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ABSTRACT OF THE DISSERTATION 

MOLECULAR DYNAMICS INVESTIGATIONS OF STRUCTURAL CONVERSIONS 

IN TRANSFORMER PROTEINS 

by 

Jeevan B. GC 

Florida International University, 2017 

Miami, Florida 

Professor Bernard S. Gerstman, Co-Major Professor 

Professor Prem P. Chapagain, Co-Major Professor 

Multifunctional proteins that undergo major structural changes to perform 

different functions are known as “Transformer Proteins”, which is a recently identified 

class of proteins. One such protein that shows a remarkable structural plasticity and has 

two distinct functions is the transcription antiterminator, RfaH. Depending on the 

interactions between its N-terminal domain and its C-terminal domain, the RfaH CTD 

exists as either an all-α-helix bundle or all-β-barrel structure. Another example of a 

transformer protein is the Ebola virus protein VP40 (eVP40), which exists in different 

conformations and oligomeric states (dimer, hexamer, and octamer), depending on the 

required function. 

I performed Molecular Dynamics (MD) computations to investigate the structural 

conversion of RfaH-CTD from its all-a to all-b form. I used various structural and 

statistical mechanics tools to identify important residues involved in controlling the 

conformational changes. In the full-length RfaH, the interdomain interactions were found 

to present the major barrier in the structural conversion of RfaH-CTD from all-a to all-b 
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form. I mapped the energy landscape for the conformational changes by calculating the 

potential of mean force using the Adaptive Biasing Force and Jarzynski Equality 

methods. Similarly, the interdomain salt-bridges in the eVP40 protomer were found to 

play a critical role in domain association and plasma membrane (PM) assembly. This 

molecular dynamic simulation study is supported by virus like particle budding assays 

investigated by using live cell imaging that highlighted the important role of these 

saltbridges. I also investigated the plasma membrane association of the eVP40 dimer in 

various PM compositions and found that the eVP40 dimer readily associates with the PM 

containing POPS and PIP2 lipids. Also, the CTD helices were observed to be important in 

stabilizing the dimer-membrane complex. Coarse-grained MD simulations of the eVP40 

hexamer and PM system revealed that the hexamer enhances the PIP2 lipid clustering at 

the lower leaflet of the PM. These results provide insight on the critical steps in the Ebola 

virus life cycle. 
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1. INTRODUCTION 

1.1 Transformer proteins 

 Proteins are molecular machines that provide the high physical organization and 

low entropy required for life. Proteins perform a myriad of biophysical tasks in cells such 

as molecular transportation, enzymatic activities, energy transfer, and signaling. In order 

to perform their physiological functions, most proteins have to fold to their corresponding 

native state structures, which are highly specific three-dimensional conformations (1). 

Depending on the biochemical environment, some proteins are observed to have multiple 

functions. A protein that exhibits multiple functions is categorized as an interesting 

subset of moonlighting proteins (2). In performing alternate functions, a moonlighting 

protein can utilize different protein interfaces (3) of the same configuration. However, a 

recent development has added a new twist to the relationship between protein structure 

and function.  

 Protein conformational dynamics in the functional state includes local, small-scale 

flexibility observed in sidechains, loops, or at a binding site, as well as larger, global 

conformational rearrangements such as domain separation or oligomerization (4). 

Intrinsically unstructured proteins may have sufficient structural flexibility to interact 

with multiple partners, whereas globular proteins can undergo structural changes (5) that 

allow them to perform different functions. Globular proteins such as lymphotactin (6) and 

Mad2 (7)  undergo small structural rearrangements that lead to different functions and are 

referred to as metamorphic proteins (8). 
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 Recently, a new class of multifunctional proteins has been identified as  

“transformer proteins” (9). Transformer proteins show a remarkable ability to rearrange 

their structure to significantly different conformations that perform completely different 

functions. An example of such a protein is the transcription antiterminator RfaH. 

Depending on the interactions between its N-terminal domain (10) and its C-terminal 

domain (10), the CTD of RfaH exists as either an all-α-helix bundle or all-β-barrel 

structure. The RfaH-CTD in the all-α topology is involved in regulating transcription, 

whereas in the all-β topology it is involved in stimulating translation by recruiting a 

ribosome to an mRNA (11). Another example of a transformer protein is the Ebola virus 

protein VP40, which exists in different conformations depending on the required 

function: a butterfly shaped dimer is involved in the transport of the protein to a 

membrane, a hexamer to form the viral matrix, and an octamer ring structure to bind to 

RNA and regulate viral transcription (12). 

 I performed Molecular Dynamics (13) computations to investigate the dynamic 

behavior of transformer proteins RfaH and Ebola virus protein VP40 and identified the 

interaction mechanisms and pathways of conformational changes in these proteins. The 

large scale structural changes in RfaH-CTD were observed using various enhanced 

sampling simulation methods as described in Chapter 2. The MD studies performed on 

RfaH and the Ebola virus protein VP40 highlighted the important salt-bridges that play 

crucial roles in domain-domain association. My research also involves the study of the 

interactions between the protein and a membrane. I investigated the association of the 

VP40 dimer with the plasma membrane using all-atom molecular dynamics simulations 

as well as coarse-grained simulations. Through all-atom simulations, I have investigated 
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the mechanisms of plasma membrane localizations of VP40 and identified residues that 

are important for stabilizing the VP40 dimer at the lower leaflet of the plasma membrane.  

The coarse grained simulations allowed me to investigate the dynamics of lipids and 

proteins for the larger hexamer-membrane system for much longer time-scales. This 

study revealed an enhanced clustering of a specific lipid type (14) in the lower leaflet of 

the plasma membrane in the presence of a VP40 hexamer.  

 

1.1.1 RfaH Transcription Factor 

 I studied the RfaH protein because it is one of the smaller proteins that exhibit 

transformer properties. A recent study (11) on the two-domain transcription factor RfaH 

revealed that its function is very different depending on whether its CTD is in an α-helix 

or β-sheet conformation (15). Magnetic resonance (13) measurements revealed that the 

C-terminal domain (CTD) of the transcription anti-terminator RfaH (PDB-ID: 2OUG) 

exists as an α-helix bundle when it interacts with the N-terminal domain (NTD) of the 

same protein, but folds to a five-stranded all-β conformation (PDB-ID: 2LCL) when it is 

not interacting with the NTD. These two structures are shown in figure 1.1. The RfaH 

protein conformation is closely related to another two-domain transcription factor 

NusG(16). Although the NTD conformations of both RfaH and NusG are similar, the 

CTD conformations differ significantly. Unlike the CTD of RafH that has an all-α native 

fold when it interacts with its NTD, the CTD of NusG (PDB-ID: 2JVV) has an all-β fold. 

The similar NTD conformations of both RfaH and NusG have identical roles in RNA 

Polymerase (RNAP) binding. However, the existence of two different conformations of 

RfaH-CTD allows an additional function for this domain. The RfaH-CTD in the all-α 
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topology is involved in transcription regulation by masking the RNAP binding site in the 

absence of a DNA recruitment signal, whereas in the all-β topology it is involved in 

stimulating translation by recruiting a ribosome to an mRNA that lacks a ribosome-

binding site. Just as in NusG, binding of RfaH to the RNAP and protein S10 occurs when 

the CTD is in its β-form, which requires breaking of the NTD and CTD contacts. The 

domain separation is believed to be triggered by RfaH interactions with an ops element 

(17), (18) which then leads to spontaneous refolding of the CTD into the β-barrel. 

Figure 1.1 shows the structural conversion of the RfaH-CTD. The N-terminal domain 

(NTD) is colored in green and the C-terminal domain (CTD) is colored in yellow. 

 

Figure 1.1 Structural conversion of RfaH-CTD. The N-terminal domain (NTD) is colored 
in green and C-terminal domain (CTD) is colored in yellow. 

	
 The conformational transformations in RfaH-CTD that allow it to perform 

different functions places it in the category of a transformer protein (TFP) (19), a class 

which may eventually include many other functional proteins yet to be identified. The 

details of the folding mechanism and structural transitions in RfaH are of great interest. It 
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has recently been shown (13) that after denaturation, the inter-domain contacts with the 

NTD are sufficient to fold the CTD into the α-helical form from the denatured state. 

Further, when only the CTD is expressed, it folds completely to a β-barrel structure. 

Interestingly, when the domains are swapped to reverse the order of NTD and CTD 

translation, functional activity of the α-helical form is still observed in-vitro, but with the 

observed activity being significantly reduced, suggesting the possibility that a fraction of 

chains formed β-structure(13). 

 The a-helix to β-sheet structural transition in the CTD of RfaH is an example of a 

biophysical process that is frequently observed in the aggregation and fibrilization of 

amyloidogenic proteins. Such protein structural transitions are thought to be critical 

processes in the development of a variety of neurodegenerative diseases such as 

Alzheimer’s, Parkinson, Huntington, and prion diseases, which are considered to be the 

result of protein misfolding (20). The amyloid fibrils that are implicated in these diseases 

are composed of proteins that transform from innocuous, soluble configurations such as 

α-helices, into β-strands that aggregate into sheets (21), (22). A well studied example 

(23), (24) is the structural conversion of the native α-helical form of the prion protein 

PrPC into the pathogenic β-sheet-rich form PrPSc that causes transmissible spongiform 

encephalopathy (scrapie). Recent investigations have shown that the α-to-β conversion in 

PrP can occur even in the absence of the infectious molecular species (25). This α-to-β 

conversion also holds true for the structural transitions of the amyloid beta (Aβ) precursor 

peptide system, which is responsible for amyloid deposits in Alzheimer’s disease (26). 

Although such peptides can undergo structural transitions, the presence of an oligomer 

seed can accelerate the oligomerization and fibril formation processes (27), (28). Another 
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example of spontaneous structural conversion occurs in a group of cc-beta peptides, 

which form coiled-coil helical structures at low temperatures but convert to β-sheet rich 

amyloid fibrils at elevated temperatures (29), (30). In addition to the role played in many 

neurological disorders (31), the α-helix to β-sheet transition in amyloidogenic peptides is 

of great interest for the engineering of novel biomaterials from synthetic peptides (32). 

 

1.1.2 Ebola virus protein VP40 

 The Ebola virus is a lipid-enveloped virus that causes hemorrhagic fever with a 

high mortality rate. The virus uses its negative sense RNA genome to replicate its seven 

genes in the host cell. To overcome the limitations posed by its small genome, the Ebola 

virus utilizes proteins with astonishing abilities to change structures and perform multiple 

functions (33). The Ebola virus protein VP40 shows remarkable conformational plasticity 

in forming various oligomeric structures that perform different functions and therefore is  

a transformer protein. The Ebola virus protein VP40 consists of an N-terminal domain 

(NTD) that is involved in dimerization and a C-terminal domain (CTD) that mediates 

membrane binding and oligomerization (12). It exists in various conformations 

depending on the required function: a butterfly shaped dimer is involved in the transport 

of the protein to a membrane, a hexamer to form the viral matrix, and an octamer ring 

structure to bind to RNA and regulate viral transcription (12). As with other recently 

identified transformer proteins such as the RfaH transcription factor (11), (13), (34) the 

structural basis and mechanisms of large-scale structural transformation in VP40 are not 

well understood. 
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 The Ebola virus protein VP40 is a peripheral protein that localizes in the inner 

leaflet of the plasma membrane (PM) (35) and forms the viral matrix which provides the 

major structure for the virus-like particles (VLP). Formation of the matrix from the 

assembly and oligomerization of VP40 dimers involves a series of steps. First, a VP40 

dimer is trafficked to the plasma membrane where electrostatic interactions occur 

between the anionic lipids and the basic patch of the VP40 C-terminal domain (CTD). 

