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ABSTRACT OF THE DISSERTATION 

EXPERIMENTAL ANALYSIS OF THE EFFECTS OF HYDROSCAPE STRUCTURE 

ON FISHES IN A DYNAMIC WETLAND 

by 

Michael Ross Bush 

Florida International University, 2017 

Miami, Florida 

Professor Joel C. Trexler, Major Professor 

Hydroscape structure can play a critical role in animal behavior, abundance, and 

community structure dynamics.  Hydroscape configuration can be dynamic and can 

change quickly in ephemeral systems.  However, ephemeral freshwater wetlands are 

among the most impacted systems in the world and restoration efforts often rely on 

incomplete information when establishing management objectives.  Further 

understanding how alterations in hydroscape structure in dynamic systems affect animals 

is critical for conservation and management success. 

To determine impacts that changing hydroscape conditions can have on 

consumers in freshwater wetlands, I examined the effects of a large-scale physical model 

on fish behavior, abundance, and community structure.  The physical model incorporated 

the restoration of sheetflow, canal-fill treatments, and the removal of a decades-old levee 

that divided two water management areas in the central Everglades.  Small fishes 

modified directional movement behaviors and speed of movement before and after 

alterations took place, though behavioral responses varied widely by species.  Density 

and community structure of small fishes did change as a function of canal-fill and levee 
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removal treatments.  Behaviors of large fishes were also affected by hydroscape 

alterations, as well as hydroscape configuration beyond the limited footprint of the 

physical model.  Large fish abundance was altered by hydroscape alteration, particularly 

among certain species.  Composition of the large fish community changed before and 

after hydroscape alteration, though magnitude of responses were site-specific.   

Effects of hydroscape structure proximity on trophic dynamics were examined 

using exclosure cages that excluded large predators but allowed access for small 

consumers.  Exclosures were stratified according to proximity to a deep-water canal.  

Predator avoidance behaviors in small consumers were limited but present.  Differences 

in behavior between sites may also be caused by differences in structure across sites and 

limited differences in nutrient quality. 

Behavioral, population, and community responses to hydroscape alteration can be 

valuable metrics to assess the success of hydroscape restoration.  While results can vary 

across individuals, species, and sampling sites, effects can still be detected even at the 

scale of the hydroscape.  My research has detailed the potential effects of restoration 

plans across the greater Everglades and can be extended to other ephemeral wetland 

restoration programs. 
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PREFACE 

The following chapters will be submitted for publication and are formatted according to 

journal specifications: 

CHAPTER II 

Bush, M.R., J.C. Trexler, C. Saunders, and F. Sklar Experimental test of effects of 

hydroscape structure on wetland animal-space interactions. Journal of Landscape 

Ecology. 

CHAPTER III 

Bush, M.R., H. Mallikarachchi, K. Boswell, C. Saunders, F. Sklar, B Rosen, and J.C. 

Trexler. Effects of hydroscape alteration on large fish behavior, density, and communities 

in a dynamic wetland. Transactions of the American Fisheries Society. 

CHAPTER IV 

Bush, M.R., S. Bornhoeft, and J.C. Trexler. Ecotone proximity and consumer in a 

dynamic freshwater habitat. Freshwater Science. 
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Influences of landscape configuration on organismal dispersal can vary greatly 

across individuals, populations, and species (Kolasa and Romanuk 2005, Parkos et al. 

2014, Hoch et al. 2015).  Animals must adopt adaptive behaviors to successfully navigate 

landscape obstacles and the threats they represent (Roshier et al. 2008).  Adaptive 

movement behaviors are necessary for survival in seasonally dynamic systems, where 

habitat quality can vary across spatiotemporal scales (Bell 2000).  Effects of hydroscape 

structure on behavioral, population, and community dynamics have been relatively 

understudied in non-riverine wetlands when compared to advancements in terrestrial 

landscape ecology.  However, management and restoration efforts often involve drastic 

alteration to the hydroscape that can influence behavioral and demographic processes 

(Cucherousset et al. 2007, Maloney et al. 2008, Hogg et al. 2015).  Influences of the 

hydroscape can translate to differences across communities and form the basis of 

metacommunity theory (Leibold et al. 2004).  While the metacommunity paradigm has 

been applied to aquatic macroinvertebrates (Cottennie et al. 2003), the field is still in its 

infancy with regard to vertebrate communities.  With studies incorporating highly-mobile 

species, the possibilities of moving metacommunity studies to an applicable management 

framework become more realistic.  Conservation and management programs often 

implicitly use metapopulation theory for species management (Marsh and Trenham 

2001), but whole-system management could greatly benefit from the structural 

framework of metacommunity theory.  As freshwater wetland conservation efforts 

expand to large and complicated management plans, understanding how hydroscape 

alteration effects aquatic animals is important for determining the efficacy of 
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management programs (Poff et al. 1997, Poff and Zimmerman 2010) as well as furthering 

the understanding of vertebrate metacommunity function. 

The Everglades of Florida, U.S.A., allows for the study of the confluence of 

animal behavior and hydroscape configuration, as well as how these behaviors influence 

population and community dynamics.  Considerable structural modification proposed by 

restoration efforts are taking place throughout the Everglades ecosystem and provide 

opportunities to examine the role that large-scale hydroscape alteration has on aquatic 

vertebrates.  My dissertation was conducted in support of these restoration efforts, using 

the Decomp Physical Model (DPM; DPMST 2010) to answer simple but powerful 

questions of fish behavior and community structure in a changing hydroscape.  

Hydroscape modification from DPM included the filling of a deep-water canal to marsh 

or half-marsh depth over approximately 300 meter stretches, as well removal of an 

earthen levee near the modified canal that had two compartmentalized areas of the marsh 

that had not been hydrologically connected since the 1960s (Light and Dineen 1994).  

Findings from DPM-related research were then used to set up a research framework 

examining trophic interactions of two size classes of consumer and how they vary with 

location in the hydroscape.   

 The first chapter of this dissertation, titled “Experimental test of effects of 

hydroscape structure on wetland fish behavior, population, and community structure”, 

examined impacts of hydroscape alteration from DPM on small fishes.  Using 1 m2 throw 

traps and mobile drift fences embedded with minnow traps (Jordan et al. 1997, Obaza et 

al. 2011, Hoch et al. 2015), I examined the how hydroscape alterations influenced small 

fish community structures of both resident and mobile species, total fish density, total 
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fish encounter rate, speed, and directional movement.  The last two parameters were 

examined across the eight most common small fishes (standard length < 8 cm) of the 

Everglades.  Using a Before/After-Control/Impact (BACI) framework, three years of data 

were taken prior to DPM efforts, and approximately two years of data after those 

restoration efforts.  Control sites were established to the north and south of the main 

study area.  Sampling sites were established in a stratified fashion on both sides of the 

degraded levee, varying with distance from the impacted canal. 

 The second chapter, titled “Effects of hydroscape alteration on large fish 

behavior, abundance, and communities in a dynamic wetland”, also relied on DPM 

alterations to examine community structure and behaviors of fishes, but applied these 

efforts to a larger size class of fishes (standard length > 8 cm).  These fishes differ from 

small fishes by having multi-year life spans and because large fishes are highly mobile 

and able to quickly move across the hydroscape.  Two common piscivores, the 

Largemouth Bass (Micropterus salmoides) and Bowfin (Amia calva), were implanted 

with VHF radio transmitters and tracked weekly via airboat or fixed-wing aircraft before 

and after DPM construction efforts, allowing me to monitor the effects of major structural 

changes on large predator behavior and how they might have been influenced by 

hydroscape alteration.  Over the course of my dissertation, the behaviors of 

approximately 100 individuals from each species were monitored for varying periods of 

time, from just a couple of weeks (dropped/failed transmitters) to over nine months.  

Using an airboat mounted electroshocker (Chick et al. 1999) and a dual-frequency 

identification sonar (DIDSON) (Tiffan et al. 2004) in a BACI design, I was able to 

determine the impacts of DPM on large fish abundance and community structure.  Survey 
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transects were stratified using their position relative to the modified canal and were 

located adjacent to the canal, in the marsh interior, and along the littoral edge of the canal 

itself. 

 My final data chapter, titled “Ecotone proximity and consumer behavior in a 

dynamic freshwater habitat”, experimentally evaluated interactions between large and 

small-fish size classes and examined the role of hydroscape structure on large-fish 

predation risk for small fishes.  One-m2 exclosure cages were deployed in 12 sites (six 

adjacent to the canal, six 150-300 meters away from the canal) for 13 days to evaluate 

behavioral responses of small fish and macroinvertebrates.  Each site had a cage that 

excluded large predators, thus creating a refuge for small fishes and aquatic 

macroinvertebrates, and a control cage that permitted animals of all sizes to enter.  The 

field experiment was run during three months representing the annual hydrological cycle, 

allowing me to determine if perceived predation risk of small fishes was dependent on 

proximity to a prominent hydroscape feature, the amount of water available, neither, or 

both.  Fishes and macroinvertebrates from these cages were removed after each study 

period and the Dynamic Effect Size (Osenberg et al. 1997, Chick et al. 2008) was used to 

determine if perceived predation risks were altered on the basis of hydroscape proximity 

or water depth.  Furthermore, effects of hydroscape proximity influence on periphyton 

forage quality, elemental abundance, and Chl-α abundance were also examined. 

My dissertation builds on a robust body of work examining the role of hydroscape 

configuration and water depths of fish abundance, community structure, and behaviors in 

the seasonal marshes of the Everglades (Trexler et al. 2005, Parkos et al. 2011, Goss et al. 

2014).  By using the considerable efforts of DPM, I was able to experimentally study 
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fishes in a long-hydroperiod marsh experiencing modifications of water flow and 

hydroscape configuration.  These efforts permited me to detail the effects that 

hydroperiod alteration, configuration, and restoration efforts can have on the aquatic 

community of the Everglades.  My dissertation provides a robust examination of 

hydroscape structure on the fish behaviors, populations, and metacommunity processes of 

the Everglades and of seasonal freshwater marshes in general.   
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Abstract 

Dispersal in response to environmental cues is a key survival trait for animals living in 

ephemeral habitats, but is difficult to study experimentally in nature.  Canals added to 

wetlands provide permanent dry-season refuges for fishes in habitats where refuges may 

have been historically rare.  We examined dispersal behavior, population density, and 

community responses of fishes before and after a canal was filled and an adjacent levee 

was removed, re-connecting marshes that had been hydrologically isolated for five 

decades.  Canal filling was in three treatments: fill-to-marsh level, partial-fill, and no-fill.  

Control and impact sites were located three distances from the canal and were monitored 

for two years before and after hydroscape alteration.  Hydroscape alteration changed 

either movement speed or directedness, or both, at one or more distances from the canal 

in five of eight species examined.  Species most impacted by drought events outside of 

this study, such as Flagfish, were more likely to respond to hydroscape alteration than 

were species relatively unaffected by drought.  At sites far from the canal, Eastern 

Mosquitofish reduced speed by almost 600% after alteration compared to a 50% decrease 

at control sites.  Near the canal, fish density was up to 300% greater in plots adjacent to 

fill treatments after manipulation, compared to a 50% increase at no-fill and control sites.  

Community composition changed after hydroscape alteration, but hydrologically-

reconnected communities did not become more similar.  Hydroscape alteration can have 

strong but species-specific influences on members of the fish community, and these 

influences contribute to metacommunity dynamics. 

Keywords: Dispersal, landscape alteration, hydroscape, Everglades, metacommunity 

dynamics  
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Introduction 

Seasonal environments present animals with a suite of challenges that vary across 

spatiotemporal scales (Bell 2000).  To navigate seasonal change in the spatial distribution 

of habitats, animals employ physiological and behavioral coping mechanisms critical for 

survival of individuals and persistence of populations (Roshier et al. 2008).  Behavioral 

strategies involving alteration of speed and directed movement are key adaptations for 

survival in ephemeral habitats (Bauer et al. 2011).  Sink habitats may provide temporary 

opportunities for abundant food resources or refuge from predation for vulnerable life 

stages (Boughton and Pike 2013).  However, failure to adopt adaptive migration 

strategies can trap individuals in sink habitats.  Individuals can become stranded in sink 

habitats because of incorrect timing or direction of emigration (Inouye et al. 2000) or 

misidentification of habitat quality (Blondel et al. 1992).   

Studies examining community assembly and dynamics commonly infer the 

mechanisms responsible for maintaining diversity from descriptive data (Thuiller et al. 

2015).  Competing models contrast the roles of environmental filters and dispersal in 

shaping community structure (Leibold et al. 2004).  Documentation of movement 

dynamics among habitat patches is increasingly seen as a necessary complement to such 

analyses to validate processes inferred (Bouvier et al. 2009, Brown and Swan 2010).  

Interspecific and intraspecific variation in movement among habitats may underlie 

metacommunity dynamics (Kolasa and Romanuk 2005; Mari et al. 2014).  While 

metacommunity dynamics have been described in many aquatic communities, 

experimental study of the underlying processes creating dynamics are rare. The dynamic 

spatial arrangement of aquatic habitats in wetlands resulting from a fluctuating water 
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table provide an opportunity to experimentally evaluate the role of landscape structure in 

metacommunity dynamics.  

Hydroscape features can affect the pattern and rate of habitat colonization and 

evacuation as waters rise and fall in seasonal aquatic habitats (Cucherousset et al. 2007; 

Bronmark et al 2008).  In floodplain forests, fishes are constrained to river channels for a 

portion of the year.  As the river floods, fishes can make lateral movements into newly 

accessible habitat (King et al. 2003).  When rivers are channelized, relationships between 

ephemeral habitats and rivers become restricted (Arlinghaus et al. 2002).  In some 

modified wetland and floodplain systems, canals substitute for deepwater areas.  Fishes 

move from these controlled water bodies into the surrounding hydroscape when given the 

opportunity (Nishida et al. 2014, Parkos and Trexler 2014), though signals for a fish to 

move from deep to shallow water may be obscured by management actions leading to 

hydrological reversals, creating unsustainable population dynamics (Baumgartner et al. 

2014).  Fish response to dynamic water conditions in modified habitats, as well as how 

they respond in systems that are undergoing restoration efforts, are important for 

hydrologic management.   

 The Florida Everglades is characterized by seasonal hydrology with annual 

expansion and contraction of flooded habitats (Gaiser et al. 2012).  Previous works have 

identified interspecific variation in recovery of fish populations after a drying event 

(Trexler et al. 2002, Trexler et al. 2005) and behaviors that promote recolonization 

(DeAngelis et al. 2010, Goss et al. 2014, Hoch et al. 2015) as contributors to community 

dynamics.  The wet season typically begins around May, when water levels begin rising 

rapidly to depths around 80 cm where they remain through November; the dry season 
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begins in December and water depth gradually decreases until May (Duever et al. 1994).  

In the dry season, fishes are restricted to deep sloughs that only rarely became dry (Loftus 

and Kushlan 1987) or are stranded in ephemeral pools where they are consumed by 

predators such as wading birds or succumb to desiccation (Trexler et al. 2005; Botson et 

al. 2016).  As water levels rise, these fishes move laterally to newly inundated areas of 

the marsh (Goss et al. 2014).  In the southern Everglades, fish move from freshwater 

marshes to ecotonal creeks for dry-season refuge, where they experience elevated risk of 

predation (Rehage and Loftus 2007; Boucek and Rehage 2013).  Water control structures, 

such as levees and canals, have increased the frequency and severity of drying events, 

diminishing the function of sloughs as dry-season refuges for aquatic animals and in 

some areas replacing them with canals.  While canals can present stable water conditions, 

there may also be a high abundance of piscivores within close proximity to the canal 

(Rehage and Trexler 2006; Ruehl and Trexler 2015).  Thus, the Everglades provides an 

excellent system to study how the arrangement of habitats drive landscape behavioral 

ecology and shape metacommunity dynamics.  

We used a field-scale Physical Model that experimentally removed canal and 

levee structures to evaluate their impact on fish movement and metacommunity dynamics 

after several years spent gathering baseline data.  Our Physical Model reintroduced 

sheetflow at velocities that mimic historical flow conditions (2-3 cm/sec), filled sections 

of a canal, and removed a levee that had isolated two areas of the Everglades since the 

mid-1960’s (DPMST 2010). We used a Before-After-Control-Impact (BACI) design to 

evaluate the impact of these experimental changes of the hydroscape on fish behavior, 

population, and community dynamics.  We hypothesized that movement behaviors 
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(direction and speed) differ among fish species and at different proximities from deep-

water refuges, promoting metacommunity dynamics.  We further hypothesized that 

directional movement would reverse at the sites furthest from a canal after levee removal, 

as the newly accessible canal was in the opposite direction of the previously closest deep-

water refuge.  We also predicted that community composition and similarity would 

increase between formerly disconnected sites after levee removal, an indication that 

aquatic animals were moving into newly accessible areas.  Furthermore, the communities 

at sites in closest proximity to hydroscape alteration were predicted to experience the 

largest shift.   

 

Materials and Methods 

 

Study Design 

 

This study took place in the Everglades, Florida, USA (25o 50’15”N  80o 37’ 07” S, 

Figure 1).  It was conducted within an area that has been bounded by earthen levees (the 

L-67C and L-67A levees) for over 50 years (Figure 1A, B; Light and Dineen 1994).  

Fifteen meters west of the L-67C levee is the L-67C canal, and Water Conservation Area 

3B (WCA 3B) is to the east.  The L-67C canal is approximately 4-m deep and 8-m wide, 

and is the only permanently flooded habitat in the area.  The area west of the canal is a 

thickly-vegetated marsh (maximum water depth approximately 1 m) with shallow ridges 

covered by sawgrass (Cladium jamaicense) and sloughs dominated by white waterlily 

(Nymphaea odarata), Gulf Coast spikerush (Eleocharis cellulosa), and bladderworts 
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(Utricularia spp.), as typify the Everglades (Gunderson and Loftus 1993).  While 

elevated tree islands dot the landscape of the marsh, water depth is relatively uniform.  

The area east of the L-67C levee is also characterized as shallow marsh, though slough 

vegetation and periphyton tend to be at lower densities than sites west of the levee (Table 

1). Prior to our study, the nearest deepwater habitat in WCA 3B was a remnant canal ~4.5 

kilometers to the south and southeast of the study area. 

A BACI study design was employed with pre-manipulation data gathered for two 

years (Before: September 2010 – June 2012), and post-manipulation data for another two 

years (After: January 2013 – March 2015) and Control plots north and south of the 

manipulated marsh area (Impact).  After the Before period, the canal in our study area 

was partially filled and the adjacent levee was degraded to marsh level (DPMST 2010).   

We established three sites in sloughs experiencing experimental water deliveries 

positioned in relation to distance from the manipulated canal (Far-from-Canal (FC), 

Near-Canal (NC), and East-of-Levee (EL)), with three plots sampled for each site. The 

plots were arranged parallel to the canal, with control plots on either side and out of the 

experimental area (Figure 1B).  The NC sites were immediately adjacent to the L67-C 

canal, along its western edge, while the FC sites were 150-300 meters away from the 

canal.  The EL sites were in a separate water management unit east of the L67-C levee, 

WCA 3B (Figure 1C).  The levee that separated these two regions was degraded in the 

study area during late 2012 and early 2013.  After this period, the management units east 

and west of the L67-C levee were hydrologically connected and the closest deepwater 

habitat for the EL sites went from 4.5 kilometers away to only 40 meters away.  Sections 

of the L67-C canal underwent filling (a no-fill control section, a partial-fill section, and a 
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filled section approximately to marsh surface; each section was approximately 300 

meters) during the same period.  An experimental water release, designed to simulate 

sheetflow (McVoy et al. 2011), took place upstream of the study area during November – 

December, 2013, and November 2014 - January 2015.  The release came from 10 

culverts that delivered 750 cfs when opened (Figure 1B).  The pulse had no measurable 

effect on water velocities in the study area, with average water velocities equal to 1.47 

cm/sec (SE = 0.26) during the pulse and 1.53 cm/sec (SE=0.21) when the pulse was not 

taking place (velocities estimated with a SonTek FlowTracker Acoustic Doppler 

Velocimeter), though SF6 tracers (Ho et al. 2009) indicated that that water introduced 

from the culverts moved through our study area (David Ho, University of Hawaii, 

personal communication). 

Samples were grouped into Before (10 sampling events between September 2010 

and June 2012 for NC and FC sites, 9 samples for EL sites) and After (10 sampling 

events between January 2013 and March 2015 for NC and FC sites, 9 samples for EL 

sites) time intervals for comparisons of temporal effects of the manipulation.  Sampling 

periods were chosen to reflect changing water depths over the course of the year.   When 

possible, sites were sampled four times per year.  In March, 2011, and May, 2012, only 

two plots for NC were sampled because the third plot was dry.  An additional sample was 

taken at NC Plot 3 in September, 2013.  In August, 2011, control plots were added ~ 3km 

to the north and south of the main experimental area (Figure 1B).  This distance was great 

enough for the control sites to be outside of the influence of any changes in structure or 

experimental flow pulse treatment.  After their establishment, the control sites were 

sampled during the same time periods as the experimental sites.   
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Fish density was estimated using a 1-m2 throw trap (Jordan et al. 1997), with 

sampling by portable drift fences to assess speed and directionality of fish movement 

(Obaza et al. 2011, Hoch et al. 2015).  Throw-trap catch estimates the density of small 

fishes in the area (# individuals m-2), while drift fence catch-per-unit-effort (CPUE) is an 

encounter rate of fish moving across the marsh (Obaza et al. 2011), hereafter referred to 

as encounter rate.  Drift fences consisted of landscape cloth (woven 47% shade-cloth, B 

& K Instillations, Homestead, FL, USA) forming an X pattern with 4-m wings, with four 

minnow traps (3-mm mesh, Gee’s Minnow Traps, Tackle Factory, Fillmore, NY, USA) 

located at the intersection of the wings.  The ends of the wings and each corner of the 

central box were supported by ~1-m long PVC stakes.  Each minnow trap was oriented in 

a different cardinal direction and the wings extended outwards at 45° angles. Traps were 

left to soak for 24 hours.  During each sampling period, three throw-trap samples and 

three drift-fence samples were taken.  In a preliminary study, water velocity was not 

significantly different upstream versus downstream of the drift fences, suggesting 

minimal influence of the shade cloth on water movement (the 47% shade cloth was 

selected to minimize flow impedance after efforts with denser mesh blocked water flow 

and diverted high velocities through the traps).  Throw-trap samples and drift-fence 

samples were taken within 3-8 days, depending on weather conditions.  Fishes from all 

sampling types were euthanized in a tricaine methane sulfonate solution (MS-222; Argent 

Chemical Laboratories, Inc., Redmond, WA, USA), fixed in a 10% formalin solution 

(UFR Committee, 2004), and processed after being moved into 70% ethanol.  Average 

throw-trap and minnow-trap values from each plot were treated as replicates for density, 

encounter rate, community, and behavioral analyses.   
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We also analyzed all fish species combined (total fish) to determine if there were 

broad reactions to hydroscape alteration across all species. However, previous work has 

shown that marsh recolonization rates following droughts vary among the members of the 

Everglades aquatic communities (Trexler et al. 2002).  Therefore, species contributing the 

most to community dissimilarity among sites and with enough non-zero catches for 

statistical analyses were analyzed separately for movement behavior.  Eight species 

examined as part of the study were: Eastern Mosquitofish (Gambusia holbrooki), Bluefin 

Killifish (Lucania goodei), Flagfish (Jordanella floridae), Golden Topminnow (Fundulus 

chrysotus), Marsh Killifish (Fundulus confluentus), Blue-Spotted Sunfish (Enneacanthus 

gloriosus), Dollar Sunfish (Lepomis marginatus), and Sailfin Molly (Poecilia latipinna).   

 

Data Analyses 

 

We evaluated the effect of Time (pre- and post-alteration) and Site (EL vs EL control, FC 

vs FC control, and NC vs NC control) and Site × Time interaction to evaluate the impact 

of hydroscape alternation.  We treated Water Depth Change (hereafter WDC) as a 

covariate that measured the rate of daily water depth change over the 15-day period 

preceding collection of a drift-fence sample.  For some analyses, WDC was a categorical 

variable, coded as “increasing” or “decreasing”.  Daily water depth was estimated with 

the Everglades Depth Estimation Network (EDEN; Telis 2006; Liu et al. 2009), and was 

adjusted to local depth by comparison to in situ measured depth.  The WDC rates were 

averaged across plots within site types.  Dependent variables of all parametric tests were 

square-root or natural log transformed to meet assumptions of our statistical tests.  



20 
 

Occasionally, outliers in Speed and Direction analyses involving very low catches (one or 

two fish) were removed to improve model fit.  Some species were absent or rare from 

sites or time periods (e.g., Marsh Killifish were almost never captured at NC and FC 

sites); in these instances, species-specific analyses were restricted to sites where 

individuals were collected.  Features of the landscape known to affect fish density such as 

periphyton volume (mL), emergent vegetation stem density (m2), and water depth (cm), 

were analyzed across Site × Time to determine if hydroscape alteration affected them in 

ways that may influence results. 

For every test examining the three-way interaction of Site × Time × WDC, Site × 

Time was also examined to determine if effects were present only with hydroscape 

alteration alone.  If these interactions yielded P values less than 0.10, pairwise 

comparisons were conducted using subsets of the data.  If an interaction was significant 

(P <0.05) but no pairwise comparisons were, data were plotted and visually examined.  

Our inclusion of models with near-significant (0.05 < p < 0.10) interactions was justified 

by the complexity of these large field data sets. Relaxation of frequentist P = 0.05 cut-off 

for ‘significance’ is justified because alternative modeling frameworks demonstrate 

useful information is present in models with frequentist probability between 0.05 and 

0.10; the information content (and usefulness) of statistical models should be treated as a 

gradient rather than a threshold (e.g., Burnham and Anderson 2010, Bolker 2008).  We 

considered the variance explained (pseudo R2) and improvement in model fit compared to 

alternative models before interpreting these marginal models. As the NC sites were 

adjacent to the canal-fill treatments and each plot corresponded to a different treatment, 

we also examined density and encounter rate with the three-way interaction of WDC × 
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Plot × Time to evaluate fill-treatment effects.  Data from the two Control sites were 

averaged for these analyses and each site (FC and FC control, NC and NC control, EC 

and EC control) was analyzed separately to avoid difficult to interpret hypothesis tests 

(four-way interactions).  

