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ABSTRACT OF THE DISSERTATION 

THE EFFECT OF HYPERTHERMIA ON DOXORUBICIN THERAPY AND 

NANOPARTICLE PENETRATION IN MULTICELLULAR OVARIAN CANCER 

SPHEROIDS 

by 

Abhignyan Nagesetti 

Florida International University, 2017 

Miami, Florida 

Professor Anthony J. McGoron, Major Professor 

The efficient treatment of cancer with chemotherapy is challenged by the limited 

penetration of drugs into the tumor. Nanoparticles (10 – 100 nanometers) have emerged as 

a logical choice to specifically deliver chemotherapeutics to tumors, however, their 

transport into the tumor is also impeded owing to their bigger size compared to free drug 

moieties. Currently, monolayer cell cultures, as models for drug testing, cannot recapitulate 

the structural and functional complexity of in-vivo tumors. Furthermore, strategies to 

improve drug distribution in tumor tissues are also required.  In this study, we hypothesized 

that hyperthermia (43°C) will improve the distribution of silica nanoparticles in three-

dimensional multicellular tumor spheroids. Tumor spheroids mimic the functional and 

histomorphological complexity of in-vivo avascular tumors and are therefore valuable 

tools to study drug distribution. Ovarian cancer (Skov3) and uterine sarcoma (MES-

SA/Dx5) spheroids were generated using the liquid overlay method. The growth ratio and 
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cytotoxicity assays showed that the application of adjuvant hyperthermia with Doxorubicin 

(DOX) did not yield higher cell killing compared to DOX therapy alone. These results 

illustrated the role of spheroids in resistance to heat and DOX. In order to study the cellular 

uptake kinetics of nanoparticles under hyperthermia conditions, the experimental 

measurements of silica nanoparticle uptake by cells were fitted using a novel inverse 

estimation method based on Bayesian estimation. This was coupled with advection reaction 

transport to model nanoparticle transport in spheroids. The model predicted an increase in 

Area Under the Curve (AUC) and penetration distance (W1/2) that were validated with in-

vitro experiments in spheroids. Based on these observations, a novel multifunctional 

theranostic nanoparticle probe was created for generating highly localized hyperthermia by 

encapsulating a Near Infrared (NIR) dye, IR820 (for imaging and hyperthermia) and DOX 

in Organically modified silica nanoparticles (Ormosil). Pegylated Ormosil nanoparticles 

had an average diameter of 58.2±3.1 nm, zeta potential of -6.9 ± 0.1 mV and high colloidal 

stability in physiological buffers. Exposure of the IR820 within the nanoparticles to NIR 

laser led to the generation of hyperthermia as well as release of DOX which translated to 

higher cell killing in Skov3 cells, deeper penetration of DOX into spheroids and complete 

destruction of the spheroids. In-vivo bio-distribution studies showed higher fluorescence 

from organs and increased plasma elimination life of IR820 compared to free IR820. 

However, possible aggregation of particles on laser exposure and accumulation in lungs 

still remain a concern.  
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Introduction. 

Chemotherapy of cancer uses cytotoxic agents to target rapidly multiplying cancer 

cells. In recent years, several classes of chemotherapeutic drugs, viz, campothecins, 

platinates and anthracyclines have been researched for cancer therapy. However, most of 

these drugs suffer from poor bioavailability, poor pharmacokinetics and severe systemic 

toxicity due to the exposure of drug to healthy organs that leads to adverse side effects 

(Venditto and Szoka, 2013; Wilhelm et al., 2016). Current research has focused on 

developing analogs of the aforementioned drugs with improved pharmacokinetics, 

solubility and reduced side effects. This is achieved either by structural modifications to 

the drug molecule or by encapsulating the drug in a special class of delivery vehicles known 

as nanocarriers/nanoparticles. Recent advances in material science have provided a vast 

array of materials such as polymers, lipids, metals and organo-metals with unique 

advantages for the preparation of nanoparticles for delivery of therapeutic agents. For 

example, liposomes are formulated from lipids are lamellar vesicles that consist of a 

hydrophobic tail and a hydrophilic head. The tail can retain hydrophobic drugs and the 

head promotes the solubility of drug carrier in aqueous media which makes it suitable for 

in-vivo injection. Similarly, amphiphilic polymers such as Poly-Lactic co-Glycolic Acid 

(PLGA) are used to simultaneously encapsulate hydrophilic and hydrophobic agents 

(Manchanda et al., 2010). From a drug delivery perspective, nanoparticles offer several 

advantages; 1) passive accumulation at the tumor site1 via the enhanced permeation and 

                                                 

1 Tumor site comprises of the tumor tissue, surrounding vasculature and the interstitial 

space. 
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retention effect (EPR). EPR arises as a result of discontinuous fenestrations of poorly 

developed tumor vasculature that leads to preferential extravasation of the nanocarrier,  2) 

active targeting of the tumor by tagging the nanocarrier with ligands that are specific to 

cancer cell receptors, and 3) modifying nanoparticle surface with “stealth” materials such 

as PolyEthylene Glycol (PEG) to reduce clearance of nanoparticles by the reticulo 

endothelial system (RES) (Ferrari, 2005). Naturally, these advantages have led to extensive 

research of nano-formulations for cancer drug delivery.  

There have been close to three million publications related to cancer nanomedicine 

since 1945. However, only 3 % of total research has been translated to clinical trials and 

an even a smaller fraction has progressed to actual therapy in the clinic (Venditto and 

Szoka, 2013). Antibody based drug conjugates and liposomal formulations of drugs have 

had greater success in progressing to clinical trials compared to polymer based 

nanoparticles. Some notable examples among antibody therapies are Rituxan ® (CD20 

based, Genentech) for chronic lymphocytic leukemia and Herceptin ® (HER-2 receptor 

targeted, Genentech/Roche) for HER-2 positive breast and gastric cancer. Examples of 

liposomal based nanomedicines include DOXIL® (Johnson & Johnson) for platinum 

therapy resistant ovarian cancer, Daunoxome® (Gilead) and Myocet® (Enzon) for 

metastatic breast cancer (liposomal formulations of Doxorubicin). Despite the above 

mentioned advantages of nanomedicine, one of the main reasons for such low translation 

from research to the clinic is that nanomedicines have failed to increase the therapeutic 

index of encapsulated drug compared to its free form. Nanomedicines that show great 

success in in-vitro studies during the innovation phase often fail to show improvement over 
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the un-encapsulated (free) form in the translation (in-vivo) phase. It has been estimated that 

only 0.7 % (median value from various studies) of the drug injected as nanoparticles 

reaches the tumor (Wilhelm et al., 2016). Another challenge at the tumor site that further 

limits the efficacy of nanomedicine is the limited penetration of nanoparticles into the 

tumors. This aspect (limited penetration) of delivery of nanoparticles has been largely 

ignored (Curtis and Frieboes, 2016; Minchinton and Tannock, 2006). Along-with 

increasing the availability of nanoparticles at the tumor site, the innovation strategy for 

nanomedicine should also consider improving the distribution of nanoparticles in tumors 

in order to increase the efficacy of therapy. One way to achieve this goal is by using 

rigorous models (experimental and mathematical) to screen the nano-formulations at the 

in-vitro stage. These models should simulate or recreate the structural and functional 

characteristics of a tumor of interest as closely as possible. This will ensure efficient 

screening of nanomedicines and their properties in relation to the properties of the tumor 

in order to predict a set of optimal nanoparticle properties that may be effective for deep 

delivery. Additionally, mathematical models can simulate several combinations of the 

properties of a nanoparticle in order to predict optimal properties of the nanoparticle that 

are suitable for delivery to the tumor in question. This will reduce the number of 

experiments that need to be performed (as nanoparticles with low success can be eliminated 

prior to experimentation) which will also reduce the cost associated with developing 

nanomedicines for cancer therapy 

 Another strategy to enhance the effect of nanoparticle based chemotherapy at the 

tumor site is by using a combination of therapies, i.e., an adjuvant therapy. By properly 
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tailoring or choosing the properties of the material from which the nanoparticle is 

formulated, more than one agent (imaging, drugs etc.) can be simultaneously encapsulated 

within a nanoparticle system. Moreover, the nanoparticle can be functionalized with 

targeting and stealth properties for specific targeting of the tumor and evasion from 

reticuloendothelial clearance. Various functions, i.e., imaging, targeting, adjuvant 

treatments etc. can thus be achieved with such a multifunctional system.  

 In this study three dimensional tumor spheroids were used as experimental models 

to study nanoparticle distribution in avascular tumors. The effect of the combination of 

Doxorubicin with adjuvant hyperthermia (43°C) was studied in tumor spheroids. 

Hyperthermia was further investigated as a modality to improve nanoparticle distribution 

in the tumor. A novel inverse estimation method was developed to predict cell uptake 

kinetics of nanoparticles under hyperthermia. This was combined with a mathematical 

model of advection- reaction transport to predict the transport of nanoparticles in spheroids 

under hyperthermia. A novel multifunctional nanoparticle system capable of delivering 

chemotherapy, rapid rise adjuvant hyperthermia and near infrared imaging was developed 

and tested for efficacy in tumor spheroids. The conclusions from this study will be valuable 

for planning hyperthermia based adjuvant therapies with nanoparticles as well as for using 

hyperthermia to enhance nanoparticle transport in avascular tumors. 
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Hypotheses and Specific Aims 

Objective Statement:  

The first objective of this study is to determine the effect of combination of hyperthermia 

on doxorubicin therapy in multicellular tumor spheroids. The second objective is to study 

the effect of hyperthermia on nanoparticle transport in multicellular tumor spheroids.   

Objective A:  

Create multicellular tumor spheroids to test the combination of Doxorubicin and adjuvant 

hyperthermia (43°C) therapy. 

Hypothesis for Objective A: 

Multicellular tumor spheroids are more resistant to Doxorubicin and to the combination of 

Doxorubicin and adjuvant hyperthermia than are monolayer cultures. 

Specific Aims for Objective A:  

1) Create and characterize a 3-dimensional tumor model (spheroids) with ovarian (Skov-

3) and uterine (MES-SA/DX5 and MES-SA) cancer cell lines. 

2)  Study the effect of Doxorubicin chemotherapy and adjuvant hyperthermia on Skov-

3, MES-SA and MES-SA/DX5 cell spheroids. 

Objective B: 

Estimate the parameters for cellular uptake kinetics of nanoparticles and formulate a 

mathematical model for describing nanoparticle transport in spheroids under hyperthermia. 



7 

 

Hypothesis of Objective B 

Mild-hyperthermia will increase the penetration of nanoparticles into tumor spheroids by 

increasing the porosity (denoted ε) of the spheroid tissue. 

Specific Aims for Objective B:  

1) Develop a theoretical/mathematical model to study changes in drug diffusion in a tumor 

spheroid model under mild-hyperthermia. 

2) Validate the theoretical model by performing drug penetration studies in spheroids 

under mild-hyperthermia.  

Objective C: 

Create a multifunctional theranostic nanoparticle system capable of imaging, 

chemotherapy and adjuvant hyperthermia. 

Specific Aims for objective C 

1) Synthesize a multifunctional theranostic platform by encapsulating DOX and IR820 

2) Evaluate the system characteristics i.e., size, release kinetics of IR820, DOX and 

efficacy i.e., cytotoxicity in in-vitro cell culture and spheroids. 

3) Study cell uptake and DOX penetration into spheroids under NIR hyperthermia. 

4) Obtain Bio-distribution profile in mice. 
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Chapter 1 

1.1 Background 

Anthracycline drugs such as Doxorubicin (DOX) are DNA intercalating agents that 

inhibit topoisomerase II and prevent DNA stabilization. The main disadvantage of DOX is 

the systemic side effect, notably irreversible cardiotoxicity caused by the lack of tissue and 

organ specificity. Moreover, cancer cells may develop multidrug resistance through 

expression of P-glycoprotein (P-gp). DOX is a P-gp substrate which leads to its active 

exclusion from MDR cells via the P-gp pump.  The use of P-gp inhibitors such as 

Verapamil hydrochloride in combination with DOX has been shown to enhance DOX 

retention in P-gp positive cells. However, these agents are by themselves also toxic. 

Another strategy to enhance the efficacy of cancer therapy is to use a combination of 

different modalities i.e., chemotherapy and radiotherapy, surgery and chemotherapy, etc. 

(Fotopoulou et al., 2010; Macchiarini et al., 1991; Olivo et al., 2010; Wolf et al., 1991). 

Our lab has made valuable contributions to the research of combining chemotherapy with 

adjuvant hyperthermia at 43°C (Tang, 2010; Tang and McGoron, 2009). 

Hyperthermia (Hyp) (also called thermal therapy, thermotherapy) is the application 

of heat (41°C~45°C) to selectively kill cancer cells. Healthy cells are less susceptible to 

heat than are cancer cells (van der Zee, 2002). At high temperature, cell proteins coagulate 

or get damaged leading to activation of cell killing pathways. The mode of cell killing, i.e., 

apoptosis or necrosis, is determined by the rate of heating. We have found that long 

duration slow rate hyperthermia at 43°C induced mild cell apoptosis while, short duration 

fast rate hyperthermia causes necrosis in uterine sarcoma cells (Tang, 2010). These benefits 

can be combined with DOX chemotherapy to achieve a synergistic, or at least a more than 
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additive effect of independent treatments. Hyperthermia can be administered to the whole 

body or locally through microwaves, radio waves and via the sequestration of photo 

thermal agents that generate heat on laser exposure at the tumor site. Our recent work has 

concentrated on evaluating the mechanisms of cell killing in chemotherapy and adjuvant 

hyperthermia (Tang, 2010), the evaluation of the near infrared (NIR) imaging dyes 

Indocyanine Green and IR820 for laser guided local hyperthermia (Fernandez-Fernandez 

et al., 2012).  Multifunctional carrier systems (nanoparticles) that enhance the stability of 

DOX, ICG and IR820 against degradation were also formulated from different polymer 

materials and were evaluated for cell killing potential in Ovarian (Skov-3) and Uterine 

(MES-SA/DX5) cancer cells. Studies in monolayer in-vitro cell cultures have shown great 

promise for chemotherapy and adjuvant hyperthermia, especially when delivered through 

encapsulation of DOX, IR820 or ICG in nanoparticles. However, further studies are needed 

in order to assess the efficacy of the aforementioned approach for in-vivo applications due 

to the complex nature of the tumor microenvironment (stroma). 

Tumor stroma is a critical determinant of the response to chemotherapy and 

adjuvant hyperthermia due to the presence of different cell types (fibroblasts, 

macrophages), gradients of oxygen, low pH and abnormally developed vasculature 

(Hirschhaeuser et al., 2010; Sutherland, 1988). The extracellular matrix (ECM) 

surrounding the tumor stroma is composed of glycosaminoglycans, laminin, collagen, 

fibronectin and hyaluronic acid (HA). The ECM and opposing interstitial fluid pressure are 

a barrier to the transport of macromolecules and solutes. Oxygen and nutrient levels have 

been found to drop rapidly in tumor tissues with an increase in distance from the nearest 

blood supply. Reduction of oxygen leads to regions of hypoxia. Reduced nutrient 
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availability (glucose) and lack of drainage of waste products of cell metabolism (lactic 

acid) result in regions of low pH.  Cells that are exposed to these conditions (hypoxia, low 

pH) for long durations respond differently to therapy (Jain, 1999; Tredan et al., 2007a). 

Hence, when planning chemotherapy with adjuvant hyperthermia the functional 

complexity of tumor stroma should be taken into account.  

1.1.2 Two-Dimensional cultures vs. Three-Dimensional models  

Two-dimensional cultures (2-D) do not possess the structural complexity of an in-

vivo tumor required to simulate macromolecule transport and the associated response of 

cells in relation to the conditions of the tumor microenvironment.  Hypoxia, low pH and 

low glucose metabolism can be created in 2-dimensional cultures (2-D cultures). However, 

it is not possible to generate heterogeneous populations of cells that arise as a result of 

these conditions in a tumor tissue. Also, some cells, when cultured in 2-D cultures lose 

their functional phenotype (Abbott, 2003). The shortcomings of a 2-D model can be 

addressed by three-dimensional cultures (3-D). Cells grown in 3-D cultures have been 

shown to regain their functional phenotype. Bokhari et al. have shown that hepatocytes 

grown in 3-D scaffolds are able to regain their functionality (albumin production) that was 

lost when the cells were grown in 2-D (Bokhari et al., 2007).  Similarly, breast epithelial 

cells formed structures that resembled in-vivo acini when cultured in 3-D (Debnath et al., 

2003). Moreover, the gene profile of 3-D cultures resembles more closely the clinical 

expression profiles of in-vivo tumors when compared to 2-D cell cultures (Hirschhaeuser 

et al., 2010). 
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Acellular Models: Gels such as agarose and hydrogels can be formulated to possess 

the basic physical properties (density, porosity) of ECM. They can be considered the 

simplest models of “tissue” and are used to study the effects of changes in the physical 

parameters of macromolecules, viz size, shape and surface charge, on macromolecule 

transport and distribution. Acellular models have also been used to study the effect of 

external stimuli (light, heat and chemical) on the change in gel structure and its 

corresponding influence on molecule transport (Sykes et al., 2016; Wong et al., 2011b). 

However, since these models do not have cells they cannot be used for studying the 

functional effects of macromolecules on cells, such as the response to therapy and 

corresponding effects of the cells on the ECM (Goodman et al., 2008).  

 In-vivo/Ex-vivo models:  Tumors grown in an animal host are ideal for studying 

drug, antibody and nanoparticle transport. They are beneficial for real time monitoring of 

macromolecule transport using techniques such as intravital microscopy and confocal 

microscopy (for excised tumors). Furthermore, animal models are also used to study the 

pharmacokinetics and bio-distribution of the administered macromolecules. A very large 

data set related to drug bio-distribution, clearance/residence time of drugs in 

pharmacokinetic compartments and drug efficacy or side effects can be collected from a 

single experiment (Goodman et al., 2008). Ex-vivo models correspond to tumor tissues that 

have been harvested directly from human subjects or animals. Ex-vivo models have been 

used to study the distribution of macromolecules in tumor tissues.  However, studies in in-

vivo/ex-vivo models are expensive, time consuming, and require significant expertise to 
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control the experimental variables, which might result in the limited reproducibility of 

results.  

1.1.3 Multicellular tumor spheroids:  

Tumor spheroids are models of small tumor tissues that are grown in in-vitro 

conditions. Tumor spheroids are formed when cells aggregate in culture due to cellular 

characteristics (microvilli, membrane interdigitations) or through secretion of ECM. The 

formation can be further augmented by supplementing the culture with ECM components 

such as collagen, fibronectin or an ECM alternative (Matrigel®). Spheroids mimic the 

structural and functional features of a tumor microenvironment, which makes them 

attractive candidates to study macromolecule transport and distribution within the tumor. 

Gradients of nutrients, pH and oxygen have been found in tumor spheroids (Acker et al., 

1987; Sutherland, 1988). Structural features such as a dense ECM around the aggregated 

cells and in some cases, functional cell-cell contacts such as E-cadherin junctions and 

gap/tight junctions (desmosomes) have also been found in tumor spheroids (Cottin et al., 

2010). Therefore, tumor spheroids are suitable models of in-vivo avascular tumors such as 

micro metastases and early stage tumors.  

1.1.4 Tumor spheroids as drug screening tools.  

 The use of cancer spheroids as a research tool to study the cellular-response to 

therapeutic interventions can be found as early as the late 1970’s (Yuhas et al., 1977). 

Tumor spheroids have been used to study the response of cancer cells to radiotherapy, 

photodynamic treatment, hyperthermia, chemotherapy including antibody and gene based 
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therapies (Hirschhaeuser et al., 2010). They have also been routinely used to quantify drug 

distributions using techniques such as fluorescence microscopy and autoradiography. 

Multicellular tumor spheroids have also been used to study the penetration of antibodies 

(Weinstein et al., 1987), nanoparticles (Goodman et al., 2007) and SiRNA (Wong et al., 

2011a) in avascular tumors.  

1.1.5 Basic culture techniques of spheroids  

Hanging Drop Cultures: Cell suspensions of 15-20 μl are plated in a dish and the 

dish is inverted. The drops are held in place due to surface tension. Cells aggregate with 

each other due to the formation of intracellular contacts under the action of gravity and 

form spheroids. Cell spheroids of different cell types have been reported using this method 

(Kelm et al., 2003; Timmins and Nielsen, 2007).  The hanging drop method is consistent 

in producing spheroids of the same size since the size is dependent only upon the initial 

seeding density of cells. However, the major disadvantages of this method include; 1) the 

small volume of cell-suspension that is susceptible to evaporation which leads to dry-out 

in extreme cases or a change in nutrient concentration available to the cells (hence the 

hanging drop cultures usually require moisture chambers), 2) the small volume of cell –

suspension places a limit on the size of spheroids that can be cultured, and 3) cultures must 

not be disturbed during spheroid growth as it may interrupt cell-cell organization and arrest 

spheroid growth. Since the cultures cannot be disturbed, the addition of supplements for 

spheroid growth (Matrigel®, collagen and fibronectin) is difficult to achieve in a hanging 

drop culture.  
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 Spinner Flask Cultures: These cultures are done in large vessels (150-300 ml) of 

media that are continuously rotated at a fixed rate. Constant rotation inhibits adhesion of 

cells to the surface of the vessel and enhances interactions between the cells. This leads to 

the formation of spheroids (Lin and Chang, 2008). Spinner flask cultures can lead to the 

formation of a large number of spheroids. However, spinner flask cultures demand a lot of 

materials in terms of cell culture media and supplements.  Also, due to the large volume of 

media, carbon dioxide and oxygen needs to be perfused through the culture vessel at regular 

intervals of time to maintain the pH and oxygen balance. Although spinner flasks can 

produce a large number of spheroids, there are variations in shape and size of the spheroids 

with this method. Hence, in experiments where spheroid size is important, additional 

techniques such as sieving through nylon meshes to select similar size spheroids are 

necessary (Lin and Chang, 2008). 

Liquid Overlay Culture/Use of cell-adhesion inhibition surfaces: Liquid overlay 

cultures are performed by coating the tissue culture plate with agarose (Carlsson and 

Yuhas, 1984), PolyHEMA (Ivascu and Kubbies, 2006) or poly-N-p-vinylbenzyl-D-

lactonamide (Hou et al., 2001). These materials prevent the adhesion of cells to the culture 

plate and promote cell-to-cell interactions resulting in the formation of spheroids. Liquid 

overlay cultures are usually performed in 96 or 48 well formats. The advantages of this 

system include; 1) A large number of spheroids can be cultured in a multi well format (96, 

48 wells, etc.) facilitating high throughput drug screening. Although, for doing high 

throughput culture specialized equipment such as an automated liquid dispensing system 

and micro patterned substrates are needed (Kikuchi et al., 2009; Xu et al., 2011); 2) 
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Spheroids can be cultured with minor modifications to the culture plate and the size of 

spheroids can be easily controlled by selecting the initial seeding density of the cells. 

Despite these advantages liquid overlay cultures are very sensitive to the experimental 

protocol, i.e., type of agarose used and coating of agarose. Minor modifications can lead to 

some, or even a complete inhibition of spheroid formation (Friedrich et al., 2009). 

 Other methods: Other techniques described in the literature to produce tumor 

spheroids include the use of rotary bioreactors (Ingram et al., 1997), culture in 3-D 

scaffolds (Fischbach et al., 2007) and linker-engineered spheroids where the primary 

aggregation between the cells is maintained through a cell-linker, where the linker 

gradually degrades as the cell spheroid grows (Ong et al., 2010). 

1.2 Materials and Methods.  

1.2.1 Materials.  

Ovarian cancer cells (Skov-3), uterine sarcoma cells (MES-SA), drug resistant 

uterine sarcoma cells (MES-SA/Dx5), McCoy’s 5A media, Fetal Bovine Serum (FBS) and 

penicillin/streptomycin were obtained from American Type Culture Collection (ATCC). 

Culture media was prepared by supplementing McCoy’s 5A with 10 % (v/v) FBS and 1 % 

(v/v) penicillin/streptomycin. Matrigel®, an extracellular membrane extract derived from 

a mouse hybridosarcoma, was purchased from BD Biosciences. Doxorubicin 

Hydrochloride (DOX-HCl) was obtained from Watershed Technologies. Histology and 

scanning electron microscopy supplies, such as low melting paraffin, Permount ® 

(mounting medium), hematoxylin, eosin and osmium tetroxide were obtained from 

Electron Microscopy Sciences. Glutaraldehyde was acquired from Sigma Aldrich. 
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1.2.2 Creation of spheroids. 