This electrostatic interactions was determined with experiments in which deletion of 

several lysine residues in CTD loops prevented VLP formation, even though the dimeric 

structure was unaltered. Once at the plasma membrane, it has been hypothesized that the 

VP40 dimers undergo major structural rearrangements and oligomerize into hexameric 

structures (12), (36) which oligomerize to form filaments that associate further to form 

the viral matrix (37). Although the x-ray crystal structures of the dimeric and hexameric 

forms provide information about structural transformations that must occur, the 

mechanisms of VP40-membrane interactions leading to the structural transformations 

from dimers to hexamers and hexamers to larger filamentous structure are not well 

known.  

 Figure 1.2 presents the structures of the VP40 dimer, hexamer and octamer. 

Because of its low molecular weight, the dimer is trafficked to the lower leaflet of the 

plasma membrane, whereas the hexamer is the major structural oligomer and the octamer 

binds RNA to control transcription. 
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Figure 1.2 Different Structures of VP40. 

	
1.2 Molecular Dynamics computer simulation 

 Most of the work reported here used molecular dynamics (MD) (13) computer 

simulations to uncover molecular biophysics principles concerning the structural 

transformations. The MD method evolved from theoretical physics in the late 1950s and 

is now used in a variety of fields, including drug discovery (38). The MD computer 

simulations use basic laws of physics. A biomolecule such as a protein is treated as a long 

polymer chain consisting of many atoms that are represented as classical particles. The 

forces between interacting atoms and the overall energy of the system is calculated by a 

force field. The equation below represents the overall energy of the system.  
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(1.2.1)

 

Figure 1.3 below shows various interactions used in MD simulations. A chemical bond 

between two adjacent atoms is modeled as a virtual spring with a harmonic potential. The 

angular term measures the energy from the angles between each pair of covalent bonds 

sharing the same atom at the vertex. A dihedral term describes a torsional angle φ of a 

central bond connected to two covalent bonds. For the four covalently bonded atoms 

i,j,k,l, the torsional angle is the angle between plane i,j,k and j,k,l. This interaction is also 

periodic in nature. The geometry or chirality of four planar covalently bonded atoms can 

defined by “improper terms” that can be added to eq. (1.2.1), and are also harmonic in 

nature. The non-bonded interaction consists of Van der Waal’s forces defined by Lenard 

Jones 6-12 potentials and the pairwise electrostatic interaction given by Coulomb’s Law 

with the screening constant ε.  For a system of N atoms there are N2/2 non-bonded 

distinct atom pairs, with most of the computation time in MD used in calculating these 

interactions. Therefore these interactions are truncated using switching function in MD 

simulations that smoothly cutoff the non-bonded interactions at user chosen cutoff 

distances. Typically, non-bonded interactions between atom pairs beyond a cutoff 

distance of 12Å are set to zero. 
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Figure 1.3 Illustration of all bonded terms of potential energy used in MD 
 
 
 The initial position of a biomolecule is assigned from the x-ray crystallographic 

structure, NMR or homology modelling. The initial velocity is assigned using Maxwell 

Boltzmann distribution of velocities at certain temperature T. Then the force is calculated 

using the gradient of potential energy function. The position and velocities are updated in 

a short time step and are saved. The position and velocity of each atom at each time step 

is the information contained in a file called the MD trajectory. The MD trajectory is post 

processed using concepts of statistical physics to calculate a variety of thermodynamic 

and kinetic properties to understand the dynamics of complex biomolecules, which can 

be compared with the experimental observables. 

 The MD time steps are on the order of a femtosecond, but the large scale 

structural changes in biomolecules occurs in time scales from millisecond, seconds, or 

hours. Conventional MD is unfeasible to apply for these long time scales because of 
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computer limitations. Enhanced sampling simulation methods like Steered MD, Targeted 

MD, Coarse Grained MD etc. close this gap by using statistical physics algorithms. Also, 

the use of GPUs has significantly accelerated the MD. The current study employed most 

of these techniques to study protein folding, large structural transformations, and 

membrane protein interactions. 
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2. METHODS 

2.1 Replica Exchange Molecular Dynamics (REMD) 

 In order to explore the protein configurational space, I performed replica 

exchange molecular dynamics (REMD) (39) simulations using the MMTSB toolset (40). 

To overcome the multiple minima problem, REMD is considered as an efficient and 

powerful sampling technique. In the REMD method, a number of replicas of the system, 

each at a different temperature, are simultaneously simulated independently for a certain 

number of time steps, t. After t time steps, a pair of replicas i and j at different 

temperatures, Ti and Tj, that have evolved into different conformations are tested for a 

temperature swap. The probability for temperature swapping is given by a Metropolis 

type criterion. In this criterion, the probability of exchange is given by 𝑃"# =

min 1, exp −∆ ,	where ∆= 𝐸# − 𝐸" × 1 𝑘𝑇" − 1 𝑘𝑇# 	and Ei is the potential energy 

of the replica i. The swapping criterion satisfies the condition of detailed balance and 

conformations generated at each temperature are a Boltzmann distributed canonical 

ensemble. As a result of this swapping, a random walk in temperature space is performed 

for each replica, which enhances the replica’s ability to explore the protein’s 

configuration space. During stages when its temperature is high, it is more easily able to 

exit from configurational kinetic traps and globally sample configuration space, and when 

its temperature is low a replica can explore the details of the local region of configuration 

space. Although the time sequence of configurations for any replica is not realistic 

because of periodic changes in temperature and information on kinetics is lost, the 

simulations contain information that can be used in calculations of various 

thermodynamic quantities. 
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 Before commencing the replica exchange procedure, I started the MD simulation 

of the α-helix bundle of RfaH-CTD by performing 20 ps of equilibration with a time step 

of 2 fs. The system was confined by a spherical quartic potential with a radius of 60 Å, 

which is large enough to accommodate fully extended helices. I then created 16 replicas 

with exponentially spaced temperatures between 300 and 500 K.  A 50-ns production run 

was obtained using the implicit solvent EEF1 force field and a 2 fs integration time step, 

with a replica swap attempted every 500 steps (1 ps). The atomic dynamics were 

propagated via the Langevin method with a reduced friction coefficient of 1 ps-1. The 

trajectories for each replica were used to calculate the root-mean-square deviation (rmsd) 

from the initial PDB structure, the radius of gyration (rgyr), as well as the number of 

hydrogen bonds. VMD (41) was used to visualize and further analyze the trajectories. 

 The configurational trajectories of all 16 replicas were examined and the structure 

closest to the experimentally reported all-β CTD configuration was extracted from one of 

the replicas and was relaxed for 50 ns using explicit solvent all-atom MD simulations. 

This detailed, explicit solvent all-atom simulation was performed with the NAMD 

molecular dynamics package (42) using the CHARMM27 force field (43). The structure 

was solvated with the TIP3P water model by using the solvate plugin in VMD. With a 

box cut-off of 10 Å away from the protein, the dimensions of the simulation box were 51 

x 45 x 43 Å3. The solvated system was electrically neutral. The final system contained a 

total of 10,246 atoms. The particle mesh Ewald method (44) was used to treat long range 

interactions with a 12 Å non-bonded cutoff. Energy minimization was performed using 

the conjugate gradient and line search algorithm.  The system was then heated with a 

linear gradient of 20 K/ps from 20K to 300K. At 300 K, the system was equilibrated for 
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10 ps, followed by a 50-ns production run with a 2 fs integration time step in the NVT 

(constant number, volume, and temperature) ensemble. Langevin dynamics with a 

damping constant of 1 ps-1 was used to maintain the temperature at 300 K. 

 

2.2 Steered Molecular Dynamics Simulations (SMD) 

 In order to explore the all-a to all-b transformation of the CTD in the full RfaH, I 

performed Steered Molecular Dynamics (SMD) simulations (45), (42) in explicit water. 

 The full RfaH was solvated with TIP3P water in rectangular boxes. Pulling 

occurred along the x-axis. A cut-off of 10 Å was used for the y- and z-directions, whereas 

a large padding was added in the x-direction to allow enough space for protein extension 

due to pulling. The resulting box dimensions were 198×56×81 Å
3 

with a total of 85,567 

atoms. The system was neutralized by adding two chloride ions. The particle mesh Ewald 

method was used to treat the long-range interactions with a 12 Å non-bonded cut-off. 

Simulations were performed with the CHARMM27 force field using NAMD.  

 For SMD, the dummy atom attached to the C-terminal Cα SMD atom (residue 

L162) via a virtual spring (k=3 kcal/mol/Å2) was pulled in the negative x-direction with a 

constant speed of 2 Å/ns while keeping the Cα atom of the N-terminal residue (M1) fixed. 

SMD was performed with a 1 fs time step and the steering forces were saved every 1 ps. 

Trajectories were obtained by alternating pulling and relaxation, i.e., 10 ns of SMD 

followed by 10 ns of relaxation. During relaxation, the extension was preserved by 

keeping the first Cα in the NTD and the final SMD Cα in the CTD fixed (i.e., setting the 

velocity of each to zero), but the protein’s internal structure was allowed to relax after the 

forced stretching (46), (47). The average work done by pulling was calculated using nine 
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independent simulations, and the potential of mean force (PMF) was calculated using the 

Jarzynski equality (48), using an ensemble average of the nine SMD trajectories. 

Although PMF calculations with ABF have been shown to represent the reaction more 

accurately than with constant velocity SMD (49), the SMD simulations give important 

insights into the barriers along the pulling reaction coordinates.  

 Steered molecular dynamics (SMD) simulations were also performed on Ebola 

virus protein VP40 protomer by pulling on the center-of-mass of the CTD (residues 202-

326) along the negative x-axis. The system consisted of 61,320 atoms in a box of size 

117´84´66Å3. All Cα atoms were harmonically restrained during heating and 

equilibration. The dummy atom attached to the center-of-mass of the CTD via a virtual 

spring (k=3 kcal/(mol/ Å2)) was pulled at a constant speed of 2 Å/ns with respect to the 

harmonically restrained NTD (residues 44-194). 

 

2.3 Targeted Molecular Dynamics Simulations (TMD) 

 In order to further understand the all-a to all-b transformation of the CTD in the 

full RfaH, I performed Targeted Molecular Dynamics (TMD) simulations in explicit 

water. Targeted MD is especially useful for investigating conformational changes or large 

molecular motions that are otherwise unfeasible to access in reasonable computational 

times. Targeted MD method has been extensively used in various molecular systems that 

undergo large-scale conformational changes that are relevant to protein function. For 

example, Targeted MD was used to elucidate the ATP binding mechanism, and to 

determine the transition pathways between the open and closed states of GroEL (50). 

Similarly, Targeted MD has been used to investigate transitions between open and closed 
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states of ion channels and their gating mechanisms in various systems such as a nicotinic 

receptor (51), KcsA potassium channels (52), (53), mechanosensitive channels (54), and 

the AMPA receptor (55). More relevant to the transitions in RfaH, the dynamical 

transition between two distinct states in the Mad2 metamorphic protein was recently 

studied using a combination of conventional and Targeted MD and the structural 

characteristics as well as dynamic transition mechanisms were explored (56).  