We regressed CPUE on density for each species to determine if encounter rate 

was determined primarily by density, activity, or both.  We used a slope of 1.0 as the null 

hypothesis expected if encounter rate was mostly determined by fish density (i.e., activity 

rate or speed was constant over time and space); this assumes that variation from 

influences other than density and speed on trap captures are randomized across space and 

time (Obaza et al. 2011).  Data were standardized after transformation.  Samples where 

no fish were captured in throw traps or drift-fence minnow traps were excluded from the 

analysis. Dollar Sunfish and Marsh Killifish were excluded from this analysis because of 

their rarity in throw-trap samples.       

We used data on the direction fish entered the drift fences to determine whether 

directional dispersal behavior of species was influenced by hydroscape structure. We 

grouped fishes captured in drift fences moving north or west as “Away” from the canal, 

and those moving east or south as “Towards” the canal.  We adopted this approach 

because the L67-C canal is oriented at 34° east of due north.  The EL sites were 4.5 km to 

the north-northwest of a remnant canal, so movement toward it was approximately the 

same angle as the other sites.  Directional movement was determined using the natural 

log of fish CPUE in the north (movement towards the south) and west (movement 

towards the east) minnow traps, directed towards the canal for the NC and FC and away 

from the levee before degradation at the EL sites, divided by natural log of total CPUE 
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(ln(Towards/Total)).   Plots within sites were replicates for each sampling period.  A 

value of 0.1 was given to “Towards” if nothing was captured moving towards the canal, 

but the Total Fish captured was greater than 0.  We used a weighted analysis to 

standardize the influence of samples, notably those with relatively few fish captured.  

Weights equaled CPUE of a sample divided by the total CPUE of all samples.  The 

interactions of WDC × Site × Time and Site × Time, and main effects, were examined. 

Fish speed was estimated from drift fence CPUE with a modified equation for 

modeling prey encounter rate by a stationary predator (Obaza et al. 2011).  Speed values 

were calculated for each plot from the average drift-fence CPUE and average density 

from the throw-trap samples collected at the same time.  If a species was captured in 

throw trap samples for a sampling event, but not any drift fence samples, no speed could 

be calculated.  If a species was present in a drift fence, but not a throw trap, the species 

was in the sampling area, but below detection density.  For these cases, density was 

treated as 0.3 individuals m-2, approximately the maximum density undetectable by the 

replication of throw trapping we used.  The model examined the interaction of Site × 

Time × WDC. The absolute value of WDC was used for analysis of speed.  If changes in 

speed or directionality at the NC sites were detected, an examination of these behaviors at 

the plot was conducted to determine if specific canal-fill treatments were causing the 

behavioral shifts.  Species-specific behaviors were also analyzed for Site × WDC to 

determine if dispersal behaviors would be like those seen in a study with similar 

hydroscape conditions (Hoch et al. 2015), and if dispersal behaviors apply at a regional 

scale. 
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We used PERMANOVA to evaluate Morisita-Horn community composition 

similarity between Site × Time × WDC for each Site.  Comparisons were also made 

between the FC and EL sites, to determine if levee removal led to an exchange of 

individuals that promoted community similarity.   The Morisita-Horn index, selected for 

its property of density invariance (Jost et al. 2011), was calculated with square-root 

transformed data to preserve abundance differences for common species while still 

providing weight for rarer species (Clarke and Warwick 2001).  Pairwise tests were 

conducted to determine which factors were driving differences, if present.  Similarity-of-

Percentage (SIMPER, two-way crossed between Site and Time) tests were then 

conducted to determine which species were contributing the most to dissimilarity 

between variables.  If community structure changed across Site × Time, PERMDISP was 

used (number of permuations = 999) to evaluate the source of differences.  PERMDISP is 

a permutational test comparing the dispersion of points between groups and is a 

complimentary test to the PERMANOVA (Anderson et al. 2008).  A Mantel’s Test (via 

the Relate option in Primer) with Spearman rank correlation (999 permutations) was used 

to compare density and encounter rate resemblance matrices for each site type.  Matrices 

for these tests were of equal rank by limiting date × site combinations and species 

common to both datasets.  All analyses regarding community structure were conducted 

with Primer (ver. 6.0).  All other analyses were conducted with R ver. 3.2.2 (R Core 

Team 2015) using the Car (Fox and Weisberg 2011), GGThemes (Arnold 2015), and 

lmodel2 (Legendre 2014) packages.   
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Results 

 

Water depth, emergent plant stem density (m2), and periphyton volume (mL) were largely 

unaffected by the interaction of Site × Time (Table 1).  However, stem density increased 

by more than 100% at the FC sites compared with an increase of ~25% at the FC Control 

sites (Site × Time: F = 6.24, df = 1,88, P = 0.01).  Periphyton volume increased at the EL 

and EL Control sites, where it doubled at the EL sites in the After period and tripled at 

the EL Control sites (Table 1; Site × Time: F = 3.16, df = 1,80, P = 0.08).   

 

Fish Movement Behavior 

 

The relationship between fish density and encounter rate varied among species, 

but was generally weak (average R2 = 0.21; Table 2).  Only Flagfish yielded a 

relationship of density and CPUE that was indistinguishable from 1:1 (R2 = 0.45).  The 

slope was less than one for all other species with adequate data to evaluate, and near zero 

for Bluespotted Sunfish and Golden Topminows.      

 The BACI hypothesis (Site × Time) was significant for fish density (all species 

summed) at all three sites (FC, NC, and EL) (Table 3A; Appendix 1 for all results).  

Density of small fishes rose at all sites after alteration, though the magnitude of this 

increase varied among sites.  For example, small-fish density increased more than 300% 

at the NC sites after hydroscape alteration, compared to a 25% increase in the NC Control 

sites in the same time (Figure 2).  There was a 230% increase in density at the FC sites 

after canal alteration, but no change at the FC Control, and small fish density at both the 
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EL and EL Control nearly tripled after hydroscape alteration, with a greater increase at 

the EL sites.  In contrast, the BACI hypothesis for encounter rates of small fishes was 

significant for FC, but not for NC or EL (Table 3B).  At FC control, the encounter rate 

dropped by almost 50% after alteration, from 12.7 before to 6.7 individuals/24 hour after, 

while the impact sites did not change (6.6 before to 7.3 individuals/24 hours after) (Table 

1).     

  The BACI analysis indicated that three of the eight species examined displayed 

directed movement affected by the hydroscape alteration (Appendix 2).  Bluefin Killifish 

exhibited directed movement affected by the change in hydroscape at the FC sites that 

was influenced by WDC (WDC × Site × Time: F = 4.057, df = 1,76, p < 0.05).  Prior to 

hydroscape alteration, when water levels were increasing, their movement was directed 

away from the canal at the FC sites and towards the canal at the FC Control sites.  After 

alteration, no directed movement was detected.  Flagfish movement was also affected by 

the hydroscape manipulation at the FC sites, marked by strong movement away from the 

canal after alteration and no change at the control sites (Site × Time: F = 34.59, df = 1,38, 

p < 0.05).  Flagfish also changed directional movement in response to the hydroscape 

intervention at the EL sites (Figure 3A; Site × Time: F = 5.60, df =1,71, P = 0.02).  

Directed movement dependent upon direction of WDC was also revealed for Golden 

Topminnows at the NC Sites (Figure 3B; WDC × Site × Time: F = 3.62, df =1,61, P = 

0.061).   

 Five of eight species examined revealed changes in speed associated with 

hydroscape alternation at some or all study sites (Appendix 3).  Movement speed of 

Bluefin Killifish, Bluespotted Sunfish, Eastern Mosquitofish, Flagfish and Golden 
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Topminnows were affected by the hydroscape intervention, while Dollar Sunfish, Marsh 

Killifish, and Sailfin Mollies were not.  Speed was reduced after hydroscape alteration in 

most instances (Figure 4A-C).  The effect of WDC on Flagfish speed changed at EL sites 

after the Intervention from increasing with rising water to decreasing (Figure 4A; Time × 

WDC: F = 6.86, df = 1,72, P = 0.01).  Eastern Mosquitofish reduced speeds by nearly 

600% after alteration (0.17 m/sec to 0.03 m/sec) at the FC site, compared to an 

approximate halving of speed values at the FC Control sites (0.06 m/sec to 0.03 m/sec) 

(Figure 4B; WDC × Site × Time: F = 3.31, df =1,55, P = 0.07).  The speed reduction was 

driven both by a substantial increase in mean Eastern Mosquitofish density (4.16 fish/m2 

before alteration to 9.38 fish/m2 after alteration) and a decrease in minnow trap CPUE 

(3.43 fishes/24 hours before alteration to 1.85 fishes/24 hours after alteration). Speed of 

Bluefin Killifish at FC Control sites decreased between the Before and After periods, 

while there was no change at the Intervention site (Figure 4C; Site × Time: F = 3.17, df 

=1,76, P = 0.07).  No species exhibited behavioral differences between canal-fill 

treatments. 

 

Community Structure 

 

We observed moderate to weak correlation of fish community matrices obtained 

from drift fence and throw-trap sampling and the correlation depended on site.  For the 

NC and FC sites, there was a moderate correlation between the throw-trap and drift-fence 

communities (NC Sites: Mantel ρ = 0.34, p < 0.05; FC Sites: Mantel ρ = 0.33, p < 0.05).  
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The EL sites exhibited higher correlation between the sample types (Mantel ρ = 0.51, p < 

0.05).   

Structure of the small-fish community revealed by throw trapping at the FC sites 

was unaffected by hydroscape manipulation (Appendix 4; WDC × Time × Site, Time × 

Site all ns).  In contrast, the mobile fish community captured by drift fence differed 

before and after alteration for both the FC and FC Control sites.  The FC and FC Control 

sites were different prior to alteration, but became more similar after alteration (Table 4).   

At the NC sites, fish community structure measured by throw-trap-estimated 

density (resident community) was not altered by the interaction with covariates 

(Appendix 10), but community structure measured by CPUE (mobile community) was 

affected and varied with the direction of WDC.  During periods of decreasing water 

depth, composition of mobile communities within the NC and NC Control sites changed 

across time (Table 4, NC sites: t = 3.11, df = 40, p<0.01; NC Control sites: t = 2.79, df = 

17, p<0.01).  The NC and NC Control sites were different from each other after alteration 

during periods of falling water depth, but not before (Table 4; pre-alteration: t = 1.32, df 

= 18, p = 0.13; post-alteration: t = 1.79, df = 39, p < 0.05).  When water depth was 

increasing, resident community structure of the NC sites was different before and after 

alteration and the NC and NC Control sites were different from each other prior to 

alteration, but not after alteration (Table 4: pre-alteration: t = 1.45, df = 18, p = 0.06; 

post-alteration: t = 0.88, df = 8, p = 0.52).   

 Both community sample types (resident and mobile) revealed effects of 

hydroscape alteration in the EL sites (Appendix 4 for resident fish data, Table 4 for 

mobile fish data).  Community structure was different between the EL and EL Control 
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sites both before and after alteration (resident communities: Pseudo-F: 2.10, df = 1,73, 

p=0.09; mobile communities: Pseudo-F: 3.04, df = 1,83, p=0.01).  Before alteration, the 

mobile communities at the EL and EL Control sites were not different from each other, 

but were after alteration (Table 4).  Dispersion of communities between the EL and EL 

Control sites for the mobile communities was different after alteration, with the spread of 

community compositions greater in the EL sites compared to the EL control sites (Figure 

5a, Table 5).  A similar difference in dispersion after alteration was also seen for the EL 

fish communities, though for those communities EL and EL Control site differences and 

dispersion changed across Time (Figure 5b, Table 5).  For the NC sites, dispersion of the 

mobile communities decreased after alteration, but were largely unchanged in the NC 

Control sites (Table 5).    

Dissimilarity was often caused by the species with observed behavioral shifts, 

though differences in relative abundance between Impact and Control sites, separated by 

Time, varied greatly (Appendix 5).  For example, Golden Topminnow, a species that 

displayed changes in directional movement, had an increase of 63% in relative abundance 

compared to the Control sites.  At the same sites, Bluespotted Sunfish, a species that 

displayed an increase in speed, decreased by 39% in relative abundance, compared to the 

control sites.  A comparison of the mobile (Table 4) and resident communities (Appendix 

4) between the EL and NC sites revealed differences both before and after hydroscape 

alteration, but with no evidence of the EL and NC community structure convergence.   
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Discussion 

 

Our study showed that hydroscape alteration can affect adaptive behaviors, densities, and 

community structure of small fishes in a dynamic wetland (Table 6).  Of the eight species 

considered, three changed directional behavior and five changed movement speed 

associated with our BACI design, and these differences were more likely in species that 

have independently been shown to respond strongly to hydrologic dynamics of the 

Everglades.  Species exhibited directed movement behaviors in some sites but not others, 

suggesting that hydroscape context shapes how species were affected by experimental 

alternations.  These differences resulted in effects on metacommunity structure and β-

diversity determined by proximity to prominent hydroscape features.  Composition of 

mobile fish communities (drift-fence collections) was often affected by hydroscape 

alteration while resident community structure (throw-trap collections) was not.  

Encounter rates and densities tended to increase across all sites after hydroscape 

alteration, with inter-specific variation in magnitude of the increase.   

Animals move in response to stimuli and these responses can be temporally and 

spatially variable and adaptive (Chapman and Mackay 1984), but the magnitude of these 

behaviors can directly impact metacommunity dynamics and should be used to inform 

conservation programs.  Several factors could be influencing fish dispersal in the 

Everglades, including predator avoidance and selection of spawning and feeding habitats.  

Behavioral strategies limiting predation would be advantageous, but must be weighed 

against the threat of becoming stranded in a drying marsh.  Previous work has shown that 

areas immediately adjacent to canals exhibit increased density of fishes, both small and 



30 
 

large, but with few effects on community structure (Rehage and Trexler 2006).  Work 

from areas outside of the Everglades has shown that canals can serve as dry-season or 

thermal refuges, allowing population persistence for fishes in dynamic freshwater 

habitats (Cowley et al. 2007; but see Baumgartner et al. 2014).  For example, the 

response of lotic fish communities to dam removal can vary greatly among river systems, 

ranging from few responses (Maloney et al. 2008) to very drastic responses (Hogg et al. 

2015).  Maloney et al. (2008) found that it took one year after dam removal for the 

physical conditions of the upstream and downstream stretches of the Fox River to 

become similar.  Two years after levee removal, we could still detect a legacy effect of its 

presence, though the study area was becoming more homogeneous.  

Accessibility of ephemeral habitats strongly influences fish dispersal behaviors in 

freshwater systems during critical periods of the year (Strauch et al. 2015).  These areas 

act both as starting and ending points of annual flood cycles, and successful dispersal 

strategies may rely on directional movements, rapid life cycles to compensate for high 

annual mortality, or some combination of the two.  In our study, species whose 

populations are strongly impacted by drying events, such as Bluefin Killifish (negatively) 

and Flagfish (positively) (Ruetz et al. 2005), are those that most often exhibited changes 

in behavior.  Though our study area was dynamic over the period of study, our BACI 

sampling design revealed community changes associated with hydroscape manipulation 

resulting from interspecific differences in fish movement.  Hydroscape manipulation 

affected interspecific patterns of fish behavior at the NC and EL sites.  At the NC sites, 

but not at the EL sites, changes were also tied to the direction of water depth change.  In 

turn, these species contributed to changes in both mobile and resident community 
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structure, particularly in the EL sites.  Contributions to community dissimilarity (greater 

than or equal to 6% of total dissimilarity) ranged from 50% at the EL sites, immediately 

adjacent to the degraded levee, to only 28% in the NC sites, adjacent to the canal-fill 

treatments.  Differences in encounter rate (all species summed) from hydroscape 

alteration were only seen at the FC sites, where the encounter rate of fishes slightly 

increased from 6.1 to 7.3 fishes per 24 hours, in contrast to the FC Control sites, where 

encounter rate decreased from 12.7 fishes to 6.7 fishes per 24 hours.  While changes in 

density were seen across all three sites, only the FC sites exhibited a pattern different 

from their respective controls sites (where small fish density increased from 8.4 fishes m-

2 to 19.8 fishes m-2), suggesting effects of alteration were not significant at the population 

level.   

Hydroscape features, such as changing water depth and proximity to the canal, 

appeared to influence behaviors of small fishes, though not as much as did the alteration 

from the construction.  For example, only two of five examples of altered behavior at the 

FC sites were caused by the interaction of WDC × Time × Site, suggesting that the canal 

fill treatments and degradation of the levee had a large effect on the small fishes of our 

study area.  Previous work has noted widespread adaptive behaviors in a similar suite of 

species (Hoch et al. 2015; Appendices 6 and 7).  However, that study was conducted in a 

short-hydroperiod area, where marsh drying events are frequent and severe.  Our sites 

only dried twice during the study, a 12-week period in summer of 2011 and an 

approximately 14-day period in summer of 2014.  While our study area featured seasonal 

fluctuation of water depth, the lessened severity of drying conditions may have been less 
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stressful for aquatic animals than in other areas of the Everglades, necessitating fewer 

detectable adaptive behaviors. 

Our results have important implications for metacommunity and population 

dynamics in a restored hydroscape, processes closely linked with dispersal behaviors 

(Moritz et al. 2013). The Natural Flow Regime Paradigm, a conceptual framework 

highlighting the influence of pulsed and connected conditions in flowing-water systems, 

highlights the importance of lateral connectivity between habitat patches reconnected by 

a conveyance of water (Poff et al. 1997).  Behavior and community structure, particularly 

of the mobile community of fishes, were altered by hydroscape alteration, though we did 

not see formerly disconnected communities becoming more similar after alteration, 

suggesting our hypotheses were only partially correct.   The alteration of behaviors 

changed at sites after hydroscape alteration, even after accounting for changes in physical 

parameters of our research sites such as the increased stem density of emergent 

vegetation at the FC sites following hydroscape alteration.  These behavioral changes 

further contributed to changes in community structure.  Changes occurred more 

frequently at the two site types nearest to alterations, the EL and NC sites (though canal-

fill treatments did not affect behavior at the NC sites).  However, many examples were 

observed of behavioral and community changes further away from these alterations.  

While changes in water velocity during the experimental flow periods were at or below 

our detection limits, low velocity changes in water movement were documented that 

could have affected cues motivating fish movement orientation.   

Previously, studies examining aquatic landscapes subject to strong anthropogenic 

modification often looked only at structural parameters, such as community composition 
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(Maloney et al. 2008).  To our knowledge, our study is the first to simultaneously 

examine behavioral, population, and community dynamics with an experimental 

manipulation of hydroscape structure.   Our experimental study is robust to the diversity 

of environmental perturbations typical of wetlands.  Behavioral strategies have shown to 

be dynamic across taxonomic boundaries and can vary greatly by abiotic factors such as 

water depth, proximity to deepwater canals, and alteration of water control structures.  

While directionality and speed have been recognized as the core elements of animal 

movement (Turchin 1998), movement studies often focus on one or the other without 

explicit examination of both.  We have shown that these differences influence community 

structure across space.  Our results, particularly the effects hydroscape alteration has on 

the mobile community versus the resident community, provide insight into how the 

structure of the aquatic landscape can influence community and metacommunity 

dynamics and promote β-diversity.  Large-scale field studies that support restoration 

efforts can answer both fundamental and applied questions that are critical for planning 

and implementing effective management programs.   
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Tables 

Table 1 - Sites and their abiotic and biotic parameters.  Small fish density was estimated by throw traps and encounter rate was 

estimated by drift-fence captures.  Error is one standard deviation.  The FC and NC sites were sampled approximately 10 times 

before and after alteration. The EL sites were samples 9 times before and after alteration.  The FC and NC Controls sites were 

sampled six times before alteration and the EL Control sites were sampled five times before alteration.  All Control sites were 

sampled 10 times after alteration. 

 

SITE ALTERATION DEPTH (cm) PERIPHYTON (mL 

m
-2

)

STEM DENSITY 

(stem m
-2

)

FISH DENSITY (ind 

m
-2

)

FISH ENCOUNTER 

RATE (24 hrs)

Pre 32.9 ± 10.1 1028.3 ± 867.1 60.9 ± 40.6 24.3 ± 17.8 51.1 ± 37.4

Post 46.6 ± 12.6 2266.9 ± 1249.6 60.4 ± 56.6 70.8 ± 37.9 40.7 ± 29.8

Pre 26.7 ± 6.9 1140.6 ± 1137.2 118.8 ± 41.8 15.9 ± 15.9 46.5 ± 29.1

Post 37.8 ± 8.1 3346.6 ± 1333.5 152.1 ± 114.6 37.6 ± 17.3 39.7 ± 18.8

Pre 53.2 ± 12.6 3314.0 ± 2285.2 185.5 ± 112.9 8.4 ± 5.5 6.6 ± 7.4

Post 61.8 ± 8.4 3251.1 ± 1906.2 491.8 ± 314.6 19.8 ± 9.9 7.3 ± 7.4

Pre 46.4 ± 11.2 4032.6 ± 3105.17 340.8 ± 354.6 12.0 ± 4.3 12.7 ± 7.6

Post 57.2 ± 9.7 5170.3 ± 1638.6 460.4 ± 721.8 14.2 ± 6.7 6.7 ± 4.7

Pre 40.9 ± 11.8 773.9 ± 780.0 563.6 ± 1176.0 14.6 ± 10.7 14.4 ± 14.8

Post 51.2 ± 10.6 1631.7 ± 1276.23 739.4± 1459.2 47.1 ± 25.7 16.4 ± 12.3

Pre 45.1 ± 9.8 1242.2 ± 1744.6 437.7 ± 759.7 20.9 ± 13.6 17.9 ± 9.0

Post 55.0 ± 9.8 2021.6 ± 982.1 514.8 ± 492.9 28.3 ± 10.9 11.7 ± 9.7
NC Control

EL

EL Control

FC

FC Control

NC
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Table 2 – Species-specific relationship between drift fence CPUE (Y axis) and throw trap 

density (X axis).  n is the total number of throw trap and minnow trap sample pairs where 

species was captured. Slope equal to 1.0 was the null hypothesis.  R2 is the coefficient of 

determination.  

 

 

 

  

  

SPECIES n Slope R
2 P

Bluefin Killifish 254 0.51 0.29 <<0.05

Bluespotted Sunfish 185 0.08 0.001 <<0.05

Dollar Sunfish - - - -

Eastern Mosquitofish 255 0.65 0.2 <<0.05

Flagfish 203 1.04 0.45 0.64

Golden Topminnow 245 0.06 -0.002 <<0.05

Marsh Killifish - - - -

Sailfin Molly 75 0.57 0.35 <<0.05
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Table 3 - Model fit to A. density (# fish/m3) and B. encounter rate (CPUE) testing BACI 

hypothesis with three-way interaction accounting for water level fluctuation (WDC).  P < 

0.10 are in bold.  

  

DATA TYPE SITE FACTORS F DF P-VALUE

A. Density FC DepthChange × Time × Site 2.15 1,84 0.14

Time × Site 10.39 1,84 <0.01

DepthChange × Site 0.03 1,84 0.85

DepthChange × Time 4.42 1,84 0.03

NC DepthChange × Time × Site <0.01 1,83 0.98

Time × Site 6.77 1,83 0.01

DepthChange × Site 0.55 1,83 0.45

DepthChange × Time 9.30 1,83 <0.01

EL DepthChange × Time × Site 0.37 1,76 0.54

Time × Site 2.88 1,76 0.09

DepthChange × Site 0.15 1,76 0.69

DepthChange × Time 3.00 1,76 0.08

B. Encounter Rate FC DepthChange × Time × Site 0.03 1,84 0.84

Time × Site 4.74 1,84 0.03

DepthChange × Site 0.22 1,84 0.63

DepthChange × Time 2.66 1,84 0.11

NC DepthChange × Time × Site 1.25 1,83 0.26

Time × Site 2.23 1,83 0.13

DepthChange × Site 0.66 1,83 0.41

DepthChange × Time <0.01 1,83 0.99

EL DepthChange × Time × Site <0.01 1,76 0.99

Time × Site <0.01 1,76 0.94

DepthChange × Site 0.08 1,76 0.77

DepthChange × Time 0.76 1,76 0.38
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Table 4 – Results of PERMANOVA mobile community analyses for encounter rate data, 

including site data divided between before and after hydroscape alternation (Time).  

Permutations = 9999. 

 

SITE FACTORS TEST STATISTIC DF P-VALUE

FC Pseudo-F DF

DepthChange × Time × Site 0.58 1,84 0.72

Time × Site 3.09 1,84 0.01

DepthChange × Site 0.45 1,84 0.82

DepthChange × Time 1.03 1,84 0.39

FC Pairwise t-statistic DenominatorDF

For Site FC Time 2.42 56 <0.01

For Site FC Control Time 2.24 28 <0.01

For Time Pre Site 2.36 38 <0.01

For Time Post Site 0.34 46 0.97

NC Pseudo-F DF

DepthChange × Time × Site 1.97 1,83 0.07

Time × Site 3.04 1,83 0.01

DepthChange × Site 0.82 1,83 0.53

DepthChange × Time 1.07 1,83 0.36

NC t-statistic DenominatorDF

For Decreasing Water and Site NC Time 3.11 40 <0.01

For Decreasing Water and Site NC 

Control Time 2.79 17 <0.01

For Increasing Water and Site NC Time 1.97 15 <0.01

For Increasing Water and Site NC 

Control Time 1.22 11 0.20

For Decreasing Water and Time Pre Site 1.32 18 0.13

For Decreasing Water and Time Post Site 1.79 39 0.02

For Increasing Water and Time Pre Site 1.45 18 0.06

For Increasing Water and Time Post Site 0.88 8 0.52

EL Pseudo-F DF

DepthChange × Time × Site 0.57 1,74 0.68

Time × Site 4.71 1,74 <0.01

DepthChange × Site 0.31 1,74 0.87

DepthChange × Time 1.03 1,74 0.40

EL Pairwise t-statistic DF

For Site EL Time 3.83 49 <0.01

For Site EL Control Time 5.11 25 <0.01

For Time Pre Site 1.25 31 0.19

For Time Post Site 2.85 43 <0.01

EL vs NC Pseudo-F DF

DepthChange × Time × Site 1.4 3,157 0.13

Time × Site 2.35 3,157 <0.01

DepthChange × Site 0.66 3,157 0.81

DepthChange × Time 0.72 1,157 0.62

t-statistic DF

Pre Pairwise EL vs NC 4.04 50 <0.01

EL Control vs NC Control 3.45 17 <0.01

Post Pairwise EL vs NC 3.01 54 <0.01

EL Control vs NC Control 6.06 36 <0.01
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Table 5 –Mantel’s Test (PERMDISP) analyses, examining dispersion of communities 

within Sites and sample types that exhibited significant differences in community 

structure across Site × Time. 

 

SITE TEST STATISTIC DF P-VALUE

EL Mobile Community Main Test F Statistic

4.34 3,78 0.01

EL Mobile Community Pairwise t Statistic

Pre EL vs Post EL 0.85 51 0.43

Pre EL vs Pre EL Control 1.46 33 0.20

Pre EL Control vs Post EL Control 0.55 27 0.63

Post EL vs Post EL Control 1.82 45 <<0.01

EL Resident Main Test F Statistic

12.08 3,77 <<0.01

EL Resident Pairwise t Statistic

Pre EL vs Post EL 2.99 51 <<0.01

Pre EL vs Pre EL Control 1.91 32 0.11

Pre EL Control vs Post EL Control 3.20 26 <<0.01

Post EL vs Post EL Control 3.94 45 <<0.01

NC Mobile Community Main Test F Statistic

6.14 3,87 <<0.01

NC Mobile Community Pairwise t Statistic

Pre NC vs Post NC 3.80 57 <<0.01

Pre NC vs Pre NC Control 2.13 38 <<0.01

Pre NC Control vs Post NC Control <<0.01 30 0.99

Post NC vs Post NC Control 0.44 49 0.65

FC Mobile Community Main Test F Statistic

3.89 3,88 0.03

FC Mobile Community Pairwise t Statistic

Pre FC vs Post FC 1.71 58 0.13

Pre FC vs Pre FC Control 3.04 40 <<0.01

Pre FC Control vs Post FC Control 1.53 30 0.18

Post FC vs Post FC Control 0.45 48 0.68
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Table 6 – Parameters examined during hydroscape alteration.  ‘Yes’ denotes that our BACI hypotheses were confirmed (p < 0.10). 

NC-EL Convergence were test for convergence of fish communities on either side of the levee after removal. 

 

Site EL Sites EL Control 

Sites

FC Sites FC 

Control 

Sites

NC 

Sites 

NC Control 

Sites

NC 

Plots

NC-EL 

Convergence

Density Yes No Yes No Yes Yes Yes -

Encounter Rate No No No Yes No No No -

Resident Community Structure Yes Yes No No No No - No

Mobile Community Structure Yes Yes Yes Yes Yes Yes - No

Bluefin Killifish Speed Yes Yes Yes Yes No No No -

Bluefin Killifish Directionality No No Yes No No No No -

Bluespotted Sunfish Speed - - No No Yes No No -

Bluespotted Sunfish Directionality - - No No No No No -

Dollar Sunfish Speed No No No No No No No -

Dollar Sunfish Directionality No No No No No No No -

Eastern Mosquitofish Speed No No Yes Yes No No No -

Eastern Mosquitofish Directionality No No No No No No No -

Flagfish Speed Yes No No No No No No -

Flagfish Directionality Yes No Yes No No No No -

Golden Topminnow Speed No Yes No No No No No -

Golden Topminnow Directionality No No No No Yes Yes No -

Marsh Killifish Speed No No No No No No No -

Marsh Killifish Directionality No No - - - - - -

Sailfin Molly Speed No No - - - - - -

Sailfin Molly Directionality No No - - - - - -
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Figure Captions 

Figure 1. Map of Study Area. A. Region where the study was conducted, (southern 

Florida, USA). B. Study area showing area of control and impact plots. Polygons with 

diagonal lines are terrestrial tree islands.  The water control structure that delivers the 

experimental flow pulse is at approximately the position of the arrow, which is pointing 

in the approximate direction of water flow during those periods. C. Experiment area with 

three plots at each site, FC, NC, EL. Control plots for each site are outside of this map.  

Sawgrass ridges are represented by dark gray.  Open water sloughs are light gray. 

Figure 2 – Density of small fishes (individuals m-2) at the NC sites, divided by plot type.  

Error bars represent 95% confidence intervals.  Densities were back-transformed from 

square-root +1 values. 

Figure 3 – A. Directionality of fish before and after hydroscape alteration with shaded 

area indicating 95% confidence intervals.  Solid lines represent Impact sites and dotted 

lines represent Control sites. Long-dashed line represents equal movement rates towards 

and away from canal.  Minus and plus symbols along the x-axis represent daily rising and 

falling water depths.  A. Flagfish at EL sites. B. Golden Topminnow at NC sites.     
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Figure 4 – Movement speed of fish before and after hydroscape alteration with shaded fill 

indicating 95% confidence intervals.  Speed values are back-transformed from natural-

log or square root transformations. Water depth change is absolute values.  Solid lines 

represent Impact sites and dotted lines represent Control sites.  A. Flagfish at EL sites. B. 

Eastern Mosquitofish at FC sites (note different scale of y-axes).  C. Bluefin Killifish at 

NC sites.  

Figure 5 – nMDS of communities at EL sites. Hollow shapes are before alteration.  Filled 

shapes are after alteration. A.Mobile communities. B. Resident communities.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

Figures 
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Figure 3 
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Appendices Captions 

Appendix 1: Results of density and encounter rate analyses across the different sampling 

sites.  Test statistic for main model interactions was an F-value.  Test statistic for 

pairwise interactions was a t-value. 

Appendix 2: Directionality results of eight fishes examined.  Test statistic for main model 

interactions was an F-value.  Test statistic for pairwise interactions was a t-value.  

Appendix 3: Speed results of eight fishes examined. Test statistic for main model 

interactions was an F-value.  Test statistic for pairwise interactions was a t-value.  

Appendix 4: Results of PERMANOVA community analyses for resident community 

data, including site data divided between pre and post levee removal (Time).  

Permutations = 9999.   

Appendix 5: SIMPER analyses for mobile and resident communities where community 

composition was altered by Water Depth Change × Site × Time or Site × Time.  Data are 

divided by Before and After alteration. Species that exhibited changes in speed or 

directionality are shaded in grey.  Sailfin Mollies contributed less than 5% of community 

dissimilarity between the NC and NC Control sites for the mobile community before 

alteration, so were not included. 

Appendix 6: Results of behavioral analyses across Site × WDC. Bluespotted killifish 

were excluded from these analyses as they were not included in the analyses of Hoch et 

al. (2015).          

Appendix 7: Comparisons of the behavioral analyses of this study in Hoch et al. (2015).  

The authors in that study used encounter rate as a proxy for speed and differentiated 

between rising and falling water levels for encounter rate analyses, whereas we used 

absolute values for water depth changes.  Sites mentioned under individual species and 

behaviors were cases where patterns observed were similar to those observed in Hoch et 

al. (2015).  Our analyses used ANCOVA models (Site × Water Depth Change) to 

determine significance (p < 0.05) or near-significance (p = 0.05 – 0.10).  Results were 

significant if directed movements or speed were different between treatment groups.  
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Appendices 

Appendix 1 

 

DATA TYPE SITE & TEST FACTORS TEST STATISTIC DF P-VALUE

Density FC Main Test DepthChange × Time × Site 2.15 1,84 0.14

Time × Site 10.39 1,84 <0.01

DepthChange × Site 0.53 1,84 0.46

DepthChange × Time 11.09 1,84 <0.01

FC Pairwise Tests

For Time Pre DepthChange × Site 2.58 1,38 0.11

For Time Post DepthChange × Site 0.60 1,46 0.44

For Site FC DepthChange × Time 9.63 1,56 <0.01

For Site FC Control DepthChange × Time 0.20 1,28 0.65

NC Main Test DepthChange × Time × Site <0.01 1,83 0.98

Time × Site 6.77 1,83 0.01

DepthChange × Site 0.20 1,83 0.65

DepthChange × Time 5.61 1,83 0.02

NC Pairwise Tests

For Time Pre DepthChange × Site 0.32 1,36 0.57

For Time Post DepthChange × Site 0.28 1,47 0.59

For Site NC DepthChange × Time 4.91 1,55 0.03

For Site NC Control DepthChange × Time 5.54 1,28 0.02

NC by Plot

DepthChange × Time × Plot 0.31 3,75 0.81

Time × Plot 4.34 3,75 <0.01

DepthChange × Plot 0.69 3,75 0.56

DepthChange × Time 2.96 1,75 0.08

EL Main Test DepthChange × Time × Site 0.37 1,76 0.54

Time × Site 2.88 1,76 0.09

DepthChange × Site 0.37 1,76 0.54

DepthChange × Time 3.37 1,76 0.06

EL Pairwise Tests

For Time Pre DepthChange × Site 0.05 1,33 0.81

For Time Post DepthChange × Site 0.29 1,43 0.58

For Site EL DepthChange × Time 2.68 1,50 0.10

For Site EL Control DepthChange × Time 1.04 1,26 0.31

Encounter Rate FC Main Test DepthChange × Time × Site 0.34 1,84 0.55

Time × Site 5.31 1,84 0.02

DepthChange × Site 0.14 1,84 0.70

DepthChange × Time 1.91 1,84 0.17

FC Pairwise Tests

For Time Pre DepthChange × Site 0.19 1,38 0.66

For Time Post DepthChange × Site 0.17 1,46 0.67

For Site FC DepthChange × Time 1.69 1,56 0.19

For Site FC Control DepthChange × Time 1.41 1,28 0.24

NC Main Test DepthChange × Time × Site 1.25 1,83 0.26

Time × Site 2.23 1,83 0.13

DepthChange × Site 1.27 1,83 0.26

DepthChange × Time 0.50 1,83 0.47

NC by Plot

DepthChange × Time × Plot 0.62 3,74 0.60

Time × Plot 0.93 3,74 0.42

DepthChange × Plot 0.60 3,74 0.61

DepthChange × Time <0.01 1,74 0.95

EL Main Test DepthChange × Time × Site <0.01 1,76 0.99

Time × Site <0.01 1,76 0.94

DepthChange × Site 0.02 1,76 0.86

DepthChange × Time 0.47 1,76 0.49
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Appendix 2 

 

 

 

 

 

 

 

 

SPECIES SITE & TEST FACTORS TEST STATISTIC DF P-VALUE

Bluefin Killifish FC Main Test DepthChange × Time × Site 4.05 1,76 0.04

Time × Site 0.16 1,76 0.68

DepthChange × Site 2.31 1,76 0.13

DepthChange × Time 1.31 1,76 0.25

FC Pairwise Tests

For Time Pre DepthChange × Site 9.50 1,31 <0.01

For Time Post DepthChange × Site 0.08 1,45 0.76

For Site FC DepthChange × Time 4.30 1,48 0.04

For Site FC Control DepthChange × Time 0.49 1,28 0.48

NC Main Test DepthChange × Time × Site 0.02 1,74 0.88

Time × Site 0.22 1,74 0.63

DepthChange × Site 1.91 1,74 0.17

DepthChange × Time <0.01 1,74 0.93

EL Main Test DepthChange × Time × Site 0.21 1,71 0.64

Time × Site 0.14 1,71 0.70

DepthChange × Site 0.01 1,71 0.91

DepthChange × Time 0.35 1,71 0.55

Bluespotted Sunfish FC Main Test DepthChange × Time × Site 1.02 1,78 0.31

Time × Site 0.01 1,78 0.90

DepthChange × Site 0.13 1,78 0.71

DepthChange × Time 0.42 1,78 0.51

NC Main Test DepthChange × Time × Site <0.01 1,79 0.92

Time × Site 0.24 1,79 0.61

DepthChange × Site 0.52 1,79 0.46

DepthChange × Time 0.17 1,79 0.67

Dollar Sunfish FC Main Test DepthChange × Time × Site 0.39 1,62 0.53

Time × Site 2.16 1,62 0.14

DepthChange × Site 0.07 1,62 0.78

DepthChange × Time 0.22 1,62 0.63

NC Main Test DepthChange × Time × Site 1.32 1,62 0.25

Time × Site 0.17 1,62 0.67

DepthChange × Site 0.55 1,62 0.45

DepthChange × Time 1.01 1,62 0.31

EL Main Test DepthChange × Time × Site - - -

Time × Site - - -

DepthChange × Site - - -

DepthChange × Time <0.01 1,36 0.97
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Appendix 2 cntd. 

 

 

 

 

 

 

 

 

 

 

Eastern Mosquitofish FC Main Test DepthChange × Time × Site 0.12 1,55 0.72

Time × Site 1.98 1,55 0.16

DepthChange × Site 3.21 1,55 0.07

DepthChange × Time 0.96 1,55 0.33

NC Main Test DepthChange × Time × Site 0.13 1,68 0.71

Time × Site 0.38 1,68 0.53

DepthChange × Site 0.12 1,68 0.72

DepthChange × Time 0.51 1,68 0.47

EL Main Test DepthChange × Time × Site <0.01 1,73 0.96

Time × Site 0.25 1,73 0.61

DepthChange × Site 0.29 1,73 0.58

DepthChange × Time 1.20 1,73 0.27

Flagfish FC Main Test DepthChange × Time × Site 2.15 1,38 0.15

Time × Site 34.59 1,38 <0.01

DepthChange × Site 2.29 1,38 0.13

DepthChange × Time 3.16 1,38 0.08

FC Pairwise Tests

For Time Pre DepthChange × Site 0.02 1,22 0.87

For Time Post DepthChange × Site 1.54 1,16 0.23

For Site FC DepthChange × Time 6.07 1,20 0.02

For Site FC Control DepthChange × Time 0.09 1,18 0.76

NC Main Test DepthChange × Time × Site 0.13 1,47 0.71

Time × Site 0.51 1,47 0.47

DepthChange × Site <0.01 1,47 0.94

DepthChange × Time 3.62 1,47 0.06

EL Main Test DepthChange × Time × Site 0.24 1,71 0.62

Time × Site 5.60 1,71 0.02

DepthChange × Site 0.31 1,71 0.57

DepthChange × Time <0.01 1,71 0.97

EL Pairwise Tests

For Time Pre DepthChange × Site 2.5 1,30 0.12

For Time Post DepthChange × Site <0.01 1,41 0.96

For Site EL DepthChange × Time 0.10 1,46 0.74

For Site EL Control DepthChange × Time 0.16 1,25 0.68
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Appendix 2 cntd. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Golden Topminnow FC Main Test DepthChange × Time × Site 1.16 1,43 0.28

Time × Site 0.58 1,43 0.44

DepthChange × Site 1.36 1,43 0.24

DepthChange × Time 0.17 1,43 0.67

NC Main Test DepthChange × Time × Site 3.62 1,61 0.06

Time × Site 1.57 1,61 0.21

DepthChange × Site 0.55 1,61 0.45

DepthChange × Time 0.19 1,61 0.66

NC Pairwise Tests

For Time Pre DepthChange × Site 1.23 1,27 0.27

For Time Post DepthChange × Site 3.47 1,34 0.07

For Site NC DepthChange × Time 1.78 1,43 0.18

For Site NC Control DepthChange × Time 2.31 1,18 0.14

EL Main Test DepthChange × Time × Site 1.55 1,61 0.21

Time × Site 0.58 1,61 0.44

DepthChange × Site 0.41 1,61 0.41

DepthChange × Time 0.59 1,61 0.45

Marsh Killifish EL Main Test DepthChange × Time × Site 0.15 1,47 0.69

Time × Site 0.07 1,47 0.78

DepthChange × Site 1.07 1,47 0.30

DepthChange × Time 0.60 1,47 0.44

Sailfin Molly EL Main Test DepthChange × Time × Site 0.25 1,67 0.61

Time × Site 0.02 1,67 0.88

DepthChange × Site 0.08 1,67 0.77

DepthChange × Time 0.08 1,67 0.77
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Appendix 3 

 

 

 

 

 

 

SPECIES SITE & TEST FACTORS TEST STATISTIC DF P-VALUE

Bluefin Killifish FC Main Test DepthChange × Time × Site 0.84 1,76 0.35

Time × Site 3.17 1,76 0.07

DepthChange × Site 0.69 1,76 0.40

DepthChange × Time 2.21 1,76 0.14

FC Pairwise Tests

For Time Pre DepthChange × Site 2.62 1,31 0.11

For Time Post DepthChange × Site <0.01 1,45 0.92

For Site FC DepthChange × Time 2.05 1,48 0.15

For Site FC Control DepthChange × Time 0.27 1,28 0.60

NC Main Test DepthChange × Time × Site 1.46 1,74 0.23

Time × Site 1.29 1,74 0.25

DepthChange × Site 0.15 1,74 0.69

DepthChange × Time 3.83 1,74 0.05

EL Main Test DepthChange × Time × Site 10.67 1,71 <0.01

Time × Site 4.02 1,71 0.04

DepthChange × Site 3.86 1,71 0.05

DepthChange × Time 1.85 1,71 0.17

EL Pairwise Tests

For Time Pre DepthChange × Site 7.86 1,28 <0.01

For Time Post DepthChange × Site 0.70 1,43 0.40

For Site EL DepthChange × Time 3.58 1,47 0.06

For Site EL Control DepthChange × Time 11.18 1,24 <0.01

Bluespotted Sunfish FC Main Test DepthChange × Time × Site 2.02 1,78 0.15

Time × Site 1.56 1,78 0.21

DepthChange × Site 1.61 1,78 0.21

DepthChange × Time 5.03 1,78 0.02

NC Main Test DepthChange × Time × Site 2.82 1,79 0.09

Time × Site 0.71 1,79 0.40

DepthChange × Site 3.71 1,79 0.05

DepthChange × Time 0.87 1,79 0.35

NC Pairwise Tests

For Time Pre DepthChange × Site 0.34 1,33 0.56

For Time Post DepthChange × Site 13.02 1,46 <0.01

For Site NC DepthChange × Time 3.90 1,53 0.05

For Site NC Control DepthChange × Time 0.47 1,26 0.49
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Appendix 3 cntd. 

 

 

Dollar Sunfish FC Main Test DepthChange × Time × Site <0.01 1,62 0.93

Time × Site 0.80 1,62 0.37

DepthChange × Site 0.31 1,62 0.58

DepthChange × Time 4.08 1,62 0.05

NC Main Test DepthChange × Time × Site 0.75 1,62 0.38

Time × Site 0.23 1,62 0.63

DepthChange × Site 0.13 1,62 0.72

DepthChange × Time 1.41 1,62 0.24

EL Main Test DepthChange × Time × Site - - -

Time × Site - - -

DepthChange × Site 0.31 1,36 0.57

DepthChange × Time - - -

Eastern Mosquitofish FC Main Test DepthChange × Time × Site 3.31 1,55 0.07

Time × Site 1.01 1,55 0.31

DepthChange × Site 0.11 1,55 0.73

DepthChange × Time 0.26 1,55 0.61

FC Pairwise Tests

For Time Pre DepthChange × Site 2.52 1,23 0.12

For Time Post DepthChange × Site 1.01 1,32 0.32

For Site FC DepthChange × Time 1.52 1,33 0.22

For Site FC Control DepthChange × Time 2.43 1,22 0.13

NC Main Test DepthChange × Time × Site 0.63 1,68 0.42

Time × Site 0.72 1,68 0.39

DepthChange × Site 0.56 1,68 0.45

DepthChange × Time 0.05 1,68 0.81

EL Main Test DepthChange × Time × Site 1.32 1,73 0.25

Time × Site <0.01 1,73 0.98

DepthChange × Site <0.01 1,73 0.97

DepthChange × Time 3.26 1,73 0.07

Flagfish FC Main Test DepthChange × Time × Site 1.28 1,40 0.26

Time × Site <0.01 1,40 0.92

DepthChange × Site 1.48 1,40 0.23

DepthChange × Time 5.37 1,40 0.03

NC Main Test DepthChange × Time × Site 0.16 1,47 0.68

Time × Site 0.12 1,47 0.72

DepthChange × Site <0.01 1,47 0.97

DepthChange × Time <0.01 1,47 0.99

EL Main Test DepthChange × Time × Site 2.78 1,72 0.09

Time × Site 0.70 1,72 0.4

DepthChange × Site 1.59 1,72 0.21

DepthChange × Time 2.44 1,72 0.12

EL Pairwise Tests 0.07

For Time Pre DepthChange × Site 0.10 1,30 0.74

For Time Post DepthChange × Site 3.47 1,42 0.06

For Site EL DepthChange × Time 5.83 1,47 0.01

For Site EL Control DepthChange × Time <0.01 1,25 0.93
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Appendix 3 cntd. 

 

 

 

 

 

 

 

 

 

 

 

 

Golden Topminnow FC Main Test DepthChange × Time × Site <0.01 1,43 0.96

Time × Site 0.49 1,43 0.48

DepthChange × Site <0.01 1,43 0.94

DepthChange × Time 6.69 1,43 0.01

NC Main Test DepthChange × Time × Site 1.45 1,61 0.23

Time × Site 0.72 1,61 0.39

DepthChange × Site 0.48 1,61 0.48

DepthChange × Time 1.40 1,61 0.24

EL Main Test DepthChange × Time × Site 3.20 1,61 0.07

Time × Site 1.92 1,61 0.17

DepthChange × Site 1.06 1,61 0.31

DepthChange × Time 0.32 1,61 0.57

EL Pairwise Tests

For Time Pre DepthChange × Site 1.97 1,23 0.17

For Time Post DepthChange × Site 0.76 1,38 0.38

For Site EL DepthChange × Time 0.78 1,39 0.38

For Site EL Control DepthChange × Time 3.55 1,22 0.07

Marsh Killifish EL Main Test DepthChange × Time × Site 1.10 1,47 0.29

Time × Site 0.30 1,47 0.58

DepthChange × Site <0.01 1,47 0.97

DepthChange × Time 0.98 1,47 0.32

Sailfin Molly EL Main Test DepthChange × Time × Site 0.35 1,67 0.55

Time × Site 0.93 1,67 0.33

DepthChange × Site 0.32 1,67 0.56

DepthChange × Time 3.87 1,67 0.05
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SITE FACTORS TEST STATISTIC DF P-VALUE

FC Pseudo-F DF

DepthChange × Time × Site 0.43 1,82 0.84

Time × Site 1.63 1,82 0.14

DepthChange × Site 1.14 1,82 0.33

DepthChange × Time 0.82 1,82 0.54

NC Pseudo-F DF

DepthChange × Time × Site 1.66 1,82 0.12

Time × Site 1.22 1,82 0.29

DepthChange × Site 1.39 1,82 0.21

DepthChange × Time 1.51 1,82 0.17

EL Pseudo-F DF

DepthChange × Time × Site 0.60 1,73 0.66

Time × Site 2.10 1,73 0.09

DepthChange × Site 1.01 1,73 0.40

DepthChange × Time 2.78 1,73 0.03

EL Pairwise t-statistic DF

For Site EL Time 3.01 49 <0.01

For Site EL Control Time 5.91 24 <0.01

For Time Pre Site 1.49 30 0.09

For Time Post Site 1.97 43 <0.01

EL vs NC Pseudo-F DF

DepthChange × Time × Site 1.41 3,155 0.12

Time × Site 2.79 3,155 <0.01

DepthChange × Site 1.26 3,155 0.21

DepthChange × Time 2.20 1,155 0.04

t-statistic DenominatorDF

Pre Pairwise EL vs NC 3.55 49 <0.01

EL Control vs NC Control 2.90 16 <0.01

Post Pairwise EL vs NC 2.40 54 <0.01

EL Control vs NC Control 3.76 36 <0.01
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EL Mobile Community

Species

Before Rel Abund 

(EL/EL Control)

Actual 

Change

% 

Change

After Rel Abund 

(EL/EL Control)

Actual 

Change % Change

Bluefin Killifish 1.84 / 0.97 0.87 +89.69 4.87 / 1.74 3.13 +179.89

Eastern Mosquitofish 7.01 / 7.17 -0.16 -0.02 5.26 / 6.02 -0.76 -12.60

Flagfish 5.03 / 6.03 -1 -16.58 2.61 / 3.22 -0.61 -18.90

Sailfin Molly 2.14 / 1.01 1.13 +111.88 4.19 / 5.59 -1.4 -25.00

Goldent Topminnow 1.23 / 0.81 0.42 +51.85 0.96 / 2.19 -1.23 -56.20

Marsh Killifish 0.87 / 0.28 0.59 +210.71 0.80 / 1.95 -1.15 -59.00

EL Resident Community

Species

Before Rel Abund 

(EL/EL Control)

Actual 

Change

% 

Change

After Rel Abund 

(EL/EL Control)

Actual 

Change % Change

Golden Topminnow 1.50 / 1.55 -0.05 -3.20 0.96 / 2.18 -1.22 +56.00

Eastern Mosquitofish 6.31 / 7.19 -13.5 -12.20 5.21 / 3.84 1.37 +35.68

Bluefin Killifish 2.91 / 1.37 -4.28 +112.41 4.81 / 3.66 1.15 +31.42

Least Killifish 3.07 / 2.88 0.19 +6.60 4.18 / 4.74 -0.56 -11.80

Sailfin Molly 2.07 / 0.90 1.17 +130.00 3.95 / 5.45 -1.5 -27.50

Flagfish 3.88 / 4.94 -1.06 -21.50 1.85 / 2.8 -0.95 -33.90

NC Mobile Community

Species

Before Rel Abund 

(NC/NC Control)

Actual 

Change

% 

Change

After Rel Abund 

(NC/NC Control)

Actual 

Change % Change

Flagfish 2.20 / 3.74 -1.54 -41.18 1.19 / 0.45 0.74 +164.44

Goldent Topminnow 2.33 / 2.27 0.06 +2.64 1.92 / 1.18 0.74 +62.71

Eastern Mosquitofish 5 / 4.09 0.91 +22.25 3.58 / 2.59 0.99 +38.22

Sailfin Molly - - - 2.83 / 2.58 0.25 +9.69

Dollar Sunfish 2.23 / 2.24 -0.01 -0.45 1.81 / 1.84 -0.03 -1.63

Bluefin Killifish 2.69 / 5.05 -2.36 -46.73 6.71 / 7.09 -0.38 -5.36

Bluespotted Sunfish 3.16 / 1.52 1.64 +107.89 1.49 / 2.44 -0.95 -38.93

FC Mobile Community

Species

Before Rel Abund 

(FC/FC Control)

Actual 

Change

% 

Change

After Rel Abund 

(FC/FC Control)

Actual 

Change % Change

Spotted Sunfish 0.95 / 1.15 -0.2 -17.39 1.22 / 0.63 0.59 +93.65

Dollar Sunfish 3.42 / 3.01 0.41 +13.62 1.94 / 1.60 0.34 +21.25

Bluefin Killifish 3.55 / 5.20 -1.65 -31.73 6.34 / 6.27 0.07 +1.12

Sailfin Molly 0.48 / 0 0.48 - 1.85 / 1.89 -0.04 -2.12

Golden Topminnow 1.67 / 2.81 -1.14 -40.57 0.98 / 1.03 -0.05 -4.85

Bluespotted Sunfish 4.94 / 1.53 3.41 +222.88 3.37 / 3.61 -0.24 -6.65

Eastern Mosquitofish 2.20 / 3.79 -1.59 -41.95 2.34 / 2.86 -0.52 -18.18

Flagfish 1.56 / 3.50 -1.94 -55.43 0.60 / 1.18 -0.58 -49.15
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SPECIES SITE & TEST FACTORS TEST STATISTIC DF P-VALUE

Bluefin Killifish Speed DepthChange × Site 0.62 5,233 0.67

Site 0.33 5,233 0.89

DepthChange <0.01 1,233 0.95

Directionality DepthChange × Site 2.23 5,233 0.05

Site 1.58 5,233 0.16

DepthChange 10.17 1,233 <0.01

For Site FC DepthChange 7.01 1,50 0.01

For Site FC Control DepthChange 1.05 1,30 0.31

For Site NC DepthChange 0.49 1,48 0.48

For Site NC Control DepthChange 3.30 1,30 0.07

For Site EL DepthChange 3.37 1,49 0.07

For Site EL Control DepthChange 2.20 1,26 0.14

Dollar Sunfish Speed DepthChange × Site 1.88 5,171 0.09

Site 0.56 5,171 0.72

DepthChange 1.68 1,171 0.19

For Site FC DepthChange 3.87 1,44 0.05

For Site FC Control DepthChange 2.14 1,22 0.15

For Site NC DepthChange 5.54 1,44 0.02

For Site NC Control DepthChange 5.59 1,22 0.02

For Site EL DepthChange 1.22 1,30 0.27

For Site EL Control DepthChange 0.56 1,9 0.47

Directionality DepthChange × Site 0.61 5,171 0.68

Site 1.81 5,171 0.11

DepthChange 0.51 1,171 0.47

EasternMosquitofish Speed DepthChange × Site 0.08 5,208 0.99

Site 0.68 5,208 0.63

DepthChange 0.19 1,208 0.66

Directionality DepthChange × Site 0.77 5,208 0.56

Site 4.81 5,208 <0.01

Depth Change 0.01 1,208 0.89
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Appendix 6 cntd. 

 

 

 

 

 

 

Flagfish Speed DepthChange × Site 2.32 5,171 0.04

Site 0.32 5,171 0.89

DepthChange 9.76 1,171 <0.01

For Site FC DepthChange 0.01 1,24 0.91

For Site FC Control DepthChange 0.85 1,20 0.36

For Site NC DepthChange 14.24 1,36 <0.01

For Site NC Control DepthChange 9.11 1,15 <0.01

For Site EL DepthChange 4.03 1,49 0.05

For Site EL Control DepthChange 12.70 1,27 <0.01

Directionality DepthChange × Site 1.96 5,171 0.08

Site 3.97 5,171 <0.01

DepthChange 9.16 1,171 <0.01

For Site FC DepthChange 0.01 1,24 0.94

For Site FC Control DepthChange 0.14 1,20 0.70

For Site NC DepthChange 2.24 1,36 0.14

For Site NC Control DepthChange 0.56 1,15 0.46

For Site EL DepthChange 7.31 1,49 <0.01

For Site EL Control DepthChange 0.73 1,27 0.40

Golden Topminnow Speed DepthChange × Site 0.53 5,177 0.75

Site 0.80 5,177 0.54

DepthChange 0.29 1,77 0.58

Directionality DepthChange × Site 0.32 5,177 0.89

Site 1.79 5,177 0.11

DepthChange 0.80 1,177 0.37

Marsh Killifish Speed DepthChange × Site 0.24 1,51 0.62

Site 0.01 1,51 0.93

DepthChange 0.78 1,51 0.37

Directionality DepthChange × Site 2.49 1,51 0.12

Site 4.07 1,51 0.04

DepthChange 2.06 1,51 0.15

Sailfin Molly Speed DepthChange × Site 2.31 1,71 0.13

Site 0.85 1,71 0.35

DepthChange 2.14 1,71 0.14

Directionality DepthChange × Site 0.13 1,71 0.71

Site 0.01 1,71 0.99

DepthChange 0.60 1,71 0.43
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Species Hoch et al. 2015 This study (Speed) This study (Directionality)

Bluefin Killifish
Directed movement; high encounter 

rate, especially as water levels rise
All sites ns

Increased directed movement as 

water levels rise at FC, EL, and NC 

Control sites

Dollar Sunfish
Directed movement; high encounter 

rate, especially as water levels fall

Increased speed as water levels 

rise at FC, NC, and NC Control 

sites

All sites ns

Eastern Mosquitofish
Directed movement; high encounter rate 

during changes in water levels
All sites ns

Significant differences across sites, 

but not water depth change

Flagfish
Directed movement; high encounter 

rate, especially as water levels rise

Increased speed as water levels 

rise at NC, NC Control, EL, and 

EL Control sites

Increased directed movement as 

water levels rise at EL sites

Golden Topminnow
Directed movement; high encounter 

rate, especially as water levels rise
All sites ns All sites ns

Marsh Killifish
Directed movement; high encounter 

rate, especially as water levels rise
All sites ns

Significant differences across sites, 

but not water depth change

Sailfin Molly
No directed movement; high encounter 

rate during changes in water levels
All sites ns All sites ns
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CHAPTER III 

EFFECTS OF HYDROSCAPE ALTERATION ON LARGE FISH BEHAVIOR, 

DENSITY, AND COMMUNITIES IN A DYNAMIC WETLAND 
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Abstract 

Alteration of hydroscape structure and connectivity, both natural and anthropogenic, can 

have important consequences for animal habitat use, density, and community structure.  

Consideration of the linkage of animal movement and hydroscape may facilitate 

restoration and conservation programs in impacted systems.  Over a five-year period, we 

examined the effects of canal filling, levee degradation, and experimental flow pulses on 

fish behavior, CPUE, and community structure in a seasonally dynamic wetland.  Radio 

transmitters were surgically-implanted in Largemouth Bass (Micropterus salmoides) and 

Bowfin (Amia calva) and their weekly movement rates (m-day) and habitat preferences 

were monitored.  Electroshocking transects were spatially structured to determine if fish 

CPUE and community composition changed as a result of hydroscape alteration, canal 

proximity, or both.  Multi-model selection revealed that models with hydroscape 

alteration better explained individual movement patterns than models with environmental 

cues alone, particularly for Bowfin.  Bowfin averaged 15% closer proximity to the canal 

treatment areas after filling and levee removal compared to before treatment, but were 

150% farther away from the canal in the untreated (control) areas compared to before 

treatment. Movement rate, from the canal into the marsh or vice versa, were up to 4-times 

greater than movements within either marsh or canal habitats for both species.  Fill 

treatments had little effect on overall fish CPUE, but increased the area of vegetated 

habitat supporting high fish density.  Some species responded positively to canal filling, 

notably Largemouth Bass, which doubled CPUE in some treatments, while others 

responded negatively, notably Florida gar; CPUE of Lake Chubsuckers decreased in the 

partial fill area compared to controls or before canal filling, but not in the complete fill.  
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Fish community composition differed between pre-existing and modified hydroscape 

structure, but was not affected by canal-fill treatments within the modified area. Our 

study indicates that hydroscape structure influences fish movement and local density in 

species-specific ways that effect community structure. Levee removal permitted both 

Largemouth Bass and Bowfin to move between previously isolated habitats and canal fill 

treatments created habitat that probably attracted fish to formerly deep areas that were 

seldom used.  

Introduction 

In seasonal hydroscapes, habitats suitable during one season may be hostile or 

unavailable during another season, and staying within an ephemeral habitat presents a 

tradeoff of risks (Dean et al. 2009).  For example, Colossoma macropomum will move 

into Amazonian floodplains to feed and deposit eggs in the flooded forest, but must move 

back to nearby lakes and rivers before the forest completely dries (Loubens and Panfilli 

1997, Winemiller and Jepsen 1998).  When hydroscape dynamics cycle in a period 

shorter than the lifespan of an animal, coping behaviors, including responding to 

environmental cues, are adaptive.  Cues to seasonal change include shifts in temperature 

(Wood et al. 2006) and photoperiod (Stefansson et al. 2008).  Seasonally dynamic 

conditions influence the distribution of animals across the landscape, and may force them 

to seek refuge habitats.  Refuge quality can have important effects on population 

persistence (Agostinho and Zalewski 1995, Magoulick and Kobza 2003), as can refuge 

spatial arrangement (Parkos et al. 2011).  Furthermore, importance of refuge and 

ephemeral habitats can vary among species, creating a seasonal mosaic of habitat patches 
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that contribute to metapopulation and metacommunity processes (Mouquet and Loreau 

2003, Stoffels et al. 2015).   

 Understanding how environmental cues and landscape quality affect animal 

behavior is of fundamental importance to management strategies (Berger 2004, Both et 

al. 2006).  Recent efforts in aquatic community restoration include the removal of 

barriers (e.g. dams, levees) that may restrict dispersal and migration or create unsuitable 

habitat (Hohausova et al. 2010, Cooper et al. 2016).  Beyond removal of barriers to 

movement, spatial heterogeneity of habitat quality can be enhanced through strategic 

alteration of the hydroscape (Peterson et al. 2005) and manipulation of hydrological stage 

and water velocity (Poff et al. 1997).  Understanding how wetland fluctuation influences 

animal movement is necessary to predict effects of hydroscape manipulation on fish 

density and community structure, and ultimately management success.  Experimental 

study of landscape ecology is challenging (Nabe-Nielson et al. 2010) because of 

difficulties replicating treatments (Hargrove and Pickering 1992).  However, before-after-

control-impact (BACI) study designs permit evaluation of responses to planned 

manipulation that provide insight into links of landscape structure and ecological 

processes (Downes et al. 2002, Jenerette and Shen 2012).  Hydroscape manipulations 

such as dam removals and wetland modifications have the potential to permit an 

experimental framework for analysis of behavioral linkages to landscape structure.    

 The freshwater Everglades of Florida, USA, are an ideal place to examine the 

influence of changing hydroscapes on fishes. The Everglades experiences annual wet 

(May through October) and dry (November through April) seasonal cycles (Gunderson 
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and Loftus 1993).  Previous work on long-lived, large fishes (life span greater than one 

year, standard length greater than 8 cm) in the Everglades has shown a strong effect of 

water depth on both community composition (Trexler et al. 2002, Chick et al. 2004, 

Parkos et al. 2011) and behavioral ecology (Parkos and Trexler 2014, Parkos et al. 2015, 

Boucek and Rehage 2015).  The Everglades is now a highly managed network of water 

retention areas, bounded by canals and levees (Light and Dineen 1994).  In the historic 

Everglades, deep sloughs and alligator ponds provided dry-season refuge necessary for 

fishes to persist through drought years, whereas in the current Everglades, deep refuges 

are often in the form of drainage canals that act as seasonal points of dispersal for fishes 

(Loftus and Kushlan 1987).  Large-fish density, but not community composition, has 

been shown to be influenced by the proximity to deep-water canals, with highest density 

of large fishes within 5 meters of a canal (Rehage and Trexler 2006).  Annually, fishes 

must make choices of whether to leave stable dry-season refuge habitats, where 

competition for food may be high, or enter the flooded marsh, where threat of desiccation 

is elevated.   

Plans for restoration of the Everglades include removal of barriers to water flow 

(levees) and the filling of canals (USACE and SFWMD 1999; Sklar et al. 2005).  

Response of large fishes to hydroscape alteration, including modifying canals that were 

in place for 50 or more years, is a source of uncertainty for restoration planning.  We 

evaluated the impact of the regional hydroscape with a landscape-scale physical model 

(DPMST 2010) that included filling a section of a canal and degrading a levee that had 

separated two water management units hydrologically disconnected since the 1960s 

(Light and Dineen 1994), altering hydroscape structure and habitat connectivity (Figure. 
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1).  We examined the role of hydroscape alteration (filling of a canal, implementation of 

an experimental flow pulse) and environmental cues affecting large-fish movement and 

habitat use in Largemouth Bass (Micropterus salmoides, hereafter LMB) and Bowfin 

(Amia calva), as well as CPUE of all large fishs and the large-fish community structure.  

We evaluated a BACI hypothesis for these variables.  Because of the limited spatial scale 

of the hydroscape alteration, we hypothesized that the experimental flow pulse and canal-

fill treatments would not affect movement rates and that movement patterns would be 

best explained by environmental cues.  The effects of environmental cues on individual 

behavior across the greater hydroscape, beyond the physical model, were also evaluated.  

BACI hypotheses were also used to determine if hydroscape alteration affected large fish 

density and community structure.  We hypothesized that large fish density and 

community structure would become similar between marsh sites and canal sites that were 

filled in with sediment and became more similar structurally to the marsh.  We further 

hypothesized that canal fill treatments would increase large fish density because of 

increased structure provided by the canal-fill treatments as well as providing more open 

water than is provided in the marsh. 

Methods 

This study was conducted in the Everglades, Florida, USA (25o 50’15” N 80o 37’ 07” S), 

where the primary study area was approximately 37 kilometers long and 1.8 kilometers 

wide (Figure 1A, B) and initially constrained on all sides by earthen levees (the L-67C 

and L-67A levees).  Along the eastern edge of the study area is the only deep-water 

habitat (L-67C canal), which is approximately 4 meters deep and 8 meters wide (Figure 
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1C) and has vertical sides.  The canal and the western marsh were connected at moderate-

to-high water (most of the study period).  The marsh, comprising the area west of the L-

67 canal to the L-67A levee, was roughly uniform in depth and composed of sloughs and 

slightly elevated ridges (McVoy et al. 2011).  Slough vegetation was dominated by white 

waterlily (Nymphaea odorata), Gulf Coast spikerush (Elocharis cellulosa), and 

bladderworts (Utricularia spp.) (Gunderson and Loftus 1993).  Floating mats of 

periphyton were also abundant in the sloughs (Table 1).  Ridges were vegetated by 

sawgrass (Cladium jamaicense) and tended to have higher stem density than the 

relatively more open sloughs.  

 The study was conducted between December, 2010, and March, 2015, with 

December, 2010, to December, 2012, providing ‘Before’ manipulation data and January, 

2013, to March, 2015, ‘After’ data.  The physical model was constructed during late 2012 

and early 2013.  The alterations included three approximately 300-m long canal-fill 

treatments: a Complete-Fill treatment, where the L67-C canal was filled to approximately 

marsh level with sediment; a Partial-Fill treatment, where the canal was filled 

approximately halfway; and a No-Fill control treatment, where the canal was not 

modified in any way (Figure 1C).  Immediately to the east of all three treatments, the L-

67C levee was degraded to marsh level, allowing water to flow from the west to the east 

across two previously separated hydrological units. The physical model also introduced 

sheet flow (wide expanses of slow moving surface water) from 10 culverts delivering 750 

cfs between early November, 2013, to late December, 2013, and early November, 2014, 

late January, 2015.  Though elevated water flow velocities were noted immediately 

downstream from the culverts when they were open, flow velocities at our study sites 
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were not elevated (Culverts open: 1.47 cm/sec, SE = 0.26; culverts closed: 1.53 cm/sec, 

SE = 0.21; velocities estimated with a SonTek FlowTracker Acoustic Doppler 

Velocimeter).  However, SF6 tracers (Ho et al. 2009) indicated that that water introduced 

from the culverts moved through our study area (David Ho, University of Hawaii, 

personal communication). 

To determine effects of hydroscape alteration on individual behavior, radio-

telemetry was used to track movements for Bowfin and LMB, two abundant large 

piscivores of the study system.  Specimens used for tracking were collected with an 

airboat-mounted electroshocker.  We determined effects of hydroscape structure and 

alteration on large-fish communities and CPUE, by using an airboat-mounted 

electroshocker and a sampling regime with two distances from the canal, as well as 

within the canal.   

Individual fish could be tracked for three to twelve months based on battery life of 

the transmitters. Therefore, specimens were collected in seven batches from May, 2011, 

to October, 2014 (Appendix 1).  Mean sizes for tagged LMB was 32.0 cm (SL) and 43.1 

cm (SL) for Bowfin.  Minimum sizes used ensured tag weight was less than 2% of the 

body weight of the fish (Winter 1983, Appendix 1).  Masses were determined using a 

length-mass table for Bowfin (www.FishBase.org) and a length-mass calculator for LMB 

(Florida Fish and Wildlife Conservation Commission).  The first two batches of fishes 

were implanted with 3.1 g and 3.8 g transmitters (Model PD-2, Holohil Systems Ltd.).  

Subsequent batches were implanted with the 3.8 g tags until October 2014, when 8.5 g 

RI-2B tags were used.  Transmitter model was changed because of longer battery life of 
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the RI-2B transmitters, allowing us to track fishes over an entire year.  Fishes were 

anesthetized with MS-222 in a holding tank (100 mg MS-222/liter).  Stainless steel 

forceps and scissors were sterilized in 95% ethanol and rinsed with deionized water prior 

to surgery.  All personnel involved in the surgery process wore latex gloves.  After 

anesthetization, a 2-4 cm incision was made ventrally just off the midventral line and the 

transmitter, also sterilized in ethanol and rinsed with DI water, was inserted in the body 

cavity.  During this process, the gills of the fish were kept wet using a maintenance dose 

of MS-222 (40 mg MS-222/liter).  The incision was closed with two to four sutures using 

non-absorbable polypropylene, 3/0, braided surgical silk.  After surgery, fish recovered in 

a separate holding tank.  When fish could maintain balance and vigorous fin movement, 

they were released back to the collection site.  Average times recorded were: 5.5 minutes 

for anesthesia, 6.0 minutes for surgery, and 5.8 minutes for recovery (Appendix 1).  

Fishes were released no more than 40 meters from the point of capture.   

 Following 7-14 days to allow for agitation dispersal (Turchin 1998), fishes were 

located on an approximately weekly basis via jonboat, airboat, or fixed-wing aircraft, and 

position as determined with a handheld GPS unit.  Relocation error from fishes found via 

watercraft was minimal, estimated to be five meters, equal to the error associated with 

civilian GPS units.  Location error associated with fixed-wing aircraft was 53-165 meters, 

with an average of 109 meters (Parkos and Trexler 2014).  Occasionally, fishes were in 

regions that were not accessible by foot or watercraft.  In these cases, locations and 

bearings were taken so that triangulations could be calculated (LOAS, Ecological 

Software Solutions, LLC).  Fishes were repeatedly located until the transmitter battery 
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died, typically 4-6 months for the PD-2 transmitters and 9-12 months for the RI-2B 

transmitters.    

 Large-fish CPUE and community composition was sampled on an approximately 

quarter-annual basis, determined by stages of marsh water depth.  Electroshocking was 

conducted during daylight hours with an airboat-mounted electroshocker over 5-minute 

transects following Chick et al. (1999).  Fishes greater than and equal to 8.0 cm (standard 

length) were collected and lengths recorded.  Three different plot types were established: 

Canal sites, where sampling took place along the littoral edge of the canal (DIDSON 

sonar surveys indicated very few fish in the open-water portion of the canal during 

daylight, see below and Hijuelos 2012); Near-Canal (hereafter NC) sites, which took 

place in the marsh 1-70 meters from the canal edge; and Far-from-Canal (hereafter FC) 

sites, which took place in the marsh 150-550 meters from the canal edge (Figure 1C).  

There were three plots of each Site type, roughly parallel to the canal-fill treatments.  

Canal sampling incorporated two parallel transects, along the eastern and western edges 

of the L-67C canal. Each pair of transects was considered one replicate.  These were 

linear transects.  There were one pair of transects for both the Complete-Fill and Partial-

Fill treatments, and three pairs of transects for the No-Fill treatment.  Marsh plots 

incorporated 1-3 transects, depending on availability of suitable habitat to sample.  The 

NC plots were open-water sloughs directly connected to the canal, an uncommon 

configuration in our study area.  Control sites were incorporated during August, 2011, 

and transects were added over the course of the following year as plots were further 

evaluated.  Established transects of sites, particularly those within the canal fill 

treatments, were occasionally not sampled during the period of December, 2012, to 
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August, 2013, because of construction involved in the physical model.  In total, 19 

sampling events occurred between December, 2010, and March, 2015.    

We used a dual-frequency identification sonar (DIDSON) as a non-invasive 

survey tool used to estimate density of fishes in the canal-fill treatments and complement 

the electrofishing data.  The DIDSON is a multi-beam, imaging sonar that can record 

acoustic data at short ranges (<30 m) and has been used extensively for fisheries 

applications (Tiffan et al. 2004, Boswell et al. 2008, Burwen et al. 2010).  The DIDSON 

surveys began in March, 2012, in the Complete-Fill treatment and May, 2012, in the 

Partial and No-Fill treatments, and continued through November, 2014 at an 

approximately monthly basis. A 10m window length was used and 6 frames/sec 

framerate.   Two 5-minute recordings were taken along the midpoint of the canal facing 

horizontally; one facing north and one facing south into open water.  Another set of 

approximately three recordings were taken facing east (towards the littoral zone of the 

canal margin).  Fish density was counted from a 30-second continuous segment 

(approximately 180 frames) randomly taken from each of these recordings and these 

counts were averaged to provide density estimates for each fill treatment.  Density was 

determined by the mean number of fishes observed divided by the un-vegetated area of 

the recording.  North-South and East samples were analyzed separately.  Fishes of all size 

classes were included in DIDSON analyses, including those less than 8 cm SL.  

Water depth was estimated with the Everglades Depth Estimation Network 

(EDEN; Telis 2006; Liu et al. 2009), and was adjusted to local depth by in situ measured 

depth.  Maximum daily temperature (C°) was used as a proxy for water temperature.  
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Data were gathered from the National Oceanic and Atmospheric Administration National 

Climate Data Center weather stations (http://www.ncdc.noaa.gov/cdo-web/).  

Photoperiod data were taken from the Astronomical Applications Department, U.S. 

Naval Observatory (Station GHCND:USW00012888). 

Statistical Methods and Data Analyses 

We used our BACI hypothesis to test for effects of hydroscape alteration on large-fish 

behavior, CPUE, and community composition.  Data were divided by Site (Control and 

Impact) and Time (Before and After or During alteration).  Analyses examining 

individual behaviors in the physical model separated Control and Impact regions on the 

basis of observed SF6 tracer pathways through the marsh during the experimental flow 

periods.  Areas within the flow path were considered “Impact”, regardless of whether an 

experimental flow period was occurring.  The only exception was for analyses examining 

step-length distances in canal-fill treatments, where “Impact” were segments of the canal 

subject to a fill treatment, and “Control” were all other areas of the canal.  For large-fish 

CPUE and community composition, site was composed of three habitat types: Canal, NC, 

and FC habitats.  In the Canal sites, fill treatments (Complete-Fill, Partial-Fill, No-Fill, 

Control) were used in place of Site.  We examined whether large-fish CPUE in the No-

Fill treatment plots was different from Control canal plots to the north and south.  If there 

were no differences in CPUE, these plot types were combined so canal treatment was 

divided between No-Fill, Partial-Fill, and Complete-Fill.  All behavioral analyses were 

species-specific.  All analyses involving parametric methods were conducted in R ver. 

3.2.2 (R Core Team 2015) and packages “car” (Fox and Weisberg 2011), “ggthemes” 
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(Arnold 2015), “adehabitat” (Calenge 2006), and “nlme” (Pinheiro et al. 2015).  

Dependent variables for all behavioral and density analyses were natural-log (ln) or 

square-root transformed to meet model assumptions, with 1 added to all values when 

necessary to avoid undefined operations.   

To assess whether fish length and transmitter size were correlated with movement 

rate and distance from the canal, a linear model was used examining the interaction of 

standard fish length × transmitter size on movement behaviors.    

 We used multi-model selection (Burnham and Anderson 2010) to evaluate 

alternative hypotheses about the effects of hydroscape structure on fish movement 

behavior.  Environmental predictor variables for step length and distance-from-canal 

analyses included average daily marsh depth (cm), average daily change of marsh depth 

(cm/day), average daily photoperiod (minutes/day) and average daily maximum 

temperature (C°), all over the preceding 30-day period.  To determine if small-scale 

changes in abiotic factors determined step length, the average daily marsh depth (cm), 

average daily marsh depth change (cm/day), average daily maximum air temperature 

(C°), and average photoperiod (minutes/day) between relocations of individuals were also 

included as predictors variables.  Predictor variables of different time scales were not 

included in the same model (e.g., Daily depth change over the preceding 30 days + Daily 

depth change between relocations).  These predictor variables will be referred to as the 

environmental-cue variables.  Distance-from-canal analyses used weekly mean distances 

from the canal as replicates, not individual relocations, so only environmental predictor 

variables over the preceding 30-day period were used.  Spatial autocorrelation for 
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distance-from-canal models was included in generalized least-squares models (corAR1, 

maximum likelihood).  For these analyses, explanatory power of models was calculated 

using pseudo-R2 values (Anderson 2008).  For all BACI-based behavioral analyses, the 

full model was: Time (Before/After) + Site (Control/Impact) + Site × Time + 

environmental cues.  Models were run iteratively, with a single predictor variable 

removed with each model until only the environmental cues remained.  For all analyses 

using multi-model selection, the best model was chosen based on the lowest AIC value 

for all analyses.  If models had a model fit of ∆AIC < 2.0 when compared to the best 

model, the most parsimonious model was chosen.   

Movement rates were calculated by taking distances between relocation points 

and dividing the distance by the number of days between relocations (meters/24 hours).  

Multi-model selection was used to determine which predictor variables were most 

influential to step length.  Movement rates were examined in three different contexts to 

address the BACI hypotheses: across the study region (B/A: before and after physical 

model construction; C/I: within (Impact) or outside (Control plots) of the experimental 

flow area, regardless of whether experimental flows were taking place); during 

experimental flow periods (B/A: not during or during experimental flow periods; C/I: 

within or outside of the experimental flow area); and in the canal fill treatments (B/A: 

before or after completion of canal fill treatment construction, C/I: filled versus unfilled 

canal segments).  Distance-from-canal models examined mean weekly distance from the 

canal within species based on B/A (before or after physical model construction) and C/I 

(within or outside of the experimental flow area, regardless of whether flow was 

occurring). 
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We used ANCOVA models to determine if movement rates were influenced by 

being in the experimental flowpath or canal fill treatments.  Experimental flowpath 

models just included Site (Control/Impact) and Water Depth.  Time was included in 

canal-fill models (Before/After canal fill construction) and marsh depth over the 

preceding 30 days before sample collection was used as a covariate (Full model: Time × 

Site × Water Depth).  If fishes moved into or out of the impact regions, those relocation 

samples were removed.  If fished moved completely through the impact regions but 

sequential relocation events were both in the control areas, those movements were 

considered “Control”.  Distances from the canal were calculated as the Euclidean 

distance between a relocation point and the middle axis of the canal using Google Earth 

(ver. 7.5.1).  Data were divided between those in the control and the impact areas of the 

experimental flow pulse.  Distances from the canal were averaged together for their 

respective Control/Impact groups for each weekly relocation (Total weekly relocations 

for Bowfin n = 140; LMB n = 140).   

Behavioral analyses that summarized movement at a larger spatial scale than our 

physical model were included as complementary analyses to our BACI design.  We 

examined movement rates across the entire study area, divided between intra- and inter-

habitat movements, to determine if the effect of habitat and ecotone influenced step 

lengths.  Movement rate analyses were conducted using general linear models and were 

divided a priori into four categories: Within Marsh, Within Canal, Into Marsh From 

Canal, and Into Canal From Marsh.  All possible combinations of environmental cues 

influencing daily movement rates within habitats were examined using a multi-model 

approach.  Because no individual fish was found in every sampling event, data were not 
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averaged across sampling events.  Every relocation of an individual was included as a 

replicate (total n = 1,442 for Bowfin, total n = 1,593 for LMB).  Complimentary to 

movement rate prediction models, a single-factor Analysis of Variance (ANOVA) was 

used to analyze if differences in movement rates across habitat categories existed.  If 

differences were evident, a Tukey’s post-hoc test was used to determine which categories 

were driving differences in step length. To assess the effects of the regional hydroscape 

on movement away from the canal, weekly distances from the canal were also analyzed 

with environmental predictor variables and no BACI design.  All possible combinations 

of environmental cues over the preceding 30 days were examined with a multi-model 

selection approach.  Distance-from-canal data were averaged for each weekly relocation.  

Only fish that exhibited movement in the marsh at least once were used for these 

analyses.   

Habitat selection choices influenced by water depth were examined using logistic 

generalized linear models which estimated the probability of all individuals occupying 

the marsh based on the previous 30-day average daily marsh depth.  Each set of weekly 

relocations were treated as replicates.  To prevent bias from single individuals on the 

model output, only relocation events where at least two fishes were found were included 

in these calculations.  Data were divided between “Increasing” and “Decreasing” depths, 

designated based on when the sample was collected between periods of seasonal marsh 

maxima or minima during a hydrologic cycle.  Average water depth over the preceding 

30 days was nested in these depth-change categories.  Slopes were then plotted with 95% 

confidence intervals to determine what marsh depths probability of marsh occupancy was 

different between periods of depth increase and decrease. 
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Large-fish CPUE was calculated using an ANCOVA model that incorporated our 

BACI design, as well as the mean daily marsh depth (Site × Time × Water Depth over the 

preceding 30-day period).  Depths were averaged at the site level (FC, NC, and their 

respective controls).  For canal sites, depths from the NC (middle plot) or NC Control 

sites (averaged across north and south control sites) were used.  Within canal habitats, the 

CPUE of total fishes, LMB, and all sunfishes (a combined group representing Lepomis 

gulosus, L. macrochirus, L. microlophus, and L. punctatus) were examined.  Low catch 

rates of individual species and species groups in the NC and FC habitats limited analysis 

to total-fish CPUE.  Effects of temporal autocorrelation on CPUE between samples was 

examined (corAR1, maximum likelihood).  The best model was chosen by lowest AIC 

value.  If model fit was equal (AIC < 2.0), the model without autocorrelation correction 

was chosen.    

DIDSON density data were analyzed using an ANCOVA model examining the 

interaction of Time × Site × Water Depth over the preceding 30-day period.  When 

construction of the Complete-Fill treatment began in January, 2013, the survey site for 

that treatment was moved slightly south to open water, just south of where the canal plug 

divided the open canal and the Complete-Fill treatment.  This was done to accommodate 

shallow-depth restrictions for the DIDSON.  This model was run separately for the 

north/south-facing samples and for east-facing samples.   

Differences in community similarity were tested using permutational analysis of 

variance (PERMANOVA, number of permutations = 9999). We used the Morisita-Horn 

index because of its property of density invariance (Jost et al. 2011).  PERMANOVA 
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analyses were calculated using data standardized to the total catch for each species, 

followed by square-root transformation to preserve density differences for common 

species while still providing some weight to uncommon species (Clarke and Warwick 

2001).  Our BACI design was tested using Time, Site, and Sampling Period as factors, as 

well as their interactions.  Sampling period was used in place of water depth change and 

corresponded to specific stages in the hydrologic cycle.  Sampling periods were 

organized into the following categories: August/September as “Wet”, 

November/December as “Transition”, January/February as “Early Dry”, and March as 

“Late Dry”.   If CPUE of the No-Fill treatments between the Control and Impact sites 

were similar, these were grouped together for community analyses.  If results were 

significant, data were compared using pairwise comparisons between periods of the 

hydrologic year that correspond to specific times of marsh water depth and whether water 

was rising or falling.  Similarity percentage (SIMPER) descriptions were run on 

significant PERMANOVA results to determine which species were contributing to 

differences among communities.  PERMDISP, a test examining the dispersion of groups 

of points and complementary to the PERMANOVA, was used (number of permutations = 

999) to test whether the dispersion of one community was greater than another. 

Community analyses were conducted in Primer ver. 6.0.   

Results 

Individual movement behavior 

We observed an effect of tag size (Small: 3.2 – 3.8 g; Large: 8.5 g) on movement rates 

that depended on fish size used for this project, but only in Bowfin (tag size × standard 
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length: t = -2.32, df = 91, P = 0.022).  In that species, movement rate and fish size was 

positively correlated with large tags, but negatively correlated with small tags.  However, 

explanatory power of this interaction was low (R2 = 0.04) and so was not expected to 

greatly influence results.  Movement rates in LMB were not influenced by tag size × 

standard length (t = 0.56, df = 94, P = 0.45).  Mean distance from canal was not affected 

by the interaction of tag size × standard length for either species (Bowfin: t = 1.02, df = 

91, P = 0.30; LMB: t = -0.71, df = 94, P = 0.47).   

 Including the BACI design (Time + Site, but not including interaction of Time × 

Site) in models of movement rates equaled or improved model fit compared to models 

with just environmental cues (Appendix 2 for all best-fit models), especially for LMB.  

There was little explanatory power for any of the best-supported models (highest R2 for 

Bowfin = 0.07; LMB < 0.01).  Movement rate models using the BACI design yielded 

similar results when examining predictor variables affecting step lengths during 

experimental flow periods (Appendix 3 for all models of best fit) or within/outside of the 

canal fill treatments (Appendix 4 for all models of best fit).  Movement rates diminished 

during experimental flow periods (Control: 87.87 m/day, 95% C.I. ± 44.93; Impact: 37.56 

m/day, 95% C.I. ± 9.52) for Bowfin (Site × Depth Change: F = 7.76, df = 1,287, P < 

0.01) but not LMB (Site × Depth Change: F = 1.86, df = 1,257, P = 0.17).  Differences in 

movement rates between canal-fill treatments versus unfilled stretches were not different 

for either species (Time × Site × Depth Change: Bowfin: F = 0.53, df = 1,399, P = 0.46; 

LMB: F = 1.29, df = 1,693, P = 0.25).   
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In contrast to step length, the BACI design improved fit of mean distance from 

the canal to our data.  Mean distance from the canal for Bowfin was best explained by 

Site + Time + Site × Time + the environmental predictor variables (Pseudo-R2 = 0.24; 

Table 2).  Average distance from the canal decreased in the Impact sites by 15%, from 

490.40 m (95% C.I.: ± 107.43) to 304.27 m (95% C.I.: ± 28.95), but increased in the 

Control sites by almost 150%, from 580.09 m (95% C.I.: ± 70.42) to 845.19 m (95% C.I.: 

± 72.87).  Best model support for LMB was similar, though the most parsimonious model 

(Site + Time but no Site × Time interaction) was equally supported with the full BACI 

model (Pseudo-R2 = 0.09; Table 2).  As with Bowfin, LMB distance from the canal 

decreased after alteration, though this pattern was also observed in the Control sites 

(Impact Before: 438.42 m, 95% C.I.: ± 149.56; Impact After: 350.76 m, 95% C.I.: ± 

56.36; Control Before: 706.80 m, 95% C.I.: ± 81.66; Control After: 454.50 m, 95% C.I.: 

± 68.71). 

Beyond the proximity of the physical model, abiotic variables affecting 

movement rates varied by species and habitat type, but were most often attributed to 

single environmental cues, particularly depth change variables (Table 3, Appendix 4 for 

all models of best fit).  Movement rates across ecotones were best-explained by these 

single-predictor models.  In contrast, movement rates within the marsh for both species 

were best explained by the average daily depth between the previous relocations of 

individuals (Table 3).  However, ∆AIC was never greater than 3.0 for either species 

across any ecotone compared to the null model and R2 values were never greater than 

0.09. 
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Movement rates were greatest when moving across ecotones.  Movement rates 

across ecotones (both directions) were 400% faster in Bowfin when moving into the 

marsh from the canal compared to within the marsh (F = 3.40, df = 3,208, P < 0.01) (Fig 

2a, Appendix 5).  For LMB, movement rates were ~25% faster than movement within the 

marsh (F = 2.66, df = 3,223, P < 0.05) (Fig 2b, Appendix 5).   

  When including the entire study area (not limited to the physical model), factors 

influencing average distance from the canal were depth-based for both species, with both 

species being closest to the canal as marsh water depths are at their seasonal low-points 

(Fig. 3).  For Bowfin, two models fit equally well: average daily depth over the preceding 

30 days + average daily depth change over that same time, and average daily depth 

change over the preceding 30 days + average daily maximum temperature (Fig. 3a for 

distance from canal versus daily depth change, Table 4), both with moderate support 

(Pseudo-R2 = 0.25).  For LMB, average daily depth over the preceding 30 days provided 

the best support (Fig. 3b distance from canal versus daily depth change, Table 4), though 

explanatory power was low (Pseudo-R2 = 0.04). 

Probability of marsh occupancy by individual fishes increased as water depth 

increased (Figs. 4a, b).  Bowfin displayed a higher willingness to move into the marsh 

when water levels were increasing (z value: 11.32, residual df: 156, P < 0.01) than during 

similar water levels that were decreasing (z value: 4.82, residual df: 156, P < 0.01).  For 

example, when marsh water depth was 40 cm, probability of marsh occupancy was 72% 

when marsh depth was increasing, but only 60% when decreasing. A similar pattern was 

seen with LMB, where there was a higher probability of marsh occupancy during periods 
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of depth increase (z value: 5.35, residual df: 157, P < 0.01) than during similar depths as 

depth decreased (z value: 4.15, residual df: 157, P < 0.01).  There was a substantial 

difference in marsh occupancy during greatest marsh water depth, with ~15% less 

probability of marsh occupancy at 60cm depth when water levels are decreasing 

compared to increasing.  Comparing interspecific probabilities in marsh occupancy, 

Bowfin were much more likely to occupy the marsh than were LMB during both rising 

and falling water levels.  For example, during peak water depths during periods of 

increasing water levels, Bowfin exhibited a 95% probability of marsh occupancy, but 

probability of marsh occupancy was only 75% for LMB.  

 We found no difference in total fish, LMB, or sunfish CPUE in the No-Fill canal 

treatments versus Canal-Control sites (littoral zone only), so these sites were grouped 

together for CPUE analyses.  A temporal autocorrelation correction factor failed to 

produce a better fitting model, and so were not included in analyses.  The interactions of 

Site × Time × Water Depth or Site × Time failed to explain total large fish (Site × Time × 

Depth: F = 0.07, df = 2,106, P = 0.92), LMB (Site × Time × Depth: F = 0.26, df = 2,106, 

P = 0.76), or grouped sunfish (Site × Time × Depth: F = 0.32, df = 2,106, P = 0.72) 

CPUE.  Though not statistically significant, there was a noticeable trend of higher of 

LMB in the fill treatments than the No-Fill treatment after hydroscape alteration.  LMB 

CPUE increased by 2.2 times in the Complete-Fill treatment after hydroscape alteration, 

compared to a 1.85 times increase in the No-Fill treatment over the same time.  Sunfish 

CPUE was highly variable, but the Complete-Fill treatment increased by almost 2.7 

fishes per transect.  In both FC and NC sites, total fish CPUE estimated from DIDSON 

data did not change between the interactions of Site × Time × Water Depth or Site × 
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Time (Site × Time × Depth: FC: F = 0.19, df = 1,76, P = 0.66; NC: F = 0.16, df = 1,69, P 

= 0.68).  Surveys using DIDSON corroborated the electroshocking data, with no effect of 

Site × Time × Depth (North-South surveys: F = 1.56, df = 2,56, P = 0.21; East surveys: F 

= 0.86, df = 2,66, P = 0.42) on fish density in the canal treatments.  Comparing the open-

water (North-South) and littoral (East) facing DIDSON data, recordings at the littoral 

zone yielded 2.5 times more fishes than recordings down the middle of the canal 

(Direction of recording: F = 33.80, df = 1,135, P < 0.05). 

 Canal CPUE was up to five times greater than marsh CPUE (Figs. 5a & b), with 

canal CPUE decreasing as marsh water depths increased (Canal Proximity × Time × 

Depth: F = 4.03, df = 2,178, P < 0.05).  Prior to hydroscape alteration, CPUE at the FC 

and NC sites increased as marsh depths increased (Canal Proximity × Depth: F = 5.21, df 

= 2,80, P < 0.05; Fig. 5a).  However, after alteration, CPUE at both sites decreased as 

marsh water depths increased.  While CPUE did not change across water depths during 

this period (Canal Proximity × Depth: F = 0.12, df = 2,98, P = 0.88), CPUE was still 

much higher in Canal sites (Fig. 5b).  At the Control sites, only the interaction of 

Distance From Canal × Depth Change altered CPUE (F = 6.12, df = 1,77, P < 0.05), with 

Canal site CPUE approximately 30% higher than those in the NC sites and approximately 

three times higher than the FC sites during all water depths after alteration.  After 

alteration, all sites experienced decreasing CPUE as water depths increased (Figs. 5c & 

d).   

 Community composition of No-Fill canal transects in Impact versus Control sites 

revealed no differences with either Site × Time × Sampling Period (Pseudo-F = 1.41, df = 
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3,80, P = 0.15) or Site × Time (Pseudo-F = 1.26, df = 1,80, P = 0.29), so all No-Fill canal 

transects were grouped together for future analyses.  Community composition analyses 

revealed no differences in composition between the interaction of any predictor variables 

including Site × Time at both the Canal (Pseudo-F = 0.90, df = 2,90, P = 0.52) and FC 

sites (Pseudo-F = 0.51, df = 1,63, P = 0.73).  Community composition at NC sites 

changed with Site × Time (Pseudo-F = 2.15, df = 1,51, P = 0.05), though pairwise 

comparisons revealed that these differences were driven by changes at the NC Control 

sites.  An examination of communities across all site types reveal differences across Site 

× Time × Sampling Period (Pseudo-F = 1.41, df = 15,212, P = 0.01), where Canal sites 

differed from the FC and NC sites (Figs 6a & b, Table 4).   

Dispersion of communities (variance among samples within treatments) was 

generally the same across Impact and Control sites, with less dispersion in the Canal sites 

than in the NC and FC sites (F = 13.48, df = 11,248, P < 0.01) (Figs. 6a & 6b).  No 

differences in dispersion between the NC and FC sites were detected.  SIMPER analyses 

revealed that a similar suite of species was responsible for community differences across 

the Canal versus FC and NC sites.  For the NC sites, lower CPUE of LMB, Lake 

Chubsucker (Erimyzon sucetta), and Florida Gar were responsible for differences from 

Canal sites (Appendix 6).  Higher CPUE of LMB, Lake Chubsucker, Bluegill, in Canal 

sites and higher CPUE of Warmouth in the FC sites drove community differences 

between FC and Canal sites.  These results largely reflect what was seen at the Control 

sites.   
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Discussion 

Previous work in the Everglades has shown that hydroscape structure can be 

critical in shaping seasonal migration of fishes (Goss and Trexler 2014, Parkos and 

Trexler 2014, Hoch et al. 2015) and seasonal fluctuations in density (Ruetz et al. 2005, 

Trexler et al. 2005, Rehage and Trexler 2006).  Hydroscape alterations in other 

freshwater systems have caused a range of responses in fishes, from very large (Stoffels 

et al. 2014, Hogg et al. 2015) to very small (Maloney et al. 2008).  These are critical 

study topics, as dispersal among local habitat patches can facilitate regional persistence 

of a metacommunity (Mouquet and Loreau 2003) with fundamental significance for 

management and conservation strategies.  Our manipulation of hydroscape structure in 

the DPM demonstrated how habitat connectivity and spatial arrangement can drive 

community structure in a wetland through changes in fish habitat use. As predators move 

around the landscape, their impacts on prey behavior and production have the potential to 

fundamentally alter ecosystem function (Schmitz 2010, Atwood et al. 2015, Hays et al. 

2016).   

Large-fish behavior, CPUE, and community composition were altered by 

modification of hydroscape structure, but varied by species and site.  Bowfin movement 

was affected by hydroscape manipulation, but not movements of LMB.  Species-specific 

effects on movement may explain the effects of hydoscape alteration we observed on fish 

local CPUE and community composition.  Models that included the interaction of time 

(Before/After) and treatment (Control/Impact) were almost always better supported than 

those with just environmental cues.  These results provide support that the physical model 
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was influencing individual movement and possibly local large fish CPUE and community 

structure as a result.  Contrary to our hypotheses, movement rates were over 50% slower 

in the experimental flow area as those in the control region for Bowfin.  Bowfin and 

LMB responses were linked to several environmental cues, in support of our hypotheses.  

Increased CPUE was noted in the Complete-Fill and, to a lesser extent, the Partial-Fill 

canal treatments, though increases were not significantly different compared to before 

alteration.  As seen in past work (Rehage and Trexler 2006), CPUE (and DIDSON-

estimated density) was highest at the vegetated margins of Canal sites compared to FC 

and NC sites.  Filling the canal to half marsh-level or marsh level created vegetated areas 

like the canal margin and expanded the extent of habitat with high large-fish density 

(both from CPUE and DIDSON-estimated density).  Increased densities of fishes 

observed from DIDSON recordings oriented towards the littoral edge of the canal 

compared to those directed into the open-water canal middle indicate that the littoral edge 

is preferred habitat for fishes.  Differences in community composition were correlated 

with canal proximity, both before and after hydroscape alteration, and dependent on the 

stage of the hydrologic cycle.  Lack of convergence in either density or community 

composition east and west of the canal failed to support our hypothesis of increased 

similarity after hydroscape alterations related to levee removal, possibly because not 

enough time passed for such fundamental changes.   

Environmental cues can inform movement-based decisions in animals and affect 

behavior (Delgado et al. 2010).  In our study, large fish behavior was correlated with 

changes in several cues, but was dependent on both context and species.  Compared to 

LMB, Bowfin moved much further into the marsh and away from canals, were influenced 
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by multiple environmental cues, and showed higher tolerance to decreasing water levels 

before moving back to the canal.  These results are similar to those of another study, 

where movement patterns of LMB and Mayan Cichlids (Cichlasoma urophthalmus) were 

examined (Parkos and Trexler 2014).  In that study, Mayan Cichlids were more apt to 

move into the marsh from the canal, and undertake larger movement rates in shallow 

marshes than were LMB. When marsh water-levels drop, prey fish reach high densities 

along the canal margins (Rehage and Trexler 2006; Chapter 2) and may also affect 

predator movement.  We were unable to assess this effect in this study because the large 

areas covered by the tagged fish precluded estimation of prey density outside the 

immediate study area.    

Despite drastic changes to the canal structure from the physical model, effects on 

large-fish CPUE in the Impact area were subtle.  Contrary to our hypotheses, there was 

no convergence in large fish CPUE between NC and Canal sites.  This was despite the 

Canal sites becoming more similar in depth to the NC sites, as well as colonization of 

vegetation in the Canal sites (personal observation).  However, a general increase in 

sunfishes and LMB was observed in the canal-fill treatments after hydroscape alteration.  

These may be the results of increased spawning habitats, higher prey density, or 

increased cover from predators.  Canal proximity did affect the large fish CPUE at the 

NC and FC sites.  Prior to alteration, there was a positive relationship between CPUE and 

water depth change, but this pattern reversed after alteration, with decreasing CPUE as 

water depths increased.  The canal fill reaches were tens of meters from the NC sites.  

The effects of major structural changes in other ecosystems, such as dam removal, have 
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been documented to affect fish community composition and density in sites far from the 

actual changes (Hogg et al. 2015).  

 The role that flow regimes and “environmental flows” can have in structuring 

aquatic communities is of increasing interest (Olden and Naiman 2010, Poff and 

Zimmerman 2010, Jordan and Arrington 2014).  Restoration of flow regimes involve not 

only reintroduction of flow that should mimic natural patterns, but also reconnection of 

hydrological habitats and restoration of environmental cues that may inform an animal 

when the optimal time for dispersal approaches.  Results from dam removal studies vary 

considerably, even within the same study and stretch of river (Catalano et al. 2007), but 

highlight the importance of aquatic habitat connectivity.  Previous studies of levee 

removal impacts on the surrounding landscape are limited and are primarily focused on 

river floodplains (Bayley 1991, Gergel et al. 2002).  By expanding research to seasonal 

marshes, particularly those with a restored flow regime, a broader view of the biological 

effects of dynamic hydroscapes can be taken.   

Our results reveal the role that hydroscape alteration can have on behavior, 

CPUE, and community structure of large fishes in a dynamic wetland.  The experimental 

approach used provided a powerful method to examine the role that the filling of canals 

and degradation of levees can have on aquatic animals and, ultimately, ecosystem 

function.  Continued monitoring of the study areas is important as the canal fill 

treatments and degraded section of levee continue to consolidate sediment and vegetation 

continues to recolonize the area.  There is evidence that large fishes are moving across 

the degraded section of levee in increasing numbers as we move further away from the 
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initial degradation.  In 2013-2014, three fishes (two LMB and one Bowfin) crossed from 

the study area into the hydrologic unit east of the study area (Figure 1C).  In 2014-2015, 

this number increased to two Bowfin and three LMB.  In the most recent tracking season, 

six fishes have crossed the degraded levee, including several Florida Gar implanted with 

transmitters in October, 2015 (Trexler, unpublished data).  Movement patterns of 

individuals have direct impacts on local abundance and community structure, 

highlighting the importance of tracking these inter-compartment dispersal events.  We 

have demonstrated that relatively minor changes in hydroscape structure, such as 

increases in marsh water depth or filling canal sections, can alter fish behavior, creating 

changes to the aquatic community that extend beyond the immediate area of impact.  

Large-scale field studies such as reported here can be used to answer fundamental 

questions in fisheries ecology and guide successful management efforts.    
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Tables 

Table 1 – Abiotic and biotic conditions of our study area. Periphyton volume, emergent 

plant stem density, and fish density were estimated by use of a 1-m2 throw trap (Bush and 

Trexler in review). Fish density includes all species captured in the throw trap, which are 

generally less than 5-cm standard length and are indicative of prey density for LMB and 

Bowfish at these sites. Error is 1 standard deviation. These metrics were not taken for 

sites within the L-67C canal. 

SITE ALTERATION DEPTH (cm) PERIPHYTON 

(mL m
-2

)

STEM DENSITY 

(stem m
-2

)

FISH DENSITY 

(ind m
-2

)

Pre 53.2 ± 12.6 3314.0 ± 2285.2 185.5 ± 112.9 8.4 ± 5.5

Post 61.8 ± 8.4 3251.1 ± 1906.2 491.8 ± 314.6 19.8 ± 9.9

Pre 46.4 ± 11.2 4032.6 ± 3105.17 340.8 ± 354.6 12.0 ± 4.3

Post 57.2 ± 9.7 5170.3 ± 1638.6 460.4 ± 721.8 14.2 ± 6.7

Pre 40.9 ± 11.8 773.9 ± 780.0 563.6 ± 1176.0 14.6 ± 10.7

Post 51.2 ± 10.6 1631.7 ± 1276.23 739.4± 1459.2 47.1 ± 25.7

Pre 45.1 ± 9.8 1242.2 ± 1744.6 437.7 ± 759.7 20.9 ± 13.6

Post 55.0 ± 9.8 2021.6 ± 982.1 514.8 ± 492.9 28.3 ± 10.9

FC

FC Control

NC

NC Control
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Table 2 – BACI distance from canal models. Only the most parsimonious models of best fit (∆AIC<2.0 from the lowest scoring 

model) are shown, along with the null model. 

 

 

Fish and Distance From 

Canal Model
AIC ∆AIC ωi Pseudo - R

2

Before/After + Control/Impact + Before/After*Control/Impact + Average Daily Depth 

Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + 

Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum 

Temperature Over Preceding 30 Days

1402.40 0.00 0.99 0.25

Null Model 1462.50 56.43 <0.001 -

Before/After + Control/Impact + Average Daily Depth Over Preceding 30 Days + Average 

Daily Depth Change Over Preceding 30 Days + Average Daily Photoperiod Over 

Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

1403.10 0.00 0.61 0.10

Before/After + Control/Impact + Before/After*Control/Impact + Average Daily Depth 

Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + 

Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum 

Temperature Over Preceding 30 Days

1405.10 1.97 0.22 0.10

Null Model 1414.77 11.01 0.00 -

Bowfin Distance From Canal

LMB Distance From Canal
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Table 3 – Step length models for the all locations including fish moving outside the BACI area. Only the most parsimonious 

models of best fit (∆AIC<2.0 from the lowest scoring model) are shown, along with the null model. 

Step Length Model AIC ∆AIC ωi R
2

Average Daily Depth Between Previous Relocation 3165.90 0.00 0.25 0.06

Null Model 3225.60 59.71 <0.001 -

Average Daily Depth Over Preceding 30 Days 293.50 0.22 0.14 0.04

Null Model 296.14 2.86 0.03 -

Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over 

Preceding 30 Days + Average Daily Photoperiod Over Preceding 30 Days

1407.40 0.00 0.54 0.09

Null Model 1439.30 31.93 <0.001 -

Average Daily Depth Change Over Preceding 30 Days 309.77 0.71 0.08 0.03

Average Daily Maximum Temperature Over Preceding 30 Days 310.46 1.40 0.06 0.02

Null Model 311.21 2.15 0.04 -

Average Daily Depth Between Previous Relocation 2424.40 1.15 0.12 0.03

Null Model 2450.10 26.83 <0.001 -

Average Daily Photoperiod Between Previous relocation 377.34 0.89 0.09 0.02

Null Model 378.77 2.32 0.05

Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over 

Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days + 

Average Daily Photoperiod Over Preceding 30 Days

2606.00 0.00 0.76 0.02

Null Model 2618.40 12.33 <0.01

Average Daily Photoperiod Between Previous relocation 338.69 0.00 0.08 0.03

Average Daily Maximum Temperature Between Previous relocation 338.73 0.03 0.08 0.05

Average Daily Photoperiod Over Preceding 30 Days 338.91 0.22 0.07 0.05

Average Daily Depth Change Between Previous Relocation 339.35 0.65 0.06 0.02

Average Daily Depth Change Over Preceding 30 Days 339.78 1.08 0.05 0.02

Null Model 340.77 2.07 0.03 -

LMB Into Marsh

Bowfin Within Marsh

Bowfin Into Marsh

Bowfin Within Canal

Bowfin Into Canal

LMB Within Marsh

LMB Within Canal

LMB Into Canal
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Table 4 – Distance-from-Canal models.  Only the most parsimonious models of best fit (∆AIC < 2.0 from the lowest scoring 

model) are shown, along with the null model. 

 

 

 

 

Distance from Canal Model AIC ∆AIC ωi Pseudo - R
2

Average Daily Depth Over Preceding 30 days + Average Daily Depth Change Over 

Preceding 30 Days
896.70 0.00 0.47 0.25

Average Daily Depth Change Over Preceding 30 Days +Average Daily Maximum 

Temperature Over Preceding 30 Days
898.23 1.52 0.22 0.25

Average Daily Depth Over Preceding 30 days + Average Daily Depth Change Over 

Preceding 30 Days + Average Daily Photoperiod Over Preceding 30 Days

898.34 1.64 0.21 0.25

Null Model 938.51 41.81 <0.001 -

Average Daily Depth Over Preceding 30 Days 925.28 0.00 0.29 0.04

Null Model 930.30 5.02 0.02 -

Bowfin Distance From Canal

LMB Distance From Canal
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Table 5 – PERMANOVA analyses from Time × Site × Hydroperiod. Number of 

permutations = 9999.   

  

Main Test Pseudo-F df P

DepthChange × Time × Site 1.41 15,212 0.01

Time × Site 1.87 5,212 <0.01

DepthChange × Site 1.51 15,212 <0.01

DepthChange × Time 2.40 3,212 <0.01

Pairwise Tests

Wet Sampling Period

Before Alteration t-statistic df P

Canal Sites vs FC Sites 2.03 12 <0.01

Canal Sites vs NC Sites 2.24 12 <0.01

FC Sites vs NC Sites 0.99 6 0.37

Canal Control Sites vs FC Control Sites 0.63 4 0.72

Canal Control Sites vs NC Control Sites 1.27 5 0.16

FC Control Sites vs NC Control Sites 1.02 3 0.49

After Alteration

Canal Sites vs FC Sites 2.81 13 <0.01

Canal Sites vs NC Sites 1.36 12 0.13

FC Sites vs NC Sites 1.55 7 0.09

Canal Control Sites vs FC Control Sites 1.02 6 0.39

Canal Control Sites vs NC Control Sites 1.09 4 0.40

FC Control Sites vs NC Control Sites 0.49 4 1.00

Transition Sampling Period

Before Alteration

Canal Sites vs FC Sites 1.15 6 0.31

Canal Sites vs NC Sites 0.81 4 0.64

FC Sites vs NC Sites 0.65 4 0.74

Canal Control Sites vs FC Control Sites 0.93 6 0.57

Canal Control Sites vs NC Control Sites 0.33 4 1.00

FC Control Sites vs NC Control Sites 1.07 4 0.46

After Alteration

Canal Sites vs FC Sites 2.11 13 <0.01

Canal Sites vs NC Sites 1.23 12 0.15

FC Sites vs NC Sites 0.57 7 0.87

Canal Control Sites vs FC Control Sites 1.56 6 0.08

Canal Control Sites vs NC Control Sites 1.82 6 0.02

FC Control Sites vs NC Control Sites 0.97 6 0.42
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Table 5 continued 

 

 

 

  

Early Dry Sampling Period

Before Alteration

Canal Sites vs FC Sites 2.31 11 <0.01

Canal Sites vs NC Sites 2.00 11 <0.01

FC Sites vs NC Sites 0.30 8 0.92

Canal Control Sites vs FC Control Sites 3.43 2 0.33

Canal Control Sites vs NC Control Sites 2.64 1 0.33

FC Control Sites vs NC Control Sites 4.38 1 0.33

After Alteration

Canal Sites vs FC Sites 1.89 21 0.01

Canal Sites vs NC Sites 2.24 20 <0.01

FC Sites vs NC Sites 0.92 15 0.54

Canal Control Sites vs FC Control Sites 1.78 10 0.02

Canal Control Sites vs NC Control Sites 2.73 10 <0.01

FC Control Sites vs NC Control Sites 0.72 10 0.77

Late Dry Sampling Period

Before Alteration

Canal Sites vs FC Sites 2.23 11 <0.01

Canal Sites vs NC Sites 2.35 10 0.01

FC Sites vs NC Sites 1.38 3 0.30

Canal Control Sites vs FC Control Sites 1.19 2 0.33

Canal Control Sites vs NC Control Sites 1.90 1 0.33

FC Control Sites vs NC Control Sites 0.74 1 1.00

After Alteration

Canal Sites vs FC Sites 2.06 20 <0.01

Canal Sites vs NC Sites 2.47 19 <0.01

FC Sites vs NC Sites 0.82 15 0.60

Canal Control Sites vs FC Control Sites 1.80 10 <0.01

Canal Control Sites vs NC Control Sites 1.56 10 0.11

FC Control Sites vs NC Control Sites 1.27 10 0.18
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Figure Captions 

Figure 1 – Map of Study Area.  A. Regional location of the study in southern Florida, 

USA. B.  The primary study area bounded by levees L67 A and C, the location of added 

water inflow (arrow) and the control and impact study areas (star). Polygons with 

diagonal lines are terrestrial tree islands.  C.  The primary experimental area with marsh 

and canal sampling sites.  Sawgrass ridges are represented by dark gray.  Open water 

sloughs are light gray. 

Figures 2 – Bowfin (a) and LMB (b) step lengths (daily distance moved in meters) within 

and across marsh and canal habitats.  Error bars represent 95% confidence intervals.  

Data are back-transformed from ln(x+1). 

Figures 3 – Bowfin (a) and LMB (b) average distance from the canal.  Error bars 

represent 95% confidence intervals.  Solid background line is the average marsh water 

depth.  Data were not back-transformed because the model of best fit for Bowfin was 

Average Daily Depth + Average Daily Depth Change. 

Figure 4 - Bowfin (a) and LMB (b) predicted occupancy of the marsh.  The solid line is 

when marsh water depth is increasing.  The dotted line is when marsh water depth is 

decreasing.  The shaded area around the lines represent 95% confidence intervals.  
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Figures 5 – CPUE of total large fishes across all three site types with the Impact area 

before hydroscape alteration (a) and after hydroscape alteration (b), and in the Control 

areas before hydroscape alteration (c) and after hydroscape alteration (d).  Solid lines 

represent Canal sites, dotted lines represent NC sites, and dot-dash lines represent FC 

sites.  Shaded areas represent 95% confidence intervals. Data are back-transformed from 

ln(x+1) (graphs a and b) and sqrt(x+1) (graphs c and d). 

Figures 6 – nMDS of community position and dispersion for Canal, NC, and FC sites for 

Impact (A) and Control (B) sites.  nMDS was generated for all sites but graphically 

divided between Impact and Control for clarity.  Dark shapes represent Before alteration 

and light gray shapes represent After alteration.  Solid lines represent Canal or Canal 

Control.  Long-dashed lines represent NC or NC Control.  Dotted lines represent FC or 

FC Control.  Stress = 0.21.   
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Figure 3 
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Figure 5 
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Figure 6 
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Appendices Captions 

Appendix 1 – Fishes implanted with radio transmitters, including dates, biological data, 

and surgery times. 

Appendix 2 – All Step Length models with equal (∆AIC<2.0) fit, restricted to the overall 

BACI design 

Appendix 3 – All Step Length models with equal (∆AIC<2.0) fit, restricted to periods of 

the experimental flow pulse 

Appendix 4 - All Step Length models with equal (∆AIC<2.0) fit, restricted to filled and 

unfilled segments of the canal 

Appendix 5 – All Step Length models with equal (∆AIC<2.0) fit, over the entire 

hydroscape 

Appendix 6 – Results of SIMPER analyses between Canal and Marsh sites. Only most 

abundant species contributing up to 75% of dissimilarity listed. 
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Appendices 

Appendix 1 

 

 

Date Tag Size (g) Species ID Length (SL) Time In Solution (min) Time In Surgery (min) Recovery Time (min) Number of Sutures

2011 May 3.9 Bowfin AC01 45 2 14 16 3

2011 May 3.9 Bowfin AC02 42 3 9 3 4

2011 May 3.9 Bowfin AC03 38 4 8 5 re-sutured; 3

2011 May 3.9 Bowfin AC04 35 8 12 39 3

2011 May 3.9 Bowfin AC05 37.5 7 11 5 4

2011 May 2.9 Bowfin AC06 50 7 7 18 re-sutured; 3

2011 May 2.9 Bowfin AC07 52.5 4 7 20 3

2011 May 3.9 Bowfin AC08 31.5 12 9 6 3

2011 May 2.9 Bowfin AC09 37 10 9 19 3

2011 May 2.9 Bowfin AC10 37 15 4 20 re-sutured; 2

2011 July 3.9 Bowfin AC11 39 4 8 4 2

2011 July 3.9 Bowfin AC12 39.5 15 8 8 3

2011 July 3.9 Bowfin AC13 45.5 4 6 17 2

2011 July 3.9 Bowfin AC14 41.5 4 5 10 2

2011 July 3.9 Bowfin AC15 39.5 5 6 7 2

2011 July 3.9 Bowfin AC16 32.5 4 4 . 2

2011 July 3.9 Bowfin AC17 47 6 8 12 2

2011 July 2.9 Bowfin AC18 45 4 6 11 2

2011 July 2.9 Bowfin AC19 47 3 6 3 2

2011 July 2.9 Bowfin AC20 41 2 10 5 3

2012 Jan 3.9 Bowfin AC21 40 21 6 8 3

2012 Jan 3.9 Bowfin AC22 40.3 5 7 3 3

2012 Jan 3.9 Bowfin AC23 44.5 5 7 4 3

2012 Jan 3.9 Bowfin AC24 44.4 17 7 6 3

2012 Jan 3.9 Bowfin AC25 37.2 6 4 4 3

2012 Jan 3.9 Bowfin AC26 39.7 3 4 5 3

2012 Feb 3.9 Bowfin AC27 38.1 6 8 4 2

2012 Feb 3.9 Bowfin AC28 40.5 6 8 14 2

2012 Feb 3.9 Bowfin AC29 38.5 7 7 6 2

2012 Feb 3.9 Bowfin AC30 38.4 4 5 4 2

2012 June 3.9 Bowfin AC30 41 2 6 9 Re-tagged; 2

2012 Feb 3.9 Bowfin AC31 40.3 5 3 7 2

2012 Feb 3.9 Bowfin AC32 38.3 10 6 3 3

2012 Feb 3.9 Bowfin AC33 44.5 1 3 8 3

2012 June 3.9 Bowfin AC33 46 2 10 3 Re-tagged; 2

2012 June 3.9 Bowfin AC34 53 8 3 12 2

2012 June 3.9 Bowfin AC35 43 5 7 4 2

2012 June 3.9 Bowfin AC36 52 10 5 14 2

2012 June 3.9 Bowfin AC37 42.5 4 4 5 2

2012 June 3.9 Bowfin AC38 54 4 7 5 2

2012 June 3.9 Bowfin AC39 42 5 5 8 3

2012 June 3.9 Bowfin AC40 41.5 4 4 5 2

2013 Mar 3.9 Bowfin AC41 44.8 6 7 3 2

2013 Mar 3.9 Bowfin AC42 39.7 4 6 5 2

2013 Mar 3.9 Bowfin AC43 36 5 7 2 2

2013 Mar 3.9 Bowfin AC44 45.6 5 6 1 2

2013 Mar 3.9 Bowfin AC45 38.6 4 6 2 2

2013 Mar 3.9 Bowfin AC46 37.8 4 6 1 2

2013 Mar 3.9 Bowfin AC47 38.1 5 5 1 2

2013 Mar 3.9 Bowfin AC48 39.3 5 6 2 2

2013 Mar 3.9 Bowfin AC49 43.7 5 6 4 2

2013 Mar 3.9 Bowfin AC50 52.6 7 7 10 3

2013 Mar 3.9 Bowfin AC51 42.5 5 5 3 2

2013 Mar 3.9 Bowfin AC52 40.2 5 7 2 2

2013 Mar 3.9 Bowfin AC53 48.4 4 5 4 3

2013 Mar 3.9 Bowfin AC54 43.5 5 5 1 2

2013 Mar 3.9 Bowfin AC55 46 5 7 2 2
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2013 Mar 3.9 Bowfin AC56 42 3 4 2 2

2013 Mar 3.9 Bowfin AC57 39.2 3 6 2 2

2013 Mar 3.9 Bowfin AC58 50.3 4 7 1 3

2013 Oct 3.9 Bowfin AC59 38.8 3 5 . 3

2013 Oct 3.9 Bowfin AC60 36.4 5 5 . 2

2013 Oct 3.9 Bowfin AC61 52.5 4 8 . 3

2013 Oct 3.9 Bowfin AC62 43.1 3 4 . 2

2013 Oct 3.9 Bowfin AC63 43.3 6 7 . 2

2013 Oct 3.9 Bowfin AC64 40.6 3 5 5 2

2013 Oct 3.9 Bowfin AC65 46.1 3 5 4 2

2013 Oct 3.9 Bowfin AC66 42.3 4 6 . 2

2013 Oct 3.9 Bowfin AC67 43.2 3 6 1 3

2013 Oct 3.9 Bowfin AC68 37.9 4 8 . 2

2013 Oct 3.9 Bowfin AC69 35.4 5 5 13 2

2013 Oct 3.9 Bowfin AC70 41.9 2 7 1 3

2013 Oct 3.9 Bowfin AC71 36.5 3 5 5 2

2013 Oct 3.9 Bowfin AC72 38.3 4 5 1 2

2013 Oct 3.9 Bowfin AC73 39.9 2 6 . 3

2013 Oct 3.9 Bowfin AC74 46.5 3 6 . 2

2013 Oct 3.9 Bowfin AC75 41.4 8 6 7 3

2013 Oct 3.9 Bowfin AC76 45.3 4 6 1 3

2013 Oct 3.9 Bowfin AC77 44.3 6 6 . 2

2013 Oct 3.9 Bowfin AC78 58.1 3 6 2 3

2014 Sept 8.5 Bowfin AC79 40.1 6 8 2 2

2014 Sept 8.5 Bowfin AC80 37.8 4 5 1 3

2014 Sept 8.5 Bowfin AC81 49.3 5 6 2 3

2014 Sept 8.5 Bowfin AC82 44.5 5 7 1 3

2014 Sept 8.5 Bowfin AC83 56 6 7 1 3

2014 Sept 8.5 Bowfin AC84 53 6 7 2 3

2014 Sept 8.5 Bowfin AC85 39.3 3 7 2 3

2014 Sept 8.5 Bowfin AC86 44.6 5 7 1 3

2014 Sept 8.5 Bowfin AC87 60.5 6 6 1 3

2014 Sept 8.5 Bowfin AC88 41.8 7 5 2 2

2014 Sept 8.5 Bowfin AC89 45.4 3 6 1 3

2014 Sept 8.5 Bowfin AC90 38.7 4 8 1 3

2014 Sept 8.5 Bowfin AC91 40 6 7 . 2

2014 Sept 8.5 Bowfin AC92 47.5 5 7 2 3

2014 Sept 8.5 Bowfin AC93 48.3 4 5 5 3

2014 Sept 8.5 Bowfin AC94 41 7 6 2 3

2014 Sept 8.5 Bowfin AC95 52.6 6 7 3 3

2014 Sept 8.5 Bowfin AC96 41 4 6 3 2

2014 Sept 8.5 Bowfin AC97 55 4 5 1 3

2014 Oct 8.5 Bowfin AC98 52.3 5 5 5 2

2011 May 3.9 FLMB MS01 29 15 7 5 3

2011 May 3.9 FLMB MS02 26 3 6 5 3

2011 May 3.9 FLMB MS03 28 4 8 4 5

2011 May 2.9 FLMB MS05 30 5 19 26 3

2011 May 3.9 FLMB MS06 26 8 6 6 3

2011 May 2.9 FLMB MS07 27 4 6 6 2

2011 May 2.9 FLMB MS08 24.5 11 6 4 3

2011 May 2.9 FLMB MS09 27 8 6 10 3

2011 May 2.9 FLMB MS10 23 8 6 9 3

2014 Oct 8.5 FLMB MS100 30 4 6 1 3

2014 Oct 8.5 FLMB MS101 29.9 6 5 1 .

2011 May 2.9 FLMB MS11 26 18 5 11 3

2011 July 3.9 FLMB MS12 26 7 6 11 3

2011 July 3.9 FLMB MS13 29.5 4 4 . 2

2011 July 3.9 FLMB MS14 27.5 6 4 4 2
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2011 July 2.9 FLMB MS15 32 12 4 6 2

2011 July 2.9 FLMB MS16 30 8 7 5 3

2011 July 2.9 FLMB MS17 39 6 6 11 2

2011 July 2.9 FLMB MS18 26.5 11 5 4 2

2011 July 2.9 FLMB MS19 25.5 3 8 5 3

2011 July 2.9 FLMB MS20 30 4 4 4 2

2011 July 2.9 FLMB MS21 28 4 5 2 2

2012 Jan 3.9 FLMB MS22 26.5 5 6 10 3

2012 Jan 3.9 FLMB MS23 29.8 12 6 4 3

2012 Jan 3.9 FLMB MS24 35.3 2 6 3 3

2012 Feb 3.9 FLMB MS25 35.2 6 4 . 2

2012 Feb 3.9 FLMB MS26 28.6 7 4 5 2

2012 Feb 3.9 FLMB MS27 30 10 4 4 3

2012 Feb 3.9 FLMB MS28 28.7 5 7 3 3

2012 June 3.9 FLMB MS29 29.5 22 8 23 2

2012 June 3.9 FLMB MS30 34.5 4 4 4 2

2012 June 3.9 FLMB MS31 28 5 4 12 3

2012 June 3.9 FLMB MS32 32.5 3 5 14 2

2012 June 3.9 FLMB MS33 27 5 4 3 2

2012 June 3.9 FLMB MS34 28 2 4 10 2

2012 June 3.9 FLMB MS35 36.5 3 3 9 2

2012 June 3.9 FLMB MS36 27 8 3 10 2

2012 June 3.9 FLMB MS37 29 2 6 7 3

2012 June 3.9 FLMB MS38 35 10 9 5 3

2012 June 3.9 FLMB MS39 30.5 3 5 4 2

2012 June 3.9 FLMB MS40 28.5 4 3 7 2

2012 June 3.9 FLMB MS41 32 4 6 4 3

2013 Mar 3.9 FLMB MS42 31.2 7 5 7 2

2013 Mar 3.9 FLMB MS43 29.7 7 7 3 2

2013 Mar 3.9 FLMB MS44 33.8 14 5 4 2

2013 Mar 3.9 FLMB MS45 32.2 5 5 3 2

2013 Mar 3.9 FLMB MS46 42.3 9 6 15 3

2013 Mar 3.9 FLMB MS47 41 6 5 25 2

2013 Mar 3.9 FLMB MS48 42.1 4 5 3 2

2013 Mar 3.9 FLMB MS49 29 6 5 12 2

2013 Mar 3.9 FLMB MS50 32.8 4 5 3 2

2013 Mar 3.9 FLMB MS51 29.7 4 5 4 3

2013 Mar 3.9 FLMB MS52 31.5 5 5 5 2

2013 Mar 3.9 FLMB MS53 27.4 5 6 4 2

2013 Mar 3.9 FLMB MS54 31.9 4 5 10 3

2013 Mar 3.9 FLMB MS55 37.9 4 5 2 2

2013 Mar 3.9 FLMB MS56 37.8 4 5 7 2

2013 Mar 3.9 FLMB MS57 35.3 11 5 3 3

2013 Mar 3.9 FLMB MS58 38.1 4 5 10 3

2013 Mar 3.9 FLMB MS59 29.2 5 5 2 3

2013 Mar 3.9 FLMB MS60 28.6 3 5 2 3

2013 Mar 3.9 FLMB MS61 30.8 6 5 3 3

2013 Oct 3.9 FLMB MS62 41 3 5 6 2

2013 Oct 3.9 FLMB MS63 27.9 4 5 10 2

2013 Oct 3.9 FLMB MS64 27 4 5 1 2

2013 Oct 3.9 FLMB MS65 28.8 4 6 1 3

2013 Oct 3.9 FLMB MS66 25.4 15 5 1 2

2013 Oct 3.9 FLMB MS67 42.8 9 4 3 2

2013 Oct 3.9 FLMB MS68 25.5 11 7 2 3

2013 Oct 3.9 FLMB MS69 30.5 3 5 1 2

2013 Oct 3.9 FLMB MS70 43.4 4 6 8 3

2013 Oct 3.9 FLMB MS71 28.2 6 8 1 3

2013 Oct 3.9 FLMB MS72 27.2 4 7 3 3
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2013 Oct 3.9 FLMB MS73 42.4 2 6 5 3

2013 Oct 3.9 FLMB MS74 39.5 8 6 3 3

2013 Oct 3.9 FLMB MS75 38 3 5 6 3

2013 Oct 3.9 FLMB MS76 31.2 3 6 2 3

2013 Oct 3.9 FLMB MS77 36.6 2 6 4 3

2013 Oct 3.9 FLMB MS78 30.9 2 6 4 3

2013 Oct 3.9 FLMB MS79 26.2 2 7 5 3

2013 Oct 3.9 FLMB MS80 27.8 4 6 4 3

2013 Oct 3.9 FLMB MS81 28.1 5 6 1 3

2014 Sept 8.5 FLMB MS82 43.2 6 7 1 4

2014 Sept 8.5 FLMB MS83 45 5 6 6 3

2014 Sept 8.5 FLMB MS84 35.2 6 6 2 3

2014 Sept 8.5 FLMB MS85 30.4 6 7 2 4

2014 Sept 8.5 FLMB MS86 37.3 5 6 2 4

2014 Sept 8.5 FLMB MS87 35.1 5 6 1 4

2014 Sept 8.5 FLMB MS88 29.7 3 6 2 3

2014 Sept 8.5 FLMB MS89 32.8 3 7 8 4

2014 Sept 8.5 FLMB MS90 32.7 6 6 10 4

2014 Sept 8.5 FLMB MS91 42.7 6 6 8 4

2014 Sept 8.5 FLMB MS92 42.5 5 5 2 4

2014 Sept 8.5 FLMB MS93 33 2 6 15 3

2014 Sept 8.5 FLMB MS94 34.9 6 6 7 3

2014 Sept 8.5 FLMB MS95 39 5 5 17 3

2014 Sept 8.5 FLMB MS96 45 3 6 6 3

2014 Oct 8.5 FLMB MS97 29.6 4 6 3 3

2014 Oct 8.5 FLMB MS98 34 4 5 5 3

2014 Oct 8.5 FLMB MS99 28.8 6 5 6 3
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Step Length 

Overall Model
AIC ∆AIC ωi R

2

Before/After + Control/Impact + Before/After*Control/Impact + Average Daily Depth Over Preceding 30 Days + Average Daily 

Depth Change Over Preceding 30 Days + Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum 

Temperature Over Preceding 30 Days

4469.80 0.00 0.38 0.07

Before/After + Control/Impact + Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 

30 Days + Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

4470.40 0.59 0.28 0.07

Control/Impact + Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + 

Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

4470.40 0.65 0.27 0.02

Null Model 6544.00 2074.20 <0.001 -

Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + Average Daily 

Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

4971.10 0.00 0.47 <0.01

Before/After + Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + Average 

Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

4972.90 1.85 0.18 <0.01

Control/Impact + Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + 

Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

4973.10 1.99 0.17 <0.01

Null Model 7226.30 2255.20 0.00 -

Bowfin

LMB
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Step Length 

During Flow 

Pulses Model

AIC ∆AIC ωi R
2

Control/Impact + Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + 

Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

4470.40 0.00 0.72 0.07

Flow + Control/Impact + Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days 

+ Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

4472.40 1.93 0.27 0.07

Null Model 6544.00 81.80 <0.001 -

Flow + Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + Average Daily 

Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

4958.70 0.00 0.50 0.01

Flow + Control/Impact + Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days 

+ Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

4959.40 0.70 0.35 0.01

Null Model 7226.30 2267.60 0.00 -

Bowfin

LMB
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Step Length In 

Canal Fill Model
AIC ∆AIC ωi R

2

Canal Fill + Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + Average 

Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

1596.40 0.00 0.59 0.15

Canal Fill + Before/After + Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 

Days + Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

1597.90 1.46 0.28 0.15

Null Model 2148.80 552.39 <0.001 -

Canal Fill + Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + Average 

Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

2706.00 0.00 0.57 0.03

Canal Fill + Before/After + Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 

Days + Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days

2707.80 1.73 0.24 0.03

Null Model 3623.10 917.06 <0.001 -

Bowfin

LMB
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Fish and Habitat Model AIC ∆AIC ωi R
2

Average Daily Depth Between Previous Relocation 3165.90 0.00 0.25 0.06

Average Daily Depth Between Previous Relocation + Average Daily Depth Change Between Previous Relocation 3166.60 0.74 0.17 0.06

Average Daily Depth Between Previous Relocation + Average Maximum Temperature Between Previous Relocation 3167.80 1.94 0.09 0.06

Null Model 3225.60 59.71 <0.001 -

Average Daily Depth Over Preceding 30 Days + Average Daily Photoperiod Over Preceding 30 Days 293.27 0.00 0.15 0.05

Average Daily Depth Over Preceding 30 Days 293.50 0.22 0.14 0.04

Average Daily Depth Over Preceding 30 Days + Average Maximum Daily Temperature Over Preceding 30 Days + Average Daily 

Photoperiod Over Preceding 30 Days
294.59 1.31 0.08 0.05

Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days 294.81 1.53 0.07 0.04

Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + Average Daily 

Photoperiod Over Preceding 30 Days
295.25 1.97 0.05 0.04

Null Model 296.14 2.86 0.03 -

Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + Average Daily 

Photoperiod Over Preceding 30 Days
1407.40 0.00 0.54 0.09

Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + Average Maximum 

Daily Temperature Over Preceding 30 Days + Average Daily Photoperiod Over Preceding 30 Days

1409.00 1.63 0.24 0.09

Null Model 1439.30 31.93 <0.001 -

Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days
309.05 0.00 0.11 0.05

Average Daily Depth Change Over Preceding 30 Days 309.77 0.71 0.08 0.03

Average Daily Depth Change Over Preceding 30 Days + Average Daily Photoperiod Over Preceding 30 Days + Average Daily 

Maximum Temperature Over Preceding 30 Days
309.83 0.77 0.08 0.05

Average Daily Maximum Temperature Over Preceding 30 Days 310.46 1.40 0.06 0.02

Average Daily Depth Change Between Previous Relocation + Average Daily Maximum Temperature Between Previous Relocation 

+ Average Daily Photoperiod Between Previous Relocation
310.86 1.80 0.05 0.04

Average Daily Depth Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days + Average Daily 

Photoperiod Over Preceding 30 Days
310.93 1.88 0.04 0.04

Average Daily Depth Change Over Preceding 30 Days + Average Daily Photoperiod Over Preceding 30 Days 311.01 1.96 0.04 0.02

Null Model 311.21 2.15 0.04 -

Bowfin Within 

Marsh

Bowfin Into Marsh

Bowfin Within 

Canal

Bowfin Into Canal
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Average Daily Depth Between Previous Relocation + Average Daily Depth Change Between Previous Relocation
2423.20 0.00 0.22 0.04

Average Daily Depth Between Previous Relocation + Average Daily Depth Change Between Previous Relocation + Average 

Photoperiod Between Previous Relocation
2424.20 0.98 0.13 0.04

Average Daily Depth Between Previous Relocation 2424.40 1.15 0.12 0.03

Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + Average Daily 

Maximum Temperature Over Preceding 30 Days
2425.20 1.97 0.08 0.04

Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + Average Daily 

Maximum Temperature Over Preceding 30 Days + Average Daily Photoperiod Over Preceding 30 Days

2425.20 1.98 0.08 0.04

Null Model 2450.10 26.83 <0.001 -

Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days
376.44 0.00 0.14 0.04

Average Daily Photoperiod Between Previous relocation 377.34 0.89 0.09 0.02

Average Daily Depth Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days + Average Daily 

Photoperiod Over Preceding 30 Days
378.07 1.62 0.07 0.09

Average Daily Depth Change Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days + 

Average Daily Photoperiod Over Preceding 30 Days
378.26 1.81 0.06 0.03

Average Daily Depth Change Between Previous Relocation + Average Daily Photoperiod Between Previous Relocation
378.37 1.92 0.06 0.02

Null Model 378.77 2.32 0.05 -

Average Daily Depth Over Preceding 30 Days + Average Daily Depth Change Over Preceding 30 Days + Average Daily 

Maximum Temperature Over Preceding 30 Days + Average Daily Photoperiod Over Preceding 30 Days

2606.00 0.00 0.76 0.02

Null Model 2618.40 12.33 <0.01 -

LMB Within Canal

LMB Within Marsh

LMB Into Marsh
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Average Daily Photoperiod Between Previous relocation 338.69 0.00 0.08 0.03

Average Daily Maximum Temperature Between Previous relocation 338.73 0.03 0.08 0.05

Average Daily Depth Change Between Previous relocation + Average Daily Maximum Temperature Between Previous relocation
338.87 0.18 0.07 0.06

Average Daily Photoperiod Over Preceding 30 Days 338.91 0.22 0.07 0.05

Average Daily Depth Change Between Previous Relocation 339.35 0.65 0.06 0.02

Average Daily Depth Change Between Previous Relocation + Average Daily Photoperiod Between Previous Relocation
339.58 0.88 0.05 0.03

Average Daily Depth Change Over Preceding 30 Days 339.78 1.08 0.05 0.02

Average Daily Depth Between Previous Relocation + Average Photoperiod Between Previous Relocation 339.79 1.09 0.05 0.03

Average Daily Maximum Temperature Between Previous Relocation + Average Daily Photoperiod Between Previous Relocation
340.10 1.41 0.04 0.02

Average Daily Depth Change Over Preceding 30 Days + Average Daily Photoperiod Over Preceding 30 Days 340.20 1.51 0.04 0.02

Average Daily Photoperiod Over Preceding 30 Days + Average Daily Maximum Temperature Over Preceding 30 Days
340.25 1.55 0.04 0.02

Average Daily Depth Over Preceding 30 Days + Average Daily Photoperiod Over Preceding 30 Days 340.67 1.97 0.03 0.02

Null Model 340.67 2.07 0.03 -

LMB Into Canal
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NC versus Canal Sites

Species NC Av Abund Canal Av Abund Cum % Dissimilarity

FLMB 3.20 8.35 16.60

Lake Chubsucker 3.98 4.71 28.90

Warmouth 4.18 3.25 40.55

Florida Gar 2.35 4.30 51.94

Bluegill 2.17 3.94 62.31

Bowfin 3.12 3.23 72.00

Redear Sunfish 2.10 3.13 81.06

FC versus Canal Sites FC Av Abund Canal Av Abund Cum % Dissimilarity

FLMB 2.74 8.35 16.89

Warmouth 5.87 3.25 30.37

Lake Chubsucker 3.09 4.71 41.74

Bowfin 4.14 3.23 52.72

Bluegill 2.13 3.94 63.57

Florida Gar 0.95 4.30 74.37

Redear Sunfish 1.84 3.13 82.64

NC Control versus Canal Control Sites NC Control Av Abund Canal Control Av Abund Cum % Dissimilarity

FLMB 3.03 8.37 19.24

Warmouth 4.85 3.83 31.63

Lake Chubsucker 4.14 3.87 43.55

Bluegill 2.21 3.20 53.79

Bowfin 2.92 2.64 63.88

Florida Gar 1.68 2.99 72.81

Redear Sunfish 1.94 2.38 81.50

FC Control versus Canal Control Sites FC Control Av Abund Canal Control Av Abund Cum % Dissimilarity

FLMB 3.44 8.37 17.21

Bowfin 4.55 2.64 29.63

Lake Chubsucker 2.78 3.87 42.04

Warmouth 3.60 3.83 53.89

Bluegill 2.23 3.20 64.02

Florida Gar 0.33 2.99 72.68

Redear Sunfish 1.98 2.38 81.03
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Abstract 

Hydroscape configuration can influence trophic interactions shaping community and 

metacommunity dynamics.  The Everglades, Florida, USA, is a seasonally dynamic, 

freshwater marsh with a network of deep-water drainage canals.  Previous studies have 

shown density of macroinvertebrates and fishes are highest near canals, possibly resulting 

from associated nutrient enrichment or dry-season refuge.  To assess the role canal 

proximity had on perceived predation risk for small consumers, 1-m2 cages that excluded 

larger predators (2.5-cm mesh) and others that did not were placed adjacent to a canal and 

in a marsh interior several hundred meters away for 13 days, then cleared of consumers.  

The experiment was repeated during periods of high, mid, and low water depth.  Multi-

model selection was used to determine what factors influenced consumer and algal 

densities.  Abiotic and forage-nutrition metrics including stem density and periphtyon 

quality were measured.  The interaction of sampling period, exclosure treatment, and 

habitat best predicted small consumer density.  Effect sizes revealed greater predator 

avoidance behaviors in Canal sites than Marsh sites.  Amount of palatable algae was best 

explained by the interaction of treatment and habitat.  Other variables were similar 

between sites, though periphyton volume was five times greater in Marsh sites and stem 

density was more than twice as high in Canal sites. CPUE of large piscivores was over 

twice as high in Canal sites compared to Marsh sites.  Elemental phosphorus (%) was 

elevated in canal sites.  These differences in hydroscape variables may affect perceived 

predation risk.  Our results suggest that hydroscape structure and configuration influence 

predator-avoidance behaviors, though effects vary with consumer identity.  
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Introduction 

Landscape configuration can influence success of anti-predatory behaviors affecting the 

community structure and distribution of prey species (Davey and Kelly 2007, Hall et al. 

2015, Painter et al. 2015).  Areas that allow for better detection of predators and 

decreased predation risk are preferentially sought by prey species (Turesson and 

Bronmark. 2007, Martin et al. 2010).   In response, predators seek habitats that allow for 

better foraging opportunities, including better opportunities for ambush hunting (Eskew 

et al. 2009) or decreased competition for prey (Nilsson 2006).  For animals of all trophic 

levels, position in the landscape may force tradeoffs among threats, including 

competition and predation, and resource availability.  In dynamic hydroscapes, such as 

ephemeral wetlands, habitat quality and risks may change with seasons, complicating 

habitat selection decisions.  If a population is to persist, adaptive behaviors must be 

adopted that minimize the selection of poor habitats (Blondel et al. 1992).   Behavioral 

plasticity should be favored in ecosystems where the context for predator-prey 

interactions varies across time or space (Sih et al 2004).    

Ecotones, the boundary zones between two habitats, often coincide with 

discontinuities in the distribution of nutrients, habitat complexity, and organismal 

abundance, affecting local and regional ecosystem processes (Murcia 1995).  Ecotones 

can be natural attractors to prey species because of better foraging opportunities that offer 

quick escape from predators (Wahungu et al. 2001, Renhus et al. 2016), but can also 

attract predators (Sass et al. 2006).  While largely limited to habitat preferences by game 

species, ecotone research in freshwater hydroscapes has shown the same suite of impacts 

as those found in terrestrial systems, including their impacts on abundance and 
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community dynamics (Agostinho and Zalewski 1995, Rehage and Trexler 2006, Ruehl 

and Trexler 2015).   

In modified dynamic systems, flood control efforts can impact natural hydrologic 

regimes (Page et al. 2005), including modifications that can introduce additional ecotones 

into an ecosystem.  These modifications not only alter historic hydrological patterns, but 

also create habitat types that may have been uncommon or even absent prior to 

anthropogenic modification (Poff et al. 1997).  For example, wetlands are often modified 

to incorporate deep-water drainage canals and earthen levees, affecting marsh inundation, 

duration, and depth (Toth et al. 1993).  Canals can produce lacustrine habitats in shallow 

marshes, providing organisms with stable, permanent habitats that were previously 

temporary.  Furthermore, they create an ecotone with a distinct edge, not a subtle gradient 

often seen as natural water bodies gradually deepen.   

If the interface between the canal and marsh is extensive, with numerous access 

points, small fishes can easily enter or leave the marsh to access the benefits of shallow, 

thickly-vegetated conditions while still being near permanent bodies of water 

(Cucherousset et al. 2007).  However, drainage canals often harbor large predators that 

are attracted to the lacustrine conditions that canals provide (Parkos and Trexler 2014).  

As proximity to a deep-water refuge increases, threat sources may switch from biotic to 

abiotic in the form of rapid temperature and oxygen fluctuations, as well as seasonal 

drying events (Amburgey et al. 2014).  Hydroscapes provide some of the foundational 

works on trophic interactions (Werner et al. 1974, Werner et al. 1983, Carpenter et al. 

1985), yet field studies examining the role of hydroscape configuration on community 
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dynamics and small fish behavior are relatively limited, especially among non-harvested 

species.   

Our study took place in the freshwater Everglades of Florida, USA, an ideal 

location to study the effects of a dynamic hydroscape configuration on community 

processes and behavior due extensive flood-control structures.  The historic Everglades 

featured a slow-moving conveyance of water from its headwaters in Lake Okeechobee 

south until reaching either the Atlantic Ocean or Florida Bay (Davis et al. 1994).  

Deepwater habitats were relatively rare and restricted to occasional deep-water sloughs 

and solution and alligator holes (Loftus and Kushlan 1987).  The modern Everglades is a 

network of water compartments, divided by drainage canals, earthen levees, and water 

pumps (Light and Dineen 1994).  Furthermore, forage quality in marshes bordering 

canals may be more palatable because of phosphorus enrichment (Noe et al. 2001; Ruehl 

and Trexler 2015), which can dramatically alter the edibility of a periphyton mat (Gaiser 

et al. 2004, Trexler et al. 2015).   The other habitat choice is the shallow but highly 

structured marsh, where there may be less predation risk (Ruehl and Trexler 2015), but 

the chance of being stranded in a drying, isolated pool is present.  Experiments using 

exclosures, where certain size classes of a community are excluded, have shown large 

predators can have effects on trophic classes through both direct and indirect interactions 

(Power et al. 1985, Chick et al. 2008, Sargeant et al. 2011).  We asked how proximity to a 

canal affects predator-avoidance behavior of small consumers in the Everglades, 

including small fishes and grass shrimp (Palaemonetes paludosus), using exclosure cages 

set at two different proximities from a deep-water canal.  Our hypothesis is that the 

perceived risk of predation is greater along the canal than further in the marsh, and will 
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be greatest during the March sampling period when water levels are low and piscivores 

are concentrated in the canal.  Furthermore, nutrient quality will be greatest along the 

canal margin, thus explaining why primary consumer density is greatest near the canal 

despite increased numbers of predators.     

Methods 

Study Area and Sampling 

We conducted this study in the central Everglades, Florida, USA (25o 50’15”N  80o 37’ 

07” S) in an area with a canal bounded by marsh habitat.  The canal is 3.3 to 4.2 m deep 

and 8 m wide.  West of the canal is shallow, densely vegetated marsh, which extends for 

approximately two km west and 37 km north and south.  The marsh is a patchwork of 

relatively deep-water sloughs dominated by American white water-lily (Nymphaea 

odorata), Gulf Coast spikerush (Eleocharis cellulosa), and bladderworts (Utricularia 

spp.), and of slightly elevated ridges covered in dense sawgrass (Cladium jamaicense), as 

is typical for the Everglades (Gunderson and Loftus 1993).  The Everglades experiences 

seasonal rainfall, with daily rain events beginning in approximately May and lasting until 

around November.  This causes marsh water levels to rapidly rise over the course of the 

summer and then gradually recede until daily rains begin again.   

Twelve sampling sites were established based on proximity to the canal.  Six sites 

were immediately adjacent to the canal (hereafter Canal sites), and another six were 

established 107-303 m from the canal (hereafter Marsh sites), located in open sloughs 

that were surrounded by dense sawgrass.  Intra-site distances varied greatly, from 31 – 

1,038 m for Canal sites and 58 – 911 m for Marsh sites.  Variability of intra-site distances 

and distances of Marsh sites from the canal resulted from limited slough locations 
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suitable for conducting our study.  The study was repeated in three months representative 

of the annual water cycle: October, 2014, during the height of marsh water levels; 

December, 2014, when marsh water levels were beginning to rapidly decline; and March, 

2015, when marsh water levels were near their nadir (Figure 1).   

The experimental treatments were comprised of a pair of 1-m2 exclosures placed 

adjacent at each study site.  One treatment, exclosure cages, were completely surrounded 

by 2-mm mesh except for one side, which was covered with 2.54-cm wire mesh.  This 

size was chosen to exclude large predators, mostly fish, without restricting movement of 

smaller animals, including small fishes (standard length < 8 cm) and macroinvertebrates 

(Dorn et al. 2006; Chick et al. 2008).  Control cages were similarly wrapped by 2 mm 

mesh except for one side, which was left open to permit free access for organisms of all 

sizes, including sub-adult American alligators (Alligator mississippiensis) (Dorn et al. 

2006; personal observation).  A 1-m2 square of wire mesh was placed at the bottom of 

each cage with 225 plastic strips attached to act as cover at similar density to surrounding 

emergent vegetation and provide a substrate for growth of biofilms (colonizing algae and 

bacteria; Dorn et al. 2006; Chick et al. 2008).  Plastic strips were 3.2 cm wide and were 

cut to the approximate depth of the water.  A sample of 2000 mL of periphyton taken 

from the surrounding marsh was added to each cage to mimic typical periphyton cover.   

Cages were left in the marsh for 13 days, enough time for cage conditions to equilibrate 

to surrounding marsh and biofilms to develop, but not so long to create algal growth so 

dense to block the exchange of water and conditions generally unrepresentative of the 

area (personal observation).  Experimental sides (2.54 cm mesh or no mesh) of the cages 

always faced the canal.  After the 13-day period, cages were blocked off and cleared of 
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all fishes, amphibians, and macroinvertebrates, which were preserved in the field and 

transported to the laboratory for processing.  Within four days of clearing each cage, the 

density and community composition of aquatic organisms of the area was determined 

with three 1-m2 throw-trap samples (Jordan et al. 1997). We also recorded the density of 

vegetation (stems m-2) and periphyton volume (mL m-2) from these throw-trap samples.  

Large fish CPUE was gathered from a separate study occurring in the same area and time 

as this study, using 5-minute airboat-mounted electroshocker transects (Chick et al. 

1999).  Large fish samples took place in November, 2014, January, 2015, and March, 

2015.  There were two near-canal transects and three interior-marsh transects.  The mean 

of these transects represented one replicate per sampling period. 

 We characterized the base of the food-web for each experimental replicate by 

analysis of periphyton and biofilms in each cage and the surrounding marsh. Samples of 

free-floating periphyton were collected from the marsh prior to cage-establishment for 

each study site and event and frozen at -18oC for later analysis.  After each sampling 

period was over, plastic strips and samples of periphyton from the cages were collected 

and frozen.  These samples were analyzed for stoichiometric (C:N:P) and pigment 

composition to determine forage quality for consumers.  Samples were collected from 

every site during every sampling period, though some samples were later lost due to 

freezer malfunction (approximately 8% of samples across all sampling periods combined, 

mostly samples collected before the October replicate).  We estimated edibility of 

periphyton for small consumers from a portion of the epiphytic growth on the plastic 

strips that was scraped off and vigorously mixed with 10 mL of water.  A sample from 

this mixture was then placed onto a slide and examined at 40x magnification under a 
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microscope.  The number of green algae, diatom, and cyanobacteria cells were counted 

until the cumulative summation totaled 300.  An edibility index from these counts were 

calculated using the total number of green algae and diatom cells, known to be the most 

palatable of forage items for small consumers in the Everglades, divided by 300 (Trexler 

et al. 2015).  We also determined cell density (cells mm-2) based on the area of the field-

of-view.  We also recorded the ash-free dry mass (AFDM), stoichiometric data, and 

Chlorophyll a content of periphyton from the surrounding marsh, and the plastic strips 

and free-floating periphyton collected from the cages following standard methods (Gaiser 

et al. (2004) for AFDM; Millie et al. (1993) for Chlorphyll a; Fourqurean et al. (1992) for 

stoichiometry).  Stoichiometric data were obtained using a CHN Analyzer (Fisions 

NA1500).   

Statistical Methods 

To determine if differences existed in small-fish density, grass shrimp density, edibility 

indices, and algal cell density between experimental and control cages, multi-model 

selection was used (Burnham and Anderson 2002).  The full model included the 

interaction of Sampling Period (October, December, March), Treatment (Control or 

Exclosure), and Habitat (Marsh or Canal), and all possible combination of two variables 

as well as single variables were examined.  A null model with just a constant was also 

fitted to the data.  The best model was chosen based on the lowest AIC value for all 

models.  If models had a ∆AIC < 2.0 when compared to the best model, the most 

parsimonious model was chosen.  To assess strength of predictor variables on consumer 

and algal densities and edibility indices between the exclosure types, effect size was 

calculated using a dynamic index with the following equation: 
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Effect Size = 
ln(NtC/NtE)

t,
 

In this equation, NtC is the density or index of dependent variables in the Control 

cages at time t and NtE is the density or index of dependent variables in the Exclosure 

cages at time t (Osenberg et al. 1997, Chick et al. 2008).  In the case of our study, t 

always equaled 13.  Analyses were conducted in R ver. 3.2.2 (R Core Team 2015) and 

the package “car” (Fox and Weisberg 2011).  Dependent variables were natural log (ln) 

or square-root transformed to meet standard assumptions, with 1 added to all samples 

when necessary to prevent undefined operations.    

Community composition analyses were conducted using Permutational Analysis-

of-Variance (PERMANOVA), using the Morisita-Horn index because of its property of 

density-invariance (Jost et al. 2011) (permutations = 9,999).  The interaction of 

Treatment × Habitat × Sample Period was examined.  Throw-trap data were included in 

this analysis, allowing us to examine if community composition changed between cage 

treatments and if the Control open cages differed from the surrounding marsh.  Data were 

standardized to the maximum catch for each species and then square-root transformed 

(Clarke and Warwick 2001). The Bray-Curtis similarity index was used for pairwise 

comparisons, which is equivalent to the Morisita-Horn index when calculated on 

standardized data. If the interaction indicated significant differences between samples, 

pairwise comparisons were used to determine which treatments were driving differences.  

A Similarity Percentage (SIMPER) analysis was conducted to determine which species 

were contributing most to dissimilarity between the experimental cages and the throw 

traps.  
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To further assess if sampling impacts existed with our use of exclosures, a three-

way ANOVA examining the three-way interaction of Treatment × Habitat × Sample 

Period was used to assess differences existed between densities of small fishes and grass 

shrimp in cage treatments and densities gathered by throw trap data.   

 A three-way ANOVA examining the interaction of Treatment × Habitat × Sample 

Period with AFDM as the dependent variable was used to determine if amount of 

palatable forage was affected by any of our predictor variables.  For plastic strip samples, 

Treatment included just exclosure and control cages.  For free-floating periphyton, a 

“Pre” sample was also included, collected immediately before exclosure establishment.  

Concentrations of Chl-α as well as elemental ratios (C:P, C:N, N:P) and elemental 

abundances (Phosphorus and Nitrogen) were also examined using the three-way ANOVA 

model of Treatment × Habitat × Sample Period.  Due to freezer malfunction where most 

“Pre” October samples were lost, the model was initially used without any “Pre” samples 

across all sampling periods.  To assess whether the “Pre” sample values may have been 

different from the experimental and control cage samples, the model was used again, but 

without any October data. 

 To examine if vegetation (stems m-2) and periphyton volume (mL m-2) differed 

between site types, we examined these variables using a two-way ANOVA with the 

interaction of Habitat × Month.   
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Results 

We found evidence of predator avoidance behaviors in small fishes and grass shrimp 

through the interaction of sampling period, habitat type, and cage treatment.  With 

density of small fishes, the full model involving the three-way interaction of sampling 

period × treatment × habitat provided best (R2 = 0.22) or equal support compared to other 

models (Table 2).  Models with sampling period as a main effect and the interaction of 

sampling period × treatment received equal support (Table 2).  Grass shrimp density was 

also best explained by the three-way interaction of sampling period × treatment × habitat 

(R2 = 0.49), with no other models receiving equal support.    An examination of effect 

sizes within these two groups across sampling periods and habitat reveal stronger 

predator avoidance behaviors in Canal sites, especially in October and December where 

effect sizes were significantly less than 0 (Figure 2, Table 3).  For grass shrimp, effect 

sizes were approximately seven times stronger for Canal habitats than for Marsh habitats 

(Table 3).   

Model support for the edibility index (green algae + diatoms) was best with the 

interaction of treatment × habitat (Table 2).  Unlike with small fish and grass shrimp 

densities, however, model support for the full model was poor (R2 = 0.08).   Differences 

in effect size for edibility indices were largely driven by large differences in edibility 

indices in Marsh samples compared to Canal samples (Figure 2, Table 3).  Edibility 

indices were varied within site type.  For example, control exclosures in Canal sites has 

higher edibility indices than in experimental exclosures (Control edibility index: 0.95, 

95% C.I. = 0.01; Experimental exclosure edibility index: 0.90, 95% C.I. = 0.03).  

However, in the Marsh sites, this pattern was reversed (Edibility index: 0.89, 95% C.I. = 
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0.04; Edibility index: 0.92, 95% C.I. = 0.01).  Algal cell density was best explained by 

habitat and sampling period as single factors, though both models received poor support 

(Habitat: R2 = 0.07; Sampling period: R2 = 0.06) (Table 2).  Cell density was higher in 

Canal sites (202.43 cells mm2, 95% C.I. = 35.44) than in Marsh sites (155.90 cells mm2, 

95% C.I. = 37.25). 

 Community composition was different between throw trap data and cage 

treatments, but not between the cage treatments.  Composition of the small fish 

communitydid not change with the interaction of Habitat × Treatment × Sample Period 

(Pseudo-F = 0.77, df = 4,90, p = 0.69).  However, all variables as single main effects 

were significant (Habitat: Pseudo-F = 12.33, df = 1, 90, p < 0.01; Treatment: Pseudo-F = 

20.97, df = 2,90, p < 0.01; Sample Period: Pseudo-F = 3.82, df = 2, 90, p < 0.01), so 

pairwise comparisons of Habitat × Treatment × Sample Period were run after restricting 

analyses to Marsh or Canal.  Pairwise comparisons revealed that community composition 

was always different for throw trap data comparing either the experimental or control 

cages across months.  Experimental and control cage communities were never different 

from each other (Appendix 1).  Because no differences were seen between exclosure 

types, these data were combined under one group and compared to throw trap data across 

sampling months and habitat type.  Examining data under a category that combined 

Habitat, Treatment, and Sample Period, only a few species contributed to community 

dissimilarity: Eastern Mosquitofish (Gambusia holbrooki), Least Killifish (Heterandria 

formosa), Sailfin Molly (Poecilia latipinna), Bluefin Killifish (Lucania goodei), 

Everglades Pygmy Sunfish (Elassoma evergladei), and Bluespotted Sunfish 

(Enneacanthus gloriosus) contributed to at least 50% of community dissimilarity between 
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throw trap samples and exclosure cages (both types combined) (Appendix 2).  There were 

no consistent patterns in species relative abundance by habitat, sampling treatment, and 

sampling month, though Sailfin Mollies tended to have greater relative abundance in 

exclosure treatments (exclosure: 5.50; throw trap: 1.90) and Bluefin Killifish had greater 

relative abundance in throw trap samples (exclosure: 3.0; throw trap: 5.40).  Restricting 

SIMPER analyses to differences across habitat type but pooling sampling treatment and 

month, these two species along with Least Killifish and Eastern Mosquitofish contributed 

the most to habitat community dissimilarity.  All species were more abundant in Marsh 

sites than Canal sites, with the exception of Least Killifish. 

Evidence for sampling artefacts from our study design on consumer densities 

indicated by differences between the Control (open) cages and marsh throw-trap data 

were few but present.  Including throw-trap data, there were no differences in small fish 

density from the interaction of Habitat × Treatment × Sample Period (F = 0.29, df = 4,90, 

p = 0.88), nor for grass shrimp (F = 1.04, df = 4,89, p = 0.39).  Small fish density in 

throw traps were over 200% greater in Canal sites (38.0 individuals m-2) compared to 

Marsh sites (17.3 individuals m-2).  Increases in small fish densities in exclosures across 

sites were smaller in magnitude (Canal control: 41.55 individuals m-2; Canal 

experimental exclosure: 55.0 individuals m-2; Marsh control: 34.5 individuals m-2; Marsh 

experimental exclosure: 45.0 individuals m-2).  However, variability in grass shrimp 

density was great.  Density of grass shrimp in the December experimental cage samples 

was nearly as large as the average throw trap density (Exclosure: 32.8 individuals m-2; 

Throw-trap: 35.9 individuals m-2), and both were several times greater than the mean 

density of the control cages (12.3 individuals m-2).   
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  Organic content of periphyton was not affected by site type or sampling period.  

No differences were observed in periphyton organic content (AFDM) with artificial strips 

samples when examining the three-way interaction of Treatment × Habitat × Sample 

Period (F = 0.34, df = 2,56, p = 0.71) or any two-way interaction.  Similarly, there were 

no differences in periphyton organic content from free-floating samples either in the 

three-way interaction of Treatment × Habitat × Sample Period (F = 0.23, df = 3,76, p = 

0.87) or any two-way interaction.   

Analyses did reveal limited differences in elemental abundance between Marsh 

and Canal sites.  With all “Pre” samples removed, neither carbon (F = 0.14, df = 2,57, p = 

0.86) nor nitrogen (F = 0.07, df = 2,57, p = 0.93) percentages changed across Treatment × 

Habitat × Sample Period.  However, differences in phosphorous concentrations were 

nearly significantly different across Treatment × Habitat × Sample Period (F = 2.68, df = 

2,57, p = 0.07; Appendix 3).  Phosphorus concentrations near the canal were marginally 

higher than in the marsh when all samples were combined (Canal: 0.029%, S.E. ± 0.001; 

Marsh: 0.020%, S.E. ± 0.004).  The molar ratios of N:P, C:P, or C:N were not different 

across the interaction of Treatment × Habitat × Sample Period with “Pre” samples 

removed (N:P: F = 0.48, df = 2,57, p = 0.61; C:P: F = 0.006, df = 2,57, p = 0.99; C:N: F = 

0.26, df = 2,57, p = 0.76 ).  When “Pre” samples were included in analyses but October 

samples removed, results were similar.  There were no differences in carbon (F = 0.16, df 

= 2,55, p = 0.84), nitrogen (F = 0.13, df = 2,55, p = 0.87), or phosphorus (F = 2.26, df = 

2,55, p = 0.11) percentages.  There were also no differences in the elemental ratios of N:P 

(F = 1.94, df = 2,55, p = 0.15), C:P (F = 1.66, df = 2,55, p = 0.19), and C:N (F = 0.13, df 

= 2,55, p = 0.87).  When examining Chl-α concentrations (μg/g), there were no 
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differences between the three-way interaction of Treatment × Habitat × Sample Period 

when all “Pre” samples were removed (F = 0.33, df = 2,57, p = 0.71) or when just “Pre” 

samples were included and October samples were removed (F = 0.50, df = 2,56, p = 

0.60).  However, Chl-α concentrations were different in the interaction of Treatment × 

Habitat when “Pre” samples were included (F = 3.66, df = 2,56, p < 0.05).  This result 

was largely due to decreased levels of Chl-α concentrations in the “Pre” samples 

compared to the experimental cage samples, especially in Marsh sites.   

 Changes in habitat structure dependent on habitat type.  Emergent stem densities 

of vegetation were higher at the Canal sites compared to Marsh sites when Site was a 

single main effect (F = 18.41, df = 1,30, p < 0.05; Figure 3), though not with the 

interaction of Habitat × Month (F = 0.31, df = 2,30, p = 0.74), suggesting stable stem 

densities within site types across time.  Similarly, periphyton volume was up to three 

times greater at the Marsh sites compared to Canal sites (Figure 4).  The interaction of 

Habitat × Month was not significant (F = 0.67, df = 2,30, p = 0.51), but was when Habitat 

was a single main effect (F = 18.41, df = 1,30, p < 0.05).  Large fish CPUE was over 

twice as large at sites adjacent to the canal (2.66 fish, S.E. ± 0.72) compared to sites in 

the marsh interior (1.11 fish, S.E. ± 0.48). 

 

Discussion 

In our study system, the canal served as a hydroscape feature providing better forage, a 

seasonal refuge, and increased predator abundance.  These factors can all work together 

to create a suite of challenges that confront small fishes and macroinvertebrates in the 

Everglades.  Despite or perhaps because of these factors, our hypothesis that perceived 
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predator risk in small fishes would be highest along the canal margin was not rejected.  

Our temporal hypothesis that more fish would use the exclosure habitats during March, 

when water levels were low and predators were concentrated in the canal, was not clearly 

answered.  Densities of small fishes was best explained by a model involving the 

interaction of Treatment (Exclosure or Control), Sampling Period (October, December, 

March), and Habitat (Marsh or Canal).  For both Canal and Marsh sites, effect sizes were 

highly variable and occasionally positive, indicating higher densities in Control cages.  

Composition of small fish community structure was not affected by cage treatments.  

Model support explaining grass shrimp density was also strongest with the three-way 

interaction of Treatment × Sampling Period × Habitat.  Agreeing with our hypothesis, 

grass shrimp behaved as though the threat of predation was greatest at Canal sites, but did 

not display a strong preference for exclosure cages at Marsh sites.  However, grass 

shrimp responded more to perceived predation when water levels were high (October and 

December) than when they were low (March).  Model support for edibility indices 

performed best with just the interaction of Treatment and Habitat, though this model was 

just marginally better than the null model (ΔAIC = 2.86).  In the Canal sites, edibility 

index effect sizes were always slightly positive, meaning edibility indices of control 

cages were higher than those in the experimental cages, whereas edibility indices were 

weakly negative in the Marsh sites.  Because effect sizes were small, support for 

preferential foraging on green algae and diatoms in the experimental cages and 

decreasing the amount of palatable cells was weak.  Decreased palatable cells may be the 

result of decreased perceived predation risk.  Edibility index effect sizes were always 

negative in Marsh sites, suggesting preferential foraging behaviors in the control cages, 
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where perceived predation risk was not evident in small fishes and grass shrimp.  Our 

final hypothesis, that nutrient quality would be highest along the canal edge, providing 

small consumers with high-quality forage, was also partially refuted, with few differences 

observed in elemental abundances between Canal and Marsh sites.  However, percentage 

of elemental phosphorus was higher in the Canal sites than in the Marsh sites and Chl-α 

concentrations tended to be lower in samples outside of the experimental cages. 

Effects of hydroscape structure on community dynamics can be complicated and 

can vary across different size and trophic classes.  Previous studies of the role of 

hydroscape configuration on community dynamics have shown that influences on 

consumer abundances can be difficult to tease apart, even in systems with stable water 

levels (Jeppesen et al. 1997).  In a study with a similar experimental design but within 

just marsh habitats, Chick et al. (2008) found a similar effect size based on perceived 

predation risk across two different sampling periods on a combined group of small fishes 

and macroinvertebrates (average effect size: -0.025).   Searching for the presence of 

trophic cascades, they found a significant impact on periphyton from small consumers in 

both sampling periods when large predators were excluded, but rarely found impacts on 

periphyton when large predators were allowed in experimental cages.  Similar to this 

study, Dorn et al. (2006) found decapods, particularly grass shrimp, exhibited the larger 

responses in density to predator-exclosure cages compared to small fishes.  In a 

reciprocal-transplant study using snails and periphyton at two different proximities to a 

canal, Ruehl and Trexler (2015) found that snails near canals in the Everglades tended to 

have higher growth rates when fed periphyton that was phosphorus enriched, a product of 

being near the canal.  However, the increased presence of molluscivores caused 33% 
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greater snail mortality at sites near the canal than sites far from the canal.  Proximity of 

resource patches to known high-predation areas can also affect other behaviors, such as 

dispersal and the willingness for animals to occupy patches adjacent to known high-

predator areas (Resetarits Jr and Binckley 2009).  These “remote effects”, when high 

abundance of predators in one area influence prey density in a separate but nearby area 

(Orrock et al. 2010), can scale up to affect community dynamics and metacommunity 

function.  Our study hydroscape suggests that the proximity to the canal can influence the 

perceived risk of predation, but these effects can be difficult to detect and are not strong.  

Furthermore, the magnitude of perceived predation risk can be dependent on the type of 

consumer.   

Effects of the experimental design on small consumers were present but limited.  

Most noticeable of these are the differences in community composition between the cages 

and the throw trap data.  SIMPER analyses revealed that the species contributing the 

most to community dissimilarity were known to exhibit directed movement, such as 

Bluefin Killifish, or are herbivorous species such as Sailfin Mollies (Hoch et al. 2015).  

These behavioral traits may allow for more rapid occupancy of the experimental cages, 

whether it resulted from increased movement rates or access new epiphytic growth on the 

artificial vegetation.  Grass shrimp densities were often higher in the experimental cages 

than the throw traps, suggesting an attraction to new growth on artificial strips.  The open 

exclosures may have also acted as attractors for predators because of the relative 

openness of those habitats, deterring grass shrimp from colonizing these exclosures.  This 

effect was also seen in a similar study (Dorn et al. 2006).   
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 While the percentage of elemental phosphorus was greater along the canal than in 

the marsh and Chl-α concentrations were lower in “Pre” samples, we did not observe 

differences in other metrics of forage quality, such as the AFDM of periphyton, the molar 

ratios of C:P or N:P, and edibility indices.  Previous studies have found that grazer 

presence can have a positive effect on nutrient content of periphyton, though whether that 

was from nutrient stimulation or regeneration was not known (Hillebrand and Kahlert 

2001, Geddes and Trexler 2003).  Other studies in the Everglades found that predator 

avoidance can focus small consumers into refuge habits, in turn decreasing algae 

abundance (Chick et al. 2008).  Chl-α concentration differences between “Pre” and 

exclosure samples may be because of periphyton samples being disrupted when placed 

into exclosures and more areas of the periphyton mats being exposed to sunlight. 

Agreeing with previous studies (Rehage and Trexler 2006), large predator CPUE 

was more than two times higher in sites adjacent to the canal compared to marsh sites.  

Differences in within-habitat structure may have also contributed to the differences 

observed in perceived predation risk between Marsh and Canal sites.  These were large 

differences, with much higher volumes of periphyton found in the Marsh compared to the 

Canal margin and much greater stem densities found in Canal sites compared to Marsh 

sites (Figure 3).  Slim spikerush (Elocharis elongata) was particularly different between 

Canal (385.1 stems m-2) and Marsh (89.8 stems m-2) sites.  Slim spikerush grows in thick 

clumps and may acts as a barrier for larger fishes and a refuge for small consumer 

species.  These differences may have decreased the magnitude in predation aversion 

behaviors in smaller fishes that we hypothesized would be present.  While these 

behaviors were present, they were not much stronger in Canal sites than they were in 
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Marsh sites.  Grass shrimp did respond positively to the presence of a refuge habitat in 

Canal habitats, where their densities were also significantly larger than in Marsh habitats.  

Grass shrimp may be found in higher densities due to the greater stem densities found 

along the canal edge, offering some protection from predation for the tradeoff of 

marginally-better forage.  The structured habitat of the marsh periphyton may provide 

better cover from predators and, along with lower densities of conspecifics, may decrease 

the need for refuge habitat as distance from the canal increases.   

   Though our hypotheses were largely supported by our results, this study brings 

to light the myriad factors that can influence aquatic community functioning based on 

proximity to major hydroscape features.  Further research should investigate the role that 

different types of habitat structure can have as a refuge for prey species, such as 

expansive mats of periphyton compared to a dense stand of slim spikerush.  Our study 

examining the role of proximity to hydroscape features on trophic interactions and 

aquatic community structure contributes to the expanding collective body of work in 

floodplain conservation and management.  As restoration efforts continue, not only in the 

Everglades but in ephemeral freshwater habitats in other areas, mitigation of 

anthropogenic factors influencing trophic dynamics will be of increasing importance.   
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Tables 

Table 1 – Overview of abiotic and biotic parameters of our study area.  Data were 

grouped between periods of high water (October and December) and low water (March) 

samples.  

 

 

 

 

 

 

 

 

 

 

SITE Month DEPTH (cm) PERIPHYTON 

(mL m
-2

)

STEM DENSITY 

(stem m
-2

)

FISH DENSITY 

(ind m
-2

)

GRASS SHRIMP  

DENSITY (ind m
-2

)

Oct/Dec 56.5 ± 8.4 1897.2 ± 1007.8 417.4 ± 234.3 43.2 ± 16.7 35.8 ± 13.8

March 37.9 ± 5.7 1419.4 ± 438.0 501.1 ± 114.6 27.7 ± 28.7 54.4 ± 44.2

Oct/Dec 58.4 ± 4.9 4926.4 ± 1246.2 159.0 ± 78.6 21.2 ± 9.8 9.6 ± 8.5

March 38.4 ± 4.3 5177.8 ± 1572.4 177.5 ± 80.5 9.4 ± 4.8 14.9 ± 9.6

Canal

Marsh
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Table 2 – Models for small fish, grass shrimp, and algal cell densities, and edibility indices. Only the most parsimonious models of 

best fit (∆AIC<2.0 from the lowest scoring model) are shown, along with the null model and the full model if necessary. 

 

 

 

Step Length Model AIC ∆AIC ωi R
2

Sample 161.51 0.00 0.46 0.15

Sample * Treatment 162.38 0.86 0.30 0.18

Sample * Treatment * Habitat 163.21 1.69 0.20 0.22

Null Model 171.53 10.02 <0.01 -

Sample * Treatment * Habitat 142.56 0.00 0.99 0.49

Null Model 181.50 38.93 <0.01 -

Treatment * Habitat -288.50 0.00 0.48 0.08

Sample * Treatment * Habitat -285.30 3.17 0.10 0.13

Null Model -285.60 2.86 0.12 -

Habitat 138.91 0.00 0.49 0.07

Sample 140.33 1.42 0.24 0.06

Sample * Treatment * Habitat 149.28 10.37 <0.01 0.05

Null Model 142.61 3.70 0.07 -

Small Fish Density

Grass Shrimp 

Density

Edibility Index

Algal Cell Density
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Table 3 – Dynamic effect sizes for small fishes (#/m2), grass shrimp (#/m2), edibility index, and cell count (#/mm2), ± 95% 

confidence interval. 

 

 

 

 

 

 

 

 

Month Site Small Fish ES Grass Shrimp ES Edibility Index ES Cell Density ES

Canal -0.027 ± 0.021 -0.057 ± 0.035 0.005 ± 0.002 0.009 ± 0.027

Marsh -0.024 ± 0.041 -0.018 ± 0.040 -0.0068 ± 0.0067 0.012 ± 0.058

Canal -0.037 ± 0.025 -0.069 ± 0.031 0.0033 ± 0.0037 -0.023 ± 0.052

Marsh -0.035 ± 0.053 -0.005 ± 0.017 -0.0009 ± 0.006 0.034 ± 0.078

Canal -0.032 ± 0.048 -0.017 ± 0.018 0.0035 ± 0.005 -0.016 ± 0.040

Marsh -0.038 ± 0.061 -0.004 ± 0.032 -0.0004 ± 0.004 0.026 ± 0.044

October

December

March
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Figure Captions 

Figure 1 – Hydrograph of marsh water depth at sites near canal.  Filled circles indicate 

approximate period of exclosure experiments.  Water depths were calculated using the 

Everglades Depth Estimation Network (EDEN; Telis 2006, Liu et al. 2009) and adjusted 

using period in situ measurements. 

Figure 2 – Effect sizes across sampling months and habitat types.  See Methods for 

descriptions of dynamic effect size and edibility index calculations.    

Figure 3 – Stem density (m-2) collected from throw-trap data during period of experiment 

termination across sampling months.  Closed circles represent Canal sites and open 

circles represent Marsh sites.  Error bars represent 95% confidence intervals. Data were 

back-transformed from sqrt(x+1). 

Figure 4 – Periphyton volume (mL m-2) collected from throw-trap data during period of 

experiment termination across sampling months.  Closed circles represent Canal sites and 

open circles represent Marsh sites.  Error bars represent 95% confidence intervals.  Data 

were back-transformed from sqrt(x+1). 
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Figures 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 



161 
 

Appendices Captions 

Appendix 1 – Pairwise comparisons of PERMANOVA results, separated by Canal and 

Marsh.  TT denotes “Throw Trap”. 

Appendix 2 – Results of SIMPER analyses.  Species listed are Eastern Mosquitofish 

(Gambusia holbrooki), Least Killifish (Heterandria formosa), Sailfin Molly (Poecilia 

latipinna), Bluefin Killifish (Lucania goodei), Golden Topminnow (Fundulus chrysotus), 

Everglades Pygmy Sunfish (Elassoma evergladei), and Bluespotted Sunfish 

(Ennacanthus gloriosus).  TT denotes throw trap.  Only the most relatively abundant 

species contributing to at least 50% of community dissimilarity were included. 

Appendix 3A & B – Concentrations (%) of phosphorus in Canal (filled circles) and 

Marsh (open circles) sites. Error bars represent 95% confidence intervals.  
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Appendices 

Appendix 1 

 

 

 

TREATMENT × MONTH T-STATISTIC DF P-VALUE

Canal October

Exclosure vs Control 0.72 4,10 0.60

Exclosure vs TT 3.64 4,10 <0.01

Control vs TT 2.47 4,10 <0.01

Canal December

Exclosure vs Control 0.82 4,10 0.64

Exclosure vs TT 2.33 4,10 <0.01

Control vs TT 1.81 4,10 0.02

Canal March

Exclosure vs Control 0.82 4,10 0.64

Exclosure vs TT 2.44 4,10 <0.01

Control vs TT 1.86 4,10 <0.01

Marsh October

Exclosure vs Control - - -

Exclosure vs TT 4.11 4,10 <0.01

Control vs TT 4.62 4,10 <0.01

Marsh December

Exclosure vs Control 0.93 4,10 0.48

Exclosure vs TT 2.80 4,10 <0.01

Control vs TT 1.92 4,10 0.03

Marsh March

Exclosure vs Control 0.72 4,10 0.64

Exclosure vs TT 2.68 4,10 <0.01

Control vs TT 1.98 4,10 <0.01
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Appendix 2 

Habitat × Treatment by 

Species
Exp Cage Abundance TT Abundance

Species 

Contribution (%)

October Canal

Sailfin Molly 5.0 1.3 21.4

Eastern Mosquitofish 8.6 4.4 20.9

Bluefin Killifish 1.6 4.7 17.8

December Canal

Eastern Mosquitofish 3.2 7.0 17.3

Bluefin Killifish 4.2 1.3 14.7

Golden Topminnow 7.3 5.4 13.0

Sailfin Molly 1.1 4.2 12.8

March Canal

Sailfin Molly 6.3 0.0 18.7

Everglades Pygmy Sunfish 0.0 5.7 16.8

Bluespotted Sunfish 1.2 4.7 12.4

Eastern Mosquitofish 6.9 4.8 11.0

October Marsh

Least Killifish 4.0 9.1 19.1

Bluefin Killifish 2.1 6.6 16.8

Sailfin Molly 6.4 2.5 16.2

December Marsh

Bluefin Killifish 4.2 8.9 18.6

Sailfin Molly 5.6 1.8 17.7

Golden Topminnow 0.5 4.4 14.8

March Marsh

Least Killifish 3.9 9.7 20.8

Bluespotted Sunfish 1.0 5.3 15.3

Sailfin Molly 4.1 1.8 13.8

Eastern Mosquitofish 7.0 6.7 12.6

Canal versus Marsh Canal Abundance Marsh Abundance

Sailfin Molly 3.4 4.5 17.8

Least Killifish 8.8 6.4 16.3

Bluefin Killifish 3.3 5.1 15.6

Eastern Mosquitofish 6.7 7.6 13.8
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Appendix 3 
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 
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Alterations of hydroscape structure and configuration can have large impacts on 

habitat quality and connectivity in dynamic freshwater systems (Cucherousset et al. 2007, 

Maloney, Parkos et al. 2011).  To successfully survive hydroscape variation and seasonal 

changes in a hydroscape (Trexler et al. 2005, Goss et al. 2014), animals incorporate 

adaptive movement behaviors that in turn affect population and community dynamics.  

Documenting these responses will be important for guiding future restoration and 

conservation efforts in flowing-water systems (Poff et al. 1997, Lytle and Poff 2004, 

King et al. 2009). 

Metacommunity research has largely been limited to invertebrate communities 

(Cottennie et al. 2003) or simulation exercises (Sokol et al. 2015).  Expanding the 

metacommunity framework (Leibold et al. 2004) to applied situations of ecosystem 

restoration and management are critical for scientifically-informed conservation 

strategies to work.  My dissertation reports an experimental examination of the effects of 

hydroscape structure on vertebrate communities.  This study incorporates a large-scale 

physical model (DPM; DPMST 2010) that allowed me to determine how fish behavior, 

populations, and communities were affected by the alteration of the hydroscape.  DPM 

involved filling in a canal that represented the only deep-water habitat in the area, as well 

as the degradation of a levee to allow two separated water units to be hydrologically 

connected for the first time in decades, providing alteration in hydroscape structure ideal 

for answering questions of biological response to changing conditions. 

 In Chapter II, I determined the effects of hydroscape alteration on small fishes of 

the Everglades, using a BACI (Before/After-Control/Impact) design to assess the effects 

of DPM on small fish behavior, abundance, and community structure.  DPM effects on 
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species-specific behaviors, such as directional movements and speed, were largely 

limited to species with strong responses to drought conditions, both positive (Flagfish – 

Jordanella floridae) and negative (Bluefin Killifish – Lucania goodei) (Trexler et al. 

2005).  Density of small fishes was greatest adjacent to the canal-fill treatments, though 

behavioral traits of activity and directionality were not documented to change.  

Composition of communities were altered across the study area by DPM, particularly in 

sites near the canal fill treatments and adjacent to the degraded levee.  However, there 

was no evidence that two communities previously separated by the earthen levee were 

approaching convergence after being hydrologically reconnected.  These results show 

metacommunity processes can be affected by hydroscape alteration, even if spatial 

separation between communities is not great, and that effects of increasing connectivity 

may require more than two years to be completed, if they homogenize landscapes at all.   

 A BACI design was also used for Chapter III, examining the effects of 

hydroscape alteration on large fishes.  Largemouth Bass and Bowfin were implanted with 

radio transmitters and relocated on a weekly basis in canal and marsh habitats to 

determine the effects of DPM on individual behaviors.  Large fish abundance was also 

examined using airboat-mounted electroshocker transects and dual-frequency sonar 

(DIDSON).  I also investigated the effects of the regional hydroscape, beyond DPM, on 

large fish behavior, abundance, and community structure.  Multi-model selection also 

revealed that Largemouth Bass and Bowfin step lengths and mean weekly distance from 

the canal were best explained by the BACI predictor variables, as well as environmental 

variables such as marsh water depth, photoperiod, and temperature.  However, magnitude 

of behaviors (such as distance moved in a 24 hour period) were often not affected by 
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hydroscape alteration from DPM, though Bowfin did exhibit decreased daily movement 

rates in canal-fill areas compared to unfilled stretches of canal.  Hydroscape alterations 

from DPM had few effects on large fish abundance or community structure, though some 

were observed.  Canal-fill treatments tended to have higher abundances of Largemouth 

Bass and sunfish (Lepomis spp.) than were observed in the unfilled treatment.  Beyond 

DPM, hydroscape configuration did affect large fish behavior, abundance, and 

community structure.  Mean marsh water depth was often the best predictor variable 

determining large-fish movement rates and mean distance from the canal, though several 

predictor variables could contribute to behavior.  Daily movement rates were highest 

when individuals were moving across the marsh-canal ecotone (either direction) than 

when just movements were begun and ended in one habitat type.  Abundances of large 

fish were always higher in canal edge habitats compared to marsh sites, and community 

composition was always dissimilar between canal and marsh sites, but not within marsh 

sites.  By increasing the aerial coverage of vegetated habitat similar to the canal edge, 

DPM canal-fill treatments increased the area of habitat with high density of large fish, 

including recreational species.   

 Chapter IV explicitly examined the effects of hydroscape configuration on the 

trophic interactions of two size classes of consumers and the food web generally.  The 

chapter sought to explain why small fishes are found in higher densities at sites adjacent 

to canals, even though predators are often found in higher abundances in these areas (this 

study, Rehage and Trexler 2006; Ruehl and Trexler 2015).  Using 1-m2 predator 

exclosure and control (open) cages placed in sites adjacent to a canal as well as sites 

several hundred meters into a marsh, I determined that small fishes behaved as though 
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predation risk was highest at sites near a canal versus the marsh interior, though detection 

of these behaviors was weak.  Grass shrimp (Palaemonetes paludosus) responded as 

though predation risk was greater in sites near the canal compared to marsh sites.  

Beyond predation risk, other differences were observed between site types.  Elemental 

phosphorus was highest in sites adjacent to the canal, possibly offering better foraging 

opportunities for small consumers (Gaiser et al. 2004, Trexler et al. 2015).  There also 

were localized differences in habitat structure between the site types.  Emergent 

vegetation was denser in sites adjacent to the canal, but amount of periphyton was 

greatest in marsh sites.  These results indicate that trophic dynamics can be influenced by 

a multitude of factors, including predation risk, local habitat structure, and nutrient 

quality, all of which are influenced by hydroscape configuration. 

 Hydroscape structure, including both dynamic (changing water depth) and static 

(the presence of a canal) can have large impacts on animal behavior, abundance, and 

community structure.  This dissertation supports the growing body of evidence that 

hydroscape structure can play important roles in ephemeral wetland function and that 

anthropogenic modifications can impact ecosystem processes (Ogston et al. 2014, Parkos 

et al 2014, Dittrich et al. 2016).  It also provides evidence on how restoration efforts can 

have important implications for the behaviors of individuals, in turn scaling up to affect 

metacommunity processes.  This dissertation represents one of the most comprehensive 

examinations of aquatic, vertebrate metacommunities and how they are affected by the 

configuration of the hydroscape.  This is also the first study examining the movement 

behaviors of Bowfin (Amia calva), a poorly-studied species that is a common piscivore in 

many freshwater systems in eastern North America.  Future research should continue to 
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examine the effect of hydroscape structure on metacommunity structure and behaviors in 

the DPM footprint.  As time moves further away from DPM construction, the affected 

area continues to get colonized by vegetation and sediment continues to consolidate, it 

may further affect biological processes.  Careful monitoring will further expand the body 

of knowledge on how hydroscape alteration can affect biological processes. 
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