K−2)
3! configurations in {si, ri} of this type. For example

consider the configuration: r1 = 1, r2 = 1, r3 = 1 rest of all si and ri = 0. Consider

the relevant term:
∏K
i=1

(
C2
siC

2
ri

1
(−Di)si (−D∗i )ri

)
. On expanding it to K terms and plugging

values of all si and ri, one can get

K∏
i=1

(
C2
siC

2
ri

1

(−Di)si(−D∗i )ri

)
= −8

1

(D∗1D∗2D∗3)
. (5.61)

Considering all relevant term the total Contribution denoted by ζ
[111]
31 becomes

ζ
[111]
31 = −8

[
1

(D∗1D∗2D∗3)
+ ...+

1

(D∗K−2D∗K−1D∗K)

]
. (5.62)

i.e.

ζ
[111]
31 = − 8

3!

K∑
i 6=j 6=k

1

D∗iD
∗
jD
∗
k

= − 8

3!

 K∑
ijk

1

D∗iD
∗
jD
∗
k

− 3
K∑
ij

1

D∗2i D
∗
j

+ 2
K∑
k

1

D∗3k

 . (5.63)

• Type -II: ri = (1, 2), all si = 0

There are total of K(K − 1) configurations of this type in {si, ri}. For example

consider the configuration: r1 = 1, r2 = 2 rest of all si and ri = 0. Consider the relevant

term:
∏K
i=1

(
C2
siC

2
ri

1
(−Di)si (−D∗i )ri

)
. Expanding it to K terms and plugging for si and ri,

one can get

K∏
i=1

(
C2
siC

2
ri

1

(−Di)si(−D∗i )ri

)
= −2

1

D∗1(D∗2)2
. (5.64)

Considering all relevant term the total Contribution denoted by ζ
[12]
31 becomes

ζ
[12]
31 = −2

[
1

D∗1(D∗2)2
+ ...+

1

D∗2KD∗K−1

]
. (5.65)
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i.e.

ζ
[12]
31 = −2

∑
i 6=j

(
1

D∗iD
∗2
j

)
= −2

∑
ij

(
1

D∗iD
∗2
j

)
−
∑
i

1

D∗3i

 . (5.66)

Thus total contribution from both type I and II gives us :

Z31 =

∫
dUi(x, k)dUd(x)eSg

 n∏
j=1

det(−Bj)

2

(det(−C))2(ζ
[111]
31 + ζ

[12]
31 ). (5.67)

i.e.

Z31

Z00
=
〈

(ζ
[111]
31 + ζ

[12]
31 )

〉
. (5.68)

Using (5.63) and (5.66) for total contribution, we can reexpress this ratio as

Z31
Z00

=

〈
−4

3

(∑K
i

1
D∗i

)3
+ 2

(∑K
i

1
D∗2i

)(∑K
j

1
D∗j

)
− 2

3

∑K
k

1
D∗3k

〉
. (5.69)

5.4 Algorithms for numerical calculation

Let Π1(x, k) be traceless Hermitian matrices that correspond to momentum conjugate to

U(x, k) and let Π2(x) be a traceless Hermitian matrices that correspond to momentum con-

jugate to V (x). We want to use Hybrid Monte Carlo (HMC) method [32] to generate gauge

fields for which we need to find canonical equation of motion. We start with constructing

new action by taking kinetic energy part of the action as

Sk = −1

2

∑
x,k

TrΠ2
1(x, k)− 1

2

∑
x

TrΠ2
2(x). (5.70)

Potential energy part of the action as

Sp = Sg +Nf ln detHf . (5.71)

Where Sg is gauge action from (5.1) and Hf = γ3Df is a Hermitian Dirac operator .
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5.4.1 Canonical equations of motion for HMC

The equation of motion for variables Ui(x, k) and V (x) are:

dU(x, k)

dτ
= iΠ1(x, k)U(x, k);

dV (x)

dτ
= iΠ2(x)V (x).