 The full RfaH with the helical CTD conformation was solvated with TIP3P water 

and the system was electrically neutralized by adding counter ions using VMD (41). The 

resulting dimensions of the simulation box were 56×54×78 Å3 and the final system 

contained a total of 24,082 atoms. The MD simulations were performed with the 

CHARMM36 (57) force-field using NAMD (42). The particle mesh Ewald method (44) 

was used to treat the long-range interactions with a 12 Å non-bonded cut-off. Energy 

minimization was performed using the conjugate gradient and line search algorithm for 5 

ps. The system was then heated with a linear gradient of 20 K/ps from 20 to 300 K. At 

300 K, each system was equilibrated with a 2 ns NPT run using a 1 fs integration time 

step, followed by a 5 ns NVT run also using a 1 fs integration time step. Langevin 

dynamics with a damping constant of 1 ps-1 was used to maintain the temperature at 300 

K. The RATTLE algorithm was used to constrain protein bonds involving hydrogen. 

SETTLE was used to maintain water geometry. Multiple time-stepping algorithms (1-2-

4) were used to compute interactions between atoms.  Interactions through covalent 

bonds were calculated at every time step, short range non-bonded interactions were 

calculated every other step, and long range electrostatic forces at every fourth step.  
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 A 10 ns equilibration run was performed before commencing each targeted MD 

simulation. The target RfaH structure with the beta conformation of CTD was created 

using Modeller by connecting the RfaH-NTD and the β-CTD (PDB ID: 2LCL) with a 

linker. For a à β conversion, force was applied only on the N=777 heavy (non 

hydrogen) atoms of the helical CTD (residues 115-162). For β à a conversion, force was 

applied on N=1322 heavy atoms which include all of the CTD (residues 115-162) as well 

as an additional 30 residues of NTD that participate in interdomain interaction. The 

targeted MD calculation uses the potential energy function	𝑈 = 5
67
	[𝑟𝑚𝑠𝑑 𝑡 −

𝑅𝑀𝑆𝐷(𝑡)]6, where rmsd(t) is the root mean squared deviation (rmsd) of the simulated 

structure with respect to the target structure and RMSD(t) is the assigned, target rmsd, 

which decrease linearly over time. A force constant per atom of katom=k/N=0.4 

kcal/mol/Å2 was used for all TMD simulations. 

 

2.4 Coarse Grained Molecular Dynamics Simulations (CGMD) 

 To understand the roles of various phospholipids on VP40 hexamer binding in the 

PM, I performed coarse-grained molecular dynamics simulations (CGMD) on the 

hexamer-membrane system. While all-atom simulations are useful in understanding the 

temporal and spatial evolution of a system in the nanosecond timescales, they are 

computationally demanding for investigating physical properties such as lipid diffusion 

and clustering and protein-membrane interactions that occur on microsecond timescales. 

The CGMD (58), (59), (60), (61) model, which maps four heavy atoms on average to a 

single interactions site, provides an excellent alternative. The CGMD model simplifies 



	 18 

the complex energy landscape and enhances the kinetics of the system (61) and has been 

extensively used in recent investigations on membrane protein and lipid systems (62), 

(63), (64), (65). In one study (66), coarse-grained simulations were found to better 

represent the protein-membrane binding as compared to other extended-lipid protein-

membrane models (67). The CG simulations of the highly asymmetric plasma membrane 

showed the clustering of the Glycolipids GM3 in the outer leaflet and PI(4,5)P2 in the 

inner leaflet. The different types of lipid clustering affect the membrane bending 

differently and the correlation of such lipid clustering with the membrane curvature has 

important biological implications (68). For example, Basu et al. investigated the 

clustering of GM1 with or without PSM using CGMD (69). It was found that in the 

presence of PSM, the GM1 domains formed loosely bound clusters, whereas in the 

absence of PSM, they were more strongly bound in the clusters. Similarly, Koldso et al. 

showed that local enrichment of PI(4,5)P2 in the inner leaflet can induce concave 

curvature (viewed from intracellular side) to the plasma membrane (68). This 

computaional result is directly relevant to our present work because such a membrane 

curvature is needed for the budding of the Ebola virus particle.  

 For CG simulations, I used the Martini force field in which approximately four 

heavy atoms are mapped onto a single interaction site (bead), except for the residues with 

aromatic side chains (59). Specifically, Ala and Gly residues are each represented by a 

single bead; Cys, Asn, Asp, Gln, Glu, Ile, Leu, Met, Pro, Ser, Thr, and Val are each 

represented by two beads; Arg and Lys are each represented by three beads; His, Phe, and 

Tyr are each represented by four beads, and Trp is represented by five beads. Similarly 

for lipids POPC, POPE and POPS each have 12 beads, PIP2  (70) has 16 beads, PSM has 
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11 beads, and CHOL has 8 CG beads. These beads are divided into four interaction types: 

Polar (P), nonpolar (N), apolar (C), and charged (Q). There are subtypes d (donor in H-

bond), a (acceptor in H-bond), n (none), da (both) and P1 (lower polarity)-P5 (highest 

polarity) (59). 

 The Martini Maker plugin (71) in the Charmm-Gui webserver was used to 

prepare both the protein-membrane and membrane-only systems. The Martini 2.0 force 

field was used for lipids with a non-polarizable water model, combined with the elastic 

network model for the protein (VP40 hexamer). All systems were equilibrated using the 

six-step equilibration process generated by the Charmm-Gui (72). Each system was 

solvated using standard MARTINI water beads and was neutralized in 0.15 M NaCl. The 

final protein-membrane system consisted of 52, 827 particles and the membrane-only 

system consisted of 27, 512 beads. The number of lipids used for the CGMD simulations 

is given in Table S1 (14). For one of the simulation setups, the elastic network constraints 

were removed for all the atoms in the top two CTDs in the middle by setting the spring 

constant to zero. Various simulations performed in this work are summarized in Table S2 

(14). 

 All CGMD simulations were run using Gromacs5.1.1 (73), (74) (gpu-version). A 

time step of 15 fs was used and the Lennard-Jones and coulomb potential were cutoff at 

11 Å. The Verlet neighbor scheme was used with a straight cutoff to keep track of 

particles within specified distances (75). Coulomb interactions were treated using a 

reaction-field. Ring systems and stiff bonds were controlled using the LINCS algorithm. 

The pressure was maintained at 1 bar using the Berendsen barostat during equilibration 

runs and the Parrinello-Rahman barostat during production runs. Pressure coupling 
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between protein and membrane groups was semi-isotropic with a compressibility of 

3x10-4 bar-1. The temperature was maintained at 303.15 K and the temperature coupling 

was done using a velocity rescale algorithm. 

 

2.5 Accelerated MD (aMD) 

 Accelerated molecular dynamics (aMD) simulation is an enhanced sampling 

method that adds a non-negative boost potential and can accelerate transitions between 

the low energy states (76), (77). This aMD method is superior to other because they 

donot require prior knowledge of reaction coordinates. The aMD has been successfully 

applied various biomoelcules such as folding of Trp-cage, villin headpiece, WW domain 

and chignolin (78).  The equations below defines general idea of the aMD. The bias 

potential is given by 

																	D𝑉 𝑟 = [𝐸−𝑉 𝑟 ]2

a	+[𝐸−𝑉 𝑟 ]                                    (2.5.1) 

Where V(r) is the true potential,  E is the reference (boost) energy  and a is the tuning 

parameter that controls the depth of modified potential energy as shown in Figure 2.1. 

The modified potential is      

   V*(r) =  V(r), V(r) ³ E 

     V(r) + DV(r), V(r) < E                     (2.5.2) 
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Figure 2.1 Schematic diagram of aMD 
 

We performed aMD simulations on RfaH-CTD to exlore the confromational transition 

from a-form to b-form. We were able to explore the conversion of a-form RfaH CTD to 

random coiled state. 

 

2.6 Jarzynski Equality (JE) 

 I performed nine independent 60 ns SMD simulations (pulling only) on RfaH to 

calculate the potential of mean force (PMF) using the Jarzynski equality (48), which 

relates the non-equilibrium work done (W) with the PMF as 𝑒IJ∆K = 𝑒IJL  where, 

	refers to the ensemble average. The free-energy profile can be obtained from  

                               ∆𝐹 = 𝑊 − LO I L O

65P
     (2.6.1) 

where k is the Boltzmann constant. The harmonic force applied to the virtual spring 

attached to the C-terminal Cα was integrated over the pulled distance to calculate the 

work done over the simulation time using 𝑊 = 𝑣	𝑓 𝑡 	𝑑𝑡P
S , where v is the pulling 
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speed, f(t) is the force as a function of time, and v dt=dx is a small increment in the 

pulling distance. All nine simulations were used in eq. 2.6.1 to calculate the average and 

the standard deviation for calculating the free-energy profile. 

 

2.7 Adaptive Biasing Force (ABF) 

 To further investigate the αàβ structural transformation of the CTD in the full 

RfaH, I calculated the Potential of Mean Force (PMF) using the Adaptive Biasing Force 

(ABF) method implemented in NAMD. In ABF, a free-energy profile is computed using 

a thermodynamic integration scheme in which the biasing force is adapted continuously 

in the Hamiltonian until the system overcomes an energy barrier. ABF has proven to be a 

very useful tool to investigate and explain protein interactions as well as dynamic 

pathways in a complex energy landscape (79), (80).  

 The PMF was calculated using 20 ns ABF simulations with a time step of 0.5 fs 

using rmsd as the reaction coordinate in the NAMD colvar module. The upper and lower 

boundary wall constant was 310 kcal/mol and a bin width of 0.001 Å. Force samples 

were accrued for 5000 steps until the adaptive biasing force was applied. The Langevin 

damping constant was 1 ps-1.  

 

2.8 Transfer Entropy (TE) 

 Transfer Entropy (TE) can be a valuable tool to obtain information about the 

dynamics of proteins, especially in allosteric conformational changes. In addition to 

quantifying important residue-residue correlated motions, TE provides a directionality of 

the drive-response relationship between residues i and j through the directionality index 
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Djài. TE elucidates which part of the protein drives structural transitions and which other 

parts respond. For example, TE calculations illustrated the roles of helix motions on how 

the information of DNA binding is transmitted in the folded protein Ets-1 (81). Recently, 

TE calculations have been applied to protein folding and unfolding processes. Using long 

simulation trajectories, including a 200 µs trajectory of Trp-cage that contained multiple 

folding and unfolding events, Qi and Im (82) calculated a time dependent directional 

index Djài which showed remarkable correspondence with the overall folding score and 

further suggested that the main contribution to the information transfer entropy reflected 

the folding and unfolding events.  The authors performed the TE analysis for single 

folding events in the trajectory and showed that the drive-response relationship is still 

preserved in separate non-equilibrium events such as folding and unfolding. During such 

non-equilibrium events, residues may interact differently at different times so that the 

drive-response relationship is altered. However, the calculations can still identify the 

residue-residue pairs that contribute most to the information transfer during the overall 

folding or unfolding process.  

 I performed transfer entropy calculations as described in ref. (81). In this method, 

the transfer entropy 𝑇#→" is calculated as conditional mutual information; 𝑇#→" =

𝐼 𝐼5VW;	𝐽5
Z[|𝐼5

Z]  where 𝐼5
Z] and 𝐽5

Z[ are state vectors representing positional fluctuations of 

atoms i and j. The value of 𝑇#→"	indicates how strongly the fluctuations of atom j are 

driving the fluctuations of atom i. Directionality of the drive-response relationship can be 

obtained by further calculating the normalized directional index 𝐷#→" 

 𝐷#→" =
P[→]

^ _`ab|_`
c]  - 

P]→[

^ d`ab|d`
c[    (2.7.1) 
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If 𝐷#→" > 0, the fluctuations of atom j drive the fluctuations of atom i, and vice versa if 

𝐷#→" < 0.  

 

3. STRUCTURAL CONVERSION FROM a-HELIX TO b-BARREL IN THE 

RFAH TRANSCRPTION FACTOR 

3.1 RfaH Protein Structure and Function 

 In the RfaH CTD, the protein segment from residues 115 to 156 exists as a helix-

turn-helix motif when it is interacting with the RfaH NTD as shown in Figure 3.2a, but 

the CTD prefers a β structure when not interacting with the NTD.  Its NusG paralog 

Figure 3.1b has a similar NTD structure but the CTD is never interfaced with the NTD, 

and the CTD is found only in the β-barrel structure. In both NusG and RfaH, RNAP and 

protein S10 binding occurs when the CTD is in its β-form, which requires breaking of the 

interfacial contacts between the NTD and the CTD in RfaH. Since the α-form of the 

RfaH-CTD is stabilized by interdomain interactions, it is important to examine these 

interactions for understanding the structural transformation of the RfaH-CTD.  

 Initially, we performed 850 ns all-atom MD (also referred as conventional MD 

(cMD)) and 10 ns accelerated MD (aMD) to elucidate the structural conversion of RfaH-

CTD from α-form to β-form.  During 850 ns simulation, such structural conversion of 

CTD was not observed. The shorter helix loses its helicity while the other remains intact. 

