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ABSTRACT OF THE THESIS  

MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS IN EXPONENTIAL 

POWER DISTRIBUTION WITH UPPER RECORD VALUES 

by 

Tianchen Zhi 

Florida International University, 2017 

Miami, Florida 

Professor Jie Mi, Major Professor 

The exponential power (EP) distribution is a very important distribution that was used 

by survival analysis and related with asymmetrical EP distribution. Many researchers have 

discussed statistical inference about the parameters in EP distribution using i.i.d random 

samples. However, sometimes available data might contain only record values, or it is more 

convenient for researchers to collect record values. We aim to resolve this problem. 

We estimated two parameters of the EP distribution by MLE using upper record 

values. According to simulation study, we used the Bias and MSE of the estimators for 

studying the efficiency of the proposed estimation method. Then, we discussed the 

prediction on the next upper record value by known upper record values. The study 

concluded that MLEs of EP distribution parameters by upper record values has satisfactory 

performance. Also, prediction of the next upper record value performed well. 
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1. INTRODUCTION 

The exponential power (EP) distribution was firstly introduced as a lifetime model 

by Smith & Bain (1975). The EP distribution has been discussed by many authors, for 

examples, Leemis (1986), Rajarshi & Rajarshi (1988), Hanagal & Dabade (2015), among 

others. Moreover, exponential power distribution is not only used by survival analysis but 

is also related with asymmetrical exponential power distributions in statistics as 

mentioned in Hazan et al. (2003) and Delicado & Goria (2008). 

A random variable is said to have an exponential power distribution with shape 

parameter 0  and scale parameter 0  if its probability density function is given 

by 

0))exp(-1exp()exp()( 1-  tttttf ，  . 

The corresponding survival and hazard rate functions are given by 

0)),exp(1exp()()(  tttTPtS   

and 

0),exp(
)(

)(
)( 1   ttt

xS

xf
th   . 

In recent years, many researchers have discussed statistical inference about the 

parameter in the EP model from different perspectives. These works include Xie et al. 

(2002), Barriga et al. (2010), Lemonte (2013), etc. All of their estimators of the 

parameters are estimated by i.i.d. random samples. 

However, in many practical situations, either the available data contain only record 

values, or it is more convenient for researchers to collect record values. We will take care 

of this concern. 
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Definition and real example of record values: 

Let ,..., 21 XX   be an infinite sequence i.i.d. random variables having the same 

distribution as the population described by random variable X . An observation jX  will 

be called an upper record value (or simply record) if its value exceeds those of all previous 

observations (Arnolde et al (1998)). Thus, jX  is a record if qj XX  , 11  jq . 

An analogous definition deals with lower record values. Then we assume that jX   is 

observed at times j  . The record time sequence  0, iTi   is defined in the following 

manner: 10 T  with probability 1 and for 1i ,  
1

:min



iTji XXjT . The record value 

sequence  iR  is then defined by  

,...2,1,0,  iXR
iTi  . 

Here 0R  is referred to as the reference or the trivial record (Arnolde et al. (1998)).                 

There are many real examples related with record values. Air quality researchers 

estimated and obtained confidence interval of parameters of the model for air quality by 

upper record values (Wu & Tseng (2006), Jafari & Zakerzadeh (2015)). Meanwhile, new 

joint confidence region for the parameters was obtained using records.  

Engineering consideration of the breakdown time of electrical insulating fluid at 

constant voltage level (Nelson (1982)). Huang & Mi (2015) used records data to compute 

MLEs of parameters for the model and estimated the prediction interval of the next record 

value.  

 



3 

 

The incandescent lamp failure data presented in Davis (1952) was consisted of 

lifetimes of 417 40-W 110-V incandescent lamps taken from 42 weekly quality control 

forced-life test samples. Cramer &Naehrig (2012) prompted two versions of generating 

the record data by the complete sample. They researched MLEs of parameters for the 

model of incandescent lamp lifetimes using record data.  

Therefore, using record values to estimate the parameters of EP distributions will be 

meaningful and important in those situations. We will investigate the existence and 

uniqueness of the maximum likelihood estimators of the two parameters λ and θ in the 

EP distribution using the upper record values. The performance of the MLEs will be 

explored with simulated data.  

The notations, frequently used in the paper are given below for easy reference. 

Notation 

),( EPD   Exponential power distribution with parameters   and  . 

                  Scale parameter in exponential power distribution, 0  

                  Shape parameter in exponential power distribution, 0  

 1, iX i     i.i.d random variables with ),( EPD  

iR                ni 0  The first (n+1) upper record values associated with  1, iX i  

̂                 Maximum likelihood estimator of   

̂                 Maximum likelihood estimator of   
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2. MODEL AND LIKELIHOOD FUNCTION 

Consider exponential power distribution with parameters 0  and 0 . The CDF 

and pdf are given as 

    0))exp(1exp(1)(  tttF ，         (1) 

and                            

 0))exp(1exp()exp()( 1   tttttf ，  .  (2) 

The fail rate function of this distribution is this 

 0),exp(
)(

)(
)( 1   ttt

xS

xf
th   . (3)

 

Let nRRRR ,...,,, 210  be the first (n+1) upper record values of the exponential power 

population described by (1)-(3). It is well-known that the joint pdf of ( nRRRR ,...,,, 210 ) is 

given by 

 





1

0

10,...,, )()(),...,,(
10

n

i

innRRR rhrfrrrf
n

,        nrrr ...0 10 .       (4) 

For details we refer to Arnold (1998) with the help of (4) the likelihood function of 

parameter ),(   is clearly. Given as 

  




 
1

0

11 )1exp()(),(
n

i

r

i

rn in ereL
  .  (5)  

Hence the log-likelihood function of ),(   is  

 
 


n

i

n

i

ii

r
rrennLl n

0 0

)ln()1()1()ln()1()ln()1(),(ln),(  


.   (6) 
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3. MLE OF SCALE PARAMETER λ WITH KNOWN SHAPE PARAMETER 

In this section we study the MLE of parameter  . Assume 0   is known. 

From (6) we donate 

  
 


n

i

n

i

ii

r
rrennl n

0 0

001
0

0

)ln()1()1()ln()1()ln()1()(
 



 (7) 

We have  

  






n

i

in

r

d

dl
rre

n
l n

0

)(

1
00

0
1

1
)(





 


 .         (8) 

It is easy to see that  

 


)(1

0
lim 


l   (9)                                                                                                                  

and 




)(1lim 


l .       (10) 

That imply that the likelihood equation 0)(1  l  has at least one solution in ),0(  . 

We further have  

 0
1

)( 0
0

2

1
2

2

2

)(

1 


 



 


 n

r

d

ld
re

n
l n .  

Therefore, )(1 l  is a concave function of ),0(  . The above results show that the 

log-likelihood function )(1 l  attain its maximum over ),0(   at a unique point ̂ . 

Therefore, the MLE of   uniquely exacts and is the unique solution of the equation: 

 0
1

0

00
0







n

i

in

r
rre

n
n  


.      (11) 
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4. MLE OF SHAPE PARAMETER θ WITH KNOWN SCALE PARAMETER 

Let the scale parameter 0   is known. In this case, we express the log-likelihood 

function of   as: 

  
 


n

i

n

i

ii

r
rrennl n

0 0

002 )ln()1()1()ln()1()ln()1()( 0  


.    (12) 

We have 

 )ln()ln()ln(
1

)(
0

0

0

0

)(

2
02

i

n

i

i

n

i

inn

r

d

dl
rrrrre

n
l n 






 











.     (13) 

Below we explore the limiting behavior of )(2 l  as  0  and  . 

Claim 1. 




)(2

0
lim 


l . 

Since when  0 , 






1n
 

and  

 


n

i

i

n

i

ini

n

i

i

n

i

inn

r
rrrerrrrre n

0

0

0

0

0

0

0

0 )ln()ln()ln()ln()ln()ln( 00   

 

Claim 2. 

0)(2lim 





l .

 

As   it holds that 

 ])ln()ln([)ln()(
00

02
0limlim 




n

i

ii

r

nn

n

i

i rrerrrl n 





 .    (14) 
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Since 0
1






n
, and

 

 
 


n

i

n

i nn

iir

nni
rr

rr
errr n

0 0

0 ]
)ln(

)ln(
)[ln()ln( 0




 

  

when  , 

 0
)ln(

)ln(

)ln(

)ln(























n

i

n

i

nn

ii

r

r

r

r

rr

rr






,      (15) 

and here 

1
)ln(

)ln(
...00

)ln(

)ln(

0
lim 






















 n

n

n

n
n

i nn

ii

r

r

r

r

rr

rr
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Thus, 

 
 


n

i

r

nni
nerrrl

0

02 ]1)[ln()ln()( 0limlim




 .      (16) 

Now we study 3 case separately. 

Case 1. 

1nr . 

In this case, clearly  




)(2lim 


l . 

Case 2. 

1nr . 

We have 0


nr  and hence 0]1)[ln( 0 

nr

nn err . 

There functions imply 





n

i

irl
0

2 0)ln()(lim 


 since 1...0 10  nrrr . 
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Case 3. 

1nr . 

We have 1


nr . 

0)1)(1ln()ln()(
0

02
0lim  



n

i

i erl




  since 1...0 110  nrrr  and 00  .
 

The above argument show that at any case  

0)(2lim 





l . 

We have seem that 


)(2

0
lim 


l   and 0)(2lim 





l   so that equation 0)(2  l  

has at least one solution in the interval ),0(  . 

Recall that )(2 l  is given in (12) we have  




)(2

0
lim 


l . 

In order to investigate the sign of )(2lim 


l


, we reconsider the above three case. 

Case 1. 

1nr . 

In this case, we have three facts: 

Fact 1: 0
0

lim 







nr

i

e

r
. 

Fact 2: 0
1

0
lim 










nre
. 

Fact 3: 0
)ln(

0
lim 








nre
. 
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Then

]1)ln(
1)ln()1(

[)ln()1(1)(
0 0

02
000

0limlim  
 








n

i

n

i
r

i
irr

r

nnn

n

e

r
r

ee

n
enl
















  

According above three facts, we have 




)1()ln()1(1)( 0limlim 02





 nrenl  . 

Case 2. 

10  nr . 

In this case, 

)ln()1()1()ln()1()( limlim 0

02 











nenl nr ]
)ln()1(

)ln()1(

1[ 0













n

r
n

i

i

 

                         

  Case 3. 

1nr .
















n

i

i

n

i

i

r
n

r

nenl
1

0
0

02 limlimlim ]
)ln()1(

)ln()1(

1)[ln()1()1()ln()1()( 0 












      

                  . 

Summarizing the above, we have shown that 
 

)()( 22

0
limlim 


ll  and the 

equation: 

 0)(2  l          (17) 

has at least one solution in ),0(  . Therefore, )(2 l  a continuous function of   on ),0(   

must attain it maximum at some interior point of ),0(  . 
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Unfortunately the uniqueness of the MLE of   is still an open question. However, 

we can compute the MLE ̂  of  . 

All in all, in order to estimate   and   we need to solve the system of equations  

0
1

0







n

i

in

r
rre

n
n  

  

 0)ln()ln()ln(
1

00







i

n

i

i

n

i

inn

r
rrrrre

n
n  





.      (18)

 

Since this non-linear equation set cannot be solved directly, a numerical root finding 

technique must be used. There are a lot of ways can be used to find the roots. We will use 

the well-known Newton-Raphson method.   
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5. SIMULATIONS FOR MAXIMUM LIKELIHOOD ESTIMATIONE 

We describe the computer simulations and discuss the behavior of the maximum 

likelihood estimators of the exponential power distribution parameters from upper record 

data. The analytical work has been done by using R.  

Step 1: Generated ,...,, 210 xxx from exponential power distribution with parameters 

  and .  

To this purpose, the probability integrate transform is employed. Thus, we first 

generate ,...,, 210 uuu  from Uniform distribution )1,0( . Then, solve the following equation 

for x .  

)1exp(1)(
xexFu  .        (19) 

We can get  

 





/1

1 ))1ln(1ln(
)( 







 
  u

uFx .       (20) 

By this way, we can produce random observation ,...,, 210 xxx
 
from R project easily.   

Step 2: Obtain a sample of upper record value. 

A record sample ,...,, 210 rrr   was produced form sequence ,...,, 210 xxx   obtained in 

step 1. R code upper.record.value can help us to do it. 

Step 3: Calculate the MLEs ̂  and ̂ . 

The MLEs of ̂ and̂  for the record sample are found by Newton-Raphson method 

using equation (18). Name the resulting estimates as î  and î . 
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Step 4: Repeat step 1-3 1000 times 

The above process repeated 1000 times. Consequently, we have a set of 1000 

parameter estimates using method.  

Step 5: Evaluate the performance of ̂  and ̂ . 

For each pair of given ),(  . Compute the mean, bias and mean squared error (MSE) 

for each of estimates of the parameters using the 1000 values of ̂  and ̂ . 

The procedure described above was repeated for different complete sample with sizes 

m=50, 100, 200, 500, 1000, 2000, 5000, 10000. Then the mean values    and    and 

mean squared errors values MSE  and MSE  were computed using: 





1000

1

ˆ
1000

1

i

i ,   



1000

1

ˆ
1000

1

i

i , 

    



1000

1

2

0
ˆ

1000

1

i

iMSE  ,    



1000

1

2

0
ˆ

1000

1

i

iMSE   

     Firstly we study the behavior of ̂ . We assume 20   and 5.00  .Table 1 and Figure 

1 show the simulation results of ̂ . 

Table 1. Bias and MSE from simulations of ̂  when 20   and 5.00  . 

m Bias of ̂  MSE of ̂  

50 59.0072 108027.6159 

100 31.1752 67270.6156 

200 6.9452 10458.8708 

500 0.0313 0.2179 

1000 -0.0458 0.1553 

2000 -0.0679 0.1272 

5000 -0.0968 0.1351 

10000 -0.0845 0.1137 
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Figure 1 (a) Bias of ̂  (b) MSE of ̂  when 20   and 5.00  . 

According to Table 1 and Figure 1, we could see that the absolute value of the Bias 

and MSE of ̂  decreases from m=50 to m=10000 clearly. When m is larger than 500, 

both bias and MSE decrease quickly. Since we could get enough number of upper record 

values from random sample when complete sample sizes are greater than 500. In this 
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situation, estimating   by record values is reasonable. Secondly, we study the behavior 

of ̂ . We assume 20   and 5.00  .Table 2 and Figure 2 show the simulation results 

of ̂ . 

Table 2. Bias and MSE from simulations of ̂  when 20   and 5.00  . 

m Bias of ̂  MSE of ̂  

50 1.892 24.6591 

100 1.5346 24 

200 0.9354 13.3547 

500 0.5441 3.1677 

1000 0.4482 2.7563 

2000 0.3425 1.4081 

5000 0.2332 0.3074 

10000 0.1963 0.2692 
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Figure 2 (a) Bias of ̂  (b) MSE of̂  when 20   and 5.00  . 

We observe that bias and MSE of ̂  decreases from m=50 to m=10000 by Table 2 

and Figure 2 explicitly. When m is larger than 500, both bias and MSE decrease quickly. 

The reason is as similar as the case of ̂ .  

Next the procedure described above was repeated for different sample sizes of upper 

record values k=5, 6, 7, 8, 9, 10. We assume 20   and 5.00  . We have got Table 3 

and Figure 3. 

Table 3. Bias and MSE from simulations of ̂  and ̂  for 20   and 5.00  . 

k Bias of ̂  MSE of ̂  Bias of ̂  MSE of ̂  

4 0.4664 91.3631 1.0556 2.5865 

5 -0.6896 0.5673 0.7084 1.1334 

6 -0.5081 0.3178 0.4855 0.5172 

7 -0.3857 0.185 0.339 0.2836 

8 -0.2545 0.0947 0.247 0.1864 

9 -0.1475 0.0575 0.1803 0.0989 

10 -0.0399 0.0244 0.1457 0.0822 
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Figure 3 (a) Bias of ̂  and ̂  (b) MSE of ̂  and ̂  when 20   and 5.00  . 

According to Table 3 and Figure 3, We can see that there are good behavior of ̂  

and ̂  when 5k .       

Then we have researched behavior of ̂  when complete sample size m=10000 and 

32,16,8,4,2,1,5.0,25.00   and 10  . We have get Table 4 and Figure 4. 



17 

 

Table 4. Bias and MSE from simulations of ̂  and ̂  for different 0  and 10  . 

0  Bias of ̂  MSE of ̂  Bias of ̂  MSE of ̂  

0.25 0.1008 0.0438 -0.0732 0.9378 

0.5 0.07 0.4239 0.0282 0.8841 

1 -0.0705 0.1155 0.1871 0.2545 

2 -0.1083 0.1425 0.4101 0.8475 

4 6.7628 668.7936 0.835 3.8634 

8 21.0445 1231.2698 0.7886 0.7549 

16 30.0993 1455.9522 0.502 0.9023 

32 29.9711 1342.8429 0.2458 0.9763 
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Figure 4 (a) Bias of ̂  and ̂  (b) MSE of ̂  and ̂  for different 0  and 10  . 

According to Table 4 and Figure 4. We can conclude that with the increase of 0  

bias and MSE of ̂   increase. Bias and MSE of ̂   do not have great change. The 

unexpected tendency of ̂  suggests that maximum likelihood estimation of parameter   

of the exponential power distribution from record samples is not effective when   is too 

large. However, as 0  decreases, the MSE of ̂  decreases.  

Finally, we study behavior of ̂  when complete sample size m=10000 and 0 =1 and 

32,16,8,4,2,1,5.0,25.00  . We have get Table 5 and Figure 5. 

Table 5. Bias and MSE from simulations of ̂  and ̂  for different 0  and 10  . 

0  Bias of ̂  MSE of ̂  Bias of ̂  MSE of ̂  

0.25 -0.4367 0.3757 0.3006 0.2122 

0.5 -0.0621 0.2021 0.0856 0.1054 

1 -0.0705 0.1155 0.1871 0.2545 

2 -0.4405 0.2528 0.5508 0.433 

4 -0.0637 0.1223 0.7096 3.9918 

8 -0.0569 0.1168 0.6428 3.7206 
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16 -0.0532 0.1272 1.3168 15.492 

32 -0.0365 0.1085 4.4169 186.62 

 

 

 

Figure 5 (a) Bias of ̂  and ̂  (b) MSE of ̂  and ̂  for different 0  and 10  . 

 



20 

 

For samples of records, the MSEs of ̂  do not have great change with increase of 

0 . In the general, MSEs of ̂  increase slightly.  

All in all, when 0  and 0  are not every large, the estimates of   and   have a good 

performance. Meanwhile, with the increase of the complete sample size m or the record 

sample size k, bias and MSE of ̂  and ̂  decrease quickly. 
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6. PREDICTION INTERVAL OF THE NEXT RECORD VALUE 

Assume that we have observed the first (n+1) upper record values nrrrr ,...,,, 210  from 

the exponential power distribution. Then we can make certain prediction on the next 

record value 1nR . 

In order to be able to make prediction on 1nR  using  nrrrr ,...,,, 210r  we need the 

conditional density of 1nR   given r  . The conditional distribution of 1nR   given r   is 

obtained as 
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Let the density function of random variable W  be given by (21). Obviously, W  has 

survival function 
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For any given )1,0(  let c  be the th  quantile of )(wG . That imply  )(cG . 

The value c  can be obtained by solving the equation 
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We obtained 
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Assuming we have 0 . Substituting ̂  and 0  for   and   in (23) respectively, we 

can have the approximate value of c . 
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Similarly, we assume we have 0 . Then substituting 0  and ̂  for   and   in (23) 

respectively, we can have the approximate value of c .  
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 nrcc .       (25) 

Now, for any given )1,0(  , a )1(    prediction interval of 1nR   given r   can 

expressed as  

 )ˆ,ˆ( 2/2/1  cc  .         (26)
 

Simulation Study                  

We first generated ,...,, 210 xxx from exponential power distribution with parameters 

0   and 0  . We took 10 upper record values ),...,( 810 rrrr   and 9r   from the sequence
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,...,, 210 xxx . Then we computed 90% prediction interval of 9R  by r  from two situations. 

With 0  known and 0  unknown, we calculated ĉ

 

from (24). With 0  unknown and 0  

known, we calculated ĉ

 

from (25). Repeating the above steps 1000 times, we got the 

average width of the prediction interval and the coverage probability ))ˆ,ˆ(( 2/2/19  ccrP  . 

The results were shown as Table 6 and Table 7. 

Table 6. Average width of prediction interval and coverage probability when 0  is 

known and 0  is unknown 

0
 

0
 

Average Width Probability 

0.5 0.5 4.3346  0.747 

0.5 0.75 1.0385  0.766 

0.5 1 0.4636  0.745 

1 0.5 1.0915  0.739 

1 0.75 0.4116  0.735 

1 1 0.2332  0.762 

2 0.5 0.2718  0.741 

2 0.75 0.1633  0.763 

2 1 0.1158  0.722 

 

Table 7. Average width of prediction interval and coverage probability when 0  is 

unknown and 0  is known 

0
 

0
 

Average Width Probability 

0.5 0.5 4.3343  0.734 

0.5 0.75 1.0293  0.736 

0.5 1 0.4633  0.725 

1 0.5 1.0493  0.72 

1 0.75 0.3987  0.733 

1 1 0.2253  0.706 

2 0.5 0.2554  0.683 

2 0.75 0.1489  0.713 

2 1 0.1059  0.705 

According to Table 6 and Table 7, the performance of the prediction intervals 9R  by 

r  is effective. Thus, it is reasonable for us to apply the derived prediction interval for 
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predicting the value of the (n+1)th upper record by ),...,( 10 nrrrr  from (24) , (25) and 

(26). 
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7. CONCLUSION 

In the study presented above, we researched MLEs of exponential power distribution 

parameters by upper record values and discussed the uniqueness of MLEs. We then used 

simulation study to research the performance of ̂  and ̂  and concluded that they have 

good performance in most situations. Finally, we studied the prediction of 1nR  from r . 

According to the simulation study, we concluded that using r   to estimate 1nR   is 

reasonable.  
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