(5.72)

Then, conservation of energy;
d(Sk+Sp)

dτ = 0 implies

∑
x,k

Tr

[
Π1(x, k)

dΠ1(x, k)

dτ

]
+
∑
x

Tr

[
Π2(x)

dΠ2(x)

dτ

]
=

dSg
dτ

+NfTr

[
H−1
f

dHf

dτ

]
=

∑
x,k

Tr
[
Π1(x, k)

{
bNF 1

g (x, k) +NfF
1
f (x, k)

}]
+
∑
x

Tr
[
Π2(x)

{
bNF 2

g (x) +NfF
2
f (x)

}]
+ h.c. (5.73)

Noting that the conjugate momenta are hermitian and traceless, it follows that

dΠ1(x, k)

dτ
= bNF 1

g (x, k) +NfF
1
f (x, k) (5.74)

and

dΠ2(x)

dτ
= bNF 2

g (x) +NfF
2
f (x) (5.75)

Using the Wilson gauge action

F 1
g (x, k) = Ui(x, k)F 1

ge(x, k)

− 1

N
Tr
[
Ui(x, k)F 1

ge(x, k)
]

+ h.c.

F 1
ge(x, k) = i

[
U †(x, k + 1) + U †(x, k − 1)

]
k ∈ [2, β − 1]

F 1
ge(x, 1) = i

[
U †(x, 2) + V †(x+ 1)U †(x, β)V (x)

]
F 1
ge(x, β) = i

[
V (x+ 1)U †(x, 1)V †(x) + U †(x, β − 1)

]
;

F 2
g (x) = Ud(x)F 2

ge(x)− 1

N
Tr
[
V (x)F 2

ge(x)
]

+ h.c
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F 2
ge(x) = i

[
U(x, 1)V †(x+ 1)U †(x, β)

+U †(x− 1, 1)V †(x− 1)U(x− 1, β)

]
(5.76)

Using (5.11)

F 1
f (x, k) = U(x, k)F̄ 1

f (x, k)− 1

N
Tr
[
U(x, k)F̄ 1

f (x, k)
]

+ h.c.

F̄ 1
f (x, k) = − i

2
(Tr((1− γi)γ3H

−1
f ))(x+ 1, k;x, k) (5.77)

and

F 2
f (x, k) = V (x)F̄ 2

f (x)− 1

N
Tr
[
V (x)F̄ 2

f (x)
]

+ h.c.

F̄ 2
f (x) = − i

2

{
Tr
[
(1− γ2)γ3H

−1
f

]}
(x, β;x, 1). (5.78)

With these numerical details in place, we developed the numerical code to generate

gauge field configurations for SU(3) gauge theory with two degenerate flavors. This enabled

us to compute the physical spectrum of this theory. The results are presented in the next

chapter.
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CHAPTER 6

Observables and results from numerical calculations

6.1 Parameters

The parameters that enter the numerical simulation described in section 4 of chapter 4 are

the gauge group, N ; number of fermion flavors, Nf ; lattice gauge coupling, b; spatial extent

of the lattice, L; temporal extent of the lattice, β; and the lattice fermion mass, m. All

the results obtained are for the gauge group, N = 3. Mesons are made up of a quark and

anti-quark and baryons are made up of three quarks; mesons are bosons and baryons are

fermions. We will restrict ourselves to two flavors of quarks, namely, Nf = 2; and we will

assume that they are degenerate (same quark masses). Chiral symmetry cannot be broken

in two dimensions because of Elitzur’s theorem [9, 30] and therefore we do not have to

distinguish between the flavor content of the different mesons; they will all be degenerate.

The same will be true of baryons. The quark mass can be negative or positive. We do not

expect the sign to be relevant in two dimensions since there is no topological term to the

gauge action in two dimensional QCD.

The continuum limit will be obtained by studying three different lattice couplings, b =

0.25, 0.375 and 0.5. These values of coupling constants were sufficient for us to demonstrate

that our results have reached the continuum limit within statistical errors of the simulation.

At the fixed lattice coupling, we studied three different spatial extents, L = 4, 5 and 6,

to demonstrate that our results have reached the values for infinite spatial extents. For

each choice of b and L, we obtained results at several different temporal extents, β =

4, 6, 8, 10, 12, 14, 16. Focussing on the special cases, Z00, Z20 and Z31, described in section

4.4 of chapter 4, we will extract the meson and baryon masses using the formulas,

Z20

Z00
= e−mM (mq)

β
L ;

Z31

Z00
= e−mB(mq)

β
L . (6.1)

The lattice mass, m, is related to the dimensionless quark mass, mq, by m =
mq
L . In what

follows, we will show that even though mM (mq) depends upon β at a fixed, b, mq and L, it
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has approached the limit at infinite β. Our aim will then be to use the values at the largest

β, namely; β = 16, as the values for the meson and baryon masses at a fixed β, L and mq.

Since we have extracted a factor of β
L , in equation (1), the meson and baryons masses are

dimensionless measured in units of the physical coupling.

We proceed to provide details of our results in a systematic manner in the following

sections. All our HMC runs had the following parameters. The hundred steps of evolution

of the equation of motion were used to thermalize the gauge field configuration where each

step started with a new set of Π1(x, k) and Π2(x) drawn from a normal distribution as

defined in section 5.4 of chapter 5. Each step of classical evolution was obtained using

100 discrete steps such that the total evolution extent was unity. These computation steps

were sufficient to obtain a conservation of the total energy within acceptable limits. A

total number of 100 measurements were obtained after thermalization where gauge fields

between two consecutive measurements corresponded to one step of classical evolution. All

results shown in the next sections have error bars. These are obtained using the standard

statistical estimate assuming all measurements are independent.

6.2 Evidence for the β →∞ limit

Given a gauge field configuration, a typical mesonic state has all possible mesons and not

just the ground state mesons. The same is the case for baryons. Since the mesonic state and

baryonic states are different in the quark content, P = 2, Q = 0 for mesons and P = 3, Q = 1

for baryons, baryons will not contribute to a meson measurement and vice-versa. In order

to obtain the ground state in the meson and baryon sector, we need to evolve for a certain

extent in β for the ground state to dominate. The four plots, Figures 1-8, show samples of

the data. Several points are evident from the plots:

1. The statistical errors in meson masses (Figures 6.1, 6.2, 6.3 and 6.4) are consistently

less that the ones in the baryon masses (Figures 6.5, 6.6, 6.7 and 6.8). The reason for

this is evident from a comparison of equation (5.60) and equation (5.69). The result

for Z20 only involves a sum of positive numbers. The result for Z31 is complex and

is made real by adding up the contribution from a gauge field and its partner under
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Euclidean time reversal. As such, the statistical average over gauge configurations for

mesons comes from a set of positive real numbers and from just a set of real numbers

for baryons. Even though the statistical average for the baryons is positive, larger

errors are expected and this is what is seen in Figure 6.5, 6.6, 6.7 and 6.8).

2. All figures show a dependence of the meson and fermion masses on β but a plateau

(almost an independence in β within two standard deviations) is seen in all plots.

Therefore, we are justified to use the value at β = 16 as the mass at infinite β.

3. The plateau is obtained at an earlier value of β for smaller values of quark masses

suggesting a larger split in the excited to ground state.

4. The plateau is obtained sooner at larger values of L suggesting that the ground state

and excited states are well separated for larger spatial extents.

6.3 Approach to the infinite spatial extent

Figures 6.9, 6.10 and 6.11 show that behavior of the lightest pion mass as a function of the

quark mass at b = 0.25, 0.375, 0.5 respectively. The values for the pion mass are taken from

the β = 16 data. All three plots show a clear dependence of the pion mass on the quark

mass since the error bars are small. In addition, the effect of finite spatial extent is small

since all three data sets essentially fall on top of each other in figures 6.9, 6.10 and 6.11.

We will use the L = 6 data in the next section to study the approach to the continuum

limit.

Figures 6.12, 6.13 and 6.14 show that behavior of the lightest baryon mass as a

function of the quark mass at b = 0.25, 0.375, 0.5 respectively. The values for the baryon

mass are taken from the β = 16 data. All three plots show large error bars as expected from

the discussion in the previous section. In spite of this, one can see a trend in the behavior

of the baryon mass as a function of the quark mass. The effect of finite spatial extent, of

any, is difficult to see due to the large error bars. We will use the L = 6 data in the next

section to study the approach to the continuum limit.
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Figure 6.1: A plot of mM (mq) as a function of β at L = 4 and b = 0.25 at six different
sample values of mq.
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Figure 6.2: A plot of mM (mq) as a function of β at L = 6 and b = 0.25 at six different
sample values of mq.
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Figure 6.3: A plot of mM (mq) as a function of β at L = 4 and b = 0.5 at six different
sample values of mq.
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Figure 6.4: A plot of mM (mq) as a function of β at L = 6 and b = 0.5 at six different
sample values of mq.
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Figure 6.5: A plot of mB(mq) as a function of β at L = 4 and b = 0.25 at six different
sample values of mq.
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Figure 6.6: A plot of mB(mq) as a function of β at L = 6 and b = 0.25 at six different
sample values of mq.
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Figure 6.7: A plot of mB(mq) as a function of β at L = 4 and b = 0.5 at six different sample
values of mq.
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Figure 6.8: A plot of mB(mq) as a function of β at L = 6 and b = 0.5 at six different sample
values of mq.
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Figure 6.9: A plot of mM (mq) as a function of mq at b = 0.25 for L = 4, 5, 6.
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Figure 6.10: A plot of mM (mq) as a function of mq at b = 0.375 for L = 4, 5, 6.
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Figure 6.11: A plot of mM (mq) as a function of mq at b = 0.5 for L = 4, 5, 6.
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Figure 6.12: A plot of mB(mq) as a function of mq at b = 0.25 for L = 4, 5, 6.
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Figure 6.13: A plot of mB(mq) as a function of mq at b = 0.375 for L = 4, 5, 6.
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Figure 6.14: A plot of mB(mq) as a function of mq at b = 0.5 for L = 4, 5, 6.
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6.4 Extraction of the continuum limit

The data shown in figure 6.15 for the pion mass as a function of the quark mass are the

same as the ones in figures 6.9, 6.10 and 6.11 restricted to L = 6. The data shown in

figure 6.16 for the baryon mass as a function of the quark mass are the same as the ones

in figures 6.12, 6.13 and 6.14 restricted to L = 6.

In order to extract the continuum limit, we consider the following ansatz:

mM (mq) = mM (0) + αMmq + βMm
2
q + γMm

3
q ;

mB(mq) = mB(0) + αBmq + βBm
2
q + γBm

3
q . (6.2)

A standard least square fit of the data was used to extract the coefficients listed in Table

6.1 and 6.2 for pion and baryon respectively. In addition, plots using the mean values of

the coefficients are shown in figures 6.15 and 6.16 with continuous lines and the colors of

the lines match the data.

The three values of mM (0) shown in Table 6.1 for the three different values of b are

consistent with each other within one standard deviation indicating that mM (0) = 1.75(7)

is a reliable value in the continuum. The three values of βM shown in Table 6.1 for the three

different values of b show a small downward trend as b is increased but the value in the

continuum is expected to be different from zero. Since we have data only at three different

values of b we do not perform a fit as a function of b to extract the continuum limit. There

is reasonably good evidence that αM is consistent with zero in the continuum limit since

the value shows a large drop in the region of b studied here. The same cannot be said of

γM with such confidence but it is also probably zero in the continuum limit. These plots

would suggest a dependence of mM (mq) that is explicitly an even function with a non-zero

mM (0) and the presence of a quadratic term.

In spite of the large error bars in the baryon data which results in large error bars on

the coefficients, the three values of mB(0) shown in 6.2 for the three different values of b are

consistent with each other within one standard deviation indicating that mB(0) = 4.4(5)
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is a reliable value in the continuum. The three values of βB shown in Table 6.2 for the

three different values of b show a small downward trend as b is increased but the value

in the continuum is expected to be different from zero. Since we have data only at three

different values of b we do not perform a fit as a function of b to extract the continuum

limit. Unlike the behavior of the meson mass, we cannot say with any confidence if αB and

γB are different from zero in the continuum. The coefficients themselves are small but we

cannot conclude that the baryon mass is an even function of the quark mass.

Table 6.1: The values of the coefficients obtained from the fit of the pion mass data to the
ansatz in equation (6.2)

b mM (0) αM βM γM
0.25 1.61(7) 0.178(5) 0.787(14) -0.1141(15)
0.375 1.65(6) 0.077(6) 0.759(13) -0.0924(19)
0.5 1.75(7) 0.032(3) 0.719(13) -0.084(8)

Table 6.2: The values of the coefficients obtained from the fit of the baryon mass data to
the ansatz in equation (6.2)

b mB(0) αB βB γB
0.25 4.2(5) 0.15(8) 0.83(13) -0.119(25)
0.375 4.4(8) -0.06(12) 0.80(15) -0.052(7)
0.5 4.4(5) 0.21(15) 0.72(15) -0.15(5)
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Figure 6.15: A plot of mM (mq) as a function of mq at L = 6 for b = 0.25, 0.375, 0.5.
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Figure 6.16: A plot of mB(mq) as a function of mq at L = 6 for b = 0.25, 0.375, 0.5.
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CHAPTER 7

Conclusion

Two dimensional QCD with and without fermions has proved to be a useful model to under-

stand the physically relevant four dimensional QCD with fermions. Analytical techniques

were used to extensively study observables in two dimensional Yang-Mills theory. Numer-

ical techniques using the lattice formalism were used to understand the physical spectrum

of two dimensional QCD with fermions.

The partition function of two dimensional Yang-Mills has a simple expression as an

infinite sum over different irreducible representation of the gauge group. Each term in the

sum has an associated free energy which is proportional to the area of the two dimen-

sional torus and the proportionality constant depends on the group theory details of the

representation. Expectation value of Wilson loops show confinement since the free energy

associated with the insertion of a Wilson loop is proportional to the area of the Wilson

loop which is assumed to be small compared to the area of the torus. A new result in this

thesis is the expectation value of the correlation of two Polyakov operators in two different

directions. Due to translational invariance of the theory, this observable only depends on

the group representation of the two Polyakov loops. The analytical results obtained for a

general gauge group were numerically analyzed for the special case of SU(2) in order to

obtain the energy of the lowest state associated with the insertion of two Polyakov loops

in two different directions. As expected, the trivial vacuum has the lowest energy in the

limit of infinite area of the torus. Such trivial vacuum with lowest energy is not the case

when the area of the torus is finite. A specific Polykov loop operator obtained by choosing

a certain linear combination of all representations has the lowest energy and this represents

the true vacuum of two dimensional Yang-Mills theory. We obtained the numerical value

for the vacuum energy as a function of the area of the two dimensional torus.

In order to study two dimensional QCD with fermion content, a certain form of the

Hamiltonian formalism of lattice gauge theory was devloped using the “axial” gauge on

the torus. The partition function is ontained as an infinite sum where each term in the
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sum has an associated quark number and baryon number. An expression for the meson

and baryons masses were obtained in terms of the quark excitations out of the vacuum.

The Hybrid Monte Carlo technique was used to generate important gauge field configu-

rations and all quark excitations were computed in each gauge field background. Using

this information, meson and baryon masses were computed on the lattice at a finite spatial

extent. Using results at several different lattice spacings, meson and baryons masses in

the continuum limit were extracted at a finite spatial extent. These were used to extract

the corresponding masses in infinite spatial extent. Both meson masses and baryon masses

increased with increasing quark mass. Both the lowest meson mass and the lowest baryon

mass remained non-zero for zero quark mass clearly establishing the presence of a mass gap

in two dimensional QCD.

In the chapter 5, two dimensional QCD with fermion extent was studied with the

aim of extracting meson and baryon masses with SU(3) gauge fields and two degenerate

flavors of quarks. For this purpose, it was convenient to use the canonical formalism. After

providing the details of the canonical formalism, a numerical algorithm for the computation

of the meson and baryon masses was presented. The numerical data so obtained was used

to extract the behavior of the meson and baryon masses as a function of quark masses

which was presented systematically in chapter 6. The dimensionless lowest meson mass at

zero quark mass was found to be 1.75(7) and the dimensionless lowest baryon mass at zero

quark mass was found to be 4.4(5). Since a meson is made up of two quarks, the effective

mass of a single quark in a meson with massless quarks is 0.87(4) and the effective mass

of a single quark in a baryon with massless quarks in 1.5(3). In other words the effective

quarks appear quite a bit heavier inside a baryon compared to a meson like in the physically

relevant four dimensional QCD. The investigation of meson and baryon masses for negative

quark masses showed that the sign of the quark mass is not physically relevant. Due to

numerical uncertainities, this result was more convicing for mesons then that for baryons.

In conclusion, two dimensional QCD was used to successfully study the vacuum struc-

ture and the physical spectrum which shed some insight into the physically relevant four

dimensional QCD.
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