Since this shorter helix was in close contact with NTD, and loss of the contact in isolated 

CTD allowed greater flexibility and reduction in the secondary structure. There was loss 

in secondary structure of both helices during 10 ns aMD simulations. 



	 25 

 I then performed REMD simulations for the CTD helix-turn-helix motif without 

including the NTD. Since the motif is simulated in the absence of the NTD, it is expected 

to convert to the β scaffold, as observed experimentally. Analysis of MD trajectories 

showed that the implicit solvent EEF1 force field allowed a fast structural conversion 

from α-helix àrandom coil àβ-conformation as well as a through sampling of 

conformational space with an acceptance ratio between 41-48%. I note that given the 

relatively fast structure conversion and high acceptance ratio, additional lower 

temperature replicas would improve the stability of the preferred conformations. Since 

both the replica exchange procedure and choice of force field affect the kinetics 

information, the timescales of the observed structural conversion are not exact. However, 

relative information on kinetics such as identifying rate limiting steps can be obtained. 

 

Figure 3.1 a) RfaH structure showing both the NTD (gray) and the CTD (red). 
Hydrophobic interactions at the interface between NTD and CTD are highlighted in 
yellow.  b) NUSG-CTD and NUSG-NTD. 

	
 To understand the role of the interfacial interactions in the structural 

rearrangements of the RfaH-CTD, I also used SMD and calculated the Potential of Mean 
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Force (PMF) from the ensemble average of the SMD trajectories using the Jarzynski 

equality (48). SMD simulations have been valuable in understanding many biophysical 

processes such as mechanical responses to biomolecules (83), (84), (47), (85), (86) 

protein dissociation and conformational changes (87), (88), (89), stability of protein-

protein or domain interfaces (90), (91), (92), and ligand binding (45), (93). Through the 

TMD and SMD simulations, I found that the interdomain interactions constitute the main 

barrier in the α-helix to β-barrel structural conversion. Once the interfacial interactions 

are broken, the structural conversion of the CTD occurs relatively easily. I identified key 

residues that are involved in the interdomain motion and structural transformation. 

 

3.2 Structural Transitions in the RfaH Carboxy Terminal Domain (CTD) 

3.2.1 Conformational Sampling of RfaH-CTD 

 In order to elucidate the conformational space of RfaH-CTD, I calculated and 

plotted in Figure 3.2 the free-energy landscape as a function of rmsd from the initial 

structure, and end-to-end distance (94) at 310 K. I used the 25-ns implicit solvent EEF1 

REMD simulation to obtain the probability 𝑃 𝑟𝑚𝑠𝑑, 𝑑hh 	for the chain to have specific 

values of rmsd and dee and used 𝐹 𝑟𝑚𝑠𝑑, 𝑑hh; 𝑇 = −𝑅𝑇	ln	𝑃 𝑟𝑚𝑠𝑑, 𝑑hh  to calculate 

the free-energy. In order to plot F at 310K, I gather the 310K sequences that are 

distributed throughout various replicas. Multiple free-energy minima corresponding to 

various conformational states of RfaH-CTD are observed. As indicated by low free-

energy regions, both α-helix as well as β-sheet structures are sampled at T=310 K. Since 

the α-helix to β-structure conversion occurs relatively quickly, the β-structures are 

sampled more frequently than α-helix structures for this temperature and time-window.  
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The free-energy minima corresponding to α-helix structures are observed mostly in the 

range of 5<rmsd<10 Å and 5<dee<30 Å. The α-helix structures with the two helices 

positioned approximately at right angle to each other occur at very high dee (~48 Å). A 

region with relatively high dee (~31 Å) and intermediate rmsd (~10 Å) consists of mixed 

α-helix and β-structure conformations. Similarly, several free-energy minima are 

observed for β-structures, which mostly have dee<30 Å and rmsd >10 Å. Deep free-

energy minima are observed for the b-sheet structures with antiparallel stacking of b-

strands. As expected in the absence of the NTD, the β-structures of the CTD are found to 

be relatively more stable than the α-helix structures. Also, in examining the MD time 

trajectories, once b-structure is attained, conversion back to α-helix is not observed at this 

temperature.  
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Figure 3.2 Free-energy surface for RfaH-CTD at 310 K in terms of rmsd and end-to-end 
distance. The energy scale is given in kcal mol-1 with red color indicating low free-
energy regions and blue indicating the high free-energy regions. Typical structures for the 
free-energy minima are shown with arrows. 

 
3.2.2 Time evolution of structural transitions in RfaH-CTD 

 During the 25-ns window that I used for my implicit solvent EEF1 simulations, α-

to-β conversion was observed in all 16 replicas, but with only one replica finishing in a 

conformation close to the experimentally observed RfaH-CTD β-structure. I selected the 

replica that best displayed the experimentally observed CTD structure for further analysis 

to investigate the details of the structural transition from α-helix à random coil àβ-

conformation.  

 For the selected replica, Figure 3.3a shows the time evolution of the root-mean-

square deviation (rmsd) from the initial α-helical configuration averaged over all the Cα 

atoms during the structural conversion obtained from the implicit solvent REMD 

simulations. The rmsd graph shows that the major structural conversion starts around 13 
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ns. Once relatively stable β structure is formed, the rmsd plateaus after 20 ns. I plot in 

Figure 3.3b the time evolution of the temperature showing the walk in the 16 different 

temperatures for this replica. Sampling at the lowest temperature mostly occurs early, 

before the helix unfolding, and late, after the β-structure formation. During the helix to 

coil and coil to β-structural transition, the sampling is at higher temperatures and this 

allowed a faster structural conversion. An additional 25 ns of REMD simulation with 

EEF1 revealed that this β-structure spends the most time at the lowest temperature, 

making it the preferred structure. 

 

Figure 3.3 a) Root-mean-squared deviation (rmsd) from the initial structure averaged 
over all the Cα atoms of the CTD during the structural conversion from α-helix structure 
to β-scaffold. b) Time series of temperature exchange showing replica’s walk throughout 
the temperature space. 

	
 The stages of the structural conversion of RfaH-CTD are shown in Figure 3.4, in 

which I display snapshots of representative structures at various times during the replica 
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exchange simulation. The supplementary movie S1 (95) gives a more detailed view of the 

dynamics of the structural conversion.  

 

Figure 3.4 Snapshots of the evolving CTD configuration at various stages during the all-
a to all-β structure conversion process. 

	
 In order to examine the changes in the protein structure for the selected replica in 

more detail, I plot the evolution of the secondary structure of each amino acid in the CTD 

in Figure 3.5a. In the helix-turn-helix motif, Helix I consists of residues 115-130 and 

Helix II consists of residues 136-153. Helix I loses most of its helicity around 8 ns, as 

seen in Figure 3.5a, whereas Helix II takes almost twice as much time to lose its helical 

structure. This shows that Helix I is relatively unstable under the conditions in which it 

does not experience tertiary interactions with the NTD. In the native state, Helix I 

interacts with a NTD helix via hydrophobic interactions. Specifically, as shown in Figure 

3.1, residues A122, F126, I129, F130 in the CTD make hydrophobic interactions with 
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residues L50, F51, L96, I93 in the NTD. These inter-domain contacts are sufficient to 

refold the CTD into the α-helical form after denaturation (13).  

 

Figure 3.5 a) Time evolution of the secondary structure of each amino acid in the CTD. 
In addition to the color legends, noticeable π-helix (red) and 3-10 helix (blue) are also 
observed. b) Time evolution of the number of hydrogen bonds. c) Distribution of the 
conformations in a single replica as a function of rgyr and rmsd values. The solid line 
represents the MD pathway for the structural conversion and the dashed line represents 
another possible pathway. 

	
 Figure 3.5a shows that Helix II starts to unravel around 12 ns, and by 15 ns both 

Helix I and Helix II have completely unfolded. During the large structural change 

between 12-15ns, this replica is sampling conformations at high temperatures as shown in 

Figure 3.3b. The protein spends relatively less time in the intermediate unfolded state as 

compared to the α-helical structure. Large-scale β-structural arrangements appear 

between 15-20 ns, followed by the organization of the β-strands into a stable 

configuration by 20 ns. After 20 ns, smaller fluctuations occur which are reflected in the 

small fluctuations after 20 ns in the number of hydrogen bonds displayed in Figure 3.5b. 

The loop region in the helix bundle (residues 131-135) remains flexible until the β-

structure starts to form. Residue Gly135 is in the loop conformation in both the helix 
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bundle as well as in the final β-scaffold. During helix unfolding, a noticeable fraction of 

π- as well as 3-10 helical structures also transiently appear.  

 I also analyzed changes in the hydrogen bond pattern due to the structural 

transformation by calculating the total number of hydrogen bonds between protein 

backbone atoms, which is plotted in Figure 3.5b. I used an H-bond distance cut-off of 3.5 

Å and angle cut-off of 30o. The time evolution of the number of hydrogen bonds is 

similar to the evolution of the changes in secondary structure and also correlates with the 

temperatures at which the conformations are sampled. The number of hydrogen bonds 

decreases as the helices unfold. The unfolded random coil structure around 15 ns shows 

the least number of hydrogen bonds, before it increases as a result of formation of 

hydrogen bonds between β-strands. In the unfolded state around 15 ns, a slight increase in 

hydrogen bonding occurs because of a collapsed random structure. These non-native 

contacts break within a few nanoseconds and allow the β-strands to align and nucleate 

into the first β-hairpin. As discussed later, from this time onwards, the hydrogen bonding 

pattern trends upwards but with oscillations during structural rearrangement of β-strands 

until the final β-scaffold is reached. 

 Figure 3.5c displays the distribution of the structures having specific radius of 

gyration (rgyr) and rmsd values.  In the MD simulations, the pathway for structural 

conversion from all α-helix to an all β-conformation that is most similar to the 

experimentally observed structure proceeds via a completely unfolded intermediate 

structure, as shown by the solid line in Figure 3.5c. However, other possible pathways 

may exist (dashed line in Figure 3.5c) in which structural conversion to β-conformation 

can occur concurrently with unraveling of α-helix structure. Such a process in a different 
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protein has been shown to be orders of magnitude faster than the structure conversion that 

involves a completely unfolded intermediate (96). Similarly, a recent investigation of the 

α-helix to β-structure transition in the human islet amyloid peptide fragment with REMD 

simulations at atomistic detail also showed two distinct mechanisms, one without 

unraveling the helix into random coil and the other with a random coil intermediate (97). 

On the basis of the observed pathway alone, the sampled structures that have intermediate 

rmsd but low rgyr in Figure 3.5c are off-pathway structures. However, they may belong 

to the on-pathway structures for the alternate pathway represented by the dotted line. A 

plot of the free energy profiles of the observed pathway and a possible alternate pathway 

based on the free-energy landscape of Figure 2 is given in the supplementary figure, 

Figure S1 (95). In our simulations with the EEF1 implicit solvent model, I did not 

observe the structural conversion via the faster concurrent β formation pathway, which 

can potentially be revealed by more detailed and long time-scale all-atom simulations.  

 

3.2.3 Folding into a β-barrel scaffold 

 Starting from the unfolded state configuration around 15 ns, folding into β-

structure starts by nucleating a β3-loop-β4 hairpin structure as shown at 16 ns in Figure 

3.4. Here, β3 consists of residues 137-144, whereas β4 consists of residues 147-154. 

Residues 145 and 146 form the loop segment that connects the β3 and β4 strands. Once 

this hairpin structure is formed, another β-strand, β2 formed by residues 127-134, aligns 

with β3 very quickly (~1 ns) as seen in Figure 3.4 at 17 ns. The number of hydrogen 

bonds increases steadily during the formation of β-sheet structure involving β2, β3, and 

β4 that occurs around 17 ns. The number of hydrogen bonds continues to increase due to 
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partial formation and alignment of β1 formed by residues 116-119. However, the initial 

hydrogen bonding to β1 is transient as seen in Figure 3.5b. After peaking at 17 ns, these 

hydrogen bonds break and rearrange. Therefore, formation and proper alignment of β1 

takes longer (~3 ns). The longer time for proper alignment of β1 is partially due to the 

higher entropy of the loop segment connecting β1 to β2 which consists of eight residues, 

as compared to only two residues in the loop segment connecting β2 to β3.  

