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ABSTRACT OF THE THESIS

THE ROLE OF AMPLICON LENGTH HETEROGENEITY - POLYMERASE CHAIN

REACTION IN MICROBIAL COMMUNITY PROFILING AND PRESUMPTIVE

TESTING OF BIOAGENTS

by

Melissa S. Doud

Florida International University, 2006

Miami, Florida

Professor Kalai Mathee, Major Professor

Due to the threat of bioterrorist acts, there is a need to develop techniques that rapidly

detect possible bioagents. Amplicon length heterogeneity-polymerase chain reaction

(ALH-PCR) presumptively identifies eubacteria in samples by detecting differences

between the lengths of the hypervariable regions of the 16S rRNA gene. To study the

efficiency, reproducibility, and reliability of the technique, sputum from cystic fibrosis

(CF) patients has been chosen as the model system. There is an abundance of

microorganisms in the sputum of the CF lung. Using ALH-PCR, the complex microbial

diversity and vast community composition in the lungs of the CF patients were studied.

Twenty-four out of twenty-six CF samples were presumptively identified to contain

Pseudomonas aeurginosa, a known CF pathogen. Sputum profiles were also compared

over time and ALH was able to demonstrate that the CF lung flora is a dynamic

community and may be affected by antibiotics.
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INTRODUCTION

The discovery of DNA's structure in 1953 dramatically changed the scientific

approach in the study of life but more importantly it has played a critical role in

improving the United States (US) criminal justice system. DNA is now used not only as

evidence that can convict but also to exonerate an individual for an offense. All

organisms, human, animal, plant, viral, and even bacteria, contain DNA and thus have the

potential to become the missing piece of information that is needed to solve a crime.

DNA can also be manipulated to cause crime such as bioterrorism. Fortunately, with the

use of molecular techniques, information can be extracted from the DNA that will lead to

the apprehension of a criminal and the prevention of a bioterrorist act. The following

introduction will discuss the role of DNA in the criminal justice system, the history of the

bioterrorism, and the techniques that are used to study DNA.

I. Forensic science

Forensic science is a field that takes information and techniques from many

academic areas including computer science, biology, chemistry, photography,

accounting, and physics and applies it to the criminal justice system. Within this field are

many specialties such as forensic biology. This field analyzes blood, semen, hair and

other biological substances for characteristics that will establish the identity of the person

that left the sample at a crime scene (81). In the US during the 1930s, human red cell

antigens with enzyme and serum protein polymorphisms (ABO blood groups) could be
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identified in humans and used to tell a suspect a part from a victim (55). This method was

unable to distinguish individuals from one another due to the fact that there are only four

blood types and with the Rh factor, eight discriminatory groups. For example, 38 % of

people in the US have 0 positive blood (3). The development of DNA analysis

drastically changed the role of biology in the justice system. In the past 30 years,

forensic DNA analysis has made it possible to differentiate between and within human

beings, plants, animal and even microbes. DNA can be used to identify paternity and link

suspects to crimes; it can take as little as one hair follicle or a couple drops of blood to

make a DNA profile. The courts have accepted human, plant, animal, and virus DNA as

evidence and most recently microbial DNA has found a place in the criminal justice

system.

II. History of human DNA analysis

Human DNA is highly conserved between individuals. Only one tenth of a

percent of DNA varies from person to person. This amo ts to approximately 3,000

million bases that differ (22). Yet, these differences can be used to separate one person

from another and are the basis of DNA analysis (22). Alec Jeffreys of the University of

Leicester, England coined the term DNA fingerprinting in 1985 (9). Jeffreys found that

the human genome contains many minisatellite regions. These regions consist of

tandemly repeated nucleotide sequences, all of which have a common core sequence.

The length of each repeat varies in each individual (57). These variations can be detected

using restriction fragment length polymorphism (RFLP). This technique uses restriction
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endonuclease to digest DNA into specific fragments, which are then separated according

to size by gel electrophoresis. Jeffreys produced two probes referred to as Multi-Locus

Probes (MLP) to detect the fragments found in the minisatellite regions. The

radioactively-labeled probes hybridized with the minisatellite fragments and then using

Southern blot analysis, a series of bands similar to a barcode could be seen. The bands

between 4 and 20 kilobases were unique to each individual. The forensic science

community in the United Kingdom expected the MLP technique to be used in all of their

major laboratories, but scientists ran into three problems. The method required large

amounts of high molecular weight DNA to be extracted from crime scene samples, which

wasn't always possible. Secondly, the DNA fragments from the control and the unknown

need to be run on the same gel in order to accurately compare. Lastly, once the results

were obtained, there was no easy way to convert the data into a form, which could be

stored in a database (55). Even with these drawbacks, the MLP was already being used

for identification purposes.

Jeffreys first used this technique to establish relationship between a boy and a

mother (49). A little Ghanaian boy was trying to see his mother and sisters in the United

Kingdom. Jeffreys was asked to confirm the child's identity so that he could enter the

country. He used one restriction enzyme to cut the DNA. The products were then

hybridized with two probes. He compared the boy's bands or DNA fingerprint to the

print of his mother, brother, two sisters, and one unrelated individual. Bands that were

found on the siblings' profiles but not found on the mother's profile were also on the

boy's profile. Thus, the DNA profile indicated a parent-child relationship (49). In the

US, Jeffreys' DNA fingerprinting technique was first implemented in a murder/rape trial
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in Florida in the late 1980s (57). Randall Jones shot a man and woman; then dragged

their bodies into the woods. Jones took their truck and pulled his car out of the mud,

which was what had prompted him to commit the crime. Then, he went back into the

woods and raped the woman, leaving behind a sample of his semen. An analysis of

Jones' DNA and the semen at the crime scene was a match, which resulted in his

conviction (57).

Other probes have been used with RFLP to determine genetic differences between

people. These probes detect a specific variable number tandem repeat (VNTR) sequence.

VNTR loci can have many alleles and the alleles vary in the length of the repeat sequence

(89). During RFLP analysis, a restriction enzyme cuts the DNA at different bases

depending on the enzyme. Each fragment produced will be a different length depending

on the cut and the number of repeats (17). The VNTR probes produce simple banding

patterns and can be highly specific when multiple probes are used (57).

In the early 1990s, forensic scientists became interested in polymerase chain

reaction (PCR), which was developed by scientists at Cetus in 1985 (24). The technique

amplifies template material from minimal amounts of extracted DNA (65). This new

technology heralded the rapid development of STRs and SNPs that are currently used to

profile human DNA (55).

STRs, short tandem repeats, are microsatellites that consist of small repeating

units, usually 3-5 bases, with a maximum length of around 300 bases (55). The number

of repeats at one STR locus or allele can vary from person to person but are not unique to

one individual. When multiple STR loci are analyzed, a high degree of discrimination

among individuals can be determined due to the variety of alleles present in a population
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(10). In 2002, 13 STR core loci were chosen to add discriminatory power to DNA

analysis (12). All 13 are highly polymorphic and 11 of them are located on different

chromosomes (12). These loci are outside of the coding regions and thus have no

functional significance (12). Two other markers, Amelogenin, though not STRs are a part

of the kit. Amelogenin on the X and Y chromosomes are used to determine gender (15).

STRs are also small and thus extremely stable even in old and degraded samples. This

adds to their usefulness in forensic DNA analysis due to the fact biological evidence is

not always preserved before reaching the laboratory.

Single nucleotide polymorphisms or SNPs can also differentiate people but only

some of the SNP-based technology has been accepted by the criminal justice system.

SNPs are the most abundant class of human polymorphisms (87). They are useful in

forensic science due to their low mutation rates, abundance in the human genome, and

short amplicon lengths (87). Currently, SNPs are used to study the Y chromosome and

thus are indicators of ancestral lineage (47). As that SNPs are shorter than STRs, SNPs

can be identified to a higher degree than STRs in degraded samples (20, 87). Researchers

from the Forensic Science Service have developed a SNP kit similar to a STR multiplex

kit, which can be used to process degraded samples for genetic information. The kit has

been validated in the United Kingdom but this research has yet to be applied in the US

justice system (20).

In the US, SNPs have been used to develop DNAWitness 2.5 (21). This kit is

used to determine genetic heritage from a human DNA sample of unknown origin. The

sample is analyzed for numerous SNPs and then compared to a SNP database. The test

will determine the percentage of genetic makeup amongst four population groups, Sub-
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Saharan African, Native American, East Asian, and European (21). The ancestry of a

person will to some extent dictate what a person looks like. The kit was used to help

identify the Louisiana serial killer from 2003 (21). An eye witness told the police that the

rapist was Caucasian. The SNP kit analyzed DNA from the related crime scene and

discovered the owner of the DNA was 85 % Sub-Saharan African and 15 % Native

American. This lead the police to believe that the rapist was not Caucasian and they

altered their investigation. This information led to the arrest of Derrick Todd Lee. He

was convicted of first-degree murder and aggravated rape (21).

1I. Nonhuman DNA in forensic science

There are cases where human DNA evidence is absent, but crime scenes can be

rich in nonhuman DNA. The techniques used to analyze human DNA and other

molecular methods can be utilized to study plant, animal, and even bacterial DNA.

Nonhuman samples can be used as evidence in crimes against humans, such as murder or

kidnapping, and even bioterrorism.

Plant DNA analysis in forensic science. State v. Bogan in 1992 at Arizona was

the first case to use plant DNA as trace evidence (84). A woman was killed and her body

dumped in the Arizona desert. Near the body laid a beeper, which could be traced to Mr.

Bogan. He claimed that he picked up the victim in his truck and she stole his wallet and

beeper. The detectives needed to establish that the suspect had been to the crime scene

and plant DNA provided that missing link. Police officers found a damaged Palo Verde
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tree, Cercidium spp. at the crime scene and a seedpod in the back of Bogan's truck (84).

Molecular geneticist Tim Helentjaris of the University of Arizona, Tucson was asked to

use DNA profiling to match the seedpod to the damaged tree. At first, success was

doubted but Helentjaris found a high degree of genetic variation in the tree, which was

necessary to actually say that there is individuality in Palo Verde trees. Using randomly

amplified polymorphic DNA or RAPD analysis, Helentjaris matched the seedpod to the

tree at the crime scene. RAPD uses generic DNA primers that contain as few as ten bases

and bind to rmultiple sites in the genome. Each primer can produce a reproducible profile

of the PCR arplified fragments (105).

Sometimes, possession of certain plants is considered a crime. Cannabis sativa or

marijuana is illegal in most of the US. Prior to the mid-1970s, most of the marijuana was

grown in Mexico. Since the US and Mexico began eradication programs, a domestic

growing industry has sprung up and is currently thriving in the US. Most plants originate

from a few breeding stocks from the west coast. Thus, most marijuana plants are cloned.

DNA profiling could determine the extent of genetic variation in marijuana plants and

then the profile can link a cloned plant to its parent. Determining all of the parents and

creating a database will be the difficult part. Typing Cannabis sativa can be done using

RAPD, amplified fragment length polymorphism (AFLP), or STR. RAPD is inexpensive

and simple to perform but difficult to reproduce due to the difference in PCR primers

binding to target DNA sequences. Also, scientists can score faint bands on the agarose

gel differently. AFLP can distinguish between individuals using PCR amplification of

restriction fragments to which adaptor oligomer sequences have been attached. This

method seems to be the best for identification purposes. STR markers in Cannabis sativa
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have recently been discovered and more research needs to be performed to determine the

usefulness of this marker in the identification of the plant (16).

Animal DNA for forensic analysis. Animal DNA was not used in trials until

1997. In Beamish v. Her Majesty The Queen, a man was convicted of murder by the

evidence his cat left. On Prince Edward Island, a woman disappeared from her home.

Weeks later, a man's jacket with blood on it was discovered in the woods wrapped up in

a plastic bag. The blood matched the missing woman, whom was later found in a shallow

grave. White cat hair was found inside the lining of the coat. Using DNA analysis with

10 STRs, the family cat was matched to the cat hair found in the jacket. The victim's

common-law husband was arrested for the crime, as he owned the white cat (84).

Often the possession of an animal, alive or dead, is a crime. Wildlife forensic

science uses DNA analysis to link an animal to a poacher. One wildlife case involved a

poacher whom captured and the knifed a protected wild bore sow in a national park in

Italy (52). The carcass was hidden in the woods until nightfall. Unfortunately for the

poacher, the park staff found the carcass before he could return to pick it up. Detectives

managed to find a potential suspect and in his home they found a blood stained knife.

Scientists were able to say that the blood on the knife belonged to the same wild species

of boar that was killed, Using this blood evidence, the man was convicted of poaching

and cruelty to animals (52). Animal DNA is used in many of these wildlife forensic

cases that involve the poaching of endangered species or the selling of parts from these

animals (50, 98).



Insects in forensics. Insects have been used in forensic entomology to tell the

time since death of a human being (54). This has been accomplished by identifying the

insect species and the stage of growth it is found at. Larvae and puparium species

(Calliphora sp.) can be difficult to speciate in their immature stages and therefore

molecular methods have been used to determine identity. Mitochondrial DNA can

distinguish between species and sub-species due to its sequence variation caused by a

high mutation rate. Mitochondrial DNA is composed of two hypervarible regions (I and

II) and various genes. One gene of interest codes for two subunits of the enzyme

cytochome oxidase (97). The sequence of these subunits have been determined for

Calliphora sp., a forensically important insect found on corpses (54). Insect larvae can

be sequenced and then compared to this bank to determine if the larva belongs to this

species. With the correct identification of the insect, forensic entomologist can

accurately determine time since death.

Viral DNA. Since HIV and AIDS has become an epidemic, it is not surprising to

know that HIV has found its way into the criminal justice system. People have been

convicted of knowingly infected others with human immunodeficiency virus (HIV) from

transmission. IV can also been used as a weapon as described in the case of Dr.

Richard Schmidt and his nurse Janice Trahan (19, 61). They had been having an

extramarital affair but Nurse Trahan decided to end it when she realized Dr. Schmidt

would never leave his wife. They stayed friends and also continued to work together.

Dr. Schmidt was even kind enough to still administer vitamin B-12 shots to Nurse

Trahan. But one needle was contaminated with HIV from one of his patients. Nurse
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Trahan did contract HIV and tuberculosis. Researchers at Bayor College of Medicine in

Houston, Texas profiled the HIV strain in Trahan's blood and then matched it to a strain

that belonged to one of the doctor's other patients. Schmidt was convicted for spreading

HIV to his nurse and sentenced to 50 years of hard labor (19, 61).

Brian Stewart also injected HIV into someone he wanted out of his life (1). On

February 1992, Brian went to the hospital to visit his illegitimate 11-month-old son.

Brian appeared to be a loving, caring father but a few months later he separated from the

boy's mother and refused to accept paternity. During these months and through the next

four years, the child was constantly ill and finally on May 17, 1996 was diagnosed with

an advance stage of AIDS. Through process of elimination, health care workers

determined that the boy had not accidentally been affected with HIV and detectives

began to develop a case against Brian Stewart. Detectives and the prosecutors proved

that Stewart, a phlebotomist, used a contaminated needle on his son more than six years

ago when the child was first hospitalized. On December 5, 1998, Stewart was found

guilty of first degree assault and sentenced to life in prison (1).

IV. Microbial forensics

Human, animal, plant, and virus DNA has been used to convict the guilty.

Microorganisms also have a role in forensic science. Microbial forensics is an emerging

field that "can be defined as a scientific discipline dedicated to analyzing evidence from a

bioterrorism act, biocrime, or inadvertent microorganism/toxin release for attribution

pu oses"(8).
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Bioterrorism. Microbial forensics began to receive more attention from the

general public after the US anthrax letter attacks in 2001 (8). From October 2 "d to

November 16", 11 civilians were diagnosed with inhalation anthrax and another 11

contracted cutaneous anthrax, five of the inhalation cases were not curable. Of the 22

cases, 20 had either handled mail contaminated with anthrax spores or were exposed to

contaminated mail processing worksites (39). Anthrax is caused by the gram-positive

bacterium, Bacillus anthracis, that has two forms, the metabolically active bacterium

form and the hard to kill endospore (Figure 1) (66). This bacterium has been identified as

a biological warfare agent by the United Nations in 1969, World Health Organization in

1970, United Nations Office of Disarmament Affairs in 1992, Australia Group in 1992,

North Atlantic Treaty Organization in 1996, Center for Disease Control in 2000, and

again by the United Nations Office in 2001 (29). B. ant hraeis possesses many

characteristics that make it ideal to be used as a lethal weapon. It can be found in the

environment and is easy to cultivate in makeshift laboratories (29). The bacteria can also

cause illness in humans and animals (66). In humans, anthrax presents flu-like symptoms

such as fever, chills, weakness, nausea, etc. Cutaneous anthrax is the most common

while inhalation anthrax, which is rare, has a higher rate of mortality (66). Once

diagnosed, antibiotics such as penicillin and ciprofloxacin can treat the infection (66).

Human vaccines at this time have limited usefulness (66).

Today, the general public thinks of bioterrorism as a war that uses biological

materials that can be spread vastly by air, water, or weapons. And in the end, these

organisms or bioproducts will cause wide-spread chaos, destruction, and death. The

political or science definition of a biological warfare is "the military employment of
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Figure 1. Bacillus anthracis. (A) vegative cells or sporangia stained red and mature
spores stained green, (http://www.textbookofbacteriology.net/Bacillus.hml), (B)
cutaneous anthrax lesion 15 days after transmission (14).
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microbial or other biological agents or toxins to produce death, temporary incapacitation,

or permanent harm in humans or to kill or damage animals or plants for a military

objective" (29). With this definition, substances can be deemed as a biological agent.

The US Army has created a Critical Agent List that contains three categories of

possible biological weapons (Table 1) (14, 34). Category A agents are considered to be

substances that will most likely cause mass causalities if used as biological weapons.

This list includes bacteria that inflict diseases such as, anthrax, plague, and tularemia;

viruses that cause Lassa fever, smallpox, Ebola, and Marburg; and toxins like the neural

toxin that causes botulism. The second category has many disease causing bacteria that

can be spread through contaminated food or water. These organisms can cause typhoid

fever, brucellosis, staph enterotoxin food poisoning, Q fever, gas gangrene, and glanders.

Category C agents are all involved in emerging infectious diseases, such as hemorrhagic

fever and hanta virus. These agents make good biological weapons, because of their ease

of production and dispersion, and availability. Also, if used they retain a high morbidity

and mortality rate (14, 34).

Biological weapons may seem to be a strong arsenal to have but there is a negative side

to paticipating in these agents. The bacteria, fungi, viruses, or toxins could easily infect

the people trying to use them as a weapon. The bioagents also infect the environment

being conquered thus making it of no use to the new occupants. Regardless of these few

limitations, world leaders, government officials, terrorists, and even civilians have set out

to develop the art of biological warfare and exploit their capabilities of causing mass

destruction (34).
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Table 1. US Army's critical agent list (34).

Category A Category B Category C

Anthrax Typhoid fever Yellow fever

Plague Brucellosis Tuberculosis

Tularemia Q fever Hemorrhagic fever

Lassa fever Gas gangrene Hanta virus

Smallpox Glanders

Ebola virus

Marburg Virus

Botulism

Historical perspective. Since the US anthrax attacks, bioterrorism has become a

household name. Yet, the idea and use of biological warfare has been around for

centuries. Historians state one of the earliest uses of a biology agent in a dispute was

during the ninth to seventh centuries BC. The Assyrians poisoned the wells of their

enemies with ergot (34). This toxic fungus causes nausea, headaches, vomiting, seizing,

coma, and death. Since then, various rulers employed biological agents to poison or kill

their enemies. Sixth century BC, an Athenian poisoned wells with a deadly herb (34).
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Then, the Spanish tainted wine with the blood of leprosy patients in 1495. Another

example occurs two hundred years later, when Poles fired spheres containing rabid dog

saliva at their enemies (34).

World War II ushered a new era of warfare. Americans made the atom bomb and

the Japanese delved into the world of biological warfare (34). Lieutenant General Ishii

Shiro was a medical doctor and a commander of Unit 731 of the Imperial Japanese Army

(30, 34). He has been credited with creating a massive biological warfare laboratory

located in Japanese invaded Manchuria. Shiro began working with biological weapons

prior to World War II but it was during this time that he made great progress in

understanding how anthrax, plague, and glanders affected humans. The research of Unit

731 included developing a porcelain bomb containing anthrax spores, determining the

effect of rice contaminated with plague-infected fleas would have on a civilian

population, and exposing POWs and criminals to anthrax, plague, brucellosis, botulism,

gas gangrene, and cholera. During a Soviet military tribunal in December 1949, it was

determined that the biological weapons developed by Shiro and his men were used

"against the Soviet Union in 1939, against Chinese cities during 1940-1944, and against

Chinese troops in 1942" (34). In total, the Japanese biological warfare program killed at

least 8,000 people in biowarfare experiments and countless others from related

epidemics. Twelve Japanese defendants were found guilty of war crimes but Lieutenant

General Ishii was never indicted. His freedom was guaranteed by the American

government in exchange for the data resulting from the experiments (34).

The US was interested in biological weapons prior to the Soviet military tribunal.

Camp Detrick now Fort Detrick in Maryland was the first American biological weapons
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facility to open in 1943 (2, 34). After the Americans received the added information

from the Japanese, three other facilities opened up, Horn Island, Mississippi; Granite ,

Utah; and Vigo, Indiana (2, 34). The first experiments involved brucellosis and

Venezuelan equine encephalitis. In the 1950s, the US constructed a four and an eight

story windowless building to study the dispersal rate of anthrax spores using various

weapons. Throughout the era surrounding the Korean War, tularemia, Q fever, and

anthrax were produced, weaponized, and agent dispersion methods, rates, and patterns

were studied. Throughout the Vietnam War, the US continued to stockpile bioagents and

began to produce botulinum toxin, staph enterotoxin, smallpox, rice blast, rye stem rust,

and wheat stem rust. In the mid-1960s, civilians began to learn of the world's biological

warfare programs. Protesters picketed Fort Detrick and countries around the world began

to rethink the use of biological agents in warfare. The US and 102 other nations signed

the International Biological Weapons Convention in 1972 stating they would no longer

develop, possess, or stockpile agents in "quantities that have no justification for

prophylactic, protective or other peaceful purposes" (34). Currently the US y

Medical Research Institute of Infectious Diseases (USAMRIID) located at Fort Detrick,

is the only remaining biological weapons program in the US (34).

Throughout the second half of the twentieth century, the former Soviet Union,

Germany, Iraq, and Great Britain also developed their own biological warfare programs

(2, 18, 34). Currently, it is believed that there are other countries that possess or can

make these weapons. These countries include Libya, North and South Korea, Israel,

Syria, China, Egypt, Cuba, Vietnam, India, South Africa, Russia, and Iraq (18, 34).
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Despite that fact that many countries have the knowledge and the resources to employ

biological weapons against their enemies, few have used them (34).

Biopreparedness. With the threat of biowarfare, the US government has taken

action to prevent, diagnose, treat, and trace biological agents. The Center of Disease

Control (CDC) is the leading agency in "biopreparedness." The organization has

developed a plan, which has five components: preparedness and prevention, detection

and surveillance, laboratory response, communication, and training and research (13, 34).

Preparedness and prevention is rooted in quick identification of a bioagent. Plans are

being made to distribute antibiotics or vaccines and other medical equipment to the area

of need in highly time-efficient manner (13, 34). Detection and surveillance relies on

smaller government agencies such as local police and fire department to be able to

quickly detect the presence of an agent. The CDC will provide these agencies with funds

to be used in bioagent detection (13, 34).

In 1999, Congress gave $121 million to the CDC to improve their laboratory

capability and response system (34). With these funds, the Laboratory Response

Network (LRN) was developed (Figure 2). LRN is comprised of the Association of

Public Health Laboratories, FBI, CDC labs, USAMRIID, and clinical labs throughout the

states. The network works on a four-tiered concept beginning with the local hospitals

being the first ones to find suspicion samples. These samples are sent to county or state

labs for retesting. If the sample is confirmed to be related to a bioagent it is sent to the

third-tiered state lab for further testing. Eventually, the suspicious sample is sent to the

CDC lab or USAMRIID (13, 34, 74).
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The communication aspect of the CDC's plan is led by the Health Alert Network

(HAN). This system ensures that all aspects of the US government including the White

House, Federal Bureau of Investigation, Central Intelligence Agency, state and local

governments share information regarding possible biological warfare acts (13, 34).

The last part of the CDC's mission is to supply information to individuals

regarding the possible threats that may arise from the use of bioagents. The organization

also wants to make technologies available to outside groups that can be used in the

detection and treatment of dangerous biological agents. In regards to research, the CDC

itself is working on new applications to prevent and treat bioagents (18, 34).

The CDC is not the only organization that has acknowledged the need for the

development of a plan and the tools to prepare and fight against biological warfare. In

June 2002, the American Academy of Microbiology (AAM) held a colloquium to discuss

bioterrorism, specifically the role of microbial forensics (42). As stated earlier microbial

forensics is defined as "a scientific discipline dedicated to analyzing evidence from a

bioterrorism act, biocrime, or inadvertent microorganism/toxin release for attribution

purposes"(8). The Academy decided that it was necessary to find techniques that would

identify microorganisms that were used in bioattacks and then be able to trace their

origins. During the meeting, participants identified areas in which more research and

information was needed in order to ensure that the aims of microbial forensics would be

accomplished. Their recommendations included: educating the local law enforcement

agencies and medical first responders, developing new techniques that would identify

biocrime organisms, find ways in which the source of these organisms could be traced,
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Figure 2. Laboratory Response Network structure for agent testing and sample flow.
Local hospitals detect suspicious samples and send to sentinel labs for further testing.
Possible pathogens are further characterized using reference and national labs, such as the
CDC (13).
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and establishing a scientific working group that could assure the scientific information

obtained could be used in a court of law to prosecute the perpetrators or terrorists.

Within each recommendation, the committee discussed ways to reach the outlined goals.

The issue of identification will be discussed in detail (42).

The AAM discussed four recommendations as to the best plan of action to be used

in the identification of an organism used in a biocrime (42). First, a computerized

network throughout the nation should be developed that will track "disease and unusual

symptoms for humans, as well as animals, plants, food, and water" (42). This system

would identify unusual patterns of illness outbreaks, specifically flu-like symptoms in

humans. The pattern can predict future cases, help pinpoint the original exposure, and

lead investigators to the identity of the disease-causing organism. The next

recommendation involved the production of kits that could be used in the field to indicate

the presence of a bioagent. These kits need to be easy to use, reliable, sensitive to low

levels of exposure, and specific for the bioagent. It would be preferred if one field test

was able to identify multiple organisms. These kits then must be validated. To ensure

the quality of the biocrime agent test kits, the members of the meeting suggested that the

government provide funds to companies engaging in the field kit research. The third

recommendation gave suggestions as to how to design such kits. These included classical

phenotypic assays, sequencing, single nucleotide polymorphisms, and pathogenicity

arrays using 16S rRNA probes. It was noted that most techniques have disadvantages

that make positive, rapid identification difficult. Therefore, the AAM states that it would

be more accurate to use multiple techniques in the test kits. The colloquium further

suggests that genomic sequence and other molecular databases be implemented into
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research behind the bioagent identification kits. Another source to tap would be from the

fields of environmental microbiology and microbial ecology. These disciplines have

developed techniques to detect and identify microorganisms in natural communities.

Their approach may lead to be useful in biocrime detection. Overall, the AAM has

recognized the need for the development of assays that will quickly identify the presence

of a bioagent. These kits should be based on newly discovered technologies and

modified classical microorganism identification assays (42). Once protocols and kits are

established, quality assurance and quality control standards must be set to demonstrate

the reliability of the techniques. It is extremely important that results obtained from

novel techniques will stand up in a court of law and pass either the Frye Test or the

Daubert Standard, which are the rules of scientific admissibility (81). These well-

established protocols then can be used not to only identify the pathogen involved in the

attack but also the source of the microorganism (42).

The US government also plans to institute a national microbial forensics system

that will help in the fight against bioterrorism. The FBI has already formed the Scientific

Working Group on Microbial Genetics and Forensics (SWGMGF) (60). Similar working

groups have been used in other areas of forensics, such as Scientific Working Group on

DNA Analysis methods. The SWGMGF is focusing on quality assurance and guidelines

for laboratories, establishing criteria for development and validation of methods to

characterize microbes, and establishing design criteria for information databases (60). To

further show the role microbial forensics plays in bioterrorism, The National Institute of

Justice in November 2002 solicited scientists to develop new techniques to be used in the

field of forensic DNA, including the exploration of bacterial DNA (68). In the past,
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traditional culturing methods have been used to identify microbes. Only a small subset of

bacteria can actually be cultured in a laboratory, thus many organisms including novel

bacteria cannot be identified using these techniques (104). With the advent of molecular

biology techniques, bacteria no longer need to be isolated and communities of bacteria

can be studied (35).

V. Molecular techniques used to identify bacteria

Before the advent of polymerase chain reaction (65) eubacteria were identified

based on morphology, physiology, and other whole cell properties. These properties are

said to be too simple or volatile to correctly indicate phylogenetic relationships (72).

Currently, organism identification and its phylogeny can be better studied using

molecular markers and molecular techniques (72).

Molecular markers. Markers or molecular chronometers have DNA sequences

that change randomly in time but overall have a constant rate of evolution. This clocklike

behavior can be seen in genes that have a high degree of functionally constancy (102).

Molecular chronometers should also have a large phylogenetic range and therefore be

present in most to all organisms (72). Lastly, the molecular marker needs to have a large

size with regions that are evolutionarily independent (102). One family of genes fills all

of these requirements to become the "ultimate molecular chronometers", the rRNA genes

(72). Ribosomal ribonucleotide acids (rRNAs) have a constant function, are found in all

organisms, and the sequences change at different positions and at different rates (72).
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bosomal RNA. Ribosomal RNA (rRNA) represents 80%-90% of the total

mass of cellular RNA in both eukaryotes and prokaryotes. Ribosomal RNA is directly

associated with ribosomes (ribonucleoproteins) that play a role in protein synthesis (48,

70, 71). The basic form of the ribosome is conserved throughout organisms although

changes in overall proportions and size of RNA and protein can be seen. All ribosomes

in a cell are identical and in prokaryotes they consist of a small (30S) subunit that is

composed of 16S rRNA and 21 proteins and the large (50S) subunit (Figure 3). The

larger unit contains 23S rRNA, 5S rRNA, and 31 proteins (48, 70, 71).

165 rRNA. The 16S ribosomal subunit is most commonly used in studies of

phylogeny (44). This gene is composed of alternating evolutionary conserved and

variable regions (Figure 4) (95). The presence of conserved regions can be attributed to

the fact that ribosomes have a function and sequence mutations in the conserved regions

PCR. Polymerase chain reaction (PCR) is a technique used to detect specific sequences

of DNA from organisms by molecular amplification (65). The technique amplifies

template material from minimal amounts of extracted DNA by annealing and extending

two oligonucleotide primers that flank the target region in duplex DNA (Figure 5). First,

the DNA is denatured and then each primer hybridizes to one of the two separated

strands. The annealed primers are then extended on the template strand with a DNA

polymerase.

These three steps, which occur at unique temperatures, are repeated in a cycle and

DNA is amplified (24, 65). There have been multiple techniques that implement PCR

technology to study microbial communities including the three discussed below.
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Figure 4. 16S rRNA secondary structure map. Purple indicates absolutely conserved
regions, blue represents regions with a high amount of conservation. Red shows areas
that are most variable (95).
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DGGE. Denaturing Gradient Gel Electrophoresis (DGGE) separates PCR

amplified 16S rRNA fragments so that DNA fragments of the same length can be

distinguished from one another based upon their different base-pair sequences (67). The

PCR product is loaded onto a polyacrylamide gel that is composed of a gradient of

denaturants. The helical DNA fragments of the same length migrate through the gel at

the same rate. As the gradient of denaturants increase, some of the DNA fragments will

begin to melt due to their sequence. The migration of this particular fragment ceases

while other fragments continue to move till they reach a melting point. Thus, the gel has

separated the same sized 16S rRNA fragments by their sequence content. The separation

pattern of the bands produced from the PCR product will be characteristic of a particular

microbial community (67). This pattern or microbial fingerprint can be transferred to

hybridization membranes for specie specific probing or the DNA bands can be excised

and sequenced. Through the addition of these techniques, DGGE can elucidate to the

presence and relative abundance of microbes in a community (28, 67, 94). This method

is only semi-quantitative and does not identify all eubacteria. The bands produced can

even represent more than one bacterium (83). Also, the output from the gels is also hard

to reproduce from one experiment to another and in between laboratories (28).

T-RFLP. Terminal Restriction Fragment Length Polymorphism (T-RFLP)

analysis is the most widely used method in identifying phlyogenetic specificity in

bacterial communities (32). This technique relies on the inherent variation of the

sequence of a molecular marker, such as 16S rRNA (23). T-RFLP analysis of 16S rRNA

genes includes PCR amplification of those genes with terminal labeling, digestions of the
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PCR product with restriction enzymes, and detection of terminal restriction fragment by

an automated DNA sequencer or capillary electrophoresis (32). The resulting output

consists of a microbial profile where each detected is a specific fragment length produced

from the cut PCR product. Each represents one or more bacteria that have a similar

sequence and fragment length of the amplified region of the 16S rRNA gene. T-RFLP

profiles can be used for differentiation of communities, identifying specific organisms in

populations, and for comparison of the relative phylotype richness and structure of

communities (23). This method has been successful in differentiation of bacterial

communities that are in marine samples, digestive tracts of fish, activated sludge samples,

soil samples, and sputum samples of cystic fibrosis patients (23, 32, 63, 79). This method

is fast and data can be easily replicated for statistical analysis. The major downfall of T-

RFLP is that many bacteria produce similar fragment sizes and thus not all profiles are

species specific. Some fragments might even represent more than one genus (23). There

are also inherent problems using restriction enzymes, such as incomplete digestion,

which can produce DNA fragments that do not correlate to the correct bacterium (63).

ALH, Amplicon Length Heterogeneity (ALH) method is able to profile a diverse

microbial community (5, 63, 78, 79, 90, 91). ALH-PCR relies on specific regions of

DNA that show variation in sequence length (63). For example, the 165 rRNA gene has

conserved and hypervariable regions (Figure 4) (95). These hypervariable regions vary

in length and sequence. Through the use of ALH-PCR, the lengths of these regions are,

analyzed to distinguish between groups of organisms (63). In this technique, forward and

reverse primers bind to the conserved regions of the 165 rRNA marker (Figure 6) and
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1 27F 5'..."AGAGIT'IGAKmTGG CICAG..3'

VI

V 19mR 5'.. . AcG GGT GAG TAA IGY MI .. 3'

~V2

355F/R 5'.. mGCT GCC'CC CGT AGGAGI..3'

V3
500

5/ 5'...19CAGC C W;CXGCGG TAAT .. 3'

V4

- O2F/R 5'... 4GGATTA GAT ACCCGGTA Gm.. 3'

V5

- 92F/ 5'...mAAACIYAAAKGAATFGACGG..3'

1000 V6

1114F/R 5'...099GCAACGAGCGCAACC 1 4.. 3'

V7

-:w/R 5'.. .7"O GwGGGGTGTACAAGC oo .. 3'

1500 1492R 5'.. 1471TACGGY TAC CIT GIT ACGACT 1492 .. 3'

Figure 6. Linear view of 16S rRNA gene. Primer sequences are displayed at each
conserved region.
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then amplify the varying lengths seen in the hypervariable regions. Different

communities have unique proportions of these amplicons. The relationship proportions

can be measured by the fluorescence emission of a labeled primer used during PCR (90).

ALH-PCR also has the same weakness as T-RFLP, that is, fragment sizes can represent

more than one species of microbe. However unlike T-RFLP, ALH-PCR is highly

reproducible and produces a greater resolution of the whole bacterial community (93).

ALH also works well in communities that are low in diversity. ALH is technically less

complex, less expensive, and analysis can be performed in a shorter time period than

other techniques (63, 93).

The three techniques described above are just a few of the methods that can be

used to study microbes and their community. All of these methods have their own merits

or demerits but ALH seems the most suited to be developed into a presumptive test used

for identification of a bioagent.

ALH as a presumptive test for the possible identification of a bioagent. The

ALH technique does not positively identify the presence of a bacterium in a sample. Yet,

it can affinmatively determine if a bacterium is absent. For example in using the

hypervariable regions one and two (Figure 6), the amplicon 356 can represent anthrax

and also the harmless Desulfocella halophila. If the amplicon is absent in a sample, then

anthrax can be ruled out. If the amplicon is present, then there is a possibility the

samples contain that dangerous bacterium. To ensure that anthrax is present and not

some harmless bacterium, another test such as sequencing would be performed.

Therefore, ALH could be used as a presumptive test for a bioagent. If an amplicon that
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represents a harmful bacterium is found, then a further confirmatory test, like sequencing

would be performed.

Due to the dangers in using bioagents such as B. anthracis, Yersinius pestitus, and

Vibro cholerae, a model system was chosen to prove that amplicon length heterogeneity

could be used as a bioagent presumptive test.

VI. Cystic Fibrosis as the model system

ALH-PCR can profile bacterial communities found in soil and other

environmental samples but it too can be used with biological samples, such as sputum

from cystic fibrosis (CF) patients (62, 79). CF is an autorecessive disease, which is seen

in one and 2500 Caucasian live births in the US (73). CF is due to a mutation in the gene

located at chromosome 7q31, which encodes for the protein called cystic fibrosis

transmembrane conductance regulator (CFTR) (46, 77, 96). A defect in the CFTR

protein leads to a malfunctioning cyclic-AMP-activated chloride channel in secretory

epithelia (46). This defect in the lung leads to the inability to secrete chloride and to the

excess re-absorption of sodium (46). Thus, there is a decreased fluid secretion and the

mucus becomes immobilized and adheres to the epithelial cells. Overproduction of

mucus in the airway results in congestion of the respiratory tract and increases

susceptibility to bronchopulmonary infection. The CF patients often suffer from infection

with Pseudomonas aeruginosa, Burkholderia cepacia, Haemophilus influenza, and

Staphylococcus aureus (26, 41). A person's susceptibility to a certain pathogen can vary

but it does tend to be age related. S. aureus is the predominant pathogen in children,
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followed by H influenzae in early childhood, and P. aeruginosa during adolescence (4).

Eighty percent of adults are chronically infected with P. aeruginosa (4). These chronic

infections cause inflammation and eventually lung damage; therefore, lung disease is the

major cause of morbidity and mortality among these patients (36).

Bacterial infections are identified using traditional culturing techniques which

may fail to accurately identify the bacteria present in the lung. Misidentification has been

shown to be a problem when studying CF infections (88, 101). This can impair the

successfulness of a patient's treatment (43, 51, 56, 86). Studies have shown that patients

have been diagnosed with B. cepacia using culturing techniques but with more stringent

molecular techniques, the infection was shown to be B. gladioli or S. maltophilia (58,

59). P. aeruginosa, which is found in the CF lung, can be difficult to identify. CF-

derived isolates of this bacterium may have phenotypic diversity due to loss of pigment

production, mucoidy, and the presence of a rough lipopolysaccharide, hence hampering

identification (88). Occasionally, P. aeruginosa is identified as another bacterium. One

studied showed that 770 CF isolates were initially identified as B. cepacia. Rescreening

these samples with polyphasic analysis that included selective media and biochemical

tests, demonstrated that 88 samples were misidentified of which 11 of them were P.

aeruginosa (86). Misidentification problems can be reduced or completely eliminated

by using genotype-based molecular identification methods (88).

It has also been estimated that less than 1 % of eubacteria in the environment can

be cultured (80, 99, 100). Thus, these identification methods would fail to detect all

pathogens that may be causing the lung infection. Fortunately, with the advent of

molecular microbiology techniques, culturing for identification purposes can be
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circumvented. ALH is the chosen molecular method to study eubacterial infections of

the CF lung.

VI. Hypothesis and aims

ALH-PCR is a highly versatile technique that has been used in ecology based

fields to detect the presence of bacteria in soil, sputum, and water (62, 63, 90, 93). This

technique has proven to be robust, inexpensive, and a valuable tool in molecular

identification (63, 93). ALH-PCR could potentially be used as a presumptive test in the

fight against bioterrorism by determining the absence of an amplicon length that may

represent a human pathogen. It also can be used to study the bacterial community in the

CF lung with little to no modification as shown previously (62). This project proposes to

validate past CF studies and increase the information attained from ALH by studying

more hypervariable regions of the 16S rRNA genes. Also, the ALH-PCR technique will

be implemented to study the bacterial dynamics of the CF lung. Specifically, I will

perform four aims:

Aim I: Analyze the metagenomic DNA from the CF sputa samples using Vl + V2 region

of the 16S rRNA gene to validate a previous study.

Aim II: Design a multiplex consisting of the V1 and V3 regions of the 16S rRNA gene.

Aim III: Analyze CF sputa samples using the newly designed multiplex.

Aim IV: Determine if ALH can identify differences in patient sputum profile over time.
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MATERIALS AND METHODS

Sample collection. Seven sputum samples were collected from CF patients

(identity withheld) attending the Joe Dimaggio Children's Hospital (Hollywood, FL).

Samples are referred to by JD followed by a nunber. Nineteen sputum samples obtained

from CF patients attending the University of Miami, School of Medicine (Miami, FL)

under FlU IRB approval # 033004-02. Samples are referred to by UM followed by a

letter. All 26 expectorated sputum samples were frozen at -20 'C prior to DNA

extraction.

Strains, plasmids and primers. The strains and primers used in this study are

listed in Table 2. All bacteria were cultured in Luria-Bertani (LB) broth or on LB agar at

37 OC.

Genomic DNA extraction. Escherichia coli DH5a and Pseudomnonas

aeruginosa PA 1 (Table 2) were streaked out and grown at 37 C on a LB agar plate.

An isolated colony was inoculated into LB broth. The culture was allowed to grow

overnight at 37 'C. Genomic DNA was extracted using DNAzol (Molecular Research

Center, Cincinnati, Ohio) as per manufacturer's protocol. One milliliter of the growth

culture was placed in each eppendorf tube. The bacteria cells were pelleted by

centrifugation at 10,000 g for 5 minutes. The supernatant was discarded and the

remaining pellet was resuspended in 1 ml of DNAzol. Tubes were inverted five times in

a 3 minute time period. Five hundred l of 100 % ethanol was added to each tube.
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Table 2. Bacterial strains and primers used in this study.

Strain/Primer erence
Escherichia

coli

DH5a F <80dlacZAM15 A(lacZYA-argF) U169 New England

deoR recA] endA] hsdR17(rk, mk) phoA Biolabs

supE44 A- thi-] gyrA96 relA]

Pseudomonas Prototype (33)

aeruginosa

PAOi

Primers*

355R 5'-GCTGCCTCCCGTAGGAGT-3'

P2 5'-TTCCCCACGCGTTACTCACC-3'

338F 5'-ACTCCTACGGGAGGCAGCAG-3'

518R 5'-ATTACCGCGGCTGCTGG-3'

27F 5'-AGAGTTTGATCMTGG-3'

P1 5 -TTCCCCACGCGTTACTCACC- 3'

*M is a choice between A or C base.
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Tubes were vortexed to homogenize mixture completely. The precipitated DNA was

then centrifuged at 5,000 X g for 3 minutes. The supernatant was discarded and the DNA

pellet was washed twice by the addition of 500 pl of 75 % ethanol. The pellet was dried

and then eluted with 30 pd of diethylpyrocarbonate (DEPC) water. The genomic DNA

was stored at 4 C till further use.

Sputa DNA extraction. Metagenomic DNA was extracted from the samples

using the method of Reischl et al (76). Each individual sputum sample was split into

three equal aliquots and placed in an eppendorf tube. The triplicate extraction was used

to determine reproducibility of extraction technique and to increase the sample size for

statistical purposes. The mass of the sputum was calculated by subtracting the weight of

the tube from the weight of the tube containing the sputum. Equal volumes of 2 % NaOH

(Sigma-Aldrich, St. Louis, MO) and 1 % N-acteyl-L-cysteine (Sigma-Aldrich, St. Louis,

MO) were added to each tube. The tubes were then vortexed. The sputa were pelleted by

centrifugation at 10,000 X g for 10 minutes. The supernatant was discarded and the

resulting pellet was suspended in 100 pl of extraction buffer (1 % Triton X-100, 0.5 %

Tween-20, 10 mM Tris-HCl, 1 mM EDTA). The samples were placed in liquid nitrogen

for 3 minutes followed by boiling water for 1 minute. This was repeated four more times

to ensure complete lysis of the bacteria. The cell debris was pelleted by a second

centrifugation at 10,000 X g for 5 minutes. The supernatant containing the metagenomic

DNA was then transferred to a new tube and cleaned using the GeneClean Spin Kit

(Qbiogene, Irvine, CA) as per manufacture's protocol. Four hundred microliters of
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GeneClean Spin Glassmilk (propriety silica matrix and chaotropic binding salt with a Tris

Boric EDTA Modifier) was added to each GeneClean Spin Filter. An amount of 100 to

300 l of extracted metagenomic DNA was added to each filter. The tubes were inverted

every minute for 5 minutes to ensure that the DNA solution binds to the Glassmilk. The

tubes were centrifuged at 15,500 X g for 5 minutes. The filtrate was removed from the

catch tubes. Then, 500 pl of GeneClean Spin New Wash (NaCl, Tris, and EDTA) was

added to the filters. The tubes are centrifuged twice at 15,500 X g for 30 seconds. The

catch tubes were emptied and then spun dry for 2 minutes at 15,500 X g. The spin filters

were transferred to new microcentrifuge tubes. Fifty microliters of GeneClean Spin

Elution Solution (RNase, DNase, pyrogen-free water) was added to the filters. The tubes

were centrifuged at 15,500 X g for 30 seconds and then another 30 l of elution solution

was added. The DNA again was eluted for 30 seconds at 15,500 X g. The eluted DNA

was refrigerated at 4 C till further use.

Agarose gel electrophoresis. A one percent (weight/volume) agarose

electrophoresis gel (BioWhittaker Molecular Applications, Rockland, ME) was run to

determine the successfulness of the genomic DNA extractions. A 1.5 % (weight/volume)

agarose electrophoresis gel was used to determine the successfulness of a PCR reaction.

Electrophoresis was carried out in 1 X Tris-Borate-EDTA (TBE) buffer (0.89 M Tris-

Borate, 0.02 M EDTA, pH 8.0). A 1-kb and 100 base pair (bp) molecular ladders were

loaded for size reference for the genomic DNA and the PCR product gels, respectively

(New England Biolabs, Beverly, MA). Gels were stained with ethidium bromide and

viewed with ultraviolet light.
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DNA quantification and dilution. Extracted DNA was quantified using a

Versafluor Fluorometer (BioRad, Hercules, CA) with the 360 nm excitation and 460 nm

emission filters. Hoechst dye at a 1 mg/ml concentration was used to determine DNA

concentrations expected to range between 10 to 500 ng/mL. The Hoeschst dye was

prepared by adding 100 p1 of 10 mg/ml Hoeschst dye (Bio Rad, Hercules, CA) to 900 pii

of sterile water. This dye was stored in the dark at 4 C. A 10 mg/ml of DNA standard

was also prepared by mixing 10 1 of 1 mg/mil calf thymus DNA with 100 l of 10 X

TEN Assay Buffer (100 mM Tris, 2 M NaCl, 10 mM EDTA, pH 7.4) (Bio Rad, Hercules,

CA) and 890 pl of sterile water. This reagent was stored at 4 C. The assay solution was

prepared by mixing 2.5 l of 1 mg/ml Hoeschst dye with 2.5 ml of 10 X TEN assay

buffer and 22.5 ml sterile water in a 50 ml conical tube. A standard curve was made to

ensure accuracies of quantifications (Table 3). To quantify the unknown samples, 2 ml of

the unknown sample was added to 2 ml of the 0.10 mg/ml Hoeschst assay solution. The

relative fluorescent units were recorded. The DNA samples were then diluted to a final

concentration of 10 ng using DEPC water.

Samples containing less than 1 nanogram of DNA were quantified using the

Quant-iTT PicoGreen dsDNA Assay Kit (Invitrogen, Carlsban California). DNA was

quantified as per manufacture's protocol. The Quant-iTT PicoGreen* reagent was

diluted 200 fold with 1X Tris EDTA buffer (TE). For the high-range standard curve, a 2

pg/ml stock solution of calf thymus DNA is prepared in Tris EDTA buffer. The highest

amount quantified was 1 g/ml, which was measured from a cuvette containing 1,000 pl

of the diluted Quant-iTT PicoGreen® reagent. The second point on the standard curve

was 100 ng/ml prepared from 100 l of picogreen and 900 pl of TE. The third point was
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Table 3. DNA quantification using Hoescht's dye for standard curve

Total DNA DNA Stock DNA Volume 0.1 pg/ml Hoeschst

(ng) Solution (pg/ml) (2 gl) Dye Solution (ml)

Blank --- --- 2

20 10 2 2

50 10 5 2

100 10 10 2

130 -
120
110
100

90 -

z 80
0 70 -y = 1.2031x + 3.11890 60 -

50 R2 = 0.9972
40-
30
20
10 -

0 --- - -

0 10 20 30 40 50 60 70 80 90 100 110

Relative Fluorscent Unit

Figure 7. DNA quantification standard curve. Hoescht's dye
was used to determine the relative fluorescent units produced
by a standard amount of DNA.
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at the concentration of 10 ng/ml prepared from 10 p1 of picogreen and 990 pl of TE. To

measure the unknown samples, 999 pl of water was added to 1000 pl of picogreen. The

unknown DNA at the amount of 1 l was added to each solution and the relative

fluorescence was measured. The concentration of the unknown DNA was interpreted

from the standard curve.

PCR amplification of 16S rRNA genes for metagenome profiling. The

metagenomic DNA derived from the extracted sputum samples were amplified using

eubacterial primers for the 16S rRNA gene. The hypervariable region 1 (V1) plus the

hypervariable region 2 (V2) of the 16S rRNA gene were amplified using 27F-6FAM

forward primer and the 355R reverse primer (Table 2). The first (V1) and third variable

regions (V3) were multiplexed using fluorescent primers P1F-6FAM and 338F-6FAM

and reverse primers P2R and 518R (Table 2). All forward primers are fluorescently

labeled with 6-FAMTM (Integrated DNA Technologies, Shokie, IL). Final concentrations

of the V1+V2 PCR reaction mixture was: 1 X PCR buffer, 2.5 mM MgCl 2, 0.25 mM

dNTPs, 0.5 M forward and reverse primers, 0.1 % BSA, 0.025 U of AmpliTaq Gold LD

DNA polymerseTM (Applied Biosystems, Foster City, CA), and DEPC water to make up

the final volume of 20 pl. One microliter of 10 ng DNA template was added per reaction.

The final concentration of the multiplex reaction was: 1 X PCR buffer, 2.5 mM MgC 2,

0.25 mM dNTPs, 1 M forward and reverse primers, 0.1 % BSA, 0.025 U of AmpliTaq

Gold LD DNA polymerseM (Applied Biosystems, Foster City, CA), and DEPC water to

make up the final volume of 20 p1. One microliter of 10 ng DNA template was added per

reaction.
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The following parameters set on a MJ Research Peltier Thermal Cycler 200

(Waltham, MA) were used to amplify the selected fragments: initial denaturation at 95

"C for 11 minutes, 25 cycles of denaturation at 95 'C, annealing at 55 C and extension at

72 *C, each for 1 minute and a final elongation at 72 C for 10 minutes. A negative

control containing water was amplified for every PCR master mix to check for

contamination. As described earlier, an agarose gel was run to confirm the success of

amplification. A positive control was performed using either PAO1 or E coli DNA.

ALH analysis. ALH analysis was performed by the Forensic DNA Profiling

Facility (Florida International University, Miami, FL). The fragments of the PCR

products were detected using the ABI Prism 310 Genetic Analyzer (Applied Biosystems,

Foster City, CA). A formamide-size standard mix was prepared using a 96:1 ratio of Hi-

DiTM (highly deionized) formamide and GeneScanTM 500 ROXTM internal standard

(Applied Biosystems, Foster City, CA). Each PCR product was denatured by adding

0.50 tl to 9.5 pl of the formamide-size standard mix for 2 minutes at 95 C and snap

cooling for 5 minutes on ice. Each sample was run for 28 minutes on the ABI Prism 310.

Fragments were separated by capillary electrophoresis using polymer POP-4, matrix DS-

30_6FAMHEX _NED_ROX and filter D (Applied Biosystems, Foster City, CA).

The output was collected and analyzed using GeneMapper@ Software Version 3.7

(Applied Biosystems, Foster City, CA) and Microsoft Excel (Microsoft, Redmond, WA).

The ABI Prism Genotyper software analysis parameters were set to the local Southern

Size calling, no correction, and the minimum noise threshold was set at 70 fluorescent

units (63). For VI + V2, amplicons were called if between 300 and 400 base pairs.
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Amplicons for Vi region were between 60 and 120 bases where as the V3 region

contained s between 159 and 290 bp.

Three replicate profiles from separate PCR reactions for each triplicate extraction

of each sample were compared to evaluate the reproducibility of the fragments produced

by PCR and the reproducibility of the extractions. Hence, nine profiles were produced

for each sample. Fragments were further analyzed if a) the fragment was present in two

out of three of the ALH profiles from each aliquot and b) the relative height ratio was

equal or greater than 1 % (63). Relative height ratios for the ALH fingerprint technique

were calculated by dividing each individual height by the total height of each

electropherogram (63).

Statistical analysis. Data was analyzed using MS Excel (Microsoft, Redmond,

WA), and the PRIMER 5 statistical software (PRIMER E Ltd., Plymouth Marine

Laboratory, United Kingdom).

Descriptive statistics were performed on the three PCR replicates produced from

the three aliquots of every sample and the mean relative ratios from each aliquot were

used in the following analyses. The three averaged aliquots were then summed together

to produce an overall profile per sample. Macros were developed for MS Excel to

expedite these calculations (Robert Sautter, Florida International University, Miami, FL).

Analysis of similarity between patients' samples at one location, groups of samples

between two locations, and patient profiles over time were based on Bray - Curtis

similarity index. This index calculates relationships between samples using the following

fo ula:
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BCk= 100 1-YiYik
i=1 ( y + yik)

Where BCjk is the similarity between the jth and kth sites and yij represents the abundance

for the ith species in the jth site (75). In addition, multi-dimensional (MDS) cluster

analysis was used to compare sample data (6, 31). Shannon-Weaver description statistics

were used to determine diversity.

Presumptive identity analysis. Using the size standard, sizes in base pairs were

determined. The base pair lengths were then searched against a database of bacterial

genera 16S rRNA hypervariable region amplicon lengths (Amplicon Length

Heterogeneity Analysis System [ALHAS], George Mason University). One amplicon

length may represent more than one bacterium and thus only a presumptive identity of

that amplicon can be achieved. Virtual analysis was performed for bacteria of interest

that were not found in ALHAS as described in Miller et al. Bacterial sequences from

NCBI were used to identify expected amplicon lengths for each variable region being

studied.
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RESULTS

Picogreen is more effective for quantification of small amounts of

metagenomic DNA. Extracted DNA was at first quantified using a Versafluor

Fluorometer with Hoechst dye (BioRad, Hercules, CA). Hoescht dye with a DNA stock

solution of 10 pg/ml measures DNA from 100 ng to as little as 1 ng. Many of the

quantified samples contained DNA at amounts near or below the lower threshold of

Hoechst dye thus resulting in negative RFU values. These samples were then quantified

using Picogreen. The resulting RFU values were above 9999 RFU and thus could not be

read by the instrument. Hence, the amount of DNA in the samples was at the higher

threshold end of picogreen and at the lower threshold of Hoechst dye. Aliquots of these

samples were diluted by a factor of ten and quantified with picogreen (Table 4).

Table 4. Comparison of DNA quantification methods. Samples giving a negative RFU
using Hoechst's dye were diluted by a factor of ten and quantified using picogreen.

Sample Hoescht's Dye RFU Dilute Picogreen RFU

UMC2 -2 580

UMP1 -9 502

UMS1 -14 437

UMT2 -14 432

JD2b -22 259
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Reproducibility. DNA was extracted from 26 CF sputa samples using the

method of Reischl et al (76). Each sample was extracted in triplicate to determine the

reproducibility of the extraction technique. The extracted samples were amplified using

V1 + V2 (27F and 355R) (Table 2) and Vi _V3 multiplex primers (P1 and P2, 338F and

518R, respectively) (Table 2). The electropherogram output from three replicates

amplified during the same PCR reaction were analyzed using Bray-Curtis similarity

index and non-metric multidimensional scaling analysis. Figure eight illustrates the

results obtained using samples from patient UMA, UMB, JD 1, and JD2. The amplicons

obtained from the V1 + V2 PCR reaction varied from extraction to extraction and no

clustering was observed (Figure 8, Panel A). The lack of clustering indicates that the

extractions based on presence of amplicons and amplitude was more dissimilar than

similar. This trend was similarly seen in the V1_V3 region (Figure 8, Panel B).

In addition, PCR reproducibility was tested. Each aliquot was amplified three

times for Vi + V2 region and V _V3 multiplex and analyzed via the ABI 310 Genetic

Analyzer (Applied Biosystems, Foster City, CA). The resulting ALH profiles from JD1

and UMO were overlaid and compared (Figure 9). Blue, black, and green represent each

of the three PCR reactions. The three colors overlap at each amplicon length, which is

plotted on the X-axis. The amplicon heights varied per reaction. The PCR

reproducibility was seen in all other sample aliquots analyzed in this study (data not

shown).

PCR amplification of 16S rRNA genes for metagenome profiling. All CF

sputum samples were analyzed for eubacteria using the 16S rRNA gene (Figure 6). The
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Vi + V2 region of the ribosomal gene were successfully amplified and the PCR products

were detected on a 1.5 % agarose gel stained with ethidium bromide (data not shown).

Based on the database analysis, VI + V2 of the 165 rRNA gene are known to vary

between approximately 300-400 base pairs (bp). The samples produced a wide band

around 350 bp (data not shown). Due to the low resolution of agarose gels, multiple PCR

products cannot be distinguished from one another and therefore appear as a wide band.

A negative control was used in each PCR reaction to detect for bacterial contamination.

The absence of a band in the agarose gel indicates PCR did not work due to the lack of a

DNA template and therefore there was no bacterial contamination.

Metagenomic DNA was also amplified using a multiplex PCR reaction. V1, V3

multiplex produces amplicons between 60 and 120 bases and between 150 and 290,

respectively. The success of amplification was also determined using 1.5 % ethidium

bromide stained agarose gel. Two bands, one for each PCR product, can be seen for each

sample around 100 base pairs (data not shown). A negative control demonstrated the

lack of bacterial contamination in the multiplex reactions.

ALH analysis. plicons were then detected using the ABI Prism 310 Genetic

Analyzer (Applied Biosystems, Foster City, CA). This instrument has a much higher

resolution than agarose gels and therefore single base pair differences were detected

between amplicons in the metagenomic DNA samples. The electropherograms produced

by each sample showed the various 16S rRNA fragments present in the metagenomic

DNA. The eubacterial profiles from the CF patients were analyzed using ANOSIM,

Shannon-Weaver Statistics, Bray-Curtis similarity index, and non-metric
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multidimensional scaling analysis. Initially, the patient's sputum was divided into three

aliquots and the metagenomic DNA was extracted. Each of these three extractions was

then amplified three times for each region and analyzed via the ABI 310 Genetic

Analyzer (Applied Biosystems, Foster City, CA). Amplicons that were present in two

out of three electropherograms of the aliquots were added together to generate one profile

per sample and then used for further analysis. The amplicon lengths and intensity of

amplicons from V1 + V2 and ViV3 multiplex were converted to ratio data and use for

further analyses.

The abundance of amplicon lengths present in the CF sputa. Our analysis

shows that the CF lung can contain one or more species of eubacteria. The complexity of

the microbial community found in a CF patient's lung was assessed using Shannon-

Weaver statistics. This information was then depicted in graphs which show the

amplicon lengths and normalized relative fluorescent units for the averaged three

aliquots.

The amplicon sizes from the 26 samples ranged from 335 to 374 bases for the VI

+ V2 region (Figure 10). Patient JD6 had the most complex profile with 11 amplicons

present for the V1 + V2 region (Figure 10, Panel R). Patients UMF, UMG, UMH, UMJ,

UMK, UMP, UMT had the least complex ALH profiles with only one amplicon present

at 342 bp (Figure 10, Panel T). The remaining 18 samples produced ALH profiles

containing multiple amplicons (Figure 10). Amplicon 342 was the predominate amplicon

observed in 24 out of 26 samples.
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Vi profiles ranged from having 60 to 120 bp present (Figure 11). All 26 samples

contained multiple amplicons in the profile. The most complex profile contained 49

amplicons for patient JD4 (Figure 11, Panel X). The least diverse profile with ten

amplicons belonged to patient UMD (Figure 11, Panel D). The predominant amplicon

was found at 98 base pair length and present in 24 out of 26 profiles.

The V3 region contained amplicons from 157 to 225 (Figure 12). Profile from

UMA was the least diverse with only one amplicon at 171 bp (Figure 12, Panel A).

Twenty-five out of 26 profiles contained more than one amplicon with patient UMT

producing the most with 13 amplicon (Figure 12, Panel S). Amplicon 171 was the

predominant peak found in all 26 samples.

CF sputum samples produced similar ALH profiles. The eubacterial

communities found in the CF sputum were compared to one another to establish the

uniqueness of a patient's microbial flora. Samples were compared within the CF center

and between centers, Joe DiMaggio Children's Hospital (JD) and University of Miami

(UM).

To determine if ALH profiles were similar between patients that were treated at

the same CF center, the profiles for each sample were compared to samples attained from

the same location. The samples were compared using Bray - Curtis similarity index and

non-metric multidimensional scaling analysis (MDS). Each region V1 + V2, and VI V3

separated and combined was analyzed to determine the highest similarity seen between

two patients.
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With the UM patients using the V1 + V2 region, patient UMF profile was the

most similar to other patients (Table 5). That patient profile was exactly the same as

profiles from patient UMG, UMH, UMJ, UMK, UMP, and UMT. Patient UMR had less

than 36.2 % similarity with 16 patients but had a 91.0 % similarity with patient UML.

Patients were differentiated more using the V1 region (Table 6). The highest

similarity between two patients was a 79.2 % match between patients UMF and UMG.

This region was able to discriminate between all patients as that no two profiles were

exactly the same as each other. The most unique profile was between patients UMD and

UMQ with 6.2 % similarity. The V3 region was not able to differentiate between

individuals as well (Table 7). Patient UMH and UMS were 95.5 % similar and the least

amount similarity was 20.7 % seen when comparing patient UMB and UMK. The Vi

and V3 regions combined caused samples to be more similar and thus lowered the

uniqueness of the profiles (Table 8). Patient UMF and UMG when analyzed using both

regions were now 80 % similar. The Bray - Curtis similarity was also plotted on MDS

for Vi + V2, VI, V3, and ViV3 regions combined. Visually with Vi + V2, patient

UMA (green triangle) and patient UMQ (blue diamond) were less similar than any of the

other patients and thus were not as closely clustered to the rest of the symbols (Figure 13,

Panel A). The VI depiction shows less clustering for all patients (Figure 13, Panel B).

The V3 MDS graphically separates out patient UMA (green triangle) and UMB (blue

triangle) (Figure 13, Panel C). The V1 and V3 region combined shows similar clustering

as the V3 region alone (Figure 13, Panel D).

Patients from the JD center were compared in the same manner as above. For the

Vi + V2 region, patient JD3 and JD7 had a 93.5 % similarity (Table 9, Panel A). This
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was decreased to 38.9 % when analyzed using the V1 region (Table 9, Panel B). The

highest similarity was 66.7 % between patients JD1 and JD 6 using V1. The V3 region

again was less discriminatory given 78.5 % similarity between patients JD1 and JD3

(Table 9, Panel C). Combined, the V1 and V3 regions produced a 66.3 % match between

JD 1 and JD3 (Table 9, Panel D). JD3 and JD7 were now 56.4 % similar. The Bray -

Curtis similarity was also plotted on MDS for Vi + V2, V1, V3, and V _V3 regions

combined (Figure 14). Very little clustering was seen for all regions except V1 + V2 and

it would appear that the patients were different from one another.

The sarple profiles attained from UM were compared against JD samples using

MDS derived from the Bray-Curtis similarity index and ANOSIM (Figure 15). The VI +

V2 region appears to cluster some of the UM patients separately from the JD patients

(Figure 15, Panel A). Three out of the seven JD patients were separated from the UM

patients. The samples that clustered together indicate the profiles were similar based on

the presence of amplicons and their corresponding heights. Using ANOSIM, a 58.4 %

similarity (p <0.006) was calculated between the two groups. The V1 region produced

52.6 % similarity (p < 0.001) between the groups of patients. Visually, the two groups

separated into two clusters (Figure 15, Panel B). The V3 region showed a lack of

clustering and there was an overall 73.4 % similarity (Figure 15, Panel C). The VI, V3

regions did graphically separate the patients by treatment location but two JD patients

were clustered with UM patients (Figure 15, Panel B). Statistically, there was a 57.8 0

similarity (p < 0.001) between the two sets of patients.
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Patient CF flora changes over time. Two patients referred to as Patient UMX

and Patient UMY gave a sputum sample every other month for five months. The three

averaged PCR for each aliquot was use for statistical analysis. Each time period for each

patient produced a different abundance of amplicons for V1 + V2 and V1_V3 regions.

Some trends can be seen in the profiles from Patient UMX (Table 10). For the V1

region, amplicons that were present in month 1, such as 86 and 88 disappeared in the

following months, while other amplicons like 98 appeared (Table 10). Amplicons 73 and

77 were present in all collections. The V3 region did not seem to fluctuate as much

(Table 10). Amplicons 171 and 195 were present during all five months but the percent

contribution to the overall profile varied. Amplicon length 342 was the dominant

amplicon found in each collection for the Vi + V2 region (Table 10). Changes in

profiles over time can occasionally be noticed more easily using MDS (Figure 16). There

are three data points referring to the each aliquot per sample for each time period in the

graphs. For the Vi + V2 region, the differences in aliquots vary as much as the

differences over time (Figure 16, Panel A). Changes over time can easily be seen in the

clustering present in the Vi region (Figure 16, Panel B). Nearly, all time points appear

identical when analyzed using only the V3 region (Figure 16, Panel C). The V1_V3

regions combined show some clustering and thus differences between collection months

but the separation is not as great as when the samples are analyzed using the Vi region

alone (Figure 16, Panel D).

Patient UMY ALH profiles varied over time for all three hypervariable regions

(Table 11). For the V1 region, amplicons that were present in month 1, such as 62 and 88

disappeared in the following months, while other amplicons for example, 85 appeared
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Table 10. Amplicon contributions for the Patient UMX over a five-month time period.
Each peak is present in the average contribution calculated from the overall profile.

16S Amplicon Month 1 Month 3 Month 5

Region Size (bp) Contribution (%) Contribution (%) Contribution (%)

VI 60 0 8.45 0

61 0 8.45 0

62 0 0 5.18

73 11.52 6.34 2.29

77 13.55 8.45 3.77

85 0 0 6.36

86 14.85 0 0

88 17.58 0 0

91 0 6.34 0

98 0 8.45 5.77

102 0 0 8.52

103 0 23.92 0

108 0 0 36.92

112 24.21 4.23 0

113 0 4.23 0

115 0 4.23 0

119 0 0 4.37

V3 171 40.28 45.19 72.06

189 0 0 17.01

194 0 32.20 0

195 59.72 21.43 10.93

V1+V2 342 97.13 100 92.32
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Table 11. Amplicon contributions for the Patient UMY over a five-month time period.
Each peak is present in the average contribution calculated from the overall profile.

16S Amplicon Month 1 Month 3 Month 5

Region Size (bp) Contribution (%) Contribution (%) Contribution (%)

VI 60 0 6.75 4.79

62 8.79 0 0

63 4.76 0 0

65 0 0 0

71 0 0 4.76

72 0 25.32 0

73 3.44 7.72 0

76 0 0 5.77

77 0 3.28 0

78 0 7.72 0

82 3.99 0 0

85 0 0 8.55

86 0 18.42 0

88 24.79 0 0

91 0 3.28 0

98 11.14 10.13 7.51

100 5.97 0 0

102 11.91 0 38.59

112 8.79 0 5.47

V3 171 71.34 97.18 91.67

195 28.66 2.82 8.33

V1+V2 342 91.58 100 38.50

348 9.42 0 45.50
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(Table 11). Amplicon 98 was present at all three time points. Amplicons 171 and 195

contributed the most to the V3 profiles. Over the five months, amplicon 195 decreased

and then increased for month five. Amplicon 171 was the dominate amplicon seen in all

collections. Amplicons 171 and 195 were present during all five months but the percent

contribution to the overall profile varied. For the VI + V2 region, amplicon length 342

was the dominant amplicon found in the first two time periods but then was drastically

decreased for the last month (Table 11). The fluctuating profiles can be depicted using

MDS (Figure 17). For the V1 + V2 region, the profiles generated from the fifth month

clearly cluster separately from the other time periods (Figure 17, Panel A). Clustering

can also been seen between the first and third month profiles. Changes over time can

easily be seen in the clustering present in the Vi region and though the aliquots from the

third month are spread apart they are still more closely clustered than points from the

other time periods (Figure 17, Panel B). All symbols cluster very close to one another,

except for one aliquot from month three, when analyzed using only the V3 region (Figure

17, Panel C). The V1_V3 regions combined show some clustering and thus differences

between profiles at the different time points (Figure 17, Panel D).

Presumptive identity analysis. The amplicons present in the patient's VI + V2,

V1, and V3 profiles can be compared against the Amplicon Length Heterogeneity

Analysis System (ALHAS) database to determine to possible identity (Table 12). One

amplicon can represent a multitude of organisms. For example, amplicon 342 was

present in 24 out of the 26 samples and it could represent Pseudomonas species,

Burkholderia species, and Ralstonia species. Amplicon length 98 for the V1 region was
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present in 21 samples and the most likely hit in the database belonged to unidentified oral

bacteria. The V3 region for 23 patients contained a length of 195 base pairs, which may

represent P. aeruginosa. The ALHAS databases for the V1 and V3 regions do not

contain many human pathogenic related bacteria and therefore many of the amplicon

lengths seen in the profiles did not correspond to a bacterium in the database. Therefore,

virtual analysis was performed to determine the possible lengths that may be present for

the most common CF pathogens. Sequences from the 16S rRNA gene of these pathogens

were analyzed to determine the amplicon length that would be amplified if the

organism's DNA was amplified using the V1 and V3 primers (Table 12). Through the

use of virtual analysis, it was determined that the most common CF pathogens would

have a length of 197 for the V3 region, except for Ralstonia picketti, which falls at 187.

No profiles contained the 197 or 187 amplicon. For the Vi region, amplicon length 86

was present in ten out of the 26 profiles. Nine profiles contained an amplicon at 88 bp.

Twelve profiles produced an amplicon at 91, two profiles for 92, and zero for 96.
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Table 13. Virtual analysis of common CF pathogens for V1 and V3 regions.

V1 +V2
Vi Region V3 Region

Pathogen Region (bp)
(bp) (bp)

Alcaligenes xylosoxidans 86 197 348

Burkholderia gladioli 88 197 340, 342

Burkholderia cepacia 88 197 340, 342, 343

Haemophilus influenzae 92 197 348

Pseudomonas 342
86 195,197

aeruginosa

Ralstonia picketti 92 187 342

Staphylococcus aureus 91 197 355

349
Stenotrophomonas

96 197
maltophilia

88



DISCUSSION

ALH analysis of 16S rRNA genes can provide rapid detection of both known and

novel organisms that may be present in many complex microbial communities (63, 90).

Prior work has determined that this known ecological application can be extended to the

analysis of complex biological communities such as sputa from CF patients (62). This

technique can determine the most abundant amplicon lengths found in a community and

with the use of ALHAS the amplicon can be presumptively identified. Thus, the ALH

technique could be used to attentively identify pathogenic organisms and thus be used as

a tool against bioterrorism. CF sputa were chosen again to further study the properties of

ALH. The flora present in the CF lung is a dynamic community that is altered by age of

patient, illness, and antibiotics. It is hypothesized that these changes over time can be

studied using ALH. Also, it is hypothesized that the use of multiple hypervariable

regions of the 16S rRNA genes can produce more information that will discriminate

between pathogens thus leading to quicker identity match. The ALH technique has been

proven to be robust and reproducible when analyzing CF sputa, marine water, and soil (5,

63, 78, 79, 91). There is great potential for the use of ALH as a diagnostic tool with

bacterial infection. Also, forensic science may benefit from the use of ALH as it can be

used to determine the absence of a bioagent.

Modification of quantification protocol needed to ensure accurate data

analysis. The quantity of metagenomic DNA extracted from the CF sputum varied from

sample to sample. It was determined that the amount commonly found in these samples
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were near one nanogram. This amount is difficult to quantify using both Hoescht dye and

Picogreen due to the fact that the amount is at the lower threshold and the higher

threshold for the dyes, respectively. To overcome, it is recommended that Picogreen and

a smaller amount of DNA be used to quantify. Accurate quantification of metagenomic

DNA is important to ensure that PCR success is comparable from sample to sample. As

the PCR products are detected using the genetic analyzer, the electropherogram output

depicts the amount of DNA present in the sample by the amplitude of the amplicon. For

example, if a sample thought to contain one nanogram of DNA but actually contains less

DNA is amplified and then detected, the resulting amplitude will not be reflective of the

actual amount of that pathogen present in the sample. The sample may contain a higher

amount of bacteria. It may be possible to achieve more accurate quantification by using

real time PCR (45).

Extraction reproducibility altered the overall profile of a sputum sample.

Each sample was split into three aliquots and amplified. Extraction reproducibility is

often not seen in the samples (Figure 8). Not all amplicon lengths were present in each

aliquot. Some sample profiles vary more between aliquots then between samples. The

lack of reproducibility may be caused by two factors. First, sputum is very viscous and

sticky, thus making it difficult to make a homogenized mixture. The extraction buffer

might also cause the reproducibility error. It is possible that the buffer preferentially

lyses some cells. To ensure that the patient profile is complete, it is recommended that

the DNA extracted from the aliquots be combined and homogenized and all further

analysis be produced from the homogenized DNA.
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PCR amplification does not bias eubacterial profiles. Each aliquot was

amplified three times for the VI + V2 and the V1_V3 regions. The resulting profiles

were overlaid and compared. As show in figure 9, amplicons were present in at least two

out of the three replicates for two patients. Similar results were seen in all patients'

replicates (data not shown). Amplitude height variances were seen in with some peaks.

This may be caused from quantification errors and normal PCR biases but this did not

affect the reproducibility of PCR. ALH-PCR reproducibility was also shown in previous

studies. A similar study performed with CF sputa samples from Denmark showed that

profiles produced from replicate PCR were consistent and that only amplitude height

varied (62). ALH-PCR has also been used to study the microbial community in soil from

Miami-Dade, Florida. In this study, each soil sample was analyzed nine times and data

was consistent from each PCR and therefore again showing that ALH-PCR is

reproducible (64). This same trend was seen in studies performed with petroleum-

contaminated soils, water, and sputum (63, 79, 90).

The eubacterial community is similar between CF patients in South Florida.

Sputum samples obtained from patients attending CF treatment centers, Joe Dimaggio

Children's Hospital (JD) or University of Miami (UM) were analyzed using the Vi + V2,

Vi, V3 and the V 1V3 region combined. Profiles produced from the Vi + V2 region

showed a 58.4 % similarity between patients attending the JD and UM centers. Many

samples were more closely clustered to the other center than to the patient's actual

treatment center (Figure 15, Panel A). In a previous study, Vi + V2 region was used to
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discriminate between patients and it was determined that the highest amount of similarity

seen between two patients was 72 % (62). Both studies demonstrate that the Vi + V2

region is unable to completely distinguish between profiles that are being compared. The

Vi eubacterial profiles from the UM and the JD centers were also compared and one of

the CF samples was 58.4 % similar to another sample. The V3 profiles from the clinics

showed that the patient lung flora was the most similar (73.4 %) between treatment

centers. When comparing the regions discriminatory power, it was determined that the

Vi region alone distinguished the treatment centers from one another more than Vi +

V2, V3, and V1 V3 regions combined. Not only did the Vi region produce the lowest

percentage of similarity, JD and UM samples were more closely clustered within the

appropriate treatment centers (Figure 14 and 15, Panel B). The Vi region still produced

a significant amount of similarity between the two groups of patients. Therefore, many

of the patients either from UM or JD had similar microbes in their lung flora. The fact

that Vi showed the patients' profiles were 41.6 % different means that there are some

unique pathogens found in UM patients versus JD patients. This uniqueness can lead us

to conclude that there is a center-specific profile for each treatment center. It is not

surprising to see differences in eubacterial profiles when comparing the two CF centers.

Research has shown that CF infections can vary from one location to another. In one

study, Pseudomonas cepacia infections were found in patients from the United Kingdom,

Canada, and the eastem United States (40). Multilocus enzyme electrophoresis was used

to determine that B. cepacia (formerly P. cepacia) isolates clearly differ according to

origin. The study showed that the isolates within one clinic had the same enzyme type

and therefore, it was deduced that the pathogen is readily transferred from patient to
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patient in the treatment center (40). Geographical location also influenced the presence

of a strain. Infections seen at clinics within one region, such as eastern United States

were more related to each other than to another location like the United Kingdom (40).

The influence location has on CF infections was also seen in a study that tracked P.

aeruginosa infections in children (25). It was determined that children being treated at

the urban CF center acquired P. aeruginosa at an earlier age than the patients at the more

rural center (25). This study again demonstrates that pathogens can be spread from

patient to patient in social settings. Both of these studies highlight the same trend seen in

CF treatment centers in south Florida; that is, location can influence the overall

eubacterial profile.

The center-specific profile that caused the patients to cluster within their

respective treatment center was best seen with the analysis performed using the V1

profile. The discriminatory power of the V1 region may arise from two factors. First, the

profiles in general have more amplicons per sample in that region than any other region

(Figure 11). Therefore, there are a higher number of data points in each sample that can

be used to compare samples and increase the statistical power of the Bray-Curtis

coefficient. Also, it is known that the V1 region has more length heterogeneity than any

other region of the 16S rRNA gene. Therefore, an amplicon may still represent more

than one bacterium but that representative number will be smaller than the number of an

amplicons belonging to the V1 + V2 region. Hence, the V1 region profiles have multiple

amplicons which may belong to one amplicon length in the V1 + V2 or V3 regions. This

increased number of Vi amplicons leads to the regions ability to discriminate between

samples better than the other regions. Another study showed that the Vl has a high
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power of discrimination when compared to other regions of the 16S rRNA gene. When

combining the VI region with the V3 region, eubacterial profiles produced from soil in

Miami-Dade, Florida were more unique than profiles from the V1 + V2 region (64). The

VI region was able to provide more information as to the bacteria present in the soil than

the VI + V2 region (64). CF sputa profiles were less similar to one another using the VI

region as compared to the VI + V2 region. Thus, this leads us to conclude the VI region

is a more informative region than the VI + V2 region for the analysis of CF sputa. In this

study, the V3 did not add information to the analysis.

To determine if patients within a CF center had unique microbial communities,

the ALH profiles from 19 UM patients treated at the University of Miami (UM) were

compared against each other. Seven patients from Joe DiMaggio Children's Hospital

(JD) were also studied. Statistically, ALH using either VI + V2, V1, or V3 regions of the

16S rRNA gene cannot discriminate between patients at either the UM or JD centers

(Tables 5 - 9). The VI + V2 profiles were identical for seven UM patients and therefore

this region was unable to discriminate between patients. VI again proved to have a

higher discriminatory power compared to the other regions but two patients were still

found to be 79 % similar (Table 6 and 9). The V3 region produced higher similarity

(Table 7 and 9). Graphically, all regions show at least two patients overlapping each

other and therefore they have similar eubacterial profiles (Figure 13). This lack of

discrimination with patients at one center was also statistically seen with the JD samples.

The Vi region was able to differentiate two patients up to 33 % but no profile was

completely unique. Graphically, it appears that each region was able to differentiate one

profile from another as that no samples are overlapping (Figure 14). The MDS analysis
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might be biased due to the extremely small sample size, meaning that the slightest

difference in amplitude height can drastically pull two data points away from one

another. With the use of similarity index, it can be concluded that patients within one

treatment center have similar eubacterial profiles and this is the same trend seen in the

other studies mentioned above (25, 40). But the small differences within a profile are

best detected using the VI region. This region's high power of discrimination again

agrees with past analyses as described earlier.

Overall, the 26 sputum samples obtained from South Florida patients produced

very similar profiles with all regions used in this study. Many of the profiles shared

amplicons, such as 342 in the V1 + V2 region. The presence of a dominant amplicon in a

profile might obscure the rarer amplicons and bias the analysis to say that the patients'

profiles are more similar to one another than they actually are. It is thought that there are

only a few pathogens commonly found in the lungs of CF patients due to clinical

diagnostic procedures (27). These organisms may represent the dominant amplicons in

the profile. With the use of molecular technique, it has been discovered that many more

organisms plague the CF lung (79). Perhaps, these bacteria represent the rarer amplicons

and are responsible for some of the differences in disease manifestation seen between CF

patients.

ALH can identify microbial community changes over time. CF sputum

sample from. Patient UMX and Patient UMY were analyzed every other month for five

months. During this time, patients were taking a combination of antibiotics, such as

azithromycin, bactrim, tobramycin, and levaquin. Azithromycin is a macrolide antibiotic
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that inhibits protein synthesis. It is used to treat against most gram-positive aerobes

including Staphylococcus species and H influenza, which are found in the CF lung (106).

It has also been recently found to reduce the production of mucoid alginate in biofilm-

producing P. aeruginosa. Biofilm growth of the organism is directly related to its ability

to be more resistant to antibiotics (69). Bactrim, another drug is a combination of

sulfamethoxazole and trimethoprimr This is used to prevent and treat infections and in

the case of the CF patient, to prevent Pneumocystis carinii pneumonia (85). Tobramycin,

an aminoglycoside, is given to patients diagnosed with P. aeruginosa infections to treat

that infection (92). Levaquin or levofloxacin, is a second generation fluoroquinolone

(82). It can be used against gram-negative infections such as Pseudomonas and can also

treat against some gram-positive organisms (38, 82). The last drug being administered

was colistin, a polymyxin E, that is used to treat against antibiotic resistant strains of P.

aeruginosa (11).

During a five month period, Patient UMX was taking azithromycin, bactrim and

tobramycin. Shortly before the third collection the patient stopped taking tobramycin.

Thus, antibiotic treatment varied little during these six months. As with the drug

treatment, the profiles over time were quite similar. For V1 + V2, Patient UMX's profile

was predominately amplicon 342 for all collections (Table 10). This amplicon had an

abundance between 92 and 100 % and it may be presumptively identified as P.

aeruginosa which concurs with the patient's clinical diagnoses. Amplicons in the V1 and

V3 region slightly changed (Table 10). Visually, it can be seen that aliquots within one

time period can vary as much as the samples at each month (Figure 16). As shown in

previous analysis, VI has the highest discriminatory power out of the regions analyzed.
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For comparisons over time, V1 clusters the aliquots together for each time period more so

than other regions. Vi demonstrates that Patient UMX's profile did change over the

course of the five month period (Figure 16, Panel B).

Patient UMY's profile was more dynamic than Patient UMX. Patient UMY's

sputum showed a constant level of abundance for amplicon 342 between the first two

samplings (Table 11). Then, there was a drastic decrease of abundance for amplicon

length 342 between the fifth and third month. This change in profile may correspond to

the change in the patient's treatment. The patient during the first month had been taking

levaquin but it was replaced with colistin between the second and third sampling. This

may have caused the pathogen associated with that amplicon to disappear. As the

abundance of amplicon 342 decreased, amplicon 348 emerged. It is possible that as one

pathogen was cleared and it was replaced with another bacterium that fit that niche (7).

The decreasing 342 amplicon may represent P. aeruginosa, which the patient was

diagnosed with. Levaquin and colistin are both known for treating against this pathogen.

There are studies that have found levaquin is not as effective as the first generation

fluoroquinolones in treating P. aeruginosa and Colistin has been known to effective

against antibiotic resistant strains of P. aeruginosa (11, 82). It could be hypothesized that

Patient UMY was infected with an antibiotic resistant strain of P. aeruginosa and the

infection was reduced when the stronger antibiotic was administered. The patient's lung

infection was then dominated by a bacterium represented by amplicon 348, which may

belong to H influenzae. Changes were also seen in the Vi and V3 regions (Table 11).

Amplicon 195 in the V3 region decreased over time and this was presumptively

identified as P. aeruginosa.
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The dynamic lung microbial community was also seen in the MDS graphs (Figure

17). The Vi and the combined V1_V3 regions combined distinguished samples between

sampling time the best (Figure 17). The V3 region alone did not separate any samples

from one another and therefore did not add discriminatory power to the combined Vi V3

analysis (Figure 17). So again, V1 has the highest discriminatory power. ALH again

demonstrated that a patient eubacterial profile changed over time.

Combining the ALH profiles from the three regions depicts Patient UMY having

a more variable microbial community than patient UMX. This could be due to various

factors such as age and antibiotic treatment (4, 53). Patient UMX was a 23 year old

Hispanic woman while Patient UMY was a 60 year old Caucasian. These differences

could lend to the fact that both patients produced unique profiles and their respective lung

flora adapted to the presence of antibiotics differently.

Clearly, ALH can be used to analyze changes in a microbial community. Armed

with the patient antibiotic information and samples over a long enough period of time, it

should be possible to determine the effectiveness of the drug against pathogens in the CF

lung. This could eventually lead to more effective treatments.

Presumptive analysis reveals sputa contain common CF pathogens. One of

the downfalls to the ALH technique is that the organism found in a sample cannot be

conclusively identified. Using the ALHAS database, the amplicon length present in a

profile can be presumptively identified. Amplicons of interest can be later cloned and

sequenced to ascertain the name of the organism present. With the use of ALHAS, it was

determined that common amplicons present in the CF sputa are potentially pathogens
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associated with this disease. Of relevant possible pathogens, amplicons were present that

may represent H influenzae, S. maltophilia, Actinobacillus pleuropneumonia,

Bacteriodes fragilis, Abiotrophia defective, and Sarcina ventriculi. These pathogens

were also found in CF sputum samples in an earlier study (62, 79). Specifically, all

samples produced an amplicon length of 342, which could be Pseudomonas species,

Burkholderia species, or Ralstonia species. The UM patients were clinically diagnosed

with P. aeruginosa and therefore it would be likely that amplicon 342 was indicative of

P. aeruginosa not Burkholderia. As that no patient information was attained from JD

samples, no assumption can be made. Burkholderia cepacia amplifies a 343 base pair

fragment and this amplicon was not present in any sample. The UM patients were not

diagnosed to have B. cepacia and therefore, it was not expected to be seen in the profiles.

Presumptive analysis for the amplicons present in the VI region revealed little

information as that ALHAS database did not contain many CF related pathogens. The

V3 region furthered strengthened the hypothesis that the patients were infected with

Pseudomonas as that amplicon 195 may represent P. aeruginosa. Virtual analysis was

performed to identify if any of the amplicons present in the profiles represented a

common CF pathogen. Profiles may have contained the pathogens Alcaligenes

xylosoxidans, B. cepacia, B. gladioli, P. aeruginosa, H influenzae, R. picketti, and

aureus. No profiles contained an amplicon that corresponds to Stenotrophomonas

maltophilia. The virtual analysis for the V3 region indicates that almost all of the

common CF pathogens listed above fall at 197 base pair. Therefore, it is not surprising

that the V3 region produced little to no power of discrimination as discussed earlier. Yet,

no profiles contained an amplicon at 197. It is possible that a strain not virtually
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analyzed may fall at an amplicon seen in the profiles. Therefore, virtual analysis of these

organisms needs to be confirmed experimentally. These isolate pathogens need to be

analyzed using ALH and the corresponding V1 and V3 primers to determine the

amplicon size that would be seen on the electropherogram.

To strengthen the use of ALHAS analysis, the database should be augmented with

information derived from clinically isolated strains of the most common CF pathogens.

Also to conclusively identify an organism, the corresponding amplicons it produces

should be found in all three regions. Once a possible organism is recognized, cloning and

sequencing should be performed to achieve identity.

Conclusions

The use of ALH in the treatment of CF patients. The ALH technique is able

to show the complexity of the flora present in the CF lung. It was also proved that it is

possible to observe how the microbial community in the lung over time changes and may

lead to deciphering what factors drive the change. ALH can be used to gather much

information that is not known about the CF lung and can also be used to further

strengthen the details that are understood. To identify more trends between treatment,

patient information, and microbial profile a long term study with ALH would need to be

undertaken.

To identify what factors drive a community, a larger patient sample size is

needed. Also, patients need to donate a sample at specific intervals for a few years.

Information regarding age, sex, ethnicity, CFTR mutation, and antibiotic treatment must
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also be attained with the samples. To further increase the power of presumptive analysis,

clinically identified isolates from CF patients need to be analyzed using ALH and the

resulting information needs to supplement the static ALHAS database. Lastly, cloning

and sequencing needs to be performed on the samples containing rare amplicons to

determine if there are any novel CF pathogens present in the sputum sample. With a new

pathogen identified, drug treatment can be altered to target that organism.

CF sputum may also be studying using ALH and other genes. In this study, ALH

was used with the 16S rRNA gene. Due to the relative small microbial community

present in the CF lung, it may be possible to gather more information by using the

interspacer region of the ribosomal genes with ALH In the future, ALH can also be used

to study the fungal community that is associated with the CF lung.

ALH can be used as presumptive test for bioagents. ALH was used to

presumptively identify organisms within the CF lung. The results produced from the

model system can be extrapolated and used in many other microbial communities, such

as soil, water, or food that may have been contaminated with a human pathogen. Though

ALH does not identify a pathogen, it does prove the absence of the organism in the

sample being analyzed. Therefore, the technique can be used to determine if there is a

possibility of a bioagent, such as B. anthracis, being present in a sample. If the amplicon

that corresponds to the bioagent is detected, then further more expensive testing can be

performed. If ALH determines the pathogen's amplicon length for that specific region is

absent, then no further testing needs to be done.
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In order to implement this technique into forensics, ALH must be used to test

samples that contain bioagents or their close relatives. If it proves to identify the absence

of such agents, then validation studies must be performed. Once that is accomplished,

the test needs to be commercially packaged. ALH kits can then be sold to law

enforcement that will use them as a first response in a potential bioterrorism act.

Therefore, ultimately ALH could be used in microbial forensics and in the fight against

bioterrorism.

In conclusion, ALH is a molecular-based technique that can elucidate much

information about the microbial community found in the CF lung. It could lead to new

treatments, discovery of new pathogens, and ultimately improve the quality of a CF

patient's life. The technique can also be utilized in forensic science. ALH can be used as

a quick presumptive test to identify the absence of a bioagent.
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