Spheroids were cultured using the liquid overlay method (Carlsson and Yuhas, 

1984; Yuhas et al., 1977). Ninety-six well plates were prepared for spheroid culture by 

coating with 2.5 % (w/v) agarose gel. Briefly, 0.313 g agarose was dissolved in 12.5 ml 

PBS and stirred on a hot plate at medium speed (~800 r.p.m) until the solution became 

transparent. Then, the solution was sterilized by autoclaving. Each well was coated with 

50 μl agarose gel and the gel was allowed to solidify at room temperature. Agarose coating 

was done freshly before every culture. 

Skov-3, MES-SA/Dx5 and MES-SA cells were maintained in T-25 (25 mm2 growth 

area) cell culture flasks under standard conditions, i.e., 5 % CO2, 37°C and 95 % humidity. 

They were fed with McCoy’s 5 A media as recommended by ATCC. For spheroid 

preparation, cells were washed with DPBS and detached from the surface using trypsin –

EDTA (EDTA concentration: 0.025% (v/v)). Trypsinized cells were centrifuged at 1500 

r.p.m (300 g) for 4 minutes after which the supernatant was discarded and the cell pellet 

was re-suspended in fresh McCoy’s 5A media. Cells were counted using a Neubaeur 

hemocytometer and diluted with McCoy’s 5A media to 25,000 cells per milliliter. Two 

hundred microliters of diluted cell-suspension was placed in each well (5000 cells/well). 

The plates were shaken briefly and incubated under standard conditions (Day = 0). On Day 

3, 5 μl 2.5 % (v/v) Matrigel solution was prepared in ice-cold media and transferred to 

every well. The plates were further incubated. On Day 5, the spheroids were ready for 

performing further tests. All spheroids were used on day 5 unless otherwise specified.  
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1.2.3 Characterization of spheroids  

Histology: Spheroids were embedded in an agarose plug and then fixed in 10% 

formalin for 24 hours. Fixed samples were dehydrated in graded ethanol (EtOH) series 

(70% (v/v) to 100% (v/v) EtOH).  Dehydrated samples were infiltrated with molten 

paraffin at 56°C for 2 hours and embedded into paraffin blocks. Thin sections of thickness 

5-10 μm were obtained using a rotary microtome. Sections were stretched on gelatin coated 

microscope slides and allowed to attach at 50°C for 1 minute.  

Sections were stained with hematoxylin (Electron Microscopy Sciences) for 20 

minutes followed by differentiation in 1% acid alcohol and the contrast of hematoxylin was 

enhanced by a bluing agent (0.2% ammonia). Eosin-staining (Electron Microscopy 

Sciences) was done by immersing the slides in eosin for 2 minutes. Sections were mounted 

using Permount® and were viewed with an Olympus-IX81 microscope.   

Scanning Electron Microscopy: Spheroids were fixed in 2.5% glutaraldehyde and 

post fixed in osmium tetraoxide. Following the same protocol as mentioned above for 

histology, the samples for SEM were dehydrated.  After dehydrating with 100% EtOH, 

spheroids were critically dried using hexadimethyldisilazane on a lysine coated glass 

coverslip. The coverslip with the spheroid was mounted onto SEM stubs using double-

sided carbon tape and sputter coated with gold palladium for 2 minutes under argon 

atmosphere. Samples were observed with a JEOL 1500 –E scanning electron microscope 

operating at an accelerating voltage of 20 Kilovolts. 
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1.2.4 Cytotoxicity assessment under Doxorubicin chemotherapy and adjuvant 

hyperthermia 

The effect of the following treatments was studied in Skov-3 and Dx5 spheroids; 

1) Doxorubicin (DOX), and 2) Combination of Doxorubicin and slow rate Hyperthermia 

(@ 43°C) (DOX+HYP) in a cell culture incubator set to 43°C. For DOX, cell media 

containing 12.5 μM DOX-HCl was prepared and 200 μl was dispensed into each well of a 

96 well plate. Spheroids were transferred into this media (equivalent DOX concentration: 

10 μM) and the plates were incubated under standard conditions (Day 0). Hyperthermia 

was simulated in a cell–culture incubator (CellStar®) that was set to 43°C. Spheroids were 

transferred into DOX-HCl containing media and incubated at 43°C for 1 hour after which, 

they were returned to the 37°C incubator (Day 0). Every 24 hours following Day 0, half of 

the media from each well was replaced with fresh media containing DOX. Spheroid 

volume and the number of live cells were chosen as the measures to assess the spheroid’s 

response to the above mentioned treatments.  

Spheroids were monitored daily after day 0 until day 6 using an Olympus-IX81 

inverted microscope. Images were collected under bright-field and the major and minor 

diameters of the spheroid were measured in ImageJ® software (NIH) using a slight 

modification of procedure suggested by Rodday et.al (Rodday et al., 2011). From the 

measured diameters, volume was determined using the formula in Equation 1 

 
π×

(Minor Diameter2)×(Major Diameter)

6
  (1) 
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To assess the cytotoxicity induced by the above treatments an Alamar Blue assay was 

performed on Skov-3 and MES-SA/Dx5 spheroids on Day 6 according to the 

manufacturer’s instructions. Alamar Blue is a commercially available dye that is routinely 

used to study cell growth and function in mono-layer cultures. Specifically, it measures the 

metabolic activity of cells through the conversion of nonfluorescent resazurin to a highly 

fluorescent form, resorufin (λex: 530 nm; λem: 570 nm) inside the cells.  Cells that are dead 

cannot convert resazurin to resorufin. Fluorescence from resorufin is directly proportional 

to the number of live cells. Spheroids were incubated with Alamar Blue for 10 hours and 

the fluorescence was measured in a Tecan ® microplate reader. The fluorescence values 

were converted to number of cells using a calibration curve (number of cells vs Alamar 

Blue fluorescence) that was obtained in monolayer. 

1.3 Results and Discussion 

1.3.1 Spheroid formation.  

The type of agarose plays a critical role in liquid overlay cultures for spheroid 

formation. In our case, only electrophoretic quality agarose for DNA separation prepared 

in PBS resulted in optimal spheroid2 generation. Using other low grade agarose and gels 

prepared in DI water or McCoy’s 5A media (with/without FBS) did not result in the 

formation of spheroids. Similarly, agarose coating had to be done freshly before every 

spheroid culture. Storing the agarose coated plates at 4°C/Room temperature (23°C) and 

                                                 

2 Optimal spheroid: A dense spherical structure in which individual cell boundaries are 

indistinguishable.  
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using them for spheroid culture or utilizing the same batch of agarose repeatedly for 

multiple cultures did not result in optimal spheroid formation. This is due to the tendency 

of agarose to gradually lose moisture which has been shown to affect spheroid formation 

(Friedrich et al., 2009). Therefore, it is recommended to aliquot the agarose gels after 

preparation and use the aliquots for coating the plates. Alternatively, the gel coated plates 

can be stored in a hermetically sealed chamber, if one is available.  

Physical models, such as the Gompretzian kinetics (bi-phasic) model for tumor 

growth and the Smoluchowski rate equations for self- assembly have been used to explain 

the formation and growth of tumor spheroids (Enmon et al., 2001; Enmon et al., 2002; Olea 

et al., 1994).  In general, spheroid formation in liquid overlay culture progresses through 

the formation of cell clusters followed by the transient redistribution of clusters, 

aggregation and finally the compaction of aggregates. Figure.1 shows different stages of 

spheroid formation from Skov-3 cells. On initial seeding, cells settle down under the 

influence of gravity and form clusters. Clustering is solely dependent on the initial density 

of cell seeding, random cell placement and the cell-cell distance. The aggregation of 

clusters happens due to random collisions (cell-cell, cell-cluster) in the culture as predicted 

by Brownian dynamics3. Furthermore, biologically attractive forces (Froehlich type forces; 

(Rowlands et al., 1981)) that are cell potential dependent and act over short distances (one 

cell distance) have been postulated to play a role in transient redistribution and subsequent 

aggregation. Although, physical forces lead to the initial self-assembly of cells, the final 

                                                 

3 The reader is referred to papers from (Enmon et al., 2002) for more details on physical 

models of spheroid formation 
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stages of spheroid formation, i.e., compaction of aggregates through the secretion of ECM 

proteins, viz collagen, fibronectin and intra-spheroid cell growth, is dictated by the type 

and characteristics of the cells. In our case, MES-SA uterine sarcoma cells did not form 

compact spheroids and only formed loose cell aggregates that dissociated under small shear 

forces (i.e., agitation of culture plates, pipetting inside the well). MES-SA/Dx5 exhibit 

differential expression of 37 proteins compared to MES-SA cells which might explain the 

difference in spheroid formation ability among them (Hsinchu et.al, 2013 (explained in 

detail below).   

 

 

During spheroid formation, cells secrete or regulate proteins such as cytokeratins, 

vimentins (cell motility and contractility), and several cell-cell/cell-ECM adhesion markers 

such as E-cadherins, N-cadherins, and β1-integrins. The upregulation of β1-integrins and 

E-cadherins has been shown to promote spheroid compaction in hepatoma and ovarian 

cancer cell lines that otherwise form loose aggregates (Casey et al., 2001; Lin et al., 2006). 

Figure 1.1 : Stages of Spheroid Formation a) initial clustering, b) reorganization of 

clusters, c) aggregation, d) compaction. Scale bar is 100 μm. Reproduced with 

permission from Pampaloni et.al. 2013.   
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However, the secretion of these markers does not bear any direct relation to compact 

spheroid formation. Spheroid compaction is strongly dependent on the cell and culture 

type. Skov-3 cells cultured in hanging drop cultures did not form spheroids, whereas, they 

formed spheroids when cultured in liquid overlay (Sodek et al., 2009). Furthermore, in a 

study by Lee et al. investigating the differences between the 2-D and 3-D culture of several 

(31) epithelial ovarian cancer cell lines, 70 % of the cells that formed compact spheroids 

(6 of 8, including Skov-3) showed an upregulation in cytokeratin compared to cells in 

monolayers (Lee et al., 2013). Interestingly, the expression of E-cadherin and N-cadherin 

was not found in either Skov-3 spheroids or 2-D cultures. Similarly, upregulation of β1-

integrin through ectopic expression did not result in the compaction of Skov-3 aggregates 

grown in hanging drop culture (Sodek et al., 2009).  

The factors that seem to be fair predictors of spheroid formation are the 

adhesion/invasion properties and the innate ability of the cells to synthesize ECM 

molecules in relation to their culture environment. Cells that formed spheroids synthesized 

ECM in greater amounts compared to cells that did not form spheroids (Lin et al., 2006). 

Moreover, the exogenous addition of ECM components such as collagen and fibronectin 

to the spheroid culture can either deter or promote spheroid formation. This is because 

ECM fibers present sites for cell attachment and growth which leads to spheroid formation 

or increase the distance between cells thereby reducing cell-cell interactions necessary for 

spheroid growth.  In our case, addition of Matrigel® did not alter the spheroid morphology 

but accelerated the spheroid formation in Skov-3 and MES-SA/Dx5 cells. However, MES-

SA cells did not form spheroids despite the addition of Matrigel®.   
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1.3.2 Spheroid characterization. 

Figure 1.2 shows the bright field images (Obj 4X) of Day 5 spheroids formed from 

MES-SA/Dx5 and Skov-3 cells. It is evident that Skov-3 cells form small and compact 

spheroids whereas, MES-SA/Dx5 cells form large spheroids with independent cells visible 

around their circumference (Figure1.2). The volume of MES-SA/Dx5 spheroids was 

0.342±0.012 mm3 (mean ± S.E. of n = 5 spheroids) and that of Skov-3 was 0.083 ± 0.010 

mm3 (mean ± S.E. of n = 5 spheroids).  The large size of MES-SA/Dx5 spheroids compared 

to Skov-3 spheroids might be due to faster proliferation of MES-SA/Dx5 cells (doubling 

half-life, t1/2 = 17 hours) compared to Skov-3 cells (t1/2 = 43 hours). This is supported by 

the results of the Alamar Blue assay which showed that Skov-3 spheroids had a live cell 

count of 26,000 ± 1500 cells (mean ± S.E. of n = 3) and MES-SA/Dx5 spheroids consisted 

of 52,000 ± 3,000 (mean ± S.E. of n = 3).  

 

Figure 1.2 : Brightfield images of spheroids. Images were taken using 4X objective, Skov3 

(left) and Dx-5 (right). Scale bar at the bottom left of images is 200 μm. 
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Scanning electron microscope images reveal striking differences between MES-

SA/Dx5 and Skov-3 spheroids and confirm the inferences drawn from bright-field images. 

The 3-D organization of cells is evident from the SEM images at low magnification. Skov-

3 spheroids form ellipsoid structures with small circular openings on the surface and 

individual cells are indistinguishable due to the dense ECM matrix synthesized by the cells 

(Figure 1.3). Similar morphology due to the secretion of ECM was observed in hepatocyte 

spheroids (Kelm et al., 2003; Peshwa et al., 1996). Alternately, high magnification images 

of MES-SA/Dx5 spheroids show a porous structure and individual cells held together by 

the membrane inter-digitations of the cells (Figure 1.4). Faute et al. also observed similar 

differences in the cellular organization in tumor spheroids formed from Adriamycin 

resistant and Adriamycin sensitive breast cancer cell lines MCF-7 (dit Faute et al., 2002). 

The resistant cell line showed a lack of e-cadherin expression between the cells and the 

spheroids resembled an aggregate of cells held together by the membrane inter-digitations 

on cell membrane. Moreover, studies have shown that as the tumors increase in size, the 

ECM disintegrates due to reduction in collagen fiber thickness. This explains the loose 

association of cells in MES-SA/Dx5 spheroids. Therefore, based on the cellular 

organization, MES-SA/Dx5 spheroids resemble large cell aggregates (LA’s) and Skov-3 

spheroids represent compact/optimal spheroids. 
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Histology sections show a stratified organization of cell layers, i.e., a necrotic core 

surrounded by a dense cuticular layer of proliferating cells (Figure 1.5). Limited molecule 

Figure 1.3: SEM Images of Skov-3 Spheroids show compact organization, 350X 

magnification (left) and 1,900X magnification showing the surface (right)  

Figure 1.4: SEM Images of MES-SA/Dx-5 Spheroids show distinct cell bodies. 1000X 

magnification (left) showing disperse cellular organization and 10,000X magnification 

(right) showing the individual arrangement of cells.  Visible perforations on the cell bodies 

may have been due to tissue processing. 
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diffusion results in a significant deprivation of nutrients and oxygen at the core of the 

spheroid. This, coupled with the accumulation of waste products due to cell metabolism, 

results in a necrotic core (Figure 1.5). The availability of nutrients and oxygen at the core, 

with an increase in distance from the periphery, is determined by cell consumption rate and 

the presence of an ECM. The necrotic core is surrounded by a quiescent cell region in 

which cells are metabolically dormant and do not reproduce due to a lack of nutrients. In 

some cases, a large fraction of cells separated from the quiescent region has been shown to 

regain their reproductive ability. In spheroids, these cells can be recruited for repopulating 

the proliferating cells at the spheroid periphery.  

 

Steep gradients of oxygen and pH, which are in agreement with theoretical 

calculations, have been found in spheroids through microelectrode measurements. 

Experiments in HT29 colon carcinoma spheroids (~1 mm in diameter) showed that the 

Figure 1.5: Histological analysis of Skov-3 (left) and MES-SA/Dx-5 (right) spheroids 

show the stratified organization of the spheroids. Spheroids show a dense cuticular layer 

(outside) followed by a lighter core containing necrotic cells (lighter appearance and 

shrunk cell nuclei). The empty spaces in the images are due to the loss in sample during 

histological processing. 
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oxygen partial pressure (pO2) decreased by 70 % at a distance of 500 μm from the spheroid 

periphery and pO2 levels were at 0 mmHg at the core (Acker et al., 1987; Carlsson and 

Acker, 1988; Sutherland, 1988). The accumulation of metabolites inside the spheroid 

results in regions of lower pH, which can vary between 5.8 and 7.4 depending on the type 

of spheroid. The structural characteristics and resulting gradients of O2 and pH have 

important implications on the therapeutic response of cells in spheroids to DOX and 

adjuvant hyperthermia treatment. 

1.3.3 Response to Doxorubicin and adjuvant hyperthermia treatment.  

The cytotoxic effect of DOX and DOX + HYP treatment was evident after day 1 

from the dissociation of cells at the spheroid periphery (Figure 1.6). The dissociation of 

cells occurred due to the loss of cell-cell contacts and cell-ECM contacts caused by cell 

death. That the dissociated cells were dead was confirmed by that fact that seeding them in 

a separate 96 well plate did not result in colony formation or cell- attachment and growth. 

The reduction in cell viability was also later confirmed using the Alamar Blue assay. At 

the 6th day, a spheroid with reduced volume is visible (Figure 1.6). A consistent decrease 

of volume in Skov-3 spheroids was observed after day 2 in both DOX and DOX+HYP 

groups while the volume increased in the control group. This response is slower than that 

observed in monolayer cultures and is probably due to the relatively slow diffusion of DOX 

into the tumor spheroid. Doxorubicin and mitoxantrone bind avidly to cell-DNA and have 

been shown to only slowly penetrate tumor spheroids (Tredan et al., 2007b). On day 6, 

there was no significant difference in the reduction of volumes between DOX and 
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DOX+HYP treatments. A student’s t-test was performed to assess the statistical 

significance.  

 

 

Similarly, MES-SA/DX5 LA’s exhibited a decrease in volume until day 3 of 

treatment, after-which there was a minor increase in their volumes, possibly due to higher 

cell multiplication (Figure 1.7). The control group of MES-SA/Dx5 LA’s also showed a 

decrease in their volume after day 4. This might be due to the rapid depletion of nutrients 

Figure 1.6: DOX+HYP therapy causes cell death at the spheroid periphery. (Top) Skov-3 

control spheroids without any treatment, the growth of the spheroid over time is evident, 

(Bottom) Skov-3 Spheroids under DOX treatment, images show a shrinking spheroid with 

progress of time. Scale bar represents 100 μm. 
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in media owing to their big size and a higher cell number in the aggregate. There was no 

significant difference between the volume decrease in DOX and DOX+HYP groups in 

MES-SA/Dx5. The spheroid cytotoxicity assay showed the presence of viable cells and an 

intact spheroid mass on day 6. These results show that the spheroids might be resistant to 

a combination of DOX and adjuvant hyperthermia. 

 

Figure 1.8: Growth Curves of Skov-3 (left) and MES-SA/Dx5 spheroids show reduction in 

spheroid volume. Data is represented as mean ±stdev of n= 4, * indicates significant 

difference (p<0.05) between control and treatment. The growth ratios were calculated by 

dividing the corresponding day volume by the initial volume of the spheroid before 

treatment. 

Figure 1.7: MES-SA/Dx-5 spheroids under combined DOX + HYP treatment over 6 days. 

Scale bar represents 200 μm. 
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Tumor cells respond to a hypoxic environment by expressing Hypoxia Inducible 

Factor 1 (HIF-1). HIF-1 binds to the DNA sequence 5’-RCGTG-3’ and up-regulates genes 

for vascular endothelial growth factor (VEGF) and angiopoetin-2, precursors for 

promoting angiogenesis. Rice et al. have shown that in Chinese hamster ovary cells 

subjected to hypoxia, DNA synthesis is inhibited. However, when the cells are returned to 

normoxic conditions, certain populations of cells (nearly 60%) show over-replication of 

DNA that is responsible for amplification of dihydrofolate reductase gene and subsequent 

resistance to the drug methotrexate. Similarly, these authors have shown that the 

combination of methotrexate and doxorubicin therapy in Chinese hamster ovary cells under 

hypoxia resulted in a 10-100-fold increase in the frequency of drug resistance when 

Figure 1.8:Alamar blue assay results showing the presence of viable cells at the end of 

treatment i.e., day 6. P<0.05 indicates significant difference between the control and 

different treatments. No significance was found for mean cell viability (n = 6) between 

DOX and DOX +HYP treatment. 
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compared to independent treatments. Methotrexate resistance was mediated by 

amplification of the dihydrofolate reductase gene and doxorubicin resistance was a result 

of up-regulation of P-glycoprotein (Rice et al., 1986; Rice et al., 1987). In a study by 

Comerford et al. PCR analysis confirmed a 7-fold increase in MDR in epithelial cells under 

hypoxia. The studies mentioned above confirm the role of hypoxia in inducing drug 

resistance.  In a hypoxic environment, glucose metabolism by the glycolytic pyruvate 

pathway produces lactate, and as a result, the extracellular pH in most tumors tends to be 

acidic (Dang and Semenza, 1999; Tredan et al., 2007b).  However, the intracellular pH is 

maintained at a normal level (pH 7.2-7.4). Weakly acidic drugs can permeate the cells in 

their uncharged state, which upon entry into the cells become protonated at neutral pH and 

get trapped in cellular organelles. This leads to higher intracellular accumulation of weakly 

acidic drugs (Tredan et al., 2007b). The acidic environment is a hindrance to weakly basic 

drugs such as doxorubicin. Gerweck et al. have shown that lowering the tumor pH (by ~ 

0.2) by infusion of glucose lead to a 2-fold increase in intracellular accumulation of 

chloroambucil (weak acid) and a 2-fold decrease in accumulation of doxorubicin (weak 

base). Tumors treated with doxorubicin and chloroambucil under glucose infusion showed 

opposite effects in growth delays (Gerweck et al., 2006)4. In our case, from the spheroid 

organization, it is apparent that gradients of Oxygen as well as pH may exist in Skov-3 and 

MES-SA/Dx5 spheroids. Furthermore, we can speculate that these gradients will be steeper 

in Skov-3 spheroids compared to MES-SA/Dx5 LA’s.  Therefore, the acidic environment 

                                                 

4 For a detailed analysis of drugs and their response to extracellular pH the reader 

is referred to Raghunand et al (Mahoney et al., 2003; Raghunand et al., 2003; Raghunand 

et al., 1999).  
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inside the Skov-3 spheroid will be a hindrance to the transport and cellular uptake of 

Doxorubicin. In MES-SA/Dx5 LAs the amplified P-gp mediated drug resistance owing to 

a hypoxic environment inside the LA (explained below) may also contribute to 

Doxorubicin resistance. Further studies are needed to confirm this.    

Tumors have higher uptake of glucose compared to normal tissues due to the up-

regulation of glucose hexokinase-2. This leads to higher glucose metabolism and glucose 

transport flux in tumors (Dang and Semenza, 1999). Glucose depletion due to nutrient 

deprivation leads to an increase in p-glycoprotein expression (Ledoux et al., 2003; Yun et 

al., 1995). Studies by Yun et al. (Yun et al., 1995) have shown that glucose regulated 

stresses confers drug resistance in human cancer cells by down-regulation of DNA topo2. 

In addition to the above-mentioned mechanisms, tight aggregation of cells in spheroids 

gives rise to new (de-novo) forms of drug resistance as a result of ‘contact effect’ 

(Sutherland, 1988). These mechanisms include: alterations in drug targets, reduction in 

cancer cell apoptosis, decrease in cell proliferation and an integrin signaling cascade. 

The proliferating rim of the spheroids is a primary barrier that hinders drug 

diffusion towards the core and since cells in this region are metabolically active they 

rapidly consume the drug, which explains cell detachment due to cell death at the 

periphery. The effect of this physical barrier is likely to be more pronounced in Skov-3 

spheroids than in MES-SA/Dx5 due to their compact aggregation. The slow transport of 

DNA binding drugs like DOX coupled with the dense ECM of Skov-3 spheroids, results 

in an inhomogeneous distribution of DOX in the interior regions, thereby, mitigating the 

augmentation of its cytotoxic effect with adjuvant hyperthermia. Treatment with 
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topoisomerase II inhibitors has been shown to increase thermotolerance and might 

contribute towards resistance to combinational therapy.  

Early studies in spheroids grown from EMT6 (mice mammary carcinoma; 

Sutherland et.al) and V79 (Chinese hamster ovary; Olive et al.) illustrate different 

mechanisms of contact resistance (Olive and Durand, 1994; Sutherland, 1988). These 

include changes in cell cycle and chromatin packaging, differences in cell shape and 

changes in repair related gene expressions. Chromatin packaging can play an important 

role in DNA damage and repair by influencing the nature of DNA lesions caused in 

response to therapy. DNA extraction and denaturation studies showed that DNA in 

spheroids is more resistant to unwinding than cells in monolayers. Therefore, the regions 

of DNA that are sensitive to respective therapeutic moiety/modality may not be targeted 

and denaturation of DNA may not occur due to tight packaging of the chromatin. Cells in 

spheroids assume a different shape than those in monolayers.The changes in microtubule 

arrangement may increase resistance to heat by changing the membrane properties and also 

influences the uptake configuration of a respective cell. Cells treated with microtubule 

inhibitors showed increased etoposide (topoisomerase II inhibitor) accumulation and DNA 

damage (Yalowich, 1987).   Monolayer cells grown in spheroid cultures also exhibit fast 

DNA repair (G2 cycle) to damage induced by ionizing radiation. Furthermore, EMT6 

mouse mammary carcinoma cells grown as compact spheroids showed an inability to arrest 

in the G2/m5 phase of cell division on exposure to cell mitosis inhibitor 4-

                                                 
5 G2/M is the final stage in cell cycle where damages to DNA replicated in the S-phase are 

verified and is followed by the prophase of cell mitotic division. 
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hydroperoxycyclophosphamide (4-HC). This was not observed in monolayer cultures 

which showed G2/m arrest followed by cell death. The degree of compaction also plays an 

important role in DNA repair. Significant differences in DNA replication and cell cycles 

were observed by Croix et al. between loose spheroids and compact spheroids.  These 

observations explain the trends seen for the growth curves under DOX therapy in Skov-3 

spheroids and MES-SA/Dx5 LAs. DOX is a DNA intercalating agent which arrests cell 

replication via topioisomerase II inhibition in the late S-phase of cell division that 

immediately precedes the G2 cycle. Additionally, the tight chromatin packaging may not 

present sites on the DNA for DOX binding. This coupled with the inability of spheroids to 

arrest in the G2/m phase explains the contact induced drug resistance to DOX. In order to 

resolve contact mediated resistance, the cellular organization of spheroids needs to be 

disrupted. This can be done via the use of collagenase that can disrupt the tumor ECM, cell 

penetrating peptides and or via external stimuli such as (ultrasound) 

 

In MES-SA/Dx5 LA’s, expression of DOX and heat resistance related genes also 

play an important role towards resistance to DOX and hyperthermia. MDR mediated by P-

glycoprotein and an increase in thermotolerance and upregulation of Heat Shock Protein – 

70 may be the determinants of observed resistance to DOX+HYP treatment. Increase is P-

gp expression was observed in the quiescent regions of DU-145 prostate cancer spheroids 

which resulted in the exclusion of DOX from the cells in the spheroid and reduced uptake 

of DOX in the deeper regions of spheroid. Incubation with MDR reversal agents such as 

verapamil increased the DOX accumulation in spheroids (Wartenberg et al., 1998). Since 

quiescent cell regions are developed in relation to spheroid size, large tumor spheroids are 
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more likely to exhibit an increase in P-gp resistance compared to small tumor spheroids. 

Studies in DU-145 prostate cancer spheroids by Wartenberg et al. have found that 

upregulation of P-gp expression under hyperthermia is not correlated with a corresponding 

increase in HSP expression. Instead, hyperthermia stabilized the HIF-1α expression which 

increased its production and increased the P-gp expression. Moreover, high levels of 

reactive oxygen species (ROS) produced during DOX treatment and hyperthermia 

increased the P-gp expression (Wartenberg et al., 1998; Wartenberg et al., 2005). An 

increase in production of HIF-1α and ROS under incubator hyperthermia in MES-SA/Dx5 

monolayers has been verified in our laboratory by Lei et al. (Lei et al., 2014).  A minor 

increase in MES-SA/Dx5 LA’s after day 3 suggests an increase in cell multiplication to 

balance cell death caused by DOX and DOX+HYP. It is possible that cells from quiescent 

layers are recruited to repopulate the dead cell population. This kinetic change in cell 

multiplication was observed by Olive et al. in DOX treated spheroids (Olive and Durand, 

1994).  The above results illustrate the multifactorial nature of drug resistance (genetic & 

kinetic) which present a different perspective to study the tumor interaction to therapy that 

is otherwise not achieved by mono-layer cultures. The results from spheroid growth and 

cytotoxicity to DOX and DOX+HYP also confirm the first hypothesis that spheroids are 

resistant to combination of DOX and slow rate adjuvant hyperthermia. Previous 

experiments in MES-SA/Dx5 showed that the combination of DOX and incubator 

hyperthermia resulted in significantly more cell killing (80 % growth inhibition) compared 

to DOX therapy alone (40 % growth inhibition). The results above show that the successive 

application of DOX and adjuvant hyperthermia may not be successful in achieving 

increased cell killing than DOX therapy alone in multicellular spheroids. Therefore, in 
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order to achieve the additive advantage of both the therapies in tumor spheroids the drug 

resistance mechanisms need to be circumvented. P-gp MDR can be circumvented by 

encapsulating the drug in nanoparticles and the drug can be released in a controlled manner 

from the nanoparticles. Controlled release of drug may also have an indirect advantage in 

avoiding the drug tolerance induced by the expression of HSP70. Studies have shown that 

HSP70 levels in bovine aortic endothelial cells peaked 2 hours after the removal of heat 

exposure (30 mins at 43°C) followed by a gradual decline to base level and another second 

peak at 12 hours (Wang et al., 2003; Wang et al., 2008). Hence, if the expression kinetics 

of HSP70 is known then drug release from the nanoparticles can be controlled to avoid 

thermal and drug tolerance to achieve the additive effect of both therapies on the cancer 

cell. Another strategy to avoid the expression of HSP70 is by using short duration rapid 

rate hyperthermia. This can be easily achieved by using NIR dyes such as IR820 and ICG 

that generate heat on exposure to NIR laser. However, owing to the short plasma life and 

rapid degradation of these dyes in-vivo they have to be delivered shielded in nanoparticles.  

 

1.4 Is slow diffusion a hindrance to therapy? 

The above discussion on limited penetration and drug resistance may seem to 

present an overly complex challenge for achieving the benefits of DOX and adjuvant 

hyperthermia. However, slow diffusion provides another perspective for tumor therapy. If 

the drug is slow to diffuse inward, it will also be slow to diffuse outward and coupled with 

the active exclusion of drugs from cells will increase the intratumoral concentration of 

drug. One of the strategies to increase efficacy of chemotherapeutics is to effectively 

deliver the drug (without degradation or in-vivo clearance) by exploiting the poorly 
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developed vasculature of tumors and increase the intratumoral concentration of drug. At 

the same time, drug resistance should also be circumvented. This can be effectively done 

without the systemic toxicity associated with the free form of drugs by encapsulating them 

in nano carriers. Once the nanoparticles reach the tumor site or penetrate the tumor, other 

aspects of therapy, like the dosage and timing of hyperthermia, can be planned to achieve 

the combined effect of the therapies (drug and adjuvant hyperthermia) on cell killing. 

Hyperthermia has been shown to enhance drug delivery to tumors by increasing local blood 

pressure and promoting drug extravasation at the hyperthermia site. For drug delivery, 

hyperthermia is preferable to tumor ablation as ablation leads to collapse of blood vessels 

and impedes drug delivery. Although there are several methods of hyperthermia delivery, 

NIR Dyes (600-1000 nm wavelength) such as Indocyanine Green and IR820 that generate 

heat rapidly on exposure to laser energy can be used to deliver localized hyperthermia at 

the tumor site. Combined with the fluorescence of these dyes in the NIR window where 

absorbance and scattering by in-vivo tissues is minimal, ICG and IR820 serve as ideal 

probes for image guided chemotherapy with adjuvant hyperthermia. However, their direct 

administration in-vivo is challenged by a lack of stability, i.e., rapid degradation and fast 

clearance from the plasma (Fernandez-Fernandez et al., 2012; Saxena et al., 2004).  These 

shortcomings can be overcome by delivering them entrapped in a nano carrier. However, 

nanoparticles also present the challenge of limited penetration into the tumor tissue owing 

to bigger size compared to free drugs or dyes.   
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1.5 Limitations of spheroid models 

Although spheroids replicate the morphological and functional features of tumor 

nodules, solid tumors and micro metastases, the static culture system adapted to culture the 

spheroids is disadvantageous and thus dynamic conditions are needed to produce well-

defined models. In-vivo, tumors have multiple cell types present, such as fibroblasts, 

cancer stem cells, etc. Therefore, using a single cell type may not faithfully represent the 

functional complexity of in-vivo tumors. The co-culture of different cells into tumor 

spheroids and the creation of angiogenic (microvascular) networks in tumor spheroids are 

in their nascent stages with progress moving rapidly towards the co-culture of tumor cells 

with blood vessel endothelial cells, microfluidics and synthetic microvascular networks. 

Static culture methods for spheroids (liquid overlay, hanging drop) are not suitable for 

simulating dynamic conditions of macromolecule delivery, such as convection and 

extravasation from vasculature. 

Techniques for assessing the cytotoxicity of a drug in tumor spheroids have not 

been standardized. Cytotoxicity assays, such as lactate dehydrogenase (LDH), 3-(4, 5-

dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT), clonogenic methods and 

Alamar Blue applicable to cells in suspension culture have been used for spheroids. It 

should be noted that the use of cytotoxicity assays such as Alamar Blue and Cell Titer blue 

in spheroids should be considered with a careful optimization of time of incubation and 

spheroid type. Waltzl et al. showed that compact spheroids pose a barrier to efficient 

penetration of Cell Titer Blue which affects the dye availability, cell uptake and subsequent 

reduction. Disruption of cell-cell contacts by trypsinization or by addition of drugs 
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increased the reduction of the Alamar Blue (Walzl et al., 2014). Other techniques such as 

acid phosphatase assay have been mentioned in the literature (Friedrich et al., 2007). 

However, standardized methods are still lacking and need development.  

 The extent of drug penetration into the spheroid can be observed in real time 

through confocal and two photon microscopy; however, the resolution of confocal imaging 

is challenging because of light absorption and scattering by the spheroid tissue. Image 

correction techniques (for scattering and laser power attenuation) for spheroids imaged 

under confocal microscopy have been described by Wartenberg et al. (Wartenberg et al., 

2005). The development of confocal microscopes with smaller pinholes and sophisticated 

optics has led to an improvement in spheroid imaging making tumor spheroids a very 

valuable tool for positive/negative drug selection before in-vivo trials are undertaken. 

1.6 Conclusions. 

In this chapter, a 3-dimensional spheroid model was developed with an Ovarian carcinoma 

(Skov3) and uterine sarcoma (MES-SA/Dx5) cell lines. Both spheroids showed 3-

dimensional and stratified organization with a necrotic core (Figure 1.2 & Figure 1.5). 

Skov-3 spheroids had a mean volume of 0.083 mm3 and MES-SA/Dx5 aggregates had a 

mean volume of 0.342 mm3. Scanning electron microscopy showed marked difference 

between the structures of Skov3 and MES-SA/Dx5 spheroids (Figure 1.3 & Figure 1.4). 

Exposure to DOX with adjuvant hyperthermia (at 43°C for 1 hour) showed cell dissociation 

from the spheroid periphery (Figure 1.6). However, the combination did not result in 

significant enhancement in cell cytotoxicity compared to just DOX therapy alone 

illustrating the resistance of tumor spheroids to the combination treatment (Figure 1.8).  
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Chapter 2 

2 Background. 

 2.1 Macromolecule transport in tumor tissues. 

Tumors can be broadly classified into two types based on their degree of 

vascularity, 1) vascular tumors, which have a well-developed blood supply serving all 

tumor regions and 2) avascular tumors which have poorly developed or no blood supply to 

them. Nutrients, drugs and other macromolecules are transported via convective flow of 

blood to a tumor site where they extravasate into tumor interstitium from the discontinuous 

and wide fenestrations of poorly developed blood capillaries.  Upon extravasation, 

macromolecules depend on convective and diffusive forces to further penetrate into tumor 

tissue. However, unlike normal tissues, tumor vasculature is often poorly developed and 

lacks an efficient lymphatic drainage system. This leads to higher interstitial pressure and 

oncotic pressure in tumors compared to well vascularized tissues. Elevated interstitial 

pressure impedes extravasation of fluid and macromolecules into the tumor interstitium. 

Increase in tumor oncotic pressure due to elevated levels of endogenous plasma proteins 

results in reduced oncotic flow. Hence, in tumors with poorly developed vasculature, 

diffusion is the dominant mode of transport to deliver macromolecules into the tumor tissue 

(Jain and Stylianopoulos, 2010; Minchinton and Tannock, 2006; Jain, 1999). 

The flux for a diffusing macromolecule is determined by its diffusion coefficient 

(units: meter2/second) and its concentration gradient in the diffusing medium (in this case 

the tumor). Macromolecules of large size and high molecular weight have lower diffusion 
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coefficients and hence diffuse slower compared to small size molecules6. Dreher et al. 

showed that dextran’s of medium molecular weight (40-70 kDa) penetrated more 

efficiently into tumor tissue compared to dextrans of high size (3 MDa) (Dreher et al., 

2006). In tumors, however, the diffusion coefficient is further dependent on available 

fraction of fluid space (porosity) to diffuse and the binding affinity of macromolecules with 

tumor cells and extracellular components. Tumors with high packing density (low porosity) 

of cells offer more resistance to diffusion compared to tumors with low packing density 

(high porosity). Similarly, molecules with high binding affinity to tumor cells or 

components of ECM diffuse slowly into the tissue.  The charged molecules of ECM, viz 

collagen (negative charge) and glycosaminoglycan’s, hyaluronic acid (positive charge) 

lead to electrostatic interactions with the macromolecules that can also affect 

macromolecule diffusion. Interestingly, P-gp mediated drug resistance has also been shown 

to affect macromolecule diffusion. This was shown by Tunngal et al. using multicellular 

constructs (MCC), in which diffusion of P-gp substrates (doxorubicin) was enhanced 

through P-gp positive MCC’s, whereas doxorubicin diffusion was hindered when P-gp 

inhibitors were used to counter MDR (Tunggal et al., 2000).  

Limited diffusion of oxygen causes hypoxia and regions with low glucose 

availability and low pH due to poor nutrient transport as discussed in detail in chapter 1. 

Thus, these regions show altered uptake and corresponding response to respective 

molecules. Therefore, in order to successfully study and predict the delivery of 

macromolecules to a tumor, all of the aforementioned factors should be considered. 

                                                 

6 The diffusion coefficient is inversely related to size as per the Stokes Einstein relationship 
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Although, 2-D cultures provide valuable information regarding macromolecule uptake and 

function, they cannot satisfactorily recreate the complex conditions of the tumor. The 

barrier to penetration of macromolecules and the multi-factorial nature of drug resistance 

conferred by the tumor microenvironment remains a great challenge to the delivery of 

drugs and ultimately to the efficacy of chemotherapy. Hence, models that reflect the 

functional and structural complexity of tumors are needed.   

2.2 Mathematical description of transport in tumor spheroids7.  

The definite geometrical properties of spheroids (circular and ellipsoidal) and 

symmetry are advantageous for developing a mathematical model to predict 

macromolecule transport based on spheroid (porosity, cell uptake) and macromolecule 

properties (size, charge, surface modifications). Mathematical models are cost efficient in 

terms of finding combinations of spheroid and macromolecule properties that could result 

in the optimal distribution of macromolecules by simulating a wide range of cases, instead 

of conducting independent experiments for each case. This view has led to the formulation 

of an Advection – Reaction (AR) model for spheroid transport. The first model was 

reported by Weinstein et al. for studying penetration of antibodies, antibody fragments and 

free drug moieties (Graff and Wittrup, 2003; Weinstein et al., 1987). Predictions of 

antibody transport from this model have been validated in experiments from various groups 

(Thurber and Wittrup, 2008).  The basic mathematical framework presented below (Eq (2)) 

is also applicable to model transport of moieties larger than antibodies, viz nanoparticles.   

                                                 

7 Table describing all model parameters is given in Appendix A. 
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Equation (2) is the general form of Fick’s second law of diffusion in spherical coordinates 

that relates the rate of change of concentration C (M; molar concentration) in the spheroid 

with change of flux as a result of a concentration gradient. This rate is determined by the 

porosity, effective diffusion coefficient Deff (m2/s) and a reaction component governed by 

association (ka;M-1s-1) and dissociation (kd;s-1) rate constants. Porosity (ε) is a 

dimensionless variable that is defined as the fraction of void volume to total volume. For a 

porous medium (spheroid) immersed in liquid the void volume is filled with fluid and acts 

as diffusing medium for macromolecules (Fournier, 2011; Truskey et al., 2004).  

The ideal diffusion coefficient of a molecule (D0) is determined from its size using 

the Stokes – Einstein relation. However, D0 is not sufficient to describe molecule diffusion 

in complex media. D0 is modified to the effective diffusion coefficient (Deff) that accounts 

for available volume fraction for diffusion and hydrodynamic interactions between solutes 

and solid matrix (Eq (3)).  

 
Deff = D0

L(λ)

Fτ(ε)
 (3) 

In equation (3), λ is defined as the ratio of particle radius (rp) to pore radius (r), as λ → 0 

solute pore interactions can be ignored. L(λ) accounts for the hydrodynamic and steric 

reduction of diffusion in a pore, for λ < 0.4 L(λ) is represented by (Eq (5)). F is the shape 

factor, τ(ε) represents the tortuosity, i.e., increased path length between two points in a 
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porous medium that is measured by the distance between the points through connected 

pores (Eq (5)) (Truskey et al., 2004).  

 L(λ)=(1-λ)2(1-2.1044λ+2.089λ
3
-0.984λ

5
)  (4) 

  1

τ(ε)
=1-

2

3
(1+ε)(1-ε)

2
3  (5) 

Equations (3), (4), and (5) describe the physical parameters that influence the transport of 

molecules in a porous medium. Additionally, solutes can bind to cell membranes and also 

be internalized by the cells. Therefore, the total concentration of solute in a spheroid is the 

sum of solute in fluid phase (C), solute bound to cell membranes (Cb) and solute 

internalized by the cells (Ci) (Eq (6)). 

 Ctot=C+Cb+Ci  (6) 

It is assumed that cells do not migrate and that binding sites on cells are recycled at a 

constant rate. Hence, concentration of binding sites (Cbs) is solely dependent on the 

association and dissociation of solute on the cell membrane (Eq (7)) 

 ∂Cbs

∂t
= -

∂Cb

∂t
= kaCbsC-kdCb-kiCb  (7) 

The bound solute (Cb) is subsequently internalized by cells, exocytosis of solutes (i.e., 

recycling back to the surface) can be neglected here as it is very slow compared to 



52 

 

internalization and does not have any significant or direct contribution to the concentration 

flux.  Rate of internationalization is determined by ki as shown by Equation (8). 

 ∂Ci

∂t
= kiCb  (8) 

Equations (2), (7) and (8) need to be solved simultaneously to obtain total concentration of 

a solute in the spheroid with the following initial and boundary conditions (I.C, B.C) 

I.C: C(0, r) = Ci(0, r) = Cb(0, r) = 0 ; Cbs(0,r) = 
2

π

kββε

α2rpNA
 

B.C: C(t, R) = C0 (Dirichlet Boundary); 
∂C

∂r
(t, 0) = 0 (Neumann Boundary condition based 

on spherical symmetry). 

The available binding sites (Cbs) for the cells is affected by the porosity (ε), 

available binding site fraction (β)  and the surface area of a nanoparticle (a) relative to pore 

radius (rp) (Goodman et.al.2007). Values of physical parameters such as porosity for 

different tumor types are available from the literature, it can also be determined from 

spheroid cross sections using scanning electron microscopy or transmission electron 

microscopy. Particle radius is determined from scanning electron microscopy or through 

dynamic light scattering techniques. Determination of the cell uptake rate constants (ka, kd, 

ki) and binding sites require independent experiments since each cell type has different 

membrane and uptake properties.  



53 

 

2.3 Mathematical models of cell uptake kinetics.  

The uptake of macromolecules by cells happens via passive diffusion or through 

energy dependent endocytosis. For macromolecules with size greater than 5 nm, 

endocytosis is the mode of uptake. Endocytosis happens via absorption of molecules on 

clathirin or caveolae coated pits on the cell membrane led by membrane invagination, 

wrapping and subsequent “pinching” of the clathirin/caveolae vesicles into the cell.  The 

uptake of ligands targeted specifically to receptors on cells happens via receptor mediated 

endocytosis. Two different formulations have been widely used to model molecule uptake 

into cells; 1) based on adsorption kinetics (Langmuir kinetics) and 2) based on 

thermodynamics of membrane wrapping (energy formulation).  

2.3.1 Langmuir kinetics  

Langmuir kinetics assumes the cell surface as a Langmuir membrane with finite 

capacity for binding molecules (N0) (Wilhelm et al., 2003). The number/mass of particles 

adsorbed at any time on the cell surface is proportional to the number of particles in 

extracellular medium (Next) and the number of particles that can still bind to the cell surface 

(N0-N(t)). The extracellular medium acts as a reservoir that is assumed to be a non-

depleting source (constant) of molecules at the boundary of the tumor. This is a valid 

assumption since the number of molecules is very high compared to the number of cells at 

any time. The number of molecules desorbing from the surface is proportional to the 

absorbed molecules (N(t)). The proportionality constants are specified by association (ka; 

M-1s-1) and dissociation (kd; s-1) rate constants. Therefore, rate of change number of 

molecules on cell surface is mathematically expressed by Eq (9) 
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 dN(t)

dt
= kaNext(N0-N(t))-kdN(t)  (9) 

A fraction of adsorbed particles is internalized at a rate ki by the cells through endocytosis 

in equation (10). The internalized particles are also actively recycled back to the cell 

membrane at an externalization rate, krec. 

      dNi(t)

dt
= kiN(t)-krecNi(t)  (10) 

Equations (9) and (10) are solved simultaneously using the following initial conditions N(t) 

= 0; Ni(t) = 0 at t = 0. The total concentration of solute present in a cell is the sum of N(t) 

(mass adsorbed on the cell membrane) and Ni(t) (mass internalized by the cell).  

2.3.2 Determination of cell uptake constants using Langmuir kinetics.  

The Langmuir kinetic model has been widely used to fit experimental data of cell 

uptake in order to estimate the rate constants of cell uptake. However, the model cannot be 

used directly to independently model N(t) and Ni(t) since this information is not often 

readily available from cell experiments. The information available on total cell 

concentration is the sum of N(t) and Ni(t). Therefore, additional experiments that make 

some a priori assumptions regarding cell uptake or specialized techniques are necessary to 

explicitly extract N(t) and Ni(t). Conventionally, to estimate membrane concentration, cells 

are incubated with solute of interest at 4°C where the internalization and externalization 

processes are assumed to be dormant (i.e., ki and krec = 0). The measured concentration is 

fitted to equations (9) and (10) using a non-linear least squares method (example: 
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Levenberg-Marquadt) to obtain ka and kd. The uptake experiments are repeated at 37°C and 

the information on ka and kd obtained at 4°C is used to estimate ki and krec. It has been 

mentioned above that association and dissociation rate constants are strongly dependent on 

temperature and hence using ka and kd obtained at different temperatures will lead to an 

inaccurate representation of uptake kinetics. Furthermore, it has been shown that small 

nanoparticles enter into the cells even at 4°C via energy independent pathways (Gottstein 

et al., 2013). 

Different experimental techniques have been reported in the literature to extract 

explicit information regarding N(t) and Ni(t). These are fluorescence quenching and 

chemical etching of particles adsorbed on the cell membrane. The fluorescence of adsorbed 

particles is quenched using agents such as trypan blue and the fluorescence of internalized 

particles is measured to obtain Ni(t). With improvements in confocal technology, particle 

tracking and imaging combined with fluorescent cytometry has been used to gather explicit 

information on N(t) and Ni(t). Jin et al. used a single particle tracking method to track 

carbon nanotube trajectories to calculate endocytosis and exocytosis rates in NIH 3T3 cells 

(Jin et al., 2009). Gottstein et al. developed a generic method for estimating particle kinetics 

by mathematically integrating the fluorescence obtained from confocal microscopy with 

fluorescence cytometry (Gottstein et al., 2013). The experimental technique and an 

associated mathematical model was used to study the effect of different surface 

modifications on the uptake of vesosomes, polystyrene and iron oxide nanoparticles in 

murine macrophages. Cell uptake kinetics are long term events and the studies may extend 

for 24 hours. This creates the need for live cell culture microscope chambers and other 
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specialized equipment for the constant delivery of gas and culture media during imaging. 

Advanced optics and software for processing the obtained images and particle tracking are 

also required, which may not be readily available. Additionally, fluorescent measurements 

of nanoparticles are severely affected by measurement artefacts that arise due to premature 

leakage of fluorescent agents from the particles. These artefacts may be reduced by 

covalent conjugation of dye with particles or pre-washing the particles before incubation 

with cells. However, direct estimation of particle material inside the cell (gold, silver, iron 

etc.) is preferable when dye leakage is a concern in modeling particle uptake.  

Cho et al. have recently shown that gold nanoparticles adsorbed on the surface of a 

cell can be etched away using a potassium iodide (KI) solution to estimate internalized 

fraction of the gold nanoparticles (Cho et al., 2009). However, this technique requires the 

optimization of various parameters, such as incubation time with KI, and concentration of 

KI required for complete etching of particles adhered to the cell membrane. These 

parameters are specific for each cell and particle type (Cho et al., 2009). From the above 

literature studies it is clear that there is a need for a generic, robust technique that can 

estimate particle uptake parameters from total measured concentration of particles without 

the need for additional experiments that are specific to cell and particle type. Inverse 

estimation approach is one such technique that can be used to predict a large number of 

parameters (based on a physical phenomenon) from experimental data. 

2.4 Inverse estimation 

An inverse problem is defined as the estimation of unknown parameters that appear 

in a mathematical formulation of a physical system (cell uptake, heat generation etc.) by 
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observing the system’s response(Costa et al., 2015).  If equations (9) and (10) and are 

treated as a direct, or forward problem, then the values of ka, kd, ki and krec are known and 

the differential equations can be solved, based on a set of initial conditions, to study the 

time evolution of cell uptake. Alternatively, an inverse formulation uses the information 

on Ntot(t) available from experiments to recover the cell uptake parameters (Orlande et al., 

2011; Orlande et al., 2012; Orlande et al., 2014). This set of parameters are denoted by a 

vector.  

 PT≡[P1,P2…Pn]  (11) 

In equation (11), n denotes the number of parameters. The experimental measurement of 

response or output of a physical system is denoted in vector form by equation (12). 

 Ntot
T =[Ntot

1 ,Ntot
2 ,…Ntot

i ]  (12) 

where Ntot
i =  Ntot(ti), i = 1,2, … . . I. 

The common approach to solve an inverse problem is to estimate the parameter set PT with 

a given set of experimental measurements Ntot(ti) is by maximizing the likelihood 

probability density function (pdf) or by minimizing the exponent of likelihood pdf 

(equation (13)) (Calvetti and Somersalo, 2007; Kaipio and Somersalo, 2004).  

 
π(Ntot

T |PT)= (2π)
-I/2

|W|
1/2

exp {-
1

2
[NTot-VM(P)]TW-1[NTot-VM(P)]}  (13) 

VM(P) is the set of responses generated by the system (forward problem) for a given set of 

P. The likelihood pdf specifies the relative probability of different measurement outcomes 
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Ntot with a fixed P. Equation (13) is formulated on the assumption that measurement errors 

are Gaussian random variables with zero means and covariance matrix W. Furthermore, it 

is also assumed that the errors in measurements are independent of the parameters P. The 

likelihood pdf is based on the classic Bayesian Statistics and is not dependent on the 

modeling of prior information regarding the system and related uncertainty about the 

unknown parameters. Instead, the probability distribution models for the measurements 

and unknowns are constructed separately and explicitly.  

Bayes theorem specifies the conditional probability of Ntot occurring given a set of 

parameters P. It serves as a mechanism to combine new information (experimental 

measurements) with previously available information (known as the prior). Furthermore, 

Bayes theorem is a statistical inversion approach based on the following principles, 1) all 

variables occurring in the inverse problem are considered random; 2) the randomness 

describes the degree of information related to their realization, which is coded into the 

likelihood pdf; 3) the solution of the inverse problem is recast in the form of statistical 

inference from the posterior probability density, which is the solution to the Bayes problem. 

Bayes theorem is mathematically stated as. 

 
πposterior(P)= π(P|Ntot)= 

π(P)π(Ntot|P)

π(Ntot)
  (14) 

where, πposterior(P) or π(P|Ntot) is the posterior distribution of parameters and is 

interpreted as the conditional probability of P occurring for a given set of measurements 

Ntot. π(P) is the prior probability distribution of the parameter set, π(Ntot|P) is the 
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maximum likelihood function and π(Ntot) is the marginal probability density of 

measurements.  

The solution of Bayes theorem predicts the posterior distributions (Equation (14)) that 

are sampled using Markov Chain Monte Carlo methods (MCMC). The most widely used 

algorithm to implement the MCMC method is the Metropolis-Hastings method (Gilks, 

2005). The Metropolis-Hastings (MH) algorithm is implemented by choosing a sample 

distribution p (P*, P(t-1)) which is used to draw a new candidate sampling P* given the 

current state of Markov chain P(t-1). Once the proposal distribution is selected, the MH 

algorithm is repeated as following:  

1) Sample the proposal distribution based on the current state of the Markov Chain.  

2) Calculate the acceptance factor  

 

α=min {1,
π(P*|Ntot)p(P

(t-1)
,P*)

π(P(t-1)|Ntot)p(P*,P
(t-1)

)
}   (15) 

3) Generate a random variable U that is uniformly distributed on the interval 0 to 1.  

4) If U ≤ α, then set P(t) = P*, else set P(t)
 = P(t-1) 

5) Return to step 1 and repeat until convergence. 

 

The above algorithm generates a sequence of posterior distribution and the inference on 

this distribution is obtained from the inference of samples {P (1), P (2),…. P(i)}. However, a 

certain number of distributions have to be discarded before the Markov Chain reaches 

equilibrium (known as the burn in period).  
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2.5 Silica nanoparticles as model nanoparticles for cell uptake.  

Inorganic nanoparticles made from silver, silica and gold offer advantages such as 

1) control over size and surface properties, and 2) ease of loading with various fluorescent 

agents (Zhao et al., 2004). Silica nanoparticles were chosen for our studies since silver and 

gold nanoparticles flocculate in physiological buffers and are not stable against 

aggregation. Aggregation increases effective particle diameter and induces high 

experimental variability that is often difficult to model without explicit information on its 

dynamics. Moreover, silver particles induce cell toxicity due to leaching of silver ions in 

physiological buffers. The advantages of silica nanoparticles over other inorganic 

nanoparticle systems and mechanism of formation is discussed in detail in chapter 3.  

Nanoparticle Preparation: Fluorescent silica nanoparticles were prepared by a slight 

modification of the reverse microemulsion method (Bagwe et al., 2004). Briefly, 1.6 mg 

Fluorescein Isothiocyanate (FITC) was reacted with 20 μl 3-Aminopropyltriethoxysilane 

(APTES) in 1ml ethanol (200 proof) for 6 hours. The ternary emulsion was prepared by 

adding 7.8 ml cyclohexane, 1.6 ml 1-hexanol (co-surfactant), 1.77 ml Triton X-100 

(surfactant), 480 μl De-ionized water (18 MOhms), 100 μl of APTES-FITC mixture and 

100 μl TetraEthylorthoSilicate (silica precursor). The mixture was stirred on a rotor plate 

at 800 r.p.m for 30 minutes after which 65 μl of aqueous ammonia (28 % in water) was 

added. The stirring was allowed to proceed under a nitrogen atmosphere for 48 hours after 

which the nanoparticles were recovered by adding ethanol to the microemulsion. The 

recovered particles were washed 2 times with ethanol and 1 time with NaOH solution 

(8mM) to get rid of the unentrapped dye (FITC) and the surfactant. The final yellow 
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product (FITC-SiNP) was resuspended in 5ml, 8mM NaOH solution using sonication and 

was stored at 4°C until further use.  

FITC-SiNP were modified with Polyethylene Glycol. Methoxy- PEG- Silane 

(mPEGSi) and Carboxy-PEG-Silane (cPEGSi) were dissolved in water at 5 mg/ml and 

used in for pegylation of the nanoparticle surface. Nanoparticle suspension (2.5 ml) was 

mixed with 10 ml DI water containing 50 µl aqueous ammonia and sonicated for 5 minutes. 

This was followed by the addition of 15 μl of TEOS and 1 ml of PEG solution. The mixture 

was vigorously stirred at 60°C for 15 hours. The particles were washed 3 times using a 100 

KDa centrifugation filter to get rid of unattached PEG. Finally, the particles were re-

suspended in 1 ml DI water and stored at 4°C for further experiments.  

Nanoparticle Characterization: The size and surface charge were characterized 

using dynamic light scattering. Silica content of nanoparticles was estimated using the blue 

molybdosilicic assay as per manufacturer’s instructions. The number of silica nanoparticles 

was calculated by assuming a monodisperse size distribution and the known density value 

of silica, i.e., 2.0 g/cm3. A calibration curve of fluorescent intensity and number of silica 

particles was prepared by the measurement of fluorescence at λem = 515 nm’s and λex= 480 

nm’s by serial dilutions of FITC- SiNP. The calibration curve was linear within the 

measured limits of nanoparticle concentration.  

 

2.6 Cell uptake kinetics of nanoparticles.  

Skov-3 cells cultured under standard conditions were seeded in a 96 well plate at a density 

of 25,000 cells/well and allowed to attach overnight in an incubator. PEGylated-FITC 

loaded silica nanoparticles (PEGSiNp) modified with methoxy-PEG (mPEGSi) or 
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carboxy-PEG (cPEGSi) were incubated with McCoy’s 5A media for 30 minutes prior to 

addition to the cells at different concentrations (for determining dose dependent uptake) to 

determine the optimal concentration at which the cell uptake of nanoparticles saturated. 

The time kinetics of nanoparticle uptake was studied by incubating the cells with an 

optimal concentration (determined via dose dependent uptake study to be 100 μg/ml) of 

PEGSiNp nanoparticles at different time intervals. Every hour following the incubation 

(i.e., 1 hr., 2 hr. ….. 5 hr.), the cells in the wells were washed 3 times with ice-cold DPBS 

to get rid of free nanoparticles from the extracellular medium. The total nanoparticle 

concentration in the cells was determined from FITC fluorescence using a multi plate 

reader. Fluorescence intensity from FITC was corrected by subtracting the intensity 

obtained from cells without any PEGSiNp-loaded nanoparticles.  After the completion of 

the uptake study, cell number was estimated using the SRB assay. The estimated protein 

content in each well was converted to cell number using a calibration curve of SRB protein 

content vs cell number.  

The effect of hyperthermia (43°C) on cell uptake of PEGSiNp loaded silica 

nanoparticles was studied in a cell culture incubator. The cells were placed in the incubator 

set at 43°C and allowed to equilibrate for 50 minutes, and followed by the addition of the 

PEGSiNp. The temperature of a well was monitored using a sterile wire thermocouple. 

Cells were incubated with PEGSiNp at 43°C for 1 hour, after which the plates were moved 

to a 37°C incubator. Nanoparticle uptake was determined in a similar manner as described 

above. FITC fluorescence was converted to the number of Si nanoparticles and divided by 

number of cells to estimate nanoparticle per cell.  



63 

 

2.7 Markov Chain Monte Carlo simulations.  

Experimental measurements of nanoparticle uptake were imported to MATLAB 

13.0® (Math works, MA) and additional data points between each time period were 

generated using cubic spline interpolation. A total of 1000 data points were generated for 

the MCMC routine. MCMC simulation was performed with the default number of states 

as: N = 1E5 and chain length w = 0.01. The chosen parameter set of uptake rate constants 

with their respective upper and lower limits is shown in (Table 2.1).  It has to be noted that 

the upper and lower bounds represent a wide range of cell uptake constants.  From an initial 

guess given by the user, equations (9) and (10) were solved using the ode15s solver in 

MATLAB. The estimated concentration from initial guess was then compared to the 

experimental data to evaluate the error and an acceptance factor. Based on the acceptance 

factor, Markov Chain was advanced to choose a new parameter set. Initial iterations of the 

Markov Chain were discarded (burn in period) and the simulation was run until the Markov 

Chains of all parameters converged. The robustness of the Monte Carlo method was 

assessed by choosing various initial guesses for each parameter and from the potential scale 

reduction factor (PSRF), which is the ratio of the variance of the posterior estimates and 

in-chain variance. Ideally, PSRF should be close to 1.  

 
Lower Bound  Upper Bound 

ka (M-1min-1) 1.00E+00 1.00E+08 

kd (min-1) 2.20E-07 2.20E-01 

ke (min-1) 2.20E-06 2.88E-01 
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krec (min-1) 8.00E-06 9.30E-02 

Table 2.1 : Lower and upper bounds chosen for different parameter values. The values were 

chosen from different literature studies and the maximum and minimum values were 

extended by 10 % to form the bounds. (Cho et al., 2009; Jin et al., 2009; Wilhelm et al., 

2003). 

Figure 2.1 shows the trace plots of Monte Carlo chains for different parameters, the 

plots for ka and kd show a well-mixed8 chain with small fluctuations around the mean 

predicted value of the parameters. The Markov Chain9 for ki required some burn in, but is 

well-mixed locally, the predicted values in the burn in period were discarded and only 

values towards the end were considered. Poor mixing of the chain was observed for the 

parameter krec. However, after a long burn in time, i.e., 4E4 iterations, all chains seemed to 

converge towards the mean parameter value. The PSRF for ka and kd was 1, for ki it was 

0.87 and krec was 0.61. The prediction of parameters was also not dependent on initial guess, 

all parameters converged to within 10 % deviation from the mean parameter value for 

initial guesses that were an order of magnitude (in some cases 2 to 3 orders of magnitude) 

apart (Figure 2.2). These results indicate the robustness of the Markov Chain Monte Carlo 

method in fitting the experimental data. 

                                                 

8 A well-mixed chain is a Markov process near its steady state distribution. 

9 In a Markov process the prediction of next event depends on the previous events. The 

progression to the steady state is a sequential dependence on adjacent events that is defined 

as a ‘chain’. 
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Figure 2.1: Trace plots showing chain mixing of parameters. ka, kd and ki, show good 

mixing while krec shows marginal mixing. 



66 

 

2.8 Cell uptake experiments and MCMC predictions. 

Cell uptake of nanoparticles happens primarily via energy dependent mechanisms 

such as endocytosis (non-specific, specific/receptor mediated), pinocytosis and 

macropinocytosis. These processes are dependent on binding of nanoparticles to the cell 

membrane and subsequent internalization through membrane wrapping and pinch-off into 

the cell.  The interaction of nanoparticles with a cell is primarily determined by the protein 

corona that forms on the nanoparticle surface due to the adsorption of proteins that are 

present in incubation media (cell culture and plasma). From the above described events, it 

is clear that temperature plays a very important role in 1) the physical processes that affect 

nanoparticles, such as aggregation, 2) protein adsorption on the nanoparticle surface and 

3) affecting the cell membrane and/or nanoparticle interaction with the membrane 

(Mahmoudi et al., 2013b).  

The effect of nanoparticle surface functionalization on uptake by Skov-3 cells is 

shown in (Figure 2.3). The comparison of experimental data and uptake kinetics 

determined from the parameters predicted by the MCMC method are shown in Figure 2.3. 

MCMC predictions of cell uptake agree with experimental results.  
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Figure 2.3:  MCMC Predictions align closely with experimental measurements for all cases. 

Image shows predictions of cell uptake overlaid with experimental data.  

 

Figure 2.1: Parameter prediction is not dependent on the chosen initial guess. Results show 

no dependence on initial guess. 
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Figure 2.4:  MCMC Predictions align closely with experimental measurements for all cases. 

Image shows predictions of cell uptake overlaid with experimental data.  

Silica nanoparticles modified with mPEGSi and cPEGSi had the same size (~58 nm 

diameter) and surface potential (~-6 mV @ pH 7.4). However, mPEGSi particles showed 

less uptake compared to cPEGSi particles.  This is due to the inert methoxy groups that do 

not interact with components of the incubation media (Gyenge et al., 2011). Carboxy 

groups have been shown to be more reactive than methoxy groups and hence show more 

cell uptake than mPEGSi particles (Zhang and Monteiro-Riviere, 2009). mPEGSi particles 

interact weakly with the cell surface as seen from the predicted value of dissociation 

constant Kd, 5.14E2 M and therefore also have a low internalization rate (Table 2.2). 

cPEGSi particles show strong binding to the cell surface (Kd 6.34E5 M) and higher 

internalization rate compared to mPEGSi (Table 2.1). The exposure of cells to 

hyperthermia at 43°C for 1 hour led to faster binding of nanoparticles to cell membrane 

compared to binding at 37°C for both mPEGSi and cPEGSi. This can be seen from the 
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initial slope (0-1hr) of the uptake kinetics curve at 43°C which is steeper compared to 

uptake at 37°C (Figure 2.3). With hyperthermia, the predicted association rates for both 

PEG types were almost twice the values predicted at 37°C. However, hyperthermia did not 

increase the number of nanoparticles taken up by cells as no significant difference was 

found between nanoparticle content at 5 hours for 43°C and 37°C. This is because the cells 

have a finite capacity for nanoparticle internalization and membrane turnover after 

internalization. The metabolic processes such as lysosome production have been shown to 

increase with temperature rise from 4°C to 37°C to accommodate more nanoparticles into 

the cell. However, these processes seem to plateau after 37°C and a further rise in 

temperature did not cause a significant increase in lysosome production (Mahmoudi et al., 

2013b). Our results are consistent with recent observations by DeWitt et al. which showed 

that the cell uptake of cisplatin was increased in cells at 42°C but no such temperature 

dependent increase was observed in the uptake of cisplatin conjugated carbon nanotubes 

(DeWitt et al., 2014). From the experimental measurements and predicted values of 

internalization (ki) and externalization rate constants (krec) it can be observed that for 

cPEGSi particles, kinetic processes at 43°C are faster than at 37°C. Interestingly, for 

mPEGSi, hyperthermia caused an increase in ki whereas krec decreased.   
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Table 2.2 : MCMC predictions of different uptake parameters for mPEGSi and 

cPEGSi in Skov3 at 37°C and 43°C. (CI; confidence interval) 

 

mPEGSi@+37°C mPEGSi@+43°C 

 

Predicted Value  +99 % CI -99 % CI  Predicted Value  +99 % CI -99 % CI  

ka  9.45E+00 9.41E+00 9.49E+00 1.94E+01 1.92E+01 1.97E+01 

kd  1.84E-02 1.83E-02 1.85E-02 5.49E-02 5.40E-02 5.58E-02 

ki  9.10E-05 8.29E-05 9.90E-05 2.52E-03 2.48E-03 2.56E-03 

krec  3.85E-03 3.58E-03 4.12E-03 4.52E-05 3.78E-05 5.26E-05 

 

cPEGSi@+37°C cPEGSi@43°C 

 

Predicted Value  +99 % CI -99 % CI  Predicted Value  +99 % CI -99 % CI  

ka  7.46E+03 7.30E+03 7.62E+03 1.43E+04 1.41E+04 1.45E+04 

kd  1.18E-02 1.14E-02 1.21E-02 3.03E-02 2.95E-02 3.10E-02 

ki  1.37E-03 1.35E-03 1.39E-03 2.72E-03 2.66E-03 2.78E-03 

krec  1.94E-05 1.81E-05 2.07E-05 2.15E-04 2.02E-04 2.27E-04 
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2.9 Simulating nanoparticle transport in spheroids under hyperthermia. 

Nanoparticle transport in avascular tumor spheroids depends on particle size, 

particle uptake by the cells (i.e., Kd) and tumor porosity. The effects of hyperthermia on 

particle properties and cell uptake have been discussed above. Depending on the thermal 

dose, hyperthermia related thermal damage causes cell death via apoptosis or necrosis 

(Tang, 2010). Thermal damage to tumor tissue is modeled by well-known Arrhenius 

equation. 

In equation (15), F is the frequency or pre-exponential factor (1/s), Ea is the activation 

energy barrier (J/mole), R is the universal gas constant (J/Mole-K), and Tt (x, y, t) is the 

absolute tissue temperature at the specified coordinates. The value of Ω is zero before 

application of the thermal energy. At Ω = 1,63% protein denaturation occurs and at Ω = 4 

98% protein denaturation occurs (Chang and Nguyen, 2004). 

Cell death in spheroids as a result of hyperthermia causes an increase in the 

available fluid fraction (i.e., porosity) for the nanoparticles to access. Therefore, 

hyperthermia may enhance the transport of nanoparticles into tumor spheroids (Attaluri et 

al., 2011). Equation (16) describes the change in porosity as a result of cell death under 

hyperthermia. 

 ε43= ε37+(100 %- ε37)×(1-S(r,T))  (16) 

 
Ω(r, T) = F ∫ e

Ea
RTt

⁄
(x, y, t)

texp

0
dt  (15) 
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S(r, T) is cell survival rate which is related to the Arrhenius parameter Ω by  

 S (r, T) = e-Ω/4  (17) 

Modeling nanoparticle transport as a function of porosity change in response to the 

application of hyperthermia requires solving a system of coupled non-linear partial 

differential equations. The scheme depicted in (Figure 2.4) illustrates the strategy used in 

modeling the transport of nanoparticles in tumor spheroids. The system of equations was 

solved using COMSOL 4.2a. Equations (2), (3), (7) and (8) were solved with corresponding 

initial and boundary conditions using equations for the transport of diluted species. 

Equation (15) was solved using the partial differential module with free form scripting 

(ODE DAE). Free form scripting in COMSOL allows the user to input custom differential 

equations and their boundary/initial conditions. Since, the equations for thermal damage 

are not available in COMSOL, ODE DAE had to be used to model the thermal damage 

using the Arrhenius equation. The temperature profile was obtained from the incubator by 

placing a thermocouple in a well of a 96 well plate containing media. The discrete 

temperature values at various time points were imported to COMSOL and a continuous 

profile was generated by interpolation. The tumor spheroid was modeled as a 2D circle 

with another concentric circle of radius (R + 100μm) as the outer domain of the spheroid. 

A free triangular mesh was used for both domains (i.e., spheroid and outer domain). The 

mesh of the outer domain was finely resolved (max element size: 10 μm and min element 

size: 1.2 μm) in order to account for concentration discontinuity, or ‘jump’ at the boundary. 

The spheroid domain was meshed with max element size equal to 90 μm. The transport 
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simulations for different cases, i.e., cPEGSi at 37°C and 43°C, were simulated for 24 hours. 

The values of different parameters used in the model are presented in table 2.3.   

 

Figure 2.5: Schematic illustrating the Multiphysics strategy used in COMSOL. 

Parameter Value (Unit) Description 

R 300E-6[m] Spheroid Radius 

Bmax 1.3E-7[mol/L] 

Cell Surface Binding Capacity of 

Spheroids 

CMedium 1.13E-9[mol/L] External Boundary Condition 

kB 1.38E-23[(m^2*kg)/(s^2*K)] Boltzmann Constant 

muCp 8.94E-4[Pa*s] Viscosity of Fluid (media)  

a 30[nm] Particle Radius 
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Table 2.3: Parameter values used in modeling. Values that could not be measured were 

adopted from literature studies. 

Spheroids were transferred to glass imaging dishes and incubated for 24 hours with 

cPEGSi at 37°C or 43°C in the manner similar to monolayer cells. mPEGSi were not tested 

due to low cell uptake. Prior to imaging, spheroids were treated with (4',6-diamidino-2-

phenylindole) (DAPI; nuclear stain) for 30 minutes followed by fixation with 4% formalin. 

The spheroids were mounted with Fluoroshield and imaged using an Olympus FLV1200 

confocal microscope at 10 X objective. For each spheroid, 10 μm sections along the z-axis 

were obtained. Linear attenuation correction and background subtraction of fluorescence 

intensity were done in FLV1200® software and images were exported for analysis in 

Image J 1.39.  A macro created in Image J was used to locate the center of the spheroid 

from the DAPI channel and to quantify the fluorescence intensity in the FITC channel. 

DAPI dye is a small molecule that diffuses rapidly into the spheroid and binds to cell nuclei, 

hence by using DAPI and FITC the spheroid shape and the distribution of nanoparticle 

rp 0.003*R (Fournier, 2011) 
Collagen Fiber Radius 

λ a/rp 

Ratio of Nanoparticle Radius to 

Pore Size 

Ax 

1.19E38[1/s] (Attaluri et al., 

2011) Activation Energy 

EAx 

2.57E5[J/mol] (Attaluri et al., 

2011) 

Activation Energy Barrier 

R 8.31 [J/(mol*K)] Universal Gas Constant 

ε 0.03 Porosity 
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fluorescence are easily located. If FITC fluorescence is low or inhomogeneous, especially 

in deep sections of the spheroid (Figure 2.7 & Figure 2.8) then the spheroid shape is not 

resolved clearly by the thresholding algorithms. In such cases DAPI dye provides the 

advantage of locating the spheroid. Firstly, the center and periphery of the spheroid was 

found by thresholding the images from the DAPI channel. This information was used to 

quantify fluorescent intensity along a straight line (with length equal to the radius of the 

spheroid) from the images in the FITC channel. The line was rotated by a 10° angle and 

the procedure was repeated. This procedure was adopted to minimize location-related 

variability within a spheroid (Le Roux et al., 2008). A total of 3 spheroids per each case 

were analyzed and change in intensity profile with spheroid depth was normalized to 

intensity at the outer perimeter. Once the intensity curves were obtained, the linear 

trapezoidal rule was used to calculate the area under the curve (AUC). Another parameter, 

W1/2, half width maximum of concentration was calculated based on the distance in the 

spheroid at which the total concentration (sum of Cb, Ci and C) reduced by 50%. A higher 

AUC value denotes an increase in the amount of nanoparticles in a spheroid whereas a 

shorter W1/2 indicates a deeper penetration (or more shallow concentration decline). The 

AUC and W1/2 from the images were compared to the predictions from the model.  

Additionally, a fraction of data points from model predictions were measured to calculate 

the percentage within 95% CI of experimental data (Wientjes et al., 2014).  

2.10 Simulation and experimental results.  

A dynamic diffusion model was used to account for particle aggregation under 

hyperthermia. cPEGSi particles were incubated in DPBS at 43°C and size measurements 

at various time-points (starting at 1 hr. to 24 hrs.) were obtained in the Malvern Zetasizer. 
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The size was converted to effective diffusion coefficient using equation (3). The effective 

diffusion coefficient increases initially until 6 hours due to increase in porosity because of 

cell death (Figure 2.5). After 6 hours, the diffusion coefficient reduces due to increase in 

particle size due to aggregation. Then, a further decrease in cell viability contributes to an 

increase in the effective diffusion coefficient (Figure 2.5). The steep reduction in diffusion 

coefficient at 6 hours is due to the discrete size measurements obtained from the zetasizer. 

A continuous measurement of size will yield a better representation of the aggregation 

kinetics. 

Spheroid images showed a sharp drop-off of fluorescence at the periphery. This is 

due to the loss of nanoparticles (and thus FITC) at the periphery during washing and 

processing steps. To account for this, a window function was introduced in the model 

(Goodman et al., 2007).  It can be seen from Figure 2.6 that after 24 hours’ incubation of 

cPEGSi at 37°C, particles are localized around the periphery of the spheroid. The moving 

front of fluorescence drops sharply at a 30% distance from the periphery and does not 

progress further towards the center. These findings indicate that diffusion of cPEGSi in 

Skov-3 spheroids was a slow process (occurring over hours) and was limited to the first 

few cell layers (Figure 2.8).  
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Figure 2.7 : FITC fluorescence is concentrated around the periphery of the spheroid. 

Confocal sections of Skov-3 spheroids incubated with cPEGSi at 37°C with DAPI and 

FITC channels merged.  

Alternatively, spheroids incubated with cPEGSi at 43°C for 24 hours showed a less 

pronounced front and more diffuse fluorescence throughout the spheroid (Figure 2.7).  

Figure 2.2: Plots showing reduction in cell viability under hyperthermia (left) and changes 

in effective diffusion coefficient as a result of particle aggregation and change in porosity 

(right). 
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Figure 2.8: FITC fluorescence is more diffuse and is not found around the periphery. 

Confocal sections of Skov-3 spheroids incubated with cPEGSi at 43°C with DAPI and 

FITC channels merged.  

Interestingly, under hyperthermia, MCMC predictions estimated an increase in Kd 

which should slow the transport of nanoparticle transport. Concurrently, the internalization 

rate constant increased at 43°C, this leads to depletion of nanoparticles in the interstitial 

space of the spheroid which maintains the concentration gradient and drives the diffusion 

of nanoparticles. The predicted increase in Kd may not be sufficient to overcome the 

diffusive forces. Furthermore, cell death due to thermal damage increased available fluid 

fraction for the nanoparticles to diffuse (Figure 2.5 & Figure 2.8).  The mean AUC and 

W1/2 values calculated from the experiments agree with the values predicted from 

simulations (Table 2.4). The AUC at 43°C was significantly higher than the AUC value at 

37°C. Nanoparticles also penetrated deeper into the spheroid under hyperthermia, W1/2 

increased to ~50 % at 43°C from ~31 % at 37°C (Table 2.4). However, no significant 
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difference was found between the W1/2 values for the two cases, owing to variability of the 

experimental data.  A comparison of simulated and experimental data points showed that 

55 % and 67 % values of simulated data points fall within the 95 % CI of experimental data 

at 37°C and 43°C, respectively (Table 2.4).   

 

Figure 2.9: Overlay of model predictions with experimental data. The experimental data 

plotted as two curves denote the higher and lower limits of standard error (n = 3).  

 

AUC and W1/2 calculations from cPEGSi transport in Skov3 Spheroids. 

 

AUC  W1/2 Fraction 95 % CI 

Experiment @ 37°C 0.34±0.06 0.68±0.15 

55 ± 8 % 

Simulation @ 37°C 0.38 0.66 

Experiment @ 43°C 0.61±0.11* 0.49±0.12 

67 ± 5% 

Simulation @ 43°C 0.57 0.43 
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Table 2.4: Comparison between experimental determination and model prediction of Area 

under the curve and W1/2 values. The fraction indicates percentage of model simulated data 

points that are within the 95 % confidence limits of experimental data. 

The results show that diffusion is the rate limiting step for cPEGSi transport instead 

of reaction parameters of cell uptake. The moving front progresses into the spheroid as 

long as free nanoparticles are available at the tumor surface. If the nanoparticle 

concentration drops to zero at the periphery, i.e., when nanoparticles are removed via 

washing the spheroids or in-vivo where nanoparticles are removed at the tumor site due to 

plasma clearance, the front appears to be stuck at a distance from the periphery. In the case 

of high binding affinity, transport is rate limited by the reaction rate of nanoparticle 

association. A comparison of gold nanoparticle transport (~50 nm in diameter) with uptake 

rate constants determined in the literature (Jin et al., 2009) shows that high association, i.e., 

ka of 7.2E7 M-1sec-1, leads to high accumulation at the periphery and low penetration into 

the tumor (Figure 2.9 inset). High accumulation at the periphery results in the ‘binding site 

barrier’ effect which further impedes diffusion into the spheroid (Graff and Wittrup, 2003). 

On the other hand, low affinity nanoparticles lead to deeper penetration of nanoparticles 

but at an unacceptable cost of low therapeutic efficacy. The tradeoff between penetration 

and therapeutic efficacy is intrinsic to the nanoparticle system and thus needs to be tailored 

carefully.   
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Figure 2.10: COMSOL simulations comparing of transport of 50 nm gold nanoparticles 

with high binding affinity to cells and cPEGSi. The uptake parameters for gold 

nanoparticles were from studies by Jin et al. 2009. The inset shows the particle distribution 

(zoomed) inside the spheroid.  

2.10 Conclusions. 

According to current literature, only one other author has reported the mathematical 

prediction of temperature dependent cell uptake of nanoparticles. The model formulated 

by Zhang et al. 2011 studied the temperature dependent (6°C to 40°C) uptake of quantum 

dots in SPCA-1 cells (lung adenocarcinoma) and showed the presence of a temperature 

independent component of internalization at low temperatures (Zhang et al., 2011). Based 

on the rate constants obtained by fitting Langmuir kinetics to experimental data, they show 

that with an increase in temperature from 22°C to 37°C, a reduction in ka, an increase in kd 

and a plateau in ki. However, the experimental data by the authors showed a marked 

increase in uptake at 37°C. This is counterintuitive as the total content of nanoparticles 
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measured in a cell can only increase when there is an increased association of particles with 

the cell membrane or if there is increased internalization of particles by the cells. The 

variability in the kinetics of temperature dependent cell uptake of nanoparticles as studied 

by different authors (DeWitt et al., 2014; Mahmoudi et al., 2013a; Zhang et al., 2011) 

suggests that this phenomenon may be dependent on the type of nanoparticle and the cell 

line. The Markov Chain Monte Carlo method used here for predicting cell uptake rate 

constants provides a unified/general framework for parameter estimation without the need 

for additional experiments or the need to make specific a priori assumptions regarding cell 

uptake phenomenon. Since, this approach can predict all rate constants with good 

confidence and is robust (Figure 2.1 & Figure 2.2), extending it to other nanoparticle 

systems (liposomes, gold nanoparticles etc.), various cell lines and different conditions can 

be done easily.  

The finite element model developed in this work is an improvement over the 

existing models of nanoparticle transport. Finite element models for nanoparticle transport 

in tumor spheroids have been described in the literature for, 1) effect of collagenase on 

spheroid disruption and subsequent effect on nanoparticle transport (Goodman et al., 

2007), 2) dynamic diffusion model of liposomal transport in spheroids (Gao et al., 2013) 

and 3) macroscopic transport model of heat conduction and magnetic nanoparticle transport 

in spheroids (Attaluri et al., 2011). The first two models used the conventional method to 

calculate cell uptake parameters, i.e., perform cell experiments at 4°C to estimate ka and kd 

and use the information at 37°C to estimate ki. The model by Attaluri et al. only considers 

nanoparticle transport through the tumor and does not consider uptake by the cells. 
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Modeling uptake of nanoparticles by the cells in a spheroid is critical to designing 

therapeutic interventions for cancer as the drug has to reach the intended target inside the 

cell to cause an effect. Additionally, the effect of heat on nanoparticle stability and uptake 

has also not been considered until now. By combining MCMC predictions and finite 

element simulations, several scenarios can be simulated to find an optimal balance between 

penetration and cell uptake (MCMC predictions). The transport of drugs to tumors happens 

through convection which is followed by extravasation of the drug at the tumor site. As 

mentioned previously, the transport after extravasation is determined by the diffusion into 

the tumor and the uptake rate of the cells. The uptake rate of nanoparticles is in-turn 

dependent on the surface and physical properties of the nanoparticle. The combination of 

parameter estimation using inverse techniques and finite element methods is a suitable 

approach for this Multiphysics problem.  Based on the model predictions, the density/type 

of surface coating (i.e., number of moieties) and drug loading in nanoparticles can be 

determined to achieve an efficient therapeutic response. For example, as seen in our 

experiments, the type of surface coating (i.e. mPEG vs cPEG) plays an important role in 

determining the uptake. In our case, mPEG particles are not a suitable choice for surface 

modification due to low cell uptake (Figure 2.3).  

The observations from experiments and the corresponding models presented 

important factors that need to be considered for nanoparticle transport in solid tumors under 

hyperthermia. These are with regard to effect of hyperthermia on stability of nanoparticle 

formulation, uptake of nanoparticles by the cell exposed to hyperthermia and the effect of 

tumor microenvironment on nanoparticle penetration. Colloidal stability i.e., aggregation 
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is a kinetic phenomenon dependent on temperature (Figure 2.5). Poor colloidal stability on 

exposure to hyperthermia may compromise the therapeutic efficacy by further impeding 

nanoparticle penetration. From a cell uptake perspective, if hyperthermia increases the 

association rate of particles with the cell, it may overcome the diffusive transport and 

impede the transport of nanoparticles into the spheroid.  Experiments in spheroids showed 

that in absence of hyperthermia particles mainly localized around the tumor periphery, 

whereas, exposure to hyperthermia lead to penetration of nanoparticles into the spheroid 

(Figure 2.7). The advection reaction model showed that the transport of pegylated silica 

nanoparticles is diffusion dominated (Figure 2.8). The predictions of the model and 

experiments agreed with each-other (Table 2.4). Spheroids and cells can be cultured in a 

high throughput format. Therefore, the combination of a mathematical model with high 

throughput experiments will allow for rapid screening of nanoparticle systems for 

therapeutic applications.  

2.11 Model limitations. 

The experimental data points vary from model predictions at the center of a 

spheroid for both 37°C and 43°C cases. Fluorescence intensity from silica nanoparticles 

increased near the core of the spheroid (Figure 2.5). This may be due to increased porosity 

owing to cell necrosis at the center of spheroid. A similar profile of increased fluorescent 

intensity at the middle of a spheroid due to increased porosity as a result of cell necrosis in 

the region was reported by Goodman et al. in SiHa cell spheroids (cervical cancer cells; 

400 μm diameter) (Goodman et al., 2007). The estimation of radially dependent porosity 

is difficult as reliable techniques for porosity estimation are not available.  Electron 
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microscopy techniques (SEM and TEM) have been used to image the microstructure of a 

spheroid and estimate the porosity. However, the processing of spheroids for SEM and 

TEM, mainly dehydration and critical drying, leads to shrinkage of tissues and alteration 

to spheroid structure. Furthermore, the alteration in cell uptake of nanoparticles due to 

aggregation under hyperthermia cannot be estimated inside the spheroid. In monolayer 

cultures, the uptake was saturated at 5 hours and therefore aggregation which happens after 

6 hours did not affect cell uptake. In spheroids, the cell uptake within deep cell layers is 

delayed due to diffusion. Future models may consider the aforementioned factors for 

increasing the agreement between experimental data and model predictions.  
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Chapter 3 

3.1 Theranostic nanomedicine for cancer 

The term theranostics is the combination of therapy and diagnostics. Optical 

imaging in the NIR region has the advantage of low absorption and scattering from the 

surrounding tissues which enhances the signal to noise ratio from the region of interest 

where the NIR imaging agent is present. We have investigated the optical, physical and 

chemical properties of two NIR dyes, viz Indocyanine Green (ICG) and IR820. IR820 is a 

structural analog of the FDA approved ICG and has more stability against photo-

degradation as well as improved stability in aqueous media.  The combination of IR820 

and DOX is a suitable strategy for theranostics and adjuvant hyperthermia owing to the 

heat generation of IR820 on exposure to NIR laser. However, the free form of DOX and 

IR820 lacks specificity for tumor specific therapy/imaging and also results in rapid 

degradation or plasma clearance of the dyes as well as drugs (Fernandez-Fernandez et al., 

2012; Saxena et al., 2004). Therefore, a suitable strategy for effective theranostic delivery 

should simultaneously deliver both agents to the tumor site in sufficient doses without 

leakage or loss of entrapped moieties. This can be achieved through nanoparticles. The 

entrapment of multiple agents in a single nanocarrier system presents a challenge to 

effectively control the release from the nanoparticle of the entrapped agents.  Fast or ‘burst’ 

release on reconstitution of dried carrier in aqueous media or injection in-vivo leads to loss 

of drug from the carrier. The leaked drug will suffer the same fate as its un-encapsulated 

version, i.e., rapid plasma clearance or in-vivo degradation. This will reduce the available 

dose at the tumor site. On the other hand, very slow or incomplete release of drug at the 
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tumor site is also not desirable as a lethal dose may not be delivered to kill the tumor cells, 

making the therapy ineffective. For example, DOX and ICG loaded Poly lactic -co glycolic 

acid (PLGA) nanoparticles synthesized in our laboratory had high initial burst release of 

DOX and ICG followed by a very slow (50 % in 2 days) and incomplete release of the 

DOX (Manchanda et al., 2010). For theranostic nanomedicine it is desirable that the 

imaging agent is retained (i.e., no or very slow release) by the nanoparticle and further that 

the drug release is triggered on demand. Multiple strategies have been proposed in the 

literature to tailor the release of entrapped agents. These mainly include research of 

materials that can respond to various stimuli such as heat, light, sound or conditions of the 

tumor microenvironment (low pH, hypoxia and matrix metalloproteinases).  

The release mechanism based on stimuli can be designed in two ways; (1) via 

incorporating functional groups that are sensitive to one or more of the above listed stimuli 

or (2) materials whose structures can be disintegrated (or created) by an external stimulus.  

External stimuli may cause changes in material structure, dimensions, properties, and lead 

to their rearrangement or a change in their assembly.  In polymers that respond to 

temperature change, viz, Poly-N-isopropyl acrylamide (PolyNipam), 

Polyethylene/propylene oxide (PEO/PPO), Pluronic-127, etc., a balance between segment-

segment interactions and segment -solvent interactions can be changed with temperature 

(Cohn et al., 2009; Motornov et al., 2010). This results in an increase of pore size of the 

polymer matrix and release of entrapped agents.  The polymer properties that define 

temperature dependent ‘phase’ change in polymers are known as ‘lower critical solution 

temperature’ (LCST) and ‘glass transition temperature’ (Tg).  Our work recently illustrated 



91 

 

a theranostic nano-formulation from a novel polymer, Poly (Glycerol Malate co-

Dodecanedioate) (PGMD) with Tg = 42°C. Release of drug (DOX) was enhanced in 

response to a near infrared dye induced hyperthermia at 43°C. Increasing the temperature 

above Tg changes the phase of polymer from glassy (no release) to rubbery (release) (Lei 

et al., 2014). In the case of PolyNipam changing the temperature above LCST (32°C) 

decreases the polymer solvent interactions due to the dominating effect of hydrophobic 

polymer groups at elevated temperature.  

Functional groups such as azobenzene, spirobenzopyran, triphenylmethane, or 

cinnamonyl are photoactive and can undergo reversible structural changes under UV-vis 

light. These functional groups change size and shape, or form ionic or zwitterionic species 

upon irradiation. Absorption of light results in a chemical reaction of the shell of 

nanoparticle, formation of new functional groups, ionization and the transformation from 

amphiphilic to hydrophobic. Nanoparticles formulated with the above functional groups 

are stabilized in the absence of light stimulus. Application of light destabilizes the groups 

and leads to release of incorporated agents (Li and Keller, 2009; Motornov et al., 2010). 

Ultrasonic waves can release entrapped constituents by the generation of heat, 

which occurs through the absorption of propagating energy by the polymeric membranes. 

Drug release also occurs by mechanical displacement (referred to as cavitation) of the 

membrane pores caused by the pressure of ultrasonic waves. Ultrasound mediated therapy 

has been used with particles such as microbubbles (bubbles composed of gas at the core 

surrounded by a thin corona of lipid or polymer); the thin corona of the microbubbles is 

susceptible to oscillations from the ultrasound and can expand and contract in response to 
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it. This leads to the creation of strong liquid flows around the membrane which may open 

the nearby cell membranes. This phenomenon, known as sonophoresis, can lead to 

enhanced accumulation of drugs when delivered in conjunction with microbubbles or by 

the controlled release of entrapped constituents in the microbubble (Timko et al., 2010). 

Similarly, drug release can be modulated with temperature sensitive liposomes; for 

example, liposomes filled with DOX (Thermodox®) have been shown to have dose 

dependent drug release upon exposure to high intensity ultrasound (1300 W Cm-2) (Dromi 

et al., 2007). 

Materials that respond to conditions of tumor microenvironment such as low pH, 

tumor enzymes such as matrix metalloproteinases, glutathione and glucose are 

advantageous to ensure tumor specific drug release. Examples of pH-responsive polymers 

are weak polyelectrolytes with acidic or basic functional groups (carboxylic, phosphoric, 

or amino functional groups) (Lee et al., 2008). Functional groups such as hydrazone are 

pH labile and can be modified to incorporate chemotherapeutics such as DOX that are 

released at low pH encountered in the lysosomes of cells (Srinivasan et al., 2016). Gelatin 

based nanoparticles are degraded by the matrix metalloproteinases (MMP) abundant in 

tumor tissue and release their constituents (Wong et al., 2011). The design of stimuli 

responsive theranostic nanoparticles can be quite complex since it requires the assembly of 

different subunits that should work efficiently as an integrated system. For example, design 

of the theranostic PGMD formulation required entrapment of chemotherapeutic, near 

infrared imaging and hyperthermia agent. However, due to the inherent amphiphilicity of 

the PGMD polymer, the imaging agent leaked rapidly in aqueous solution.  Also, the 
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physical properties of a system in physiological solutions, viz size, surface charge and 

colloidal stability should be suitable for deep delivery into the tumor. In some cases, the 

intrinsic properties of the nanoparticle allow it to be used as an imaging agent and/or an 

agent for hyperthermia, radiation, or photodynamic therapy. This provides opportunities 

for image-guided therapy and truly integrated theranostic systems. Some examples of these 

systems are inorganic nanoparticles formulated from iron and gold.   

3.2 Inorganic nanoparticles.  

The absorption and scattering properties of metallic nanoparticles can be tuned with 

great control which makes them potential candidates for cancer theranostics. Gold nano-

formulations have been used for optical imaging, CT imaging, photo thermal therapy, drug 

delivery, and combined imaging and therapy (Huang et al., 2008; von Maltzahn et al., 

2009). Gold nanoparticles and quantum dots display intense brightness due to strong 

surface plasmon resonance (SPR), that make them suitable for in-vivo imaging 

applications. The SPR can be tuned by varying the size, shape and core-shell thickness of 

the nanoparticles. By varying the size of a gold nanoparticle shell, the absorption can be 

varied from visible to NIR wavelengths (Jain et al., 2006).  In addition to optical properties, 

gold particles can convert absorbed light into heat in picoseconds and hence have been 

used for tumor ablation and hyperthermia. Recent studies have shown that hollow gold 

nanoparticles doped with an excessive amount of DOX release the drug in response to NIR 

light and low pH triggers (You et al., 2010).  

Superparamagnetic iron nanoparticles have been used for Magnetic Resonance 

Imaging, hyperthermia and magnetic field guided therapy (Wust et al., 2006; Yu et al., 
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2008). Superparamagnetic particles (SPM) become mutually attractive under a static 

magnetic field, hence they have been used to deform hydrogels or ferrogels (the composite 

of a polymer gel and ferrite is called ferrogel) prompting the release or occlusion of 

entrapped constituents. When used along-with polymers such as polyvinyl alcohol (PVA) 

and gelatin, ferrite (Fe3O4) particles conjugated with PVA have been found to inhibit drug 

release under a static magnetic field that caused magnetic particles to align and seal the 

pores of the ferrogel (Tai et al., 2009).  

Semiconductor metals such as cadmium, selenium and zinc have been used to 

create ultra-small (6.0 – 15 nm’s) nanoparticles (quantum dots) that display high 

luminescence, quantum yield and tunable excitation and emission wavelengths. Due to 

these advantages, quantum dots have been extensively used for cancer imaging 

applications (Gao et al., 2004; Yi et al., 2014). For theranostic applications they have been 

used as cores with a gold, silver or silica shell.  Due to their size they are effectively retained 

by the nanoparticle since the pores within the nanoparticles are too small for the QD’s to 

pass through. Rare earth metals from lanthanides, yittribium and europium have also been 

used recently for cancer imaging and theranostics. Lanthanide nanoparticles can up-convert 

NIR light to UV light and when used in conjunction with UV labile bonds can trigger agent 

release on NIR light exposure (Chatterjee and Yong, 2008). The up-conversion from NIR 

to UV light is not desirable for in-vivo applications due to the damage caused by UV 

radiation to the healthy tissues adjacent to the tumor. Apart from gold and iron, inorganic 

nanoparticles suffer from a lack of biocompatibility associated toxicity. Gold nanoparticles 

suffer from a lack of stability against aggregation in physiological solutions and large size 
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(>150 nm) is needed for NIR absorbance. Iron nanoparticles require expensive MRI 

equipment to be used for theranostics.  

Silica nanoparticles (amorphous, mesoporous and organically modified) possess 

the desired properties of an effective theranostic probe, i.e., low toxicity, ease of 

preparation and modification, good control over size and scale up potential. Mesoporous 

silica nanoparticles have been extensively used for triggered drug release by ‘gating the 

pores’ with stimuli responsive materials (pH and heat) (Slowing et al., 2008). For imaging, 

silica nanoparticles have been combined with other nanoparticles (iron and gold). Silica 

particles are considered as “Generally Recognized as Safe” (GRAS) by the FDA, although 

current research is being undertaken to evaluate and exclude any risk factors associated 

with their nano-dimensions. Reports by Park et al. have shown luminescent porous silicon 

particles can self-destruct and be excreted via renal clearance in mice (Park et al., 2009). 

Recently, fluorescent silica nanoparticles developed at Cornell University, known as “C-

Dots” have been approved for human clinical trials to image human myeloma (Friedman, 

2011). However, Silica nanoparticles, especially organically modified silica nanoparticles, 

have not been studied for image guided cancer therapy.  

3.3 Silica nanoparticles.  

Silica particle synthesis was first reported by Stober and colleagues in 1968 through 

the base catalyzed condensation of tetraethyl orthosilicate (TEOS) in the presence of 

aqueous ammonia (NH3) (Stöber et al., 1968). The mechanism of particle formation is 

through the coalescence of condensed TEOS nuclei in a process known as “seed growth”. 

Random Brownian motions in solution bring the nuclei closer to each other resulting in the 
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growth of particles. The size of the particles can be varied by varying ratio of TEOS to 

NH3, reaction time and stirring speed. The disadvantages of the Stober synthesis are high 

particle polydispersity (wide distribution of particle sizes) and poor entrapment of agents 

that are not soluble in water or ethanol.  

Silica nanoparticles have also been synthesized using the reverse microemulsion 

method (RME). RME is a Water in Oil (W/O) emulsion system with surfactants such as 

Triton-X100, Dioctyl sulfosuccinate (AOT), Polyoxyethylene (5)- nonylphenylether 

(IGEPAL-CO520), sodium dodecyl sulfate (SDS), etc. (Bagwe et al., 2004). The oil phase 

is comprised of cyclohexane, hexanes, heptane, pentane, etc. In the presence of water, at 

critical micellar concentrations (CMC), the surfactant molecules form reverse micelles that 

serve as “nanoreactors” for particle growth and dye entrapment. The reaction mechanism 

is similar to the Stober synthesis, i.e., base catalyzed condensation of TEOS in the presence 

of NH3. Brownian collisions cause nuclei transfer between micelles resulting in particle 

growth, which happens until collision forces can overcome the interfacial tension of the 

micelles (Arriagada and Osseo-Asare, 1999). Additionally, nanoreactors bring the 

molecules to be entrapped in close proximity to the silica matrix increasing their interaction 

with the particles. Particles with small size (50 nm) and narrow distributions can be 

obtained through this method by varying surfactant to water ratio (R) and ratios of TEOS 

or NH3.  Other silica precursors have been used in place of TEOS as well as other catalysts, 

i.e., HCL (acid catalysis) and amino acids (l-lysine, l-arginine) to formulate silica 

nanoparticles (Hartlen et al., 2008).  
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Ormosil nanoparticles were pioneered by Prasad et al. using a ternary 

microemulsion system comprised of an oil phase, surfactant, co-surfactant and aqueous 

phase (Roy et al., 2003). The precursor molecule is an organic silane monomer, viz 

Triethoxyvinylsilane (VTES). The parameters of the microemulsion can be varied to 

achieve particles in size ranging from 25 nm to 80 nm. Functionalization with amine groups 

offers the flexibility of further modifying the particle surface for attaching tumor targeting 

moieties (anti-HER2, folic acid, etc.) or with stealth polymers such as Polyethylene Glycol 

to evade capture by the macrophages of the reticuloendothelial system.  Ormosil Np’s have 

been used for chemotherapeutic, photodynamic, gene delivery and bio imaging 

applications (Kumar et al., 2010; Nakamura, 2012; Shan, 2004). Multifunctional Ormosil 

Np’s entrapped with iron oxide particles and a fluorophore have been reported for MRI 

and optical imaging applications (Kumar and Roy, 2014; Law et al., 2008). 

3.4 Materials and Methods  

3.4.1 DOX IR820 Loaded Ormosil Synthesis  

The NIR dye IR820 was entrapped inside the Ormosil matrix whereas DOX was 

loaded via physical adsorption (called FDSIR820) or via a covalent linkage (called 

CDSIR820) on the surface of the Ormosil Np’s. A silica shell was grown over the DOX 

layer and was functionalized with amine (-NH2) groups (Figure 3.1). The covalent linkage 

of DOX to Ormosil was done via a DOX silane conjugate. Five milligrams DOX-HCl was 

reacted with 2 mole excess Triethylamine (TEA) in 500 μl anhydrous DMSO. This solution 

was vigorously stirred for 6 hours at room temperature in the dark followed by the addition 

of 20 μl 3-(Triethoxysilyl) propylisocyanate (ICPTES). The reaction was allowed to 
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proceed for 18 hours and the product (DOX-ICPTES) was used without further 

purification. Organically modified silica nanoparticles (Ormosil) were prepared by a 

modification of the ternary microemulsion method developed by Prasad and colleagues 

(Roy et al., 2003). Briefly, 0.44 mg of Dioctyl sulfosuccinate sodium salt (AOT) was 

dissolved in 20 ml of deionized water followed by the addition of 800 μl 1-butanol resulting 

in a clear solution. To this, 800 μl of DMSO containing IR820 (25 mM) was added. Void 

nanoparticles were created by adding DMSO without the dye. After this, 125 μl of the silica 

precursor Triethoxysilane (VTES) was added and stirred for 30 minutes. Ormosil 

nanoparticles were precipitated by the addition of 20 μl aqueous ammonium hydroxide 

(NH4OH; 28 % in water) and stirring for 18 hours at room temperature.  

For DOX loading, 500 μl of free DOX in DMSO or 500 μl DOX-ICPTES in DMSO 

was added along with 75 μl VTES to the precipitated particles and stirred for 6 hours. An 

additional shell of silica was grown by adding 100 μl of VTES. Amine groups were grafted 

on the surface by the addition of 10 μl 3- Aminopropyltriethoxysilane (APTES) 30 minutes 

after the addition of VTES. Finally, after 18 hours of additional stirring the obtained 

particles were dialyzed for 50 hours using a 12-14 KDa cellulose membrane to remove the 

free dyes/drugs (IR820, DOX), the surfactant AOT and the co-surfactant 1-butanol. The 

dialyzed particles were refrigerated until further use. Blank Ormosil nanoparticles without 

any dye and drug are referred to as Si, with unconjugated DOX are referred to as FDSIR820 

and nanoparticles with DOX-ICPTES conjugate are denoted as CDSIR820.  
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The surface of Ormosil nanoparticles was modified by the addition of Succinimidyl 

Carbonate-PolyEthylene Glycol-Carboxymethyl (SC-PEG-CM; M.W. 3400 Da). Ormosil 

nanoparticles were resuspended in de-ionized water (molecular grade) at a final 

concentration of 0.7 mg/ml and 10 mg SC-PEG-CM dissolved in 1 ml DI water was added 

to the Ormosil suspension. The pH of the mixture was adjusted to 8.0 by addition of diluted 

sodium hydroxide and the mixture was stirred for 8 hours at 4°C. PEGylated particles were 

washed twice using a 100 KDa centrifugation filter to remove free, unreacted PEG 

monomers. The final product, i.e., pegylated, DOX-IR820 loaded Ormosil 

(PEGCDSIR820) was stored at 4°C until further use. 

Figure 3.1: Schematic of nanoparticle formation in microemulsion and different modes of 

DOX loading. 
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3.4.2 Characterization  

The size and zeta-potential of Ormosil formulations were characterized using 

Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM). Particles 

were diluted in DPBS to a concentration of 100 μg/ml and their hydrodynamic diameter 

was measured in a Malvern Zetasizer®. Additionally, nanoparticle morphology was 

determined using SEM. Nanoparticles were allowed to air dry on a glass slide, sputter 

coated with gold and imaged using a scanning electron microscope operating at a voltage 

of 120 kV. For measuring the zeta potential, particles were incubated for 1 hour with DPBS 

or McCoy’s 5A medium (with 10 % FBS) at a final concentration of 2.5 mg/ml. The zeta 

potential was determined using the Smoluchowski approximation and a distribution 

appropriate for the aqueous medium, i.e., a general distribution for DPBS and monomodal 

distribution for McCoy’s 5A. Six independent batches of nanoparticles were created and 

evaluated.   

Particle composition was studied using FTIR-ATR, Ormosil formulations were air 

dried at room temperature overnight. Spectra of dried samples was obtained using a Perkin 

Elmer FTIR-ATR spectrometer. 

3.4.3 Absorbance, Fluorescence and Release kinetics  

Absorbance/fluorescence curves of DOX- IR820 mixture, FDSIR820, CDSIR820 

and PEGCDSIR820 particles were obtained in a U-V spectrophotometer or 

spectrofluorometer (Jobin Yvon). Drug-Dye loading/encapsulation efficiency was 

determined by DMSO extraction, 250 μg/ml PEGCDSIR820 particles were dissolved in 
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DMSO and IR820 and DOX fluorescence spectra were obtained in a spectrofluorometer. 

The fluorescence peak values of DOX and IR820 were compared to a calibration of free 

DOX and free IR820.  

CDSIR820 nanoparticles were resuspended in PBS at 250 μg/ml concentration and 

incubated at 37°C. Aliquots were drawn at regular time intervals, centrifuged and the IR820 

content in the supernatant was determined using fluorescence. Release kinetics of DOX 

from PEGCDSIR820 was studied in McCoy’s 5A media with 10 % FBS. PEGCDSIR820 

particles were diluted in media at a concentration of 250 μg/ml and were incubated at 37°C 

under gentle shaking. After one hour of incubation the particles were exposed to 808 nm 

NIR laser (1W; fluence rate of 8.3 W/cm2 for a beam area of 12 mm2) for 3 minutes, 

exposure was repeated every hour for a total of 3 exposures. PEGCDSIR820 were 

centrifuged at 14,000 r.p.m (2000 g) for 30 minutes using a centrifugal filter and 

fluorescence intensity of DOX in supernatant was measured. The percentage released drug 

was calculated using the following formula, 

  
Drug-Dye Loading %=

Weight of Drug or Dye in the nanoparticle

Weight of nanoparticles 
 ×100  (18) 

 

 

3.5 Characterization results  

3.5.1 Size  

Ormosil/silica nanoparticles are formed through a series of steps that involve 

hydrolysis of the silica precursor followed by condensation and growth of particle nuclei 

due to intermicellar collisions. The effects of reaction parameters, viz surfactant (dioctyl 
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sulfosuccinate sodium salt; AOT), VTES and ammonia/3-aminopropyltriethoxysilane 

(APTES) concentrations on particle size have been well studied in the literature. The 

hydrodynamic diameter of three Ormosil formulations is shown in Table 3.1: diameter of 

Si was 48.5±2.5 nm, of CDSIR820 was 52.5±3.0 nm and FDSIR820 was 52.5±5.0 nm. The 

increase in size and polydispersity predicted by dynamic light scattering (DLS) on drug 

loading can be attributed to the presence of large size fraction particles as shown by the 

intensity distribution curve (Figure 3.2). It might be possible that drug loading modifies 

the particle surface and causes minor aggregation of particles in phosphate buffered saline. 

In aqueous media, physical processes such as aggregation and swelling of organic groups 

on the nanoparticle surface determine the effective nanoparticle size measured by dynamic 

light scattering (hydrodynamic diameter). PEG layers on the nanoparticle surface swell in 

PBS and hence the hydrodynamic diameter of CDSIR820 increased to 58.2±3.1 nm from 

52.5±2.5 (5.7 nanometer increase) after pegylation.  

The SEM image shows spherical CDSIR820 particles of uniform size. An 

agreement between SEM size and average diameter predicted by DLS indicates that the 

hydrodynamic particle diameter in aqueous media is not increased due to particle swelling 

and/or aggregation. Addition of PEG improved the aqueous stability of PEGCDSIR820 

(compared to CDSIR820) particles as seen from an improvement in the polydispersity 

index (PDI) (Table 3.1). PEGylated particles exhibited a narrower size distribution (lower 

PDI) compared to CDSIR820 particles. Both types of particles were stable against 

aggregation and retained the same diameter over a period of 6 hours. Therefore, the 

increase in particle diameter was solely due to the PEG-layer and not due to particle 
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aggregation. These results are consistent with the pegylation of amorphous silica particles 

reported by other authors.  

 

Diameter 

(nm)  PDI  

Zeta 

Potential(D

PBS)(mV) 

Zeta 

Potential(

Media)(

mV) 

IR820 

Loading 

(w/w%) 

DOX 

Loading 

(w/w%)  

Si 48.5±2.5  0.061±0.015 -40.1±0.9 -14.6±2.0 N/A N/A 

FDSIR82

0 52.5±3 0.154±0.022 -39.9±1.3 -16.9±1.3 10.0±0.2 2.1 ± 0.0 

CDSIR8

20 52.5±5 0.214 ±0.017 -41.4±1.9 -17.6±0.1 6.6±2.3  

2.7 ± 

0.5  

PEGCDS

IR820 

58.2±3.1* 0.179±0.024 -15.1±3.2 -6.9 ± 

0.1* 

6.2±3.1 2.5±0.6 

Table 3.1: Physical parameters of different nanoparticle formulations determined by 

dynamic light scattering. 
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Figure 3.2: Intensity size distribution of Ormosil nanoparticles in Dulbecco’s phosphate 

buffered saline show that the mean diameter of the particles is at 58 nm’s. 
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Figure 3.3: Scanning electron microscopy of CDSIR820 particles show monodisperse 

spherical particles 

No aggregation (large aggregates, turbidity) was observed over a period of 6 hours 

for particles resuspended in DPBS or McCoy’s 5A media. Stability against aggregation in 

physiological buffers/solutions is a desired characteristic for designing nanoparticles for 

in-vivo applications. Albanese et al. have shown that aggregation results in a lower uptake 

of nanoparticles by A549 cells (Albanese and Chan, 2011). Also, swelling or aggregation 

increases the effective nanoparticle diameter which causes a decrease in the diffusion 

coefficient (diffusion coefficient is inversely related to size) and thereby limits nanoparticle 

penetration into tumor tissues. The size of our nanoparticles is in the ideal range for optimal 

cell uptake and deeper penetration into tumor. As cellular uptake of organic/inorganic 

nanoparticles is an energy dependent mechanism, nanoparticles with diameter less than 30 

nm do not meet the energy threshold needed to drive membrane invagination and wrapping, 
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whereas, for particles with diameter greater than 70 nm the membrane wrapping is slower 

and more energy intensive (Zhang et al., 2009). Furthermore, nanoparticles with size more 

than 100 nm face significant resistance to penetration into tumor tissue due to the presence 

of tumor extracellular matrix and elevated intratumoral pressure which impedes nutrient 

and particle diffusion (Goodman et al., 2007).  

3.5.2 Zeta Potential  

Amine grafted Ormosil particles had a zeta potential of -40.1 ± 2.3 mV in phosphate 

buffered saline (pH 7.4) (Table 3.1). There are no differences between the zeta potentials 

of bare Si and drug loaded formulations owing to the growth of a silica shell over the drug 

layer. In the case of the Ormosil particles, the zeta potential is not determined by the surface 

groups such as amine (from APTES functionalization) and vinyl (from VTES monomer), 

instead, it is determined by the type of surfactant moieties (i.e., Brij-40, Tween-20, AOT) 

that are immobilized in the silica matrix. Severstel et al. reported that Ormosil nanoparticles 

prepared with surfactant Brij40 retained the surfactant in silica matrix despite several 

rigorous washing processes. Their particles had a zeta potential of -9.3 mV (Selvestrel et 

al., 2013a).  

The zeta potential of CDSIR820 particles shifted to the positive side of neutral on 

incubation with McCoy’s 5A medium containing 10 % FBS. The zeta potential further 

reduced to -6.9 ± 0.07 mV after pegylation (Table 3.1). This is due to the adsorption of 

serum proteins onto the nanoparticle surface (Lesniak et al., 2010). Adsorption of serum 

proteins happens very rapidly (0.5 minutes) and results in formation of a protein corona 

around the silica nanoparticle. The protein corona is comprised mainly of proteins with 
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molecular mass >60 KDa. Proteins with negative charge seem to preferentially adsorb onto 

silica nanoparticle surfaces irrespective of the surface zeta potential (i.e., positive or 

negative). This results in an overall negative charge for Ormosil particles in the presence 

of serum (Tenzer et al., 2013). Even though PEG provides steric hindrance to protein 

adsorption it does not completely abolish protein adsorption (Moret et al., 2015a). The 

protein corona on silica nanoparticles is highly enriched with apolipoproteins involved in 

lipid and cholesterol transport (Tenzer et al., 2013). Formation of a protein corona on the 

nanoparticle surface has been shown to be one of the most fundamentally important 

phenomena in determining nanoparticle interaction with cells (Lesniak et al., 2012). 

The cell membrane is an electrically charged surface, therefore the surface charge 

of nanoparticles also plays a role in cell uptake and tumor penetration. Positively charged 

nanoparticles are electrostatically attracted to negatively charged cell membranes and taken 

up by cells to a greater extent compared to particles with negative surface charge. However, 

particles with positive charge suffer from poor penetration and may also be immobilized 

due to electrostatic interactions with negatively charged collagen molecules of the ECM 

(Jain, 1999; Jain and Stylianopoulos, 2010). Similarly, negatively charged nanoparticles 

aggregate with positively charged hyaluronic molecules. Therefore, a near neutral charge 

is preferred for efficient tumor penetration and cell uptake. However, colloids are very 

unstable at their isoelectric point (zero zeta potential) and aggregate in physiological 

solutions (Oswald’s ripening). This can be circumvented by coating the particle surface 

with PEG (steric hindrance). The mentioned physical properties are ideal for passive 

accumulation near the tumor site due to tumor EPR. 
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3.5.3 FTIR, Absorbance results  

The FTIR-ATR spectra of Si and CDSIR820 show strong absorption around 

1100 cm-1 due to Si-O-Si bridges commonly found in Ormosil particles (Figure 3.4). The 

dual split peaks in this region are red-shifted by 20-40 nm to those found in VTES sol gels. 

This indicates a possible porous structure. Sharp peaks at 1407 cm-1 and 1605 cm-1 indicate 

in-plane CH2 bending and C=C vibrations from the vinyl groups. Furthermore, the peaks 

at 2969 cm-1 (aliphatic H-C), 3074 cm-1 (aromatic H-C) and at 3400 cm-1 (N-H, O-H) are 

due to the functional groups on the surface (Olejniczak et al., 2005; Selvestrel et al., 2013b). 

The absence of peaks associated with Free DOX or Free IR820 in CDSIR820 samples is 

because of the additional shell growth on the surface. 
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Figure 3.4: FITR-ATR spectra shows core shell structure of CDSIR820. Image shows 

FTIR-ATR spectra of Blank ORM, CDSIR820, Free Dox and Free IR820. A clear overlap 

is seen for Blank ORM (no drug or dye) with CDSIR820 indicating the presence of an 

additional silica shell. 

The fluorescence signal of DOX in phosphate buffered saline was quenched for 

FDSIR820 and CDSIR820 (Figure 3.5). When the particles were incubated with McCoy’s 

5A media, the fluorescence from FDSIR820 particles increased and reached the expected 

free DOX value (Figure 3.5), whereas the signal from CDSIR820 remained quenched. 

Since, DOX is in its hydrophobic form it cannot partition into aqueous media (DPBS) and 

the proximity to a metal surface resulted in the quenching of fluorescence signal. However, 

when FDSIR820 particles were re-suspended in cell culture media, DOX was able to 

partition into the hydrophobic components of the media or was associated with serum 
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proteins. This caused an increase in the fluorescence intensity. A similar effect on the 

fluorescence quenching of DOX was observed by You et al. when DOX was adsorbed onto 

a hollow gold matrix.  The fluorescence subsequently increased on release of DOX from 

the gold matrix (You et al., 2010). 

 

 

Doxorubicin hydrochloride (DOX-HCl) is an amphiphilic drug moiety due to a 

lipophilic anthraquinone part and a hydrophilic sugar ring. In order to increase the 

interaction between silica nanoparticles in the oil phase (Dimethyl sulfoxide; DMSO) and 

DOX molecules, DOX-HCl was converted to its hydrophobic form (DOX) by the addition 

of Triethylamine (TEA). Hydrophobic DOX molecules are able to partition into the oil 

phase upon their addition to the emulsion. Furthermore, at high basic pH of the aqueous 

phase, most DOX molecules exist in neutral form and are therefore loaded on the silica 

particle surface via physical adsorption (Raghunand et al., 2003). For the conjugate, 

Figure 3.2: Fluorescence studies show leakage of DOX from FDSIR820 in McCoy’s 5A 

media. Fluorescence spectra of different Si formulations (3.2 µM equivalent DOX 

concentration) were acquired in DPBS (Left) and McCoy’s 5A cell culture media (Right). 
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reaction between DOX and 3-(Triethoxysilyl) propyl isocyanate (ICPTES) results in a 

DOX-Siloxane intermediate through the formation of urethane (-NHCOO-) or urea (-

NHCONH-) linkages. However, a urea linkage could preferentially be formed due to 

the higher affinity of the isocyanate groups (-N=C=O) of ICPTES to the amine groups (-

NH2) of DOX (Li et al., 2009). When the DOX conjugate is added to the emulsion, the 

siloxane groups are hydrolyzed and DOX is covalently loaded onto the silica nanoparticle 

by condensation of the siloxane groups of the conjugate with the silanol (Si-OH) groups 

on the silica nanoparticle surface.   

 IR820 was held in the silica matrix due to strong non-covalent electrostatic 

interactions. The pore size of Ormosil silica nanoparticles is between 1.3-1.7 nm depending 

on the size of the nanoparticles.  The size of the IR820 molecule, based on its molecular 

weight, is between 1.0 – 1.3 nm. Since, IR820 is doped at such a high concentration it is 

possible that IR820 may exist as aggregate molecules which increases their effective size 

and prevents leakage from the nanoparticles. The absorbance spectra of IR820 shows a 

strong interaction of the dye with the Ormosil matrix as seen by the red shifted primary 

peak compared to free IR820 (695 nm’s) in PBS. A secondary peak is also observed at 830 

nm’s from PEGCDSIR820 in DPBS (Figure 3.6).  The broadening of absorbance bands is 

explained from the symmetry breaking and reduced charge delocalization in the 

polymethine chain of IR820 due to interactions with the Ormosil matrix.  Additionally, the 

π- conjugation of terminal end groups has been shown to play a role in the red-shift of 

absorbance peaks. The resulting broadening of the primary peak (735 nm) with an 

appearance of a secondary peak (830 nm’s) is similar to that observed from an elongation 
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of middle polymethine chains of NIR dyes by the vinyelene bond (CH=CH) and extension 

of nitrogen containing heterocycles (Lepkowicz et al., 2004; Przhonska et al., 2013; Yi et 

al., 2014).   

 

Figure 3.6: Absorbance curves of Free DOX and IR820 mixture in DI water and 

PEGCDSIR820 in DI water. 

For the hyperthermia generation study, the energy fluence rate of a NIR laser was 

varied in the range of 3.6 W/cm2 – 6.7 W/cm2 by changing the output power and keeping 

the spot size fixed. The energy fluence rate was set at 3.6 W/cm2 for the first exposure, 4.7 

W/cm2 for the second exposure and was increased to 6.7 W/cm2 for the third exposure in 

order to achieve a temperature rise to 43°C during each exposure.  Under multiple 

exposures (3 exposures were done) to NIR laser, each of duration 3 minutes, the 

PEGCDSIR820 particles were able to rapidly raise the temperature of the media to 43°C 
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within 3 minutes for each exposure (Figure 3.7). The temperature measured by the 

thermocouple at its position in the well is the average of the entire solution temperature. 

This means that the temperature generated by a fraction of the particles may be higher than 

43°C. After the 3rd exposure, the temperature rise of the media was only 0.5°C on exposure 

to the highest laser power (1 W), which was the same as observed in media without any 

PEGCDSIR820 particles. The photobleaching of IR820 due to multiple laser exposures 

explains the absence of temperature rise after 3 exposures.  

 

 

3.5.4 Release kinetics 

The partitioning of the released DOX is dependent on the release media. In 

hydrophilic media DOX may not partition out of the particle whereas in cell culture media 

Figure 3.3: Exposure of PEGCDSIR820 to NIR laser resulted in temperature raise. 

Temperature raise profile of PEGCDSIR820 for successive laser exposures 1 hour apart. 
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it may partition into the hydrophobic components of the media such as serum proteins. 

(Roy et.al 2012). shows that DOX and IR820 are slowly released from FDSIR820 and 

CDSIR820 particles in aqueous media (DPBS). At 48 hours approximately, without any 

NIR exposure, 93.2%±1.5% DOX was retained in CDSIR820 formulation and 

77.0%±1.0% DOX was retained by FDSIR820 formulation. The slow release of DOX from 

FDSIR820 is due to the hydrophobic nature of DOX and that of CDSIR820 is due to the 

gradual hydrolysis of the urea bond in DPBS. A similar release profile was observed for 

DOX-ICPTES conjugated magnetic particles by Li et al, with only 13.3 % DOX released 

from the particles in 11 days (Li et al., 2009).Release kinetics of DOX from 

PEGCDSIR820 particles was measured in McCoy’s 5A media with 10 % FBS. Exposure 

to laser caused the release of DOX from PEGCDSIR820 particles in a time dependent 

manner. In the absence of laser exposure, only 23 % of DOX was released in 3 hours in 

McCoy’s 5A media (Figure 3.8) with only 5 % observed in the first 20 minutes (burst 

release).  Exposure to the laser resulted in an increase of DOX release from PEGCDSIR820 

nanoparticles. Approximately 45 % of DOX was able to release in 3 hours under periodic 

laser exposure (every 1 hour) (Figure 3.8). At 24 hours, the cumulative release percentage 

of drug showed no increase from the value measured at 3 hours. The release kinetics of 

DOX from PEGCDSIR820 was different than un-pegylated CDSIR820 due to the 

modification of the Ormosil surface with PEG moieties. PEG moieties act as an interface 

between the hydrophobic DOX molecules and components of media, thus favoring the 

release of DOX. The mechanism of release under laser exposure is presently unclear, 

however, hyperthermia and laser exposure may be playing a role in enhancing DOX release 

from PEGCDSIR820.  
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Figure 3.8: Drug (DOX) and Dye (IR820) are retained by ORM formulations in dulbeccos 

phosphate buffered saline at 37 °C (left). NIR Exposure of PEGCDSIR820 led to release 

of DOX. Particles were periodically exposed to laser every hour over a period of 3 hours 

(right). The error bars represent standard error of mean (n = 3). 

3.6 Cell Uptake  

Skov-3 cells were grown on Poly-L-lysine coated coverslips and transfected with 

Cell BacMam lysolight RFP ®(Invitrogen). Then, they were incubated with free DOX and 

DOX loaded nanoparticles (FDSIR820, CDSIR820) for twelve hours, stained with 4',6-

diamidino-2-phenylindole (DAPI), washed 3 times with ice cold DPBS, fixed with 4 % 

formalin and mounted onto a glass slide. For laser treatment with PEGCDSIR820 

nanoparticles were added to each dish at a concentration of 160 µg/ml and incubated for 

24 hours. Cells were exposed to 808 nm NIR laser (1W) in a manner similar to that 

described in the cell culture section. After 24 hours, cell nuclei were stained with DAPI for 

30 minutes and washed with ice cold DPBS. Cells were fixed in 4 % formalin, washed 

three times with ice cold DPBS and imaged using a Delta vision Elite deconvolution 

microscope at the respective wavelengths of the dyes i.e., DAPI (λex: 360 nm, λem: 430 
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nm), DOX (λex: 480 nm, λem: 590 nm) and lyso-RFP (λex: 550 nm, λem: 610 nm). It should 

be noted that imaging at DOX wavelengths is only to illustrate the subcellular localization 

of Ormosil particles, the goal of in-vivo imaging in the NIR region is achieved by IR820 

as explained below. 

DOX is a DNA intercalating agent that prevents DNA replication by binding with 

the topoisomerase II complex of cell DNA. Therefore, DOX in its free form is transported 

to the nucleus which is evident from Figure 3.9 (Free DOX). Similarly, when cells are 

incubated with FDSIR820 for 12 hours DOX fluorescence is present in the nucleus (Figure 

3.9). This is due to labile DOX partitioning into lipid bubbles in the cell membrane due to 

its hydrophobicity and thus entering the cell and binding with the nucleus in its free form. 

Conversely, incubation with CDSIR820 resulted in distinct fluorescent puncta in the cell 

cytoplasm and faint nuclear staining (Figure 3.9). These observations are in accordance 

with the results by Salvati et al. who showed that the presence of a labile dye on polystyrene 

nanoparticles results in a diffuse fluorescence, whereas nanoparticles with a non-labile dye 

appear as distinct fluorescent puncta (Salvati et al., 2011).  

DOX fluorescence from CDSIR820 merges with the fluorescence from 

LysoTracker Red® (Figure 3.9) suggesting that CDSIR820 particles eventually localize in 

the cell lysosomes.  Also, there is a weak DOX fluorescence from the nuclear region 

(compared to FDSIR820) possibly due to slow urea bond hydrolysis and subsequent release 

of DOX from CDSIR820 nanoparticles. The cellular uptake mechanisms of Ormosil 

nanoparticles are not well understood. Studies by Shapero et al. have shown that cell uptake 

of amorphous silica nanoparticles with similar size (50 nm) and surface properties (zeta 
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potential) is an energy dependent process in which the endocytic uptake mechanisms that 

are clathirin or caveolae mediated are not involved (Shapero et al., 2011). Fifty nanometer 

silica nanoparticles enter the cell one by one through membrane invaginations, are 

subsequently transported to early endosomes and finally get trapped irreversibly in the 

lysosomes. However, no evidence of clathirin or caveolae was obtained by the authors 

through short term immunostaining with respective antibodies (Shapero et al., 2011). More 

recent TEM evidence by Moret et al. of cells incubated with Ormosil nanoparticles showed 

the presence of clathirin coated pits, however the co-localization of particles within the pits 

was not found (Moret et al., 2015a). Therefore, it is possible that due to the surface protein 

corona, silica particles may enter the cell via more specific receptor mediated pathways 

that are mediated by apolipoproteins.  
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Figure 3.9: Confocal images show differences in intracellular localization of DOX between 

FDSIR820 and CDSIR820. Fluorescence microscope images of Skov-3 cells incubated 

with different Ormosil formulations in different fluorescence channels. Scale bar shown in 

left bottom corner of each picture is 40 μm. White arrows indicate DOX fluorescence from 

the nuclear region.  

Other transport mechanisms such as phagocytosis or macropinocytosis may also be 

involved. Further studies are needed to investigate the cellular uptake mechanisms of 

Ormosil nanoparticles. 

Intracellular release of DOX from nanoparticles upon laser exposure is clearly visible. 

Conditions such as low pH may be contributing to an increase in DOX release under 



119 

 

exposure to laser, as seen from an increase in nuclear fluorescence compared to DOX 

fluorescence in the cytosol. DOX bound to the nanoparticles cannot reach the cell nucleus 

as nanoparticles are too big to cross the nuclear pore complex. Therefore, upon release 

from the particles, DOX is able to translocate to the nucleus. Signs of cell necrosis such as 

fragmentation of nucleus, rounding and shrinking of cells are evident in the PEGCDSIR820 

laser treatment group (Figure 3.10).  

 

Figure 3.10 : DOX released from PEGCDSIR820 on NIR exposure trans locates to the cell 

nucleus. Confocal Images of DOX and PEGCDSIR820 distribution in Skov-3 cells. Top 

panel shows DOX fluorescence from cell nuclei. Middle panel shows fluorescent DOX 

puncta with minimal fluorescence from the nuclei. Bottom panel shows Skov-3 cells with 

PEGCDSIR820 particles after laser exposure. DOX fluorescence is evident from cell 

nucleus. Laser exposed cells show fragmented and shrunk nucleus indicating cell necrosis.  
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3.7 Cell uptake cytotoxicity  

Ovarian carcinoma cells (Skov-3) were maintained in a humidified incubator at 37°C and 

5 % CO2. The cells were fed regularly with McCoy’s 5A media supplemented with 10 % 

Fetal Bovine Serum (FBS) and 1% penicillin-streptomycin. Cellular uptake at 37°C and 

43°C was studied in a cell culture incubator, Skov-3 cells were allowed to equilibrate to 

43°C for 20 minutes prior to incubation with FITC loaded Ormosil particles for 1 hour at 

43°C (PEGFITCORM+43). After 1 hour incubation, the cells were returned to 37°C for 24 

hours. Skov-3 cells were exposed to NIR hyperthermia that was generated by 3-minute 

laser exposure of 5μM IR820 added to the cell culture media of Skov-3 cells. After NIR 

exposure, Skov-3 cells were incubated with FITC loaded Ormosil particles for 24 hours 

(PEGFITCORM+NIR). Cell uptake was determined as mentioned in chapter 2. 

For treatment, Skov-3 cells were plated in 96 well plates at a density of 5000 cells 

per well (200 μl) and allowed to attach for 24 hours. Free DOX-HCl, nanoparticles Si, 

FDSIR820 and CDSIR820, PEGCDIR820 were added to each well at different 

concentrations (360, 288, 216, 144, 90, 36, or 18 μg/ml) and incubated at 37°C for 48 

hours. 

In another group, Skov-3 cells were exposed to 808 nm wavelength NIR laser (1W) 

in the presence of PEGCDSIR820 and SIR820 nanoparticles. Each well was exposed to 

NIR laser for a duration of 3 minutes.  A total of 3 exposures with 1-hour interval between 

successive exposures were done on each well. During laser exposure, the temperature in 

each well was monitored using a wire thermocouple that was sterilized with 70 % (v/v) 

ethanol. After exposure, plates were returned to the incubator. Sulforhodamine B (SRB) 
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assay was performed 48 hours after nanoparticle administration to assess cytotoxicity of 

different treatments.  The cells were incubated with nanoparticles for 3 hours and were 

placed on a heated insert equipped to a movable stage to maintain the cells at 37 °C. The 

stage was moved so that each well to be exposed was directly in-line with the laser probe. 

The exposure time for each well was 3 minutes, which was based on the previous studies. 

Temperature of the well was monitored during laser exposure by a wire-thermocouple. 

After laser exposure, the plates were incubated for 48 hours and cytotoxicity was 

determined using the SRB assay. Three experiments with 3 replicates each were performed. 

Exposure of cells to rapid rise hyperthermia is detrimental to cell uptake of nanoparticles. 

Therefore, the timing of hyperthermia is crucial. 

3.7.1 Cytotoxicity of Different Ormosil Formulations in Skov-3 cells  

The cytotoxicity results in Figure 3.11 show that Si and CDSIR820 nanoparticles 

are well tolerated by Skov-3 cells and no growth inhibition is observed below 150 µg/ml 

nanoparticle concentration. Meanwhile, FDSIR820 nanoparticles showed severe toxicity 

at relatively lower concentrations compared to the Si and CDSIR820 formulations. Ninety-

four percent growth inhibition was observed in Skov-3 cells when administered 150 µg/ml 

FDSIR820 nanoparticles. These results are in accordance with Roy et al. who observed a 

significant reduction in cell viability (~80%) of MiPaCa-2 pancreatic cells treated with 

DOX loaded Ormosil particles (Roy et al., 2014). The rapid release of DOX from 

FDSIR820 and binding with the nucleus might explain the severe toxicity caused by this 

formulation. Premature rapid release of drug from nanoparticles is disadvantageous to in-

vivo applications as it will cause systemic toxicity associated with the drug and may also 
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reduce available injected dose of DOX to the tumor. The observed toxicity in CDSIR820 

was lower compared to the toxicity of free DOX at an equivalent DOX concentration of 5 

μg/ml. The lower cell killing potency of CDSIR820 compared to free DOX is due to the 

slow release of DOX from the particles. 

The observed toxicity profile for Si particles is in accordance with Moret et al. who 

have shown that unpegylated blank Ormosil nanoparticles were well tolerated by NCIH-

2347 adenocarcinoma and CCD-34Lu normal fibroblast cells up to a concentration of 200 

µg/ml (Moret et al., 2015b). The toxicity of Ormosil nanoparticles in cancer cells is 

dependent on cell type and relies on disruption of various vital cell functions. Ormosil 

nanoparticles have been shown to induce structural changes in cell morphology, alter cell 

membrane permeability and metabolism, cause the generation of reactive oxygen species 

which damage the mitochondria (Figure 3.12) and promote inflammatory gene expression.  
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DOX and IR820 loaded PEGylated particles were well tolerated by Skov-3 cells at 

higher doses compared to un-pegylated particles, inhibition of cell growth or cell killing 

was not observed at the highest tested concentration of PEGCDSIR820 (Figure 3.11). This 

is in accordance with recent results reported by Moret et al. which showed that pegylation 

of Ormosil nanoparticles reduced toxicity in lung cells. Altered cell uptake due to addition 

of PEG may also be contributing to the reduction in toxicity (Moret et al., 2015b). Uptake 

of PEGCDSIR820 by Skov-3 cells is clearly visible by the fluorescent puncta observed 

from confocal images (Figure 3.11). Exposure to NIR laser markedly increased the toxicity 

of PEGCDSIR820 nanoparticles; 60 % inhibition of cell growth was observed at the lowest 

tested concentration (18 μg/ml). PEGylated Ormosil nanoparticles loaded only with IR820 

(PEGSIR820) also showed enhanced toxicity on laser exposure, however, they were less 

toxic compared to PEGCDSIR820 (Figure 3.11). Signs of cell necrosis, such as 

fragmentation of nucleus, rounding and shrinking of cells, are evident in the 

PEGCDSIR820 laser treatment group (Figure 3.11). The release of DOX and multiple 

rounds of hyperthermia generated by laser exposure explains the enhanced toxicity of 

PEGCDSIR820 particles. Skov-3 cells are intrinsically insensitive to DOX chemotherapy 

due to a p53 gene mutation. This implies that increasing the intracellular content of DOX 

is not sufficient to induce higher cell killing. Adjuvant hyperthermia is beneficial for 

inhibiting p53 deficient tumor cells as it has been shown that the cellular response to 

Figure 3.4: Dose dependent cytotoxicity of different nanoparticle formulations under presence 

or absence of laser exposure. Comparison of FDSIR820 and CDSIR820 (left). Effect of 

Pegylation and laser exposure on cytotoxicity of PEGCDSIR820. The error bars represent 

standard error of the mean (n = 3). 
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hyperthermia is independent of p53 status. Moreover, rapid rate, short term hyperthermia 

does not lead to expression of heat shock proteins (HSP) which is commonly observed in 

slow rate long term hyperthermia (>= 1 hr.) (Tang and McGoron, 2009; Tang, 2010). Over 

expression of HSP is associated with an increase in thermal tolerance and has a positive 

correlation with an increase in drug resistance (Comerford et al., 2002). Since, a high 

thermal dose can be delivered on-demand multiple times, greater cell killing efficiency can 

be achieved than through DOX therapy alone. This is advantageous from a clinical 

treatment perspective where repeated treatment cycles are often needed to achieve 

complete eradication of tumors.  

 

Figure 3.5: Silica nanoparticles affect the cell mitochondria. Cells were stained with 

Mitotracker Red as per manufacturer’s instructions. Green puncta indicate nanoparticles. Cells 

incubated with aminated silica particles show fragmented mitochondrial cristae (left). 

Carboxylated silica nanoparticles did not induce mitochondrial fragmentation (right). Images 

were taken with 100X objective using the DeltaVision® deconvolution Microscope. 
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3.8 Spheroid Studies  

Spheroids were cultured and characterized as described in Chapter 1. Spheroids 

were transferred to 200 μl fresh media in a 96 well plate, PEGCDSIR820 particles and 

DOX were added at a final concentration of 250 μg/ml. In one study, the spheroids were 

incubated with PEGCDSIR820 particles for 2 hours and exposed to laser in a manner 

similar to cell monolayers. In another study, spheroids were incubated for 24 hours and 

exposed to laser 3 times. The number of viable cells in spheroids was assessed by trypan 

blue assay 24 hours after laser exposure.  Spheroids were disaggregated by trypsin, 

centrifuged and resuspended in 30 μl DPBS. An equal volume of trypan blue was added 

and viability was determined using a hemocytometer as the ratio of trypan blue positive 

cells to total cell count. For each treatment group eight spheroids were used.  For imaging, 

spheroids were incubated with 250 μg/ml PEGCDSIR820 nanoparticles for 2 hours and 

exposed to laser 3 times. After 8 hours, spheroids were incubated with DAPI for 1 hour, 

washed in ice cold DPBS and fixed in 4% formalin. Confocal sections of 10 μm thickness 

were obtained using an Olympus FV1200 confocal microscope. 

Tumor spheroids recreate functional and morphological conditions of in-vivo 

avascular tumors. Dense aggregation of tumor cells and ECM molecules are a barrier to 

delivery of oxygen and nutrients. Hence, tumor tissues have a stratified organization of cell 

layers (i.e., necrotic core, quiescent layer and a proliferating cell region). As noted earlier, 

cells in these quiescent regions have a different physiological response to therapy, i.e., they 

are more resistant to therapy due to the tumor microenvironment (hypoxia, low pH). At the 

same time, a barrier to molecule diffusion is a limitation for the transport of nanoparticles. 
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Confocal images obtained after 8 hours’ incubation show that free DOX was able to 

distribute homogeneously in the spheroids, whereas PEGCDSIR820 particles remained at 

the periphery of the spheroids (Figure 3.13). The diffusion coefficient of free DOX is much 

smaller compared to PEGCDSIR820 particles (as diffusion coefficient is inversely related 

to the square of effective particle diameter). Additionally, the effective diameter of 

particles may have increased due to swelling and protein adsorption resulting in slow 

diffusion through the spheroid.  

NIR exposure increased the nuclear fluorescence of DOX as seen from the merged 

image of DAPI and DOX (Figure 3.13). However, after 8 hours, spheroids from both 

PEGCDSIR820 and PEGCDSIR820 laser treatment groups did not show any visible signs 

of toxicity, i.e., disintegration of spheroids, and the detachment of cells from the periphery 

that are commonly seen in treated spheroids. In cells exposed to NIR hyperthermia (by 

adding 5μM IR820) uptake of FITC-loaded nanoparticles was reduced compared to uptake 

at 37°C and 43°C (Figure 3.14). Additionally, PEGORM particles aggregated on exposure 

to NIR laser as observed by the formation of visible particle aggregates. Exposure of cells 

to NIR induced hyperthermia from IR820 leads to cell membrane damage (Tang et al 

2009). These effects contribute to the reduction in the cellular uptake of PEGORM 

nanoparticles.  Therefore, the proper timing of hyperthermia delivery is needed to obtain 

the combined effect of DOX and hyperthermia treatments. Furthermore, the 

aforementioned results were obtained by incubating the spheroids for 8 hours with 

PEGCDSIR820. Eight hours is sufficient to saturate the cell uptake of nanoparticles in 

monolayers (Chapter 2). However, in spheroids this process is considerably slowed as 
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particles have to overcome the physical barrier to reach cells deep within the spheroid. At 

this time, it is not possible to accurately model the particle penetration under hyperthermia 

due to the presence of DOX release from the particles. The simulation strategy needs to 

account for drug release and subsequent transport through the spheroid which is out of the 

scope of present study. Moreover, cells in quiescent and hypoxic regions may display 

altered uptake mechanisms of nanoparticles. We have observed that cells subjected to long 

term hypoxia display autophagic uptake of silica nanoparticles. Figure 3.15 shows staining 

with Monodansylcadaverine (MDC) that preferentially accumulates in autophagic 

vacuoles via ion trapping and specific interactions with membrane lipids.  
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Figure 3.13 : Confocal Images of 90 μm deep sections of Skov-3 spheroids from 2-hour 

study in which spheroids were incubated with PEGCDSIR820 for 2 hours and then exposed 

to laser 3 times. Images were collected after 8 hours. Top panel is the image of 

PEGCDISR820 particles with no laser exposure. DOX fluorescence is concentrated around 

the periphery. Bottom panel shows image of PEGCDSIR820 particles with laser exposure. 

DOX and DAPI fluorescence is more diffuse in the spheroid following laser exposure 

compared to the no-exposure group. Scale bar is 100 μm. 
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Figure 3.14: Exposure to NIR hyperthermia reduced the cell uptake of PEGFITCORM 

nanoparticles. Uptake of PEGylated Fluorescein Isothiocyanate loaded Ormosil particles 

(PEGFITCORM) by Skov-3 cells after 24 hours under different temperature conditions 

(left), (*) represents significant difference between uptake at 37°C (PEGFITCORM+37) 

and NIR exposure (PEGFITCORM+NIR). 
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Figure 3.15 : Evidence of autophagic uptake (different uptake mechanism compared to 

endocytosis) of silica nanoparticles under hypoxia. Cells were subject to 1% PO2 (Hypoxia) 

for 18 hrs. followed by incubation with Si nanoparticles for 24 hours. Autophagy was 

imaged by staining cells with Monodansylcadaverine. 

NIR laser after 24 hours incubation with PEGCDSIR820 nanoparticles led to 

complete disintegration of the spheroid mass the following day (24 hours) (Figure 3.16). 

This was further supported by a viability test that showed 94 % trypan blue positive cells 

in the laser treatment group (Figure 3.16) and are also in accordance with the predictions 

from finite element simulations. Spheroids incubated with PEGCDSIR820 nanoparticles 

also showed a reduction in cell viability which is in contrast to results observed in 

monolayer cell cultures that showed no toxicity to PEGCDSIR820 at the tested 

concentrations. This is possible since it has been shown by Lee et al. that Skov-3 cells 

grown as spheroids show a reduction in the corresponding p-53 mutation observed in 

monolayer culture (Lee et al., 2013). The lack of p-53 mutation, in combination with 

oxygen, nutrient deprivation and DOX may be causing cytotoxic stress and cell death in 

the quiescent regions of the spheroid.  
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Figure 3.16: Exposure to NIR hyperthermia of PEGCDSIR820 lead to spheroid 

toxicity.Top left image shows Skov-3 spheroids incubated with PEGCDSIR820, the 

compact structure is apparent with some loose cells at the periphery. Bottom left shows a 

less compact spheroid as a result of cell dissociation and death due to PEGCDSIR820 + 

Laser treatment (scale bar is 100 μm). Trypan blue viability results for spheroids from the 

24-hour study. Spheroids were incubated with PEGCDSIR820 for 24 hours and then 

exposed to laser 3 times. Trypan blue assay was done 24 hours after laser exposure. Data 

is represented as Mean ± S.E n = 8, (*) indicates significance for p<0.05 and (**) indicates 

significance at p<0.001 level. 

The difference between the appearance of spheroids that were treated with DOX or 

DOX+HYP (Chapter 1) and PEGCDSIR820 has to be noted. While, spheroids treated with 

DOX or DOX+HYP showed a loss of cells from the periphery (also observed in 

PEGCDSIR820) and intact spheroid mass on Day 6; spheroids with PEGCDSIR820 

exposed to laser showed complete disintegration and diffuse structure 24 hours after the 

treatment. 
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3.9 Biodistribution Studies. 

ICR mice were bred in house and kept under standard housing conditions, and fed 

ad libitum. All protocols followed the regulations of the Institutional Animal Care and Use 

Committee. Mice were randomly assigned to different experimental groups based on 

different time points, namely 15 minutes, 30 minutes, 60 minutes, 6 Hours, 24 hours and 

48 hours. On the day of the experiment, the animals were anesthetized with isofluorane 

and injected i.v. through the tail vein with a solution of NPs in PBS. The concentration of 

injected NPs was determined based on an IR820 dose of 0.24 mg/kg of body weight and 

an injection volume of 0.1 mL (1mg/ml Ormosil concentration).  At the terminal time point 

for all groups (15 min, 30 min, 60 min, 24 h and 48h), the animals were euthanized and 

their organs were harvested. Blood samples were collected via a heart-stick. Twenty 

microliter blood drops were placed on a glass slide and fluorescence images were obtained 

in a Li-Cor ® Odyssey imaging system. Region of interests were drawn around the droplets 

and fluorescence intensity was obtained. The fluorescence intensity was compared to a 

calibration plot (intensity vs particle concentration) obtained from serial dilutions of 

PEGCDSIR820 in mouse blood. 

IR820 fluorescence from the organs and blood was also measured using the Li-

Cor® Odyssey imaging system. Region of interests were generated for each organ and the 

fluorescence intensity was determined. Fluorescence intensity of each organ was converted 

to particle concentration in a similar manner as described above. The particle concentration 

was normalized with respect to organ weight in grams. 
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The fluorescence intensity of animal organs was measured following intravenous 

administration of CDSIR820 particles using an NIR imaging system operating at 800 nm 

wavelength. Strong IR820 fluorescence signal was obtained from the excised organs. From 

the calculated injected dose, it is clear that a major fraction of the injected dose of the 

nanoparticles accumulate in the organs of the reticuloendothelial system (RES), including 

liver, lungs, kidneys and spleen. In the first 24 hours, the injected dose peaks at 30 minutes 

in liver and kidneys (Figure 3.17). There are two modes of sequestration of nanoparticles 

in the RES organs, 1) passive accumulation and 2) capture by the macrophages residing in 

these organs. The sinusoidal wall of the liver has discontinuous gaps in its endothelium 

which might result in passive accumulation of nanoparticles. The accumulation in spleen 

increases remarkably at 24 hours, possibly due to increased capture of nanoparticles by the 

macrophage cells present in the organ.  

The kinetic distribution profile in the kidneys up to 24 hours may suggest some 

clearance via urine, however, the size of the nanoparticles is above the threshold for 

glomerular filtration and subsequent excretion via kidneys. Only particulates in the size 

range 7-10 nm are efficiently excreted via the kidneys (Ernsting et al., 2013). For particles 

above 30 nm diameter, excretion in feces via hepatobiliary clearance is a more prominent 

mode of removal. Since we do not expect our Ormosil to be degraded or metabolized 

rapidly, hepatobiliary clearance is more probable than renal clearance. The presence of 

particles in heart is somewhat surprising, this may be possible since silica nanoparticles 

have been shown to associate with vascular cells. This may explain the variation observed 

in heart tissue, which might have been caused due to the presence of residual blood clotted 
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in the organ following euthanasia. Vascular association of nanoparticles may also explain 

accumulation in lungs. Mesoporous and non-amine silica particles have been shown to 

accumulate in the lungs due to association with lung vascular cells instead of internalization 

by pulmonary cells (Yu et al., 2012). Furthermore, the particle surface may be gradually 

modified due to the hydrolysis of amide bonds which happens in-vivo (in liver) (Kumar et 

al., 2010). A bright fluorescence signal from lungs was observed at 6 hours (CDSIR820) 

and was still present at 48 hours in the animals administered free IR820 and CDSIR820. 

Kumar et al. confirmed that encapsulated dye can redirect the nanoparticles to its primary 

site of accumulation (Kumar et al., 2010). Another reason for lung accumulation might be 

due to some aggregation of our particles, as indicated by the DLS measurements. The bio 

distribution data suggested that after 24 hours, Ormosil nanoparticles are retained more in 

the spleen than the free dye.  

It is important to note that even though Ormosil particles may not possess cytotoxic 

effects at low concentrations, vascular obstruction due to the formation of aggregates may 

pose a health hazard and hence strategies to further enhance particle stability and evade 

RES capture are needed. In a study by our group with IR820 PEG diamine particles, we 

found that free IR820 localized in liver and lungs after 24 hours, but IR820-PEG-diamine 

conjugates did not show any lung accumulation, presumably due to the presence of PEG.   
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Figure 3.17: High NIR fluorescence is observed from the internal RES organs of mice.  

Fluorescence images of different organs at different time points obtained from LI-COR 

CLx imaging system. 

The measured dye content was fit to a two-compartmental pharmacokinetics model 

to estimate the distribution and elimination half-life of IR820 encapsulated in 

PEGCDSIR820 particles. The distribution half-life (α1/2) was estimated to be 11.4 ± 4.2 

minutes and the elimination half-life (β1/2) was estimated as 41.2 ± 7.1 hours. The 

elimination half-life is significantly longer (p<0.05) than free IR820, which was estimated 

to be 30.5±0.5 hours from our previous studies (Fernandez-Fernandez et al., 2011). Recent 

reports from Qian et al. with IR820 loaded Ormosil particles showed sustained particle 

fluorescence at the tumor site until 30 days (Qian et al., 2012). 



136 

 

 

Figure 3.18 : Plasma pharmacokinetics show increased circulation time of IR820 

administered using PEGCDSIR820 particles. Plasma clearance curves of IR820 vs Time 

after IV injection of PEGCDSIR820 particles. Y-Axis is shown in log units. Data is 

represented as Mean ± S.E of n = 3. 

The plasma concentration represents the nanoparticle concentration available to 

diffuse at the tumor periphery. This is represented by the following equation of two 

compartmental pharmacokinetics.  

 𝑁𝑇(𝑡) =  𝑁𝑜(𝛼2−𝑡 𝜏𝛼⁄ + 𝛽2−𝑡 𝜏𝛽⁄ )  (19) 
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The parameters α (3.43), β (0.22) represent the fraction of pharmacokinetic phases and τα 

(11.4 min), τβ (41.2 hours) represent the half-life in the respective phases. Equation (19) 

can be used as a time dependent boundary condition at the periphery of the spheroid instead 

of a constant boundary condition (of available nanoparticle concentration) that was used to 

model transport of nanoparticles under in-vitro incubation. Clearance of nanoparticles from 

plasma will reduce the available concentration to diffuse into the tumor. At the same time, 

the concentration gradient will also reach an equilibrium which may further slow-down the 

transport into the tumor (Figure 3.19). In the case below, the AUC of the tumor reduced to 

0.18 compared to 0.38 in case of constant boundary condition for concentration. This 

represents a simple albeit realistic situation of nanoparticle administration in-vivo. Based 

on the results of simulations, hyperthermia delivery can be planned for the tumor. The 

simulations can be combined with in-vivo NIR fluorescence tracking for particles for 

hyperthermia planning upon tumor accumulations. However, to accurately predict the 

delivery under hyperthermia, the simulations will need to consider effects of convective 

transport on nanoparticle delivery, convection of heat due to blood flow, and the effect of 

hyperthermia on local blood pressure and interstitial tumor pressure to accurately predict 

the nanoparticle distribution in solid tumors.  
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Figure 3.19 : Simulation of the effect of plasma clearance of nanoparticles on tumor 

accumulation. 

DOX pharmacokinetics in-vivo was not measured, free DOX has been shown to 

have a similar elimination half-life as IR820, i.e., approximately 30 hours. Therefore, based 

on its slow release from the particles, it is reasonable to expect a similar increase in half-

life of DOX encapsulated in PEGCDSIR820 as IR820. This expected increase of clearance 

half- life is in agreement with studies in the literature of the pharmacokinetics of a well-

known liposomal formulation of DOX, Doxil, that has been clinically approved by the 

FDA for treatment of ovarian cancer and AIDS related Kaposi Sarcoma (Gabizon et al., 

2003). Other factor that may influence the biodistribution of DOX and IR820 in 
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PEGCDSIR820 include the degradation of particles in-vivo, especially in the liver. This 

should be further investigated. 

3.10 Nanoparticle Design Criteria for Cancer Theranostics.  

Nanoparticle design for cancer theranostics should consider the physical and 

chemical properties of nanoparticles (viz size, surface charge, and other surface properties) 

in relation to the properties of tumor such as porosity, interstitial fluid pressure and cell 

uptake. As mentioned earlier, in solid tumors, the outward directed interstitial fluid 

pressure that arises due to the lack of lymphatic drainage and the poorly developed 

vasculature are primary hindrances to the convective transport of nanoparticles (Zhan et 

al., 2017). In such case, diffusion is the dominant transport mechanism for delivery of 

nanoparticles in solid tumors. A recent study by Sykes et al. has shown that tumor 

properties such as tumor volume and concurrently the ECM content and pore size 

determined gold nanoparticle penetration in MDA-MB-435 human breast adenocarcinoma 

mice xenografts (Sykes et al., 2016).  As tumor volume increased, the porosity also 

increased as a result of loss in structural ECM via reduction in collagen fiber thickness (this 

was also observed for our large size MES-SA/Dx-5 aggregates that exhibited a highly 

porous structure). This led to an increase in sequestration of gold nanoparticles with 

diameter greater than 50 nm’s.  In our simulations of highly porous tumors (ε >= 0.5), an 

increase in porosity (by cell death under hyperthermia) above the base threshold did not 

significantly increase the accumulation (i.e. AUC) of 50 nm silica nanoparticles. Therefore, 

in highly porous tumors, instead of promoting particle penetration, hyperthermia can be 

used to achieve other functions viz intracellular drug release or as an adjuvant once the 
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drug has bound to its intracellular target. Moreover, particles with larger diameters (>50 

nm) maybe suitable for therapy of highly porous tumors since larger size particles can carry 

more payload compared to smaller size particles. 

It may appear that decreasing the particle size below the pore threshold is a 

successful strategy to enhance the penetration of nanoparticles in tumors of low porosity. 

However, decreasing the particle size has the following disadvantages; 1) particles with 

diameter smaller than 10 nm are subject to rapid renal clearance, and 2) smaller particles 

have higher collision rate with the tumor ECM and expulsion rate from the tumor (Sykes 

et al., 2016). Experimental and mathematical simulations from literature studies have 

shown that nanoparticles in the size range 30-60 nm’s offer a distinctive advantage over all 

other sizes in terms of cell uptake and tumor penetration.  

As seen in chapter 2, the penetration of nanoparticles is also determined by the 

balance between physical (i.e. diffusive forces) and reaction forces (i.e. cell uptake). If the 

reaction force dominates the diffusive force, then nanoparticle transport into the tumors is 

impeded by the binding site barrier effect. Hence, it is essential to consider both when 

modeling nanoparticle transport in tumors. In the above case of PEGCDSIR820 transport 

in Skov-3 spheroids, the finite element solution predicted the W1/2 value for carboxy 

functionalized particles at 8 hours to be 0.80. This implies that the nanoparticle 

concentration is more than the half maximal concentration (at the periphery) only till a 20 

% distance from the spheroid surface. Due to the slow release of DOX from the particles, 

cells in the spheroid are not exposed to lethal concentration that will result in cell necrosis. 

Even though DOX release is enhanced under NIR hyperthermia, the application of NIR 
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induced hyperthermia at 2 hours results in rapid aggregation of PEGORM which will 

impede nanoparticle penetration at further times. In conjunction with reduced uptake of 

nanoparticles by the cells, application of early NIR hyperthermia (2 hours) may not result 

in cell death. In 2 hours, the Ormosil particles only diffuse to 20 % distance from the 

periphery. The distance increased to 50 % at 24 hrs and hence the adjuvant treatment was 

able to exert its cytotoxic effect on Skov-3 spheroids.  

Furthermore, at the tumor cell, for the drug to reach its intracellular target (DNA in 

case of DOX), the nanoparticles should be up-taken by the cells where the drug should be 

released from the nanoparticle. Here, the release rate of drug from nanoparticles plays a 

critical role. While, fast release of drug from the nanoparticles reduces bioavailability of 

drugs due to rapid elimination of the leaked drug, slow/incomplete release also reduces the 

drug bioavailability in tumors.  This was observed by Langinha et.al. for liposomal 

formulations of DOX administered (slow release) in mice tumor xenografts (Laginha et al., 

2005). Only, 27 % of encapsulated DOX from a fast releasing liposomal formulation could 

reach the cell DNA (27 % bioavailability) and 50 % of encapsulated DOX from DOXIL 

(slow release) could reach the intended target. The release rate should be tailored per the 

diffusion and uptake rate (penetration rate) of nanoparticles. When the penetration rate of 

nanoparticles is slow (in tumors with low porosity), the release rate should be slow so that 

the drug is retained by the carrier until it reaches its intracellular target in therapeutic doses. 

At the same time, very slow (extending over days or weeks) release of drugs may also 

reduce the bioavailability through reverse diffusion of nanoparticle carrier from the tumor 

and its subsequent clearance. Hence, it is desirable that all (preferably 100 %) of the drug 
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be released from the nanoparticle during its residence time in the tumor.  The goal of on-

demand drug release (i.e. timing of laser exposure) on spheroid penetration and cellular 

internalization can be easily attained through the combination of on-demand stimuli 

responsive nanoparticles and mathematical modeling approach developed in this work. 

However, for PEGCDSIR820 particles it should be noted that though the adjuvant therapy 

shows increased efficacy in cell killing, incomplete release of drug from the particle is also 

its main limitation. Increasing the release further will be the goal of future studies.  

3.11 Conclusion. 

Novel theranostic Ormosil nanoparticles loaded with DOX and IR820 for chemotherapy, 

adjuvant hyperthermia and NIR imaging were developed using the ternary microemulsion 

method. Covalent loading of DOX on the silica particle surface slowed the release of DOX 

compared to physical adsorption, which resulted in rapid release of DOX from the particles 

(Figure 3.5). Pegylated nanoparticles possessed the physical properties, e.g., stability 

against aggregation in physiological media, size (50-60 nm) and surface charge (-6.2 mV) 

for optimal cell uptake and passive targeting of tumors via the EPR effect (Table 3.1). 

Exposure to NIR laser resulted in a rapid rise of temperature to 43°C and 45 % release of 

DOX from the pegylated nanoparticles in cell culture media in 3 hours (Figure 3.7 & Figure 

3.8). The comparison of cytotoxicity profiles between different loading modes show that 

FDSIR820 causes high toxicity in Skov-3 ovarian cancer cells whereas CDSIR820 

particles are well tolerated by the cells (Figure 3.11). Pegylated particles without NIR 

exposure did not show any toxicity in Skov-3 cells up to a concentration of 360 μg/ml, 

whereas non-pegylated particles showed toxicity in a dose dependent manner (Figure 3.11). 
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The combination of DOX release and rapid rise hyperthermia resulted in enhanced cell 

killing of Skov-3 cells (Figure 3.11). Nanoparticle penetration and associated cytotoxicity 

were tested in Skov-3 spheroids grown in liquid overlay culture. The spheroids showed a 

very compact and dense aggregation of cells. DOX fluorescence from pegylated 

nanoparticles was in-homogeneously distributed around the periphery of Skov-3 spheroids 

at 8 hours. Exposure to laser increased DOX fluorescence into the interior of the spheroids 

but failed to elicit a measurable cytotoxic response at 8 hours (Figure 3.13). Exposure to 

NIR laser after 24 hours incubation with PEGCDSIR820 nanoparticles resulted in complete 

disaggregation of the spheroid mass as a result of cell death (Figure 3.16). Combined with 

cell uptake results that showed that a rapid rate NIR hyperthermia decreases cell uptake of 

nanoparticles (Figure 3.14), it can be concluded that the timing of adjuvant hyperthermia 

plays an important role to achieve a combined effect of both therapies. In-vivo 

biodistribution experiments showed that encapsulation increased the in-vivo circulation 

time of IR820 (Figure 3.18). PEGCDSIR820 particles can be further modified with cancer 

specific antibodies (HER2) or small molecules (folate) along-with PEG for selective 

targeting of ovarian cancer and other cancers as well. Furthermore, the spheroid model is 

a rigorous tool to study nanoparticle distribution. The results from spheroids can be readily 

translated to develop in-vivo strategies for combined chemotherapy and adjuvant 

hyperthermia. 
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4. Final Conclusions and Future Work 

 

The tumor microenvironment is a critical determinant of response to therapy. The 

poor penetration of nutrients and oxygen due to the presence of extracellular matrix in 

tumors creates regions of hypoxia and low pH that alter the response of cells to drugs. 

Currently, monolayer cultures of cells cannot recreate the structural and functional 

complexity of in-vivo tumors. Multicellular tumor spheroids recreate the morphological 

and functional characteristics of in-vivo avascular/solid tumors. In this study, 3-

dimensional tumor models were generated from ovarian carcinoma (Skov-3) and uterine 

sarcoma cells (MES-SA/Dx5). Skov-3 spheroids showed compact organization that was 

also verified by scanning electron microscopy (SEM) whereas, MES-SA/Dx5 resembled 

cell aggregates with distinctly visible cells under SEM. Both models (Skov3 and MES-

SA/Dx5) were resistant to DOX and adjuvant hyperthermia, probably owing to the drug 

and thermal tolerance that are enhanced due to the three dimensional organization of tumor 

spheroids. These results are in contrast to those obtained in monolayers which showed 

enhancement in cell killing from the combination of DOX and hyperthermia. For a 

successful treatment, the mechanisms of drug and thermal resistance originating due to the 

three-dimensional organization of tumor spheroids need to be circumvented.  

Nanoparticles have emerged as a logical choice to specifically deliver encapsulated 

agents to tumors safely, without the systemic toxicity of free drugs. The physical 

(nanodimensions) and chemical properties (surface and nanomaterial properties) of 

nanoparticles are advantageous to specifically deliver the encapsulated agents to the 
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tumors, either via passive targeting through the EPR effect or by specific targeting of 

cancer cell receptors. At the same time, drug delivery using nanoparticles has been shown 

to circumvent P-gp mediated drug tolerance. However, owing to a bigger size compared to 

free drug moieties, nanoparticles suffer from poor penetration into avascular/solid tumors. 

Several factors such as the size, surface charge of nanoparticles, binding with cells in 

spheroids and stability of nanoparticle against aggregation determine the penetration of 

nanoparticles into tumor spheroids. Hyperthermia can also influence nanoparticle delivery 

to spheroids by 1) affecting the colloidal stability of nanoparticles, 2) altering the uptake 

of nanoparticles by the cells and 3) changing the porosity of spheroids due to thermal 

damage related cell death. At present there are no reported methods to estimate the kinetics 

of nanoparticle uptake by cells under hyperthermia. A novel method of inverse estimation 

based on Bayesian statistics was developed to fit the experimental measurements of 

fluorescent silica nanoparticle uptake by the Skov-3 cells. The solution to the inverse 

problem was found using the Markov Chain Monte Carlo technique.  The method was able 

to successfully predict all four rate parameters of cell uptake i.e., association rate (ka), 

dissociation rate (kr), internalization rate (ki) and externalization rate (krec) from a wide 

parameter space, independent of initial guess. Under hyperthermia, the kinetics of particle 

association and internalization increased compared to 37°C. However, hyperthermia did 

not cause a significant increase in amount of nanoparticles taken up by the cells compared 

to 37°C. The experiments also showed the importance of surface modification on 

nanoparticle uptake, nanoparticles modified with inert polyethylene glycol (methoxy-PEG) 

were taken up less by the cells compared to carboxy-PEG modified silica nanoparticles. 

The parameters predicted from MCMC were used in an advection reaction model that was 
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coupled with the Arrhenius model of thermal damage to simulate the effect of hyperthermia 

on nanoparticle transport in tumor spheroids. Application of hyperthermia increased the 

effective size of particles through aggregation and also increased tumor porosity due to 

thermal damage related cell death. The transport of silica nanoparticles was diffusion 

dominated and an increase in porosity lead to an increase in penetration (distance) of 

nanoparticles. The inverse estimation approach combined with the finite element model 

can be used to predict optimal set of nanoparticle properties (for a given condition; 

hyperthermia) such as size, surface charge, cellular uptake parameters that are suitable for 

deep penetration into the avascular tumor.  Based on these observations, drug loading and 

the density of moieties on the nanoparticle surface can be designed. Additionally, in case 

of hyperthermia, based on the tumor characteristics, the thermal dose necessary to cause a 

desired increase in porosity for deep penetration of nanoparticles can also be determined.  

Based on the observations of nanoparticle transport in tumor spheroids and 

response to DOX under hyperthermia, a novel multifunctional theranostic probe for rapid 

rise hyperthermia was developed for image guided chemotherapy with adjuvant 

hyperthermia.  Rapid rise hyperthermia is beneficial to prevent thermal tolerance (HSP70 

expression) associated with slow hyperthermia. Organically modified silica nanoparticles 

were encapsulated with a near infrared dye (NIR; IR820) and Doxorubicin (DOX). Ormosil 

nanoparticles were formulated using the ternary microemulsion method and their surface 

was modified with Polyethylene Glycol (PEG). The size, surface properties and colloidal 

stability in physiological media of the pegylated particles are ideal for passive targeting of 

the tumors via Enhanced Permeation and Retention Effect (EPR). DOX was loaded into 
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the nanoparticles via physical adsorption or by chemical conjugation. IR820 showed strong 

interaction with the Ormosil matrix as determined by a shift in the absorbance spectra and 

was therefore retained effectively by the Ormosil nanoparticles in physiological buffers. 

Owing to its hydrophobic nature, DOX was effectively retained by the nanoparticles in 

aqueous buffers. However, physical adsorption of DOX lead to rapid leakage by 

partitioning the hydrophobic components of the media. Covalent conjugation of DOX led 

to a very slow release due to slow hydrolysis of urea linkage between DOX and silica 

matrix. Pegylated Ormosil particles generated hyperthermia, rapidly, multiple times on 

successive exposures to NIR laser. Exposure to laser also led to an increase in release of 

DOX from the particles. These factors (heat and DOX release) led to enhanced cell killing 

by PEGylated Ormosil particles which were otherwise non-toxic to Skov-3 cells in the 

absence of laser exposure. In spheroids, exposure to hyperthermia led to deeper penetration 

of DOX, however, early application of laser exposure before the particles were able to 

penetrate the periphery of the spheroids did not cause any increase in the toxicity. This was 

possibly due to extensive aggregation observed for PEGylated Ormosil particles on laser 

exposure which impeded nanoparticle transport into the spheroid. Laser exposure of Skov3 

spheroids after 24 hours of incubation with PEGylated Ormosil nanoparticles resulted in 

the marked destruction of spheroid structure due to cell death. By properly planning the 

hyperthermia treatment maximum therapeutic efficacy was achieved in killing tumor 

spheroids. This efficacy was not achieved with slow rate hyperthermia. From these results 

it is clear that for both cases i.e. free DOX therapy and nanoparticle therapy, successive 

applications of DOX plus hyperthermia may not be beneficial to achieve an additive effect 

in avascular tumors. In-vivo experiments in mice showed that encapsulation of IR820 
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increased the elimination half-life compared to its free form. The bio-distribution profile 

of Ormosil nanoparticles showed uptake by the organs of the RES. The vascular association 

and presence of particles in the lungs remains a concern for successful application of these 

particles for therapy in-vivo.  

Future Work: The tumor spheroids in this work were generated from a single cell 

type, as noted earlier, in-vivo tumor tissues consist of various cell types that ultimately 

determine the tumor organization and response to therapy. Additionally, dynamic 

conditions that simulate flow and pressure characteristics in tumors are also needed to 

accurately model nanoparticle transport. Hence, co-culture of different cell types into 

spheroids and incorporation of spheroids with microfluidic chambers that simulate flow 

patterns in a tumor will create a suitable ‘tumor on chip’ platform for drug testing. The 

inverse estimation method for estimating rate parameters of cellular uptake of nanoparticles 

can be coupled with experiments with different nanoparticles (gold, iron, silver, etc.) cell 

types and environmental conditions (low pH and hypoxia) to generate appropriate 

constraints to accurately ‘train’ the method to predict the physical phenomenon of uptake. 

In order to further increase the accuracy of finite element predictions of nanoparticle 

transport, detailed information regarding tumor characteristics will be needed. Other 

modeling techniques such as, Monte Carlo, meshless, particle tracking and Lattice 

Boltzmann methods may also be developed to overcome limitations of the finite element 

method.   

Presently, the theranostic Ormosil probes are ideal for passive targeting to the tumor. In 

the future, along-with PEG to evade RES clearance, the surface of these probes can also be 
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modified with ligands specific to cancer cell receptors (example: folic acid, anti-HER2) for 

active targeting of the tumors. In-vivo studies in animal tumor models are needed to 

evaluate the efficacy of Ormosil mediated adjuvant NIR hyperthermia and Doxorubicin 

therapy on tumor reduction or eradication. Additionally, the slow release of DOX is a 

limitation to improving the therapeutic efficacy of DOX loaded Ormosil particles. Other 

strategies such as mesoporous silica particles and pH or photo cleavable bonds should be 

tried to enhance the DOX release in response to tumor microenvironment or external 

stimuli. The DOX circulation and release of DOX due to particle degradation when they 

are metabolized also needs to be investigated.  
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Appendix A: List of model parameters. 

Parameter  Description  Units (SI) 

r radial coordinate   μm 

t time  s 

C  Interstitial concentration of nanoparticles in the spheroid M 

ε Porosity of the spheroid  dimensionless 

Cbs Available binding sites of the cells in the spheroid M 

Cb Bound concentration of nanoparticles to the cells  M 

ka  Association rate of nanoparticles with the cells  M-1s-1 

kd  Dissociation rate of nanoparticles from the cells  s-1 

ki  Internalization rate of nanoparticles by the cells s-1 

krec  Externalization rate of nanoparticles from the cells  s-1 

Deff Effective diffusion coefficient  m/s 

D0  Ideal diffusion coefficient  m/s 

τ Tortuosity  Dimensionless 

R Spheroid Radius m 

Bmax Cell Surface Binding Capacity of Spheroids mol/L 

CMedium External Boundary Condition mol/L 

kB Boltzmann Constant (m^2*kg)/(s^2*K) 

muCp Viscosity of Fluid (media)  Pa*s 

a Particle Radius nm 

rp Collagen Fiber Radius m 

λ Ratio of Nanoparticle Radius to Pore Size dimensionless 

Ax Activation Energy s-1 

EAx Activation Energy Barrier J*mol-1 

R Universal Gas Constant J*(mol-1*K-1) 
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