 Oscillations with a period of a few nanoseconds in the hydrogen bond pattern 

provide additional insight into the mechanism for this protein to fold into a β-motif. The 

antiparallel β-sheet structure formed with β1 through β4 is slightly curved and makes it 

possible for β5 to wrap around the β-sheet structure and align with β1 in an antiparallel 

fashion. This wrapping gives an additional twist to the β-scaffold, resulting in a barrel-

like shape. With the implicit solvent EEF1 model, the final β-structure is still relatively 

flat as compared to the experimentally determined β-barrel structure, and the structure did 

not show improvement upon further REMD simulation with EEF1. Therefore, I selected 

a structure that is closest to the native β-barrel structure for further relaxation with an all-

atom, explicit solvent MD simulation. 

 

3.2.4 β-structure refinement with all-atom simulation 

 When relaxed using the all-atom CHARMM 27 force field with explicit solvent, 

the β-structure tends to be organized closer to the native state of the experimentally 

determined all-β configuration with an rmsd of ~5 Å and Q-score of ~0.4. Figure 3.6 

displays the structural overlap between the experimentally determined NMR structure 

(red) of the β-barrel and the MD simulated structure (blue). The order and orientations of 
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the β-strands, as well as the overall barrel shape from the simulation match relatively well 

with the NMR structure. An additional 50 ns simulation at 300 K shows very small 

change in the rmsd, suggesting that the obtained structure is quite stable. I also compare 

the specific amino acid residues making up the β-strands. The β-strand residues match 

reasonably well, but with some differences that prevent the MD β-strands from aligning 

perfectly with the experimental structure. The β2 strand from the simulation (amino acids 

127-134) extends longer than the experimental structure (127-130) and the MD β3 strand 

starts one residue earlier at 137, leaving only two amino acids for the MD connecting 

loop as compared to seven amino acid residues in the experimentally observed structure.               

 

Figure 3.6 Left: Comparison between the β-barrel structure from the MD simulation 
(blue) and the NMR configuration (red; NMR structure 2LCL from ref. [10]). Right: 
Comparison of amino acid residues that form various β-strands in the β-scaffold. 

 
3.3 TE Calculations on the a-helix unfolding and b-barrel formation 

 I performed information transfer entropy (TE) analysis for our selected REMD 

trajectory using Cα backbone information. Since the trajectory consists of two major 

events, unfolding of α-helix to random coil and folding to a b-structure as shown in 

Figures 3.3 and 3.5, I calculated Djài of eq. (2.7.1) for the unfolding event and the folding 
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event separately. By calculating TE separately for helix unfolding and formation of beta 

structures, the role of each residue in each of these processes can be examined. The 

trajectory for the TE analysis for helix unfolding was chosen to be the 0-14 ns window. 

Since the protein configuration was saved every 2 ps, there were 7,000 frames in the 

trajectory for this process. I display the Djài values for all i,j residue pairs for the helix 

unfolding process in Figure 3.7a. The values were color coded as shown in the color bar, 

with positive values in red, brown or yellow and negative values in blue. Red means that 

the residue on the y-axis drives the residue from the x-axis. For the helix unfolding, 

residues on Helix II appear to be a strong driver for several residues in both Helices I and 

II. Specifically, Helix I residues Ile117, Ile118, and Helix II residues Pro133, Asp134 

appear to respond strongly to the residues between Leu142 to Glu158 which are mostly in 

Helix II. In general Helix I experiences much larger structural fluctuations as compared 

to Helix II. Consistent with the transfer entropy analysis in ref. (82) in which driving 

residues were found to be in segments with more robust secondary structure, I found that 

residues in Helix II which has a more stable secondary structure drive the residues in 

more floppy regions in the chain. Experiments show that in the absence of appropriate 

CTD/NTD contacts, the preferred conformation of the CTD is the β-barrel structure (13). 

Our results show that in the absence of NTD tertiary contacts, Helix-I is not stable and 

therefore unravels relatively quickly. This is reflected by the transfer entropy calculations 

which show that Helix-I is primarily a responder. These observations suggest that the 

helix-I is most likely formed by nucleation at the CTD/NTD interface, instead of first 

forming the helix and then making the tertiary contacts with NTD. 
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Figure 3.7 Normalized transfer entropy directional index Djài for two different stages in 
the αàβ conversion process: a) α-helix unfolding and b) β-scaffold formation. Red means 
that the amino acid on the y-axis drives the response of the amino acid on the x-axis. c) 
major driver (red) and responder (blue) amino acids in helix unfolding and d) in β-barrel 
folding. 

	
 The second part of the trajectory was taken from 14 ns to 25 ns of the REMD 

trajectory and included a total of 5,500 frames.  As displayed in Figure 3.7b, the driving 

amino acid residues are different for β-structure formation from those in helix unfolding. 

However, the responding residues fall in the same general segment of the protein.  Major 

drivers M140, N144, K148, and M140 are in β3 and β4, which form the β-hairpin 

structure early on during the β-structure folding. Residues between Met140 and Leu145 

in β3 are strong drivers for residues Gly121, Phe123, Glu136, Ser139, Val154, Glu158, 

and Arg160. Similarly, residues Asp147, Lys148, Glu149, and Lys151 are weak drivers. 
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Residues Ile146 and Ile150 are strong responders to many other residues. Isoleucine 146 

is in the flexible loop region between β3 and β4 and Ile150 is in β4. In both cases, the Ile 

responders are exposed to the solvent, which is consistent with the observation that 

driving residues are mostly buried in the hydrophobic core (82). During the β-folding, 

information transfer occurs among amino acid residues that are not necessarily in close 

proximity. In addition, many amino acids have different transfer entropy identities, 

drivers for some residues, responders for others. In Figure 3.7c and 3.7d, I color code 

only the major drivers and the associated responders from Figure 3.7a and 3.7b, 

respectively. 

 

3.4 Full RfaH Structural Fluctuations and Correlated Motions 

 In the RfaH-CTD, the protein segment from residues 115 to 156 exists as a helix-

turn-helix motif when it is interfaced with the RfaH-NTD, but the CTD prefers a β-barrel 

structure when not interfaced with the NTD. Its NusG paralog has a similar NTD 

structure but the CTD is never interfaced with the NTD, and the CTD is found only in the 

β-barrel structure. In both NusG and RfaH, RNAP and protein S10 binding occurs when 

the CTD is in its β-form, which requires breaking of the interfacial contacts between the 

NTD and the CTD (Table S1) in RfaH. Since the α-form of the RfaH-CTD is stabilized 

by interdomain interactions, it is important to examine these interactions for 

understanding the structural transformation of the RfaH-CTD.   

 I performed a 100 ns NVT simulation on the native state structure of the full RfaH 

with the CTD in the α-helix form. Figure 3.8a shows overlays of 100 sampled 

conformations taken from the 100 ns trajectory. These, together with the root mean 
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squared fluctuations (rmsf) for all Cα plotted in supplemental Figure S1 (34) provide 

insight on the conformational fluctuations during the simulation. The rmsf figure (Figure 

S1 a) shows that both the NTD and the CTD are stable but large fluctuations occur in the 

linker and loop segments, as expected. Specifically, the segment composed of residues 

35-45, corresponding to the loop region of the β-hairpin motif in the NTD shows 

particularly large fluctuations. Also, the long NTD-CTD linker segment (residues 101-

114) shows large flexibility.  Interestingly, the NTD helix (90-100) at the domain 

interface is slightly more flexible than the CTD helices (Helix I and Helix II). 

 Dynamic network analysis can be used to understand the correlated molecular 

motions (98), (99), (100).  Dynamic analysis from the 100 ns NVT simulation of the full 

RfaH resulted in 11 communities that are highlighted in color in Figure 3.8a and the 

constituent amino acids for each community are listed in Table S2 (34). A community is 

composed of amino acids that are in close proximity and have highly correlated motions. 

The size of the circle for each node is proportional to the number of residues in each 

community, and the line thickness represents the inter-community edge weights. As 

shown in Figure 3.8b, community H (lime green) in the NTD β-sheet core region seems 

to have the most correlated motion with other communities. I found three communities 

(C, D, G) that each are composed of residues from both the NTD and CTD. The amino 

acids that comprise these three communities are highlighted in Figure 3.8c.  By 

examining the composition of each community, I was able to locate the amino acids pairs 

that most strongly bridge the NTD to the CTD within each community. These pairs are 

shown in Figure 3.8c: L96-F126 (community C), F33-F130 (community D), and F81-

I118 (community E). In all of these cases, phenylalanine residues seem to play important 
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roles in modulating the interdomain motions. F126 plays a major role in interdomain 

communication and therefore it is a functionally important residue for modulating the 

domain separation. Alanine substitution using FoldX (101) revealed that mutating F126 

with alanine resulted in an increase in DDG by ~3 kcal/mol (Figure S1 (b) (34), indicating 

that the F126A substitution destabilizes the domain interface, and is one of the largest 

DDG among all residue positions upon alanine mutation. Figure S1 (34) (b) also shows 

that more than 75% of the interface residues do not favor alanine substitution. I 

performed a 100 ns MD simulation on the RfaH-F126A mutant and investigated its 

kinetic/dynamic behavior. Figure S2 shows that the Ca rmsf for the WT and the RfaH-

F126A are comparable. The F126A mutation caused slightly larger fluctuations in the 

loop/turn region (residues 35-50) in the β-turn-β motif of the NTD, but the linker segment 

connecting the two domains, as well as the some other loop segments are more restricted 

in the mutant. The restriction of loop segments in the mutant are due to the interactions 

with the CTD tail segment (residues 158-162), which became flexible in the WT after 

~50 ns, whereas it remained intact for the entire 100 ns in F126A. The network analysis 

displayed in Figure S2 (34) shows that the F126A mutation causes changes in the 

community structure. Specifically, the interdomain correlated motion through F126 

disappears in the mutant.  
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Figure 3.8 RfaH structural fluctuations and correlated motions. a) Structural fluctuations 
of amino acids in the full RfaH determined from MD simulations. b) Community map of 
RfaH showing 11 different communities. The size of the circle for each node is 
proportional to the number of residues in each community, and the line thickness 
represents the inter-community edge weights. The communities are colored as in Figure 
3.8a. c) Three communities especially relevant for the interdomain interactions are 
highlighted. 

	
 
3.5 Structural transformation with TMD: 

 The α-helical conformation of the CTD (α-CTD) in the full RfaH was targeted to 

map onto the β-barrel CTD (β-CTD) and vice versa using targeted MD. Several targeted 

MD simulations of length 10 ns were performed. Each simulation resulted in conversion 

to the desired target structure. A typical α-helix to β-barrel structural transformation 

process is shown in Figure 3.9, which shows snapshots of the protein conformation at 

various stages of the structural transformation. In general, the α-helix secondary structure 
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is lost by the mid-part of the simulation where the target RMSD has decreased by 50%. 

For the CTD, once the tertiary contacts with the NTD are lost as well as the CTD helicity, 

folding into the CTD β-structure begins to occur. By the end of the simulation, CTD β-

sheets are fully formed and arranged into the final β-barrel structure. The final structure 

was within 0.94 Å rmsd of the experimental structure (11). To confirm the stability of the 

transformed structure, I performed a 100 ns conventional MD and found that the β-

structure was very stable at 300K.  

 

Figure 3.9 Snapshots of RfaH conformations during TMD simulation for the α-CTD to β-
CTD conversion in the full RfaH. The N-terminal domain is shown as gray and the 
transforming C-terminal domain is highlighted in green. 

	
 I plot the time evolution of the secondary structure of the full RfaH in Figure 

3.10a from the TMD. The structural transformation of the CTD (residues 115-162) can be 

divided into two parts: helix-to-coil transition (approximately 2–5 ns), and coil-to-beta 

transition (approximately 6-9 ns). The total number of intradomain CTD hydrogen bonds 
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also follows this pattern, as shown in Figure 3.10b. Hydrogen bonds are calculated with a 

distance cut-off of 3.5 Å and an angle cut-off of 30°. As discussed later, the coil structure 

that is intermediate between the α-helix and β-barrel structure is in fact a collapsed 

globule state of the protein.  

 

Figure 3.10 Results from RfaH TMD simulations for the α-CTDà β-CTD structural 
conversion. The CTD is composed of residues 115-162. a) Time evolution of the 
secondary structure b) Time evolution of the number of intradomain hydrogen bonds in 
the CTD. The number of hydrogen bonds decreases as the CTD helices unfold (2-5 ns) 
but increases with the formation of the CTD β-structure (6-9 ns). 

 
3.5.1 Unfolding of the helix to the collapsed coil state 

 As shown in Figure 3.10a, the CTD begins to lose its Helix II helicity around 2 

ns. Interestingly, Helix I (residues 116-131) retains its structural integrity better than 

Helix II (residues 135-156). This result using the full RfaH is in contrast to previous 

computational results (95), (102) obtained for the isolated CTD. Simulations for the 
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isolated CTD showed faster unfolding of Helix I because of the absence of the 

interdomain tertiary interactions. On the basis of amino acid secondary structural 

propensity calculations, Balasco et al. (102) showed that Helix I has weaker stability as 

compared to Helix II, whereas the interdomain tertiary interactions with the NTD for both 

helices are comparable. Targeted MD results from the simulations of the full RfaH show 

that in the presence of the NTD interactions, the structural transformation proceeds 

through the pathway that rearranges the amino acids in Helix II first. I further explored 

this process with steered MD simulations, as discussed later. 

 As seen in Figure 3.10b, during the helix unfolding the number of hydrogen 

bonds decreases by ~70%. Although some residual hydrogen bonds are still present in the 

coil state (5-6 ns), the CTD helix secondary structure is completely lost by 5 ns (Figure 

3.10a). Initially, Helix II is stabilized by both CTD Helix I-Helix II interactions as well as 

the NTD-CTD inter-domain interactions during the structural conversion. Part of Helix II 

unravels to form a loop/turn at 2 ns, and then a transient 310-helix at 3 ns. The CTD inter-

helical contact is lost once Helix II is sufficiently destabilized. Key stages during the 

helix to coil conversion of the CTD are shown in Figure 3.11. 
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Figure 3.11 Conformations of the CTD at various stages of structural transformation 
during helix unfolding (top, left to right) and beta-folding (bottom, right to left).  

	
A closer examination of the CTD coil structure (5-6 ns) reveals that it has significant 

internal hydrophobic interactions, making it more like a molten-globule state than a 

random coil structure. This is also evidenced by only a small change in the solvent 

accessible surface area (SASA) calculated for the hydrophobic amino acids in the CTD 

(Figure 3.12, top). This hydrophobic collapsed state constitutes the intermediate structure 

that connects the CTD α-helix and β-barrel basins in the energy landscape. This result is 

in contrast to the observed mechanism for the structural transformation in the isolated 

CTD (95) in which the helices first unfolded to a random coil structure, followed by the 

folding into the β-barrel.  



	 46 

 

Figure 3.12 Solvent accessible surface area (SASA) calculated for the hydrophobic amino 
acids in the CTD (top-green) and at the CTD-NTD interface (bottom-red). 

 
3.5.2 Folding into the β-barrel 

 The structural rearrangement of the collapsed globule state of the CTD around 6 

ns in Figure 3.10a allows the formation of the first anti-parallel β-strands. At this point, 

the SASA for the CTD hydrophobic residues (Figure 3.12, top) increases slightly and 

then steadily decreases as the hydrophobic residues bury due to reorganization. The 

formation of the first anti-parallel β-strands also causes the SASA for the NTD-CTD 

interface residues (Figure 3.12, bottom) to increase due to increased exposure of the 

hydrophobic residues. During 7-8 ns, the middle two β-strands of the CTD, β2 (residues 

127-133) and β3 (residues 138-143) form first. This is followed by the alignment of β1 

(residues 115-117) with β2 as well as the alignment of β4 (residues 150-155) with β3. 

Finally, β5 (residues 160-161) forms and aligns with β1 to complete the β-barrel 
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structure. The above mentioned sequence of β-structure formation is consistent with 

observations by Li et al. (103) and Xiong et al. (10) through MD simulations.  

 To investigate the dynamics of the resulting RfaH β-CTD, I performed a 100-ns 

conventional MD simulation and found the β-structure of the CTD is stable at 300K. 

However, the absence of the interdomain contacts, combined with the flexible nature of 

the linker, allows large-scale diffusive motions of the β-CTD, which can be important for 

its function. In Figure S3, I plot the time evolution of the CTD-NTD center of mass 

separation distance (dcm), as well as the root-mean-squared distance (rmsd) from the 

starting structure during the 100 ns simulation and compared these with the results for the 

RfaH α-CTD.  The rmsd and dcm for the RfaH β-CTD shows significant fluctuations as 

compared to those of the RfaH α-CTD. As the linker segment undergoes large 

fluctuations, dcm tends to increase in the β-CTD whereas the dcm for the closed form α-

CTD remains constant due to CTD-NTD interactions. In addition, the rmsf for the NTD 

show that the residue fluctuations are comparable in the beta and alpha forms, suggesting 

that the NTD integrity is not significantly perturbed by domain dissociation. However, 

the intradomain network connectivity in the NTD changes significantly upon domain 

separation (Figure S2) (34) I also observed that when the E48-R138 interdomain salt-

bridge interaction breaks, E48 makes a different ionic interaction with R11 which is 

within the NTD, giving additional structural stability. This R11-E48 interaction was also 

observed in the 100-ns simulation of the RfaH in the α-CTD form when the E48-R138 

interaction is intermittently broken.  
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3.5.3 Dynamics of the interdomain contacts 

 The RfaH-CTD in the α-helical state is stabilized by interdomain contacts. I 

calculated the time-evolution of the fraction of native contacts (Q) of the NTD-CTD 

interfacial residues and CTD intradomain contacts and plotted the results in Figure 3.13a. 

Native contacts were defined as contacts between any heavy-atoms within 4 Å of 

distance in the native state configuration. The NTD-CTD interfacial native contacts are 

almost completely lost by 4 ns. Intradomain alpha CTD contacts are lost by 6 ns, at which 

time the native contacts for the CTD β-structure begin to form. Interestingly, some 

residue pairs that were part of the native intradomian contacts in the α-CTD were also 

part of the native intradomian contacts in β-CTD. Specifically, residue pairs G135-K139 

and A128-L141 were within a cutoff distance of ~4 Å in both the α-helix and β-structure 

of the CTD. Persistence of the hydrophobic contact between residues A128 and L141 is 

an interesting feature of the structure conversion.  

 One of the major interdomain interactions in the RfaH with α-CTD is the salt-

bridge interaction between E48 and R138. As shown in Figure S1 (34), alanine 

substitution at either E48 or R138 destabilizes this interdomain interaction. Similarly, 

E48S mutation increased the DDG by 0.82 kcal/mol. The alanine substitution is consistent 

with the experimental observation (11) that E48S mutation favored the dissociated state 

leading to the β-barrel structure of the CTD. Figure 3.13b shows the distance (Dr) 

between the anionic carboxylate oxygen of the E48 side chain and the cationic 

ammonium nitrogen of the R138 side chain. The distance Dr remains around 5Å until 3 

ns but increases steadily once the salt-bridge is broken. The time evolution of the 

interdomain contacts in Figure 3.13a shows a sharp decrease in Q around 4 ns, which is 
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when the salt-bridge interaction is completely broken. Therefore, the E48-R138 salt-

bridge is one of the last interdomain contacts that are still present during the structural 

transformation. This is explored further with SMD in the next section. 

 

Figure 3.13 a) Fraction of the native contacts Q at the NTD-CTD the interface (red), and 
intradomain for the CTD for α-CTD (green) and β-CTD (blue). b) Distance (Dr) between 
the E48 oxygen and the R138 nitrogen that are involved in the interdomain salt- bridge 
interaction. 

 
3.6 Potential of Mean Force Using ABF 

 To further investigate the αàβ structural transformation of the CTD in the full 

RfaH, I calculated the Potential of Mean Force (PMF) using the Adaptive Biasing Force 

(ABF) method implemented in NAMD, and display the results in Figure 3.14. In ABF 

method, a free-energy profile is computed using a thermodynamic integration scheme in 

which the biasing force is adapted continuously in the Hamiltonian until the system 

overcomes an energy barrier. The calculation of PMF using ABF method has proven to 
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be a very useful tool to investigate and explain protein interactions as well as dynamic 

pathways in a complex energy landscape (79), (80).  

 

Figure 3.14 PMF as a function of rmsd for the structural transformation of the RfaH-
CTD. 

	
 Figure 3.14 shows the calculated PMF with the root-mean-squared-deviation 

(rmsd) as the reaction co-ordinate. The rmsd is calculated using a starting reference 

structure that is obtained after a 100 ns equilibration simulation of the full RfaH with the 

alpha form of the CTD. Figure 3.14 shows that readjustment (AàC) of the residues at the 

CTD-NTD interface requires overcoming a large barrier B and ultimately leads the 

system to an especially low free-energy configuration at C. The deep basin at C 

corresponds to a structure that has subtle, but important changes in amino acid positions 

and interactions compared to the initial structure in A, which represents the native state 

basin. Specifically, a slight bending in the CTD Helix I allows its amino acid I118 to 

make a hydrophobic contact with the CTD tail residue V154 as shown in Figure 3.15a. 

Similarly, the NTD residue A91 makes a hydrophobic contact with the CTD tail residue 



	 51 

F159. This interaction also allows the CTD tail segment (residues 158-161) to align with 

the NTD-CTD linker segment (residues 110-113) in an antiparallel fashion. Both the 

linker segment and the CTD tail segment were parts of the segments that were added 

using Modeller and their interactions in this region seem to yield a more compact and 

stable structure.  

 

Figure 3.15 a) Snapshot of the structures corresponding to state A (left) and state C 
(right) showing the rearrangement of the hydrophobic residues in the CTD. b) 
Displacement of I93 of the NTD helix in state A (left) slightly exposes the hydrophobic 
core (right, state C). 

	
 The changes in structure from A to C in Figure 3.14, due to small rearrangements 

of the CTD may be functionally important. For RNAP binding to RfaH, the clamp helix 

known as β’ CH of the RNAP β-subunit binds to the RfaH NTD hydrophobic region 

composed of residues W4, Y54 and F56 (17) (Figure 3.15b). This binding of β’ CH is 

important for reducing the transcriptional pausing and excluding the RNAP binding of 
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NusG-NTD (11). In the native state (A of Figure 3.14 and the left side of Figure 3.15b), 

these hydrophobic residues interact with I93 of the NTD helix and form a completely 

buried hydrophobic core, which may not allow the β-subunit binding. However, in 

structure C (right side of Figure 3.15b), this NTD hydrophobic core is slightly exposed as 

the Y54-I93 interdomain hydrophobic contact is broken as I93 is pulled away by the CTD 

Helix II through a hydrophobic interaction with F126.   

 Figure 3.14 shows a large barrier separating states A and C and overcoming the 

large barrier at B is not possible merely because of thermal fluctuations, but requires 

assistance. It was suggested (17) that the ops element binding at another binding site 

(residues R16 and R73) in RfaH triggers the domain separation and subsequent binding 

of the RNAP. Consistent with the suggested mechanism, the minimum at C might 

constitute the structure that is accessible for RNAP binding. These structural changes 

present correlations with the functionally relevant structures, though I note that the 

allosteric changes caused by the ops binding may be different from the structural changes 

observed here under biasing forces.   

 The transition from C to D in Figure 3.14 involves another large barrier in the 

free-energy profile. The structure corresponding to the state D exhibits significant solvent 

exposure of the hydrophobic core residues at the RNAP binding site suggests that the 

RNAP β-subunit binding may facilitate the CàD transition and allow further domain 

separation. The complete domain separation occurs when the rmsd exceeds 6 Å, with a 

corresponding domain-domain distance of ~16 Å. Once the domains are separated, 

significant structural changes (Figure 3.14, Structures E, F, G) take place during the helix 

unfolding and beta-structure formation. The free-energy plot shows a rugged landscape, 
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as expected for the calculations with rmsd as a reaction coordinate (80). The β-structure 

formation occurs between rmsd 9 to 11 Å. The state E in Figure 3.14 corresponds to a 

structure that shows complete loss of the CTD helicity as well as the initiation of the 

antiparallel β-sheet. After overcoming a small free-energy barrier, β-structure formation 

is completed at state G. Most structures beyond state G are part of the native state basin 

of the β-CTD. 

 

3.7 Interdomain and CTD Interhelical Interactions Using SMD 

 To further investigate the NTD-CTD interdomain, as well as the CTD 

intradomain interactions, I performed Steered Molecular Dynamics (SMD) simulations 

on the full RfaH. Before applying the pulling force, the system was first equilibrated for 5 

ns in an NPT simulation in a long rectangular box with enough size to accommodate the 

pulling. The N-terminal Cα atom was held fixed and a dummy atom pulls the C-terminal 

atom Cα as the SMD atom for 10 ns, followed by another 10 ns without pulling to allow 

the molecular system to relax from mechanical stretching. The process was repeated until 

the SMD atom was close to the box edge, with a final end-to-end distance (94) of ~130 

Å. Thus, SMD simulations were performed for intervals (0-10, 20-30, 40-50, 60-70, 

80-90, 100-110, 120-130) ns with relaxation simulations in-between. The 

pulling/relaxation simulation is displayed in Movie S1 (34).  

 Figure 3.16 shows representative snapshots of various intermediate stages during 

the mechanical stretching. After the initial rearrangement of the CTD loop segment, the 

positions of the CTD helices as well as the NTD helix at the interface are affected around 

40 ns. Consistent with our description given above with respect to Figs. 3.14 and 3.15 
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and the ABF simulations, Figure 3.16 shows (40 ns) that the NTD helix initially moves 

together with the CTD helices, opening up the NTD hydrophobic pocket at the RNAP 

binding site (residues W4, Y54 and F56). After 45 ns of pulling (80 ns frame in Figure 

3.16), contacts between the CTD helices and the NTD helix weaken, which ultimately 

lead to the separation of the CTD from the NTD helix. As shown in Figure S5 (34), the 

SASA for the hydrophobic core opens up around 100 ns due to a slight movement of I93. 

 

Figure 3.16 Snapshots of protein conformations at 1 ns, 40 ns, 80 ns, and 120 ns from the 
SMD pulling and relaxation trajectory. 
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Figure 3.17 Various dynamic and structural parameters as a function of time during 
SMD: a) force profiles during pulling intervals, b) number of hydrogen bonds during 
SMD (red) and relaxation (blue) c) secondary structural conversion, and d) Distance (Dr) 
between the E48 oxygen and the R138 nitrogen. 
 
 The SMD simulation is set up so that the dummy atom (attached to the CTD Cα 

SMD atom) travels at constant velocity while being pulled requires a pulling force that 

varies in strength in response to the protein’s resistance. The helical form of the CTD is 

stabilized by interdomain interactions with the NTD, which include the E48-R138 salt-

bridge (involving the CTD Helix II) and other hydrophobic and hydrogen bond 

(involving both CTD helices). The force profile displayed in Figure 3.17a shows a 

general increase in the pulling force with time until a large drop at 80 ns. The force rises 

again, and another significant drop in force is observed around 90 ns that coincides with 

breaking of major interdomain interactions, including the E48-R138 salt-bridge and some 
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hydrogen bonds. Hydrogen bond analysis (Figure 3.17b) shows an initial increase in 

hydrogen bonds due to rearrangement of the CTD-tail segment (residues 158-162). 

Figure 3.17c displays the changes in secondary structure of all residues during the pulling 

and relaxation. At around 60 ns, a significant reduction in helicity is observed for the 

CTD Helix II, whereas Helix I is relatively unperturbed and retains most of its secondary 

structure. This is consistent with our results presented above in Figure 3.10. As shown in 

Figure S6 (34), the interdomain interacting hydrophobic residues F33-F130 separate in 

two stages. They begin to separate and become more exposed to the solvent (increasing 

solvent accessible surface area - SASA) around 80ns, which allows solvent molecules to 

penetrate the interfacial region, weakening the interdomain interactions (104) facilitates 

breaking of the E48-R138 salt-bridge interaction around 90 ns (increasing Δr in Figure 

3.17d) and increases the SASA of E48-R138 (Figure S6) (34). As the E48-R138 salt-

bridge breaks, the CTD moves far away from the NTD and the F33-F130 separate 

further, resulting in a larger SASA. 

 

3.8 Calculation of Potential Mean Force Using JE 

 I performed nine independent 60 ns SMD simulations (pulling only) to calculate 

the potential of mean force (PMF) using the Jarzynski equality, which relates the non-

equilibrium work done (W) with the PMF as 𝑒IJ∆K = 𝑒IJL  where, 	refers to the 

ensemble average. The free-energy profile can be obtained from  

∆𝐹 = 𝑊 − LO I L O

65P
     (3.8.1) 
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where k is the Boltzmann constant. The harmonic force applied to the virtual spring 

attached to the C-terminal Cα was integrated over the pulled distance to calculate the 

work done over the simulation time using 𝑊 = 𝑣	𝑓 𝑡 	𝑑𝑡P
S , where v is the pulling 

speed, f(t) is the force as a function of time, and v dt=dx is a small increment in the 

pulling distance. All nine simulations were used in eq. 3.8.1 to calculate the average and 

the standard deviation for calculating the free-energy profile. Figure 3.18 shows the 

resulting free-energy profile as a function of M1-CαàL162-Cα end-to-end distance, dee. 

State B at 40 Å (~15 ns) represents the native state minimum after the rearrangement of 

the 158-162 CTD tail segment residues from structure A, and before any structural 

changes occurred at the NTD-CTD interface. From B to C, the initial transient 

interactions of the tail segment with the NTD are broken, followed by the rugged energy 

landscape from state C to D representing multiple structural transitions. The minimum at 

D around 110 Å (~ 56 ns) corresponds to the structure in which the CTD is mostly 

detached but the E48-R138 salt-bridge is still intact.  The final, major barrier between D 

and E corresponds to breaking of the salt-bridge interaction. This is followed by the 

complete detachment of the CTD at E, where all interdomain contacts are lost. At this 

stage, the CTD-helices still retain their secondary structure as a helix-bundle. The PMF in 

Figure 3.18 calculated from SMD describes the results of the pulling simulations that are 

relevant for AFM experiments. 
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Figure 3.18 PMF as a function of end-to-end (Cα-Cα) distance between M1 and L162. 
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4. INTERDOMAIN SALT-BRIDGES IN THE EBOLA VIRUS PROTEIN VP40 

AND THEIR IMPORTANT ROLES 

4.1 Dynamical Analysis of the Closed-form Structure 

 MD simulations on the wild-type (WT) VP40 as well as on several mutants were 

performed to investigate the interdomain interactions that are important in stabilizing the 

closed-form structure, the sequence of steps that allow the CTD to disengage from the 

NTD, and the interactions that facilitate domain-domain association into the closed form. 

The effects of the removal of some important salt-bridges that were identified 

computationally were further investigated experimentally by live cell imaging. 

 In many proteins, the CTD-tail segment interactions affect the protein 

conformational dynamics and play important functional roles (105-108). Though not 

resolved in the x-ray crystal structure, the VP40 CTD-tail segment (residues 320-326) 

has been shown to be important for regulating oligomerization. This is evidenced by the 

fact that the removal of the CTD-tail segment leads to spontaneous oligomerization of 

VP40 and membrane binding in vitro (109). This is further supported by the observation 

that the VP40 in its closed-form is stabilized by latch-like interactions between an 

unstructured region of the N-terminal domain and the C-terminal tail region(110). In 

order to investigate the NTD-CTD interactions involving the CTD-tail segment, I 

modeled this segment by inserting the missing residues 320-326. The modeled CTD-tail 

segment in the closed-form structure was a random coil structure with no contacts with 

the NTD. Starting from this conformation, I performed eight independent MD 

simulations for 50 ns each (total of 400 ns) and monitored the CTD-tail interactions with 

the NTD. I observed the latch-like interactions with the NTD via a hydrophobic patch as 
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well as the D45-K326 salt-bridge interaction in four of the eight simulations. Figure S1  

(111) displays the representative trajectories that show the formation of the latch. The 

interdomain contacts involved in the latch are highlighted in Figure S2 (111). Once 

formed, the latch is stable for several nanoseconds (~3 to 30 ns) before breaking. The 

flexibility of the CTD tail segment resulting from the transient stability allows the 

separation of the CTD from the NTD, as required for higher order oligomerization of the 

VP40 dimers. In addition, membrane association may make it easier for the latch to 

release(110) to facilitate the VP40 hexamerization in the membrane. 

 In order to explore the interdomain as well as intra-domain interactions and 

residue-residue contacts, I used 10 ns of the trajectory from the region with the intact 

latch and calculated a contact map for the VP40 structure using Carma (112). Figure 4.1a 

shows the resulting contact map obtained with a distance cut-off of 5 Å. Residues 44-201 

belong to the NTD and residues 202-326 belong to the CTD. The lower right block 

displays the interdomain contacts. This contact map allows us to identify all interdomain 

interactions and in this paper, I focus on interdomain salt-bridges and hydrophobic 

interactions. Salt-bridge interactions were identified with a cut-off distance of 4 Å and are 

shown in Figure 4.1b. A total of five interdomain salt-bridge interactions were obtained: 

D45-K326, D56-K256, E76-K291, R148-D312, and E160-K212. As discussed later, the 

D45-K326 salt-bridge is important in guiding domain association for the open- to closed-

form structure. 
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Figure 4.1 (a) Amino acid contact map of the VP40 protomer. The blue regions (<5Å) in 
the lower right block display the NTD-CTD interdomain contacts within 5Å distance (b) 
VP40 inter-domain salt-bridges. Red are negatively charged amino acids and blue are 
positively charged. 

 
4.2 Forced pulling and Dissociation of Domains 

 I used Steered Molecular Dynamics (SMD) to investigate the relative strengths of 

interdomain interactions by pulling the center of mass of the C-terminal domain (CTD) 

away from the harmonically restrained N-terminal domain. For SMD simulations, the last 

frame of the 5-ns equilibrium NVT simulation was taken as the initial structure and 

solvated again in a larger rectangular box to allow room for extension. In order to focus 

on the relative motion of the NTD and the CTD, translation and rotation was prevented 

by harmonically restraining the protein during heating and equilibration. After that, the 

NTD was kept harmonically restrained and the center of mass of the CTD was pulled 

away from the NTD using SMD. The protein was aligned so that the NTD-CTD interface 

is approximately perpendicular to the pulling direction (-x). Stages in the resulting 

domain separation due to the SMD pulling are shown in Figure 4.2. 
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Figure 4.2 Domain separation during the SMD simulation in which the CTD (circled) is 
pulled away from the NTD. Residues D45 and K326 that participate in the interdomain 
salt-bridge are highlighted. This salt-bridge that participates in the latch remains intact for 
20 ns and restricts CTD-NTD relative reorientation even when the domains are well 
separated. 

	
 I performed seven 25-ns SMD simulations and averaged the force profiles for 

pulling the CTD center of mass away from the harmonically restrained NTD. During the 

initial stage of pulling, the SMD force continuously increase because all NTD-CTD 

interactions are intact and undergoing stress as shown in Figure S3 (111) . I monitored 

the interdomain interactions during the pulling for a representative trajectory and the 

results are displayed in Figure 4.3.  Figure 4.3a shows the SMD force necessary to move 

the center of mass of the CTD at a constant speed of 2 Å/ns as it disengages from the 

NTD. The SMD force curve initially increases and reaches a peak of 700 pN around 4 ns 
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(region A in Figure 4.3a) and then suddenly drops to approximately 300 pN. Just before 

this sharp drop in the SMD force, the solvent accessible surface area (SASA) at the 

interface of the NTD and CTD suddenly increases (Figure 4.3c) by 800 Å2, suggesting 

the separation of the interdomain hydrophobic interface and the exposure of hydrophobic 

residues to water. This may be precipitated by the breaking of hydrogen bonds (Figure 

4.3b) and the breaking of the R148-D312 salt-bridge (Figure 4.3d) that occur at 

approximately 1.5 ns. In addition, two other salt-bridges, D56-K256 and E76-K291, are 

each stretched and weakened before 1.5 ns. Thus, it appears that the weakening of 

specific salt-bridges and hydrogen bonds permits enough flexibility to allow water to 

enter into the hydrophobic domain-domain interface.   

 

Figure 4.3 a) SMD force necessary to keep the CTD moving at constant speed away from 
the NTD (gray curve: full data, red curve: time averaged data with 200 ps windows) b) 
Time evolution of the number of hydrogen bonds in the interface, c) solvent accessible 
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surface area (SASA) of hydrophobic residues at the NTD-CTD interface, d) various 
interfacial salt-bridges distance. 

	
 Once the hydrophobic interactions begin to be disrupted, the SASA increases 

rapidly and the rest of the hydrophobic interactions are disrupted. This allows the 

domains to further separate, and additional hydrogen bonds are broken (region B in 

Figure 4.3b). Separation of the domains becomes easier, the SASA increases and the 

D56-K256 and E76-K291 salt-bridges in the interface are fully broken by 8 ns. This 

sequence of bond disruption is consistent with the work of Bhaskara (113) and 

Waldburger (114) who emphasize the importance of hydrophobic interactions in 

stabilizing proteins. The NTD residues 72, 74, 95, 97, 125, 132, 156, 161, 162, 186, 187, 

189, 191 and the CTD residues 283-286, 288-290, 293, 295, 317, 322, 323 form a strong 

hydrophobic interface. As shown in Figure 4.4a, at 0 ns the interface is tightly packed and 

provides little access to water, By 4 ns (Figure 4.4b), the domains have begun to separate 

and gaps open at the hydrophobic interface, exposing SASA as quantified in Figure 4.3c. 

The SASA averaged over seven different trajectories in Figure S3 (111) also shows the 

same general trend.  
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Figure 4.4 Hydrophobic residues at the domain-domain interface. (a) Initial closed-form. 
(b) After the domains begin to separate (~4 ns), gaps open at the hydrophobic interface, 
exposing SASA as quantified in Figure 4.3c. 

	
 After 8 ns, the few remaining interdomain hydrogen bonds are broken (BàC in 

Figure 4.3b). Though the domains are always connected by the linker segment, after 10 

ns, the only other interaction between the domains is the D45-K326 salt-bridge. Residue 

K326 is at the end of the flexible tail of the CTD. As the CTD separates from the NTD, 

this salt-bridge remains fully intact and acts as a connecting latch until 20 ns (region D in 

Figure 4.3b) as displayed in Figure 4.2. I will show later that the extended latch-like D45-

K326 salt-bridge facilitates association of the separated domains into the closed-form 

structure. 

 
4.3 Salt-bridges and the interdomain stability 

 In order to understand the role of specific interaction in stabilizing the closed-

form structure, I mutated several important residues and pulled the CTD until the CTD is 

disengaged from the NTD. Figure 4.5 shows for different mutants, the force necessary to 

pull the CTD away from the NTD at constant speed. Since I was only interested in 
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interdomain interactions, I pulled the CTD at a speed of 5 Å/ns for 4 ns and stopped after 

the interface begins to open. For each mutant, 10 similar runs were performed and the 

average force profile was calculated and displayed in Figure 4.5a. Although the 

differences are small, the force profile for the WT generally shows more resistance to 

pulling compared to the mutants. The K291E mutation removes the 76-291 salt-bridge 

that is present in the WT, and as seen in Figure 4.5a, results in less force required to 

separate the domains. This shows that the K291 salt-bridge is important in stabilizing the 

closed-form structure. The comparison of hydrogen bonds in the WT and K291E as a 

function of time during SMD is displayed in Figure 4.5b. The number of hydrogen bonds 

is reduced by half in the initial state of the mutant, also weakening the domain-domain 

interactions and contributing to the destabilization of the closed-form structure.  
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Figure 4.5 (a) Force required for separating the CTD away from the NTD at constant 
speed for the WT and different mutants. (b) The K291E mutation prevents formation of 
the 76-291 salt-bridge and also decreases the number of interdomain hydrogen bonds, 
further destabilizing the closed-form structure. 

	
 The D312R mutation removes the R148-D312 salt-bridge found in the WT. 

Removal of the 148-312 salt-bridge weakens the domain interface and reduces the force 

necessary to separate the domains (Figure 4.5a) compared to the WT.  Another salt-

bridge, D56-K256, is buried and is not a major contributor to interdomain stability (114). 

Upon alanine mutation K256A, which removes this salt-bridge, there is little change 

compared to the WT in the amount of force necessary to separate the domains, as shown 

in Figure 4.5a.  
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4.4 VP40 mutant cellular localization analysis 

 The effects of some mutations in the salt-bridge network were assessed in live 

HEK293 cells using an established EGFP-tagged VP40 system (115). The mutants 

assessed included D45K, R148A, E160A, and K291E, which should abrogate the 

aforementioned salt-bridges, as well as a control K90A. Lys90 was not shown to 

participate in interdomain salt-bridges and previously was shown to form virus like 

particles (VLPs) and localize to the plasma membrane inner leaflet, similar to WT 

VP40(116) in CHO-K1 cells. EGFP-VP40 localized to the PM with characteristic high 

intensity membrane protrusions (Figure 4.6a) (115), (116). Further quantification using a 

MATLAB script revealed that K291E increased the %PM localization of VP40 by ~20% 

(P<0.07) compared to the WT (Figure 4.6). These results suggest that removing the 76-

291 salt-bridge may alter the time scale of VP40 structural transitions but without 

impairing the important interdomain associative forces likely provided by other salt-

bridge and hydrophobic interactions. The D45K had a similar PM localization as K291E. 

It is important to note that the p-value for these measurements was >0.05. Because these 

experiments are done at high concentrations of VP40 at a significant timeframe post-

transfection, time-dependent assays may be needed to detect the time dependent changes 

of the VP40 assembly to better assess the statistical significance of each mutation on 

plasma membrane localization and oligomerization. 
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Figure 4.6 Cellular localization and VLP analysis of interdomain NTD-CTD salt-bridge 
mutants. (a) Representative images of VP40-EGFP constructs imaged 18-24 hours post 
transfection into HEK293 cells. All images were acquired with a zoom of 8.0, therefore 
the frame size is 20 µm and equivalent for all images.  (b) Average plasma membrane 
localization for each construct. Image analysis was performed in MATLAB to determine 
the %PM localization for each.  Error bars are ± the standard error of the mean. At least 
28 cells were imaged per construct over three independent experiments on three different 
days. (c) Representative blots of VP40 and respective mutations in VLPs (top panel) or 
cell lysates (middle panel) or GADPH from cell lysates (bottom panel). (d) WT-VP40 
VLP formation was set at 1 and each mutant was compared to WT-VP40 as fraction a of 
VLP formation. The bars represent the averages ± standard errors of the means for three 
independent experiments quantified using ImageJ. P-values for mutations were 0.002 for 
D45K, 0.001 for R148A, and 0.004 for E160A.  K90A and K291E P-values were not 
statistically significant. 

	
 R148A or E160A did not contribute significantly to changes in PM localization. 

As R148-D312 was the first salt-bridge to break in the domain separation simulation, 

R148 likely plays a lesser role in mediating domain separation. As expected, K90A 

appeared similar to WT and exhibited plasma membrane localization albeit slightly less 
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than WT. As a whole, this live cell mutational analysis illustrates the differential 

functions of salt-bridge networks in VP40 conformational regulation and opens the door 

to large-scale cellular and in vitro analysis of VP40 conformational dynamics. 

 PM localization alone is not necessarily indicative of the oligomerization state of 

VP40 where hexamers and larger oligomers have been detected (117), (115), (118), 

(116).  Thus, I monitored VP40 oligomerization state of EGFP-VP40 and respective 

mutations using N&B analysis as previously reported (117), (115), (118), (116).  EGFP-

VP40 and all mutations employed exhibited a similar extent of oligomerization (111) 18-

24 hours after transfection suggesting mutations still permit assembly of VP40 in some 

fashion. However, the extent and type of oligomerization is difficult to discern with this 

technique, as N&B measures the size of oligomers based upon the assembly of each 

additional EGFP containing monomer.  Thus, N&B is not able to decipher between a 

VP40 filament that provides the structure for viral egress and a filament that may be 

slightly twisted or less rigid based upon salt-bridge changes.  

 To determine if any of the VP40 salt-bridge mutations identified here influenced 

VLP formation, I measured VLP formation for WT and respective mutations using a 

VP40 antibody.  VLPs were collected and measured 48 hours post-transfection using cell 

lysate expression of VP40 and GAPDH (total protein/cell content) as a control for each 

construct.  Notably, several salt-bridge mutations had a statistically significant effect on 

VLP formation.  D45K, R148A, and E160A all reduced VLP formation while K291E had 

a similar amount of VLPs as WT VP40.  K90A showed a slight reduction in VLP 

formation but statistical analysis demonstrated this reduction was not statistically 
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significant.  Thus, despite a similar level of PM localization and oligomerization, 

disruption of the D45-K326, R148-D312, or E160-K212 salt-bridges reduced VLP 

formation suggesting these interactions have an important role in formation of VP40 

structural assemblies that mediate efficient VLP formation.  Notably, previous mutation 

of K212 reduced VLP formation (119) by ~40%, further supporting the conclusions in 

this study. 

 

4.5 The Role of Salt-Bridges in Domain association  

 The various functions of VP40 require that the NTD and CTD domains be able to 

exist in both a closed, associated form as well as an open, dissociated form. In both the 

closed and open forms, a flexible segment consisting of residues 187-201 links the 

domains (120). In general, multidomain proteins fold to the functional states by 

association of already folded domains (121). The rate-limiting step for the complete 

folding is often the correct matching of the domains at the interface, similar to protein-

protein association of structured proteins that is generally “diffusion-limited” (122), 

(123), (124), (125). Dissociated domains that are connected only with a flexible linker 

will have both rotational and translational degrees of conformational freedom and the 

linker flexibility provides a large entropic barrier for correct interface matching. VP40 

seems to have reduced this problem by introducing a second interdomain interaction to 

guide the domain association by using a handshake-like latch interaction of the CTD tail 

with a NTD flexible segment via the D45-K326 salt-bridge. The flexible nature of both 

the long CTD tail ending in K326 and the unstructured NTD segment containing the 

residue D45 increases the probability that these residues will interact in the open-form of 
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VP40 and form a salt-bridge. This interdomain salt-bridge handshake, along with the 

linker segment, reduces the number of possible relative orientations of the two domains 

as they approach and provides specificity for domain association. This increases the 

probability for a productive encounter that results in successful association of the CTD 

and the NTD. This is akin to the binding mechanism of flexible, structurally disordered 

proteins.(126),(127),(128) The contact of the CTD tail section with a loop in the NTD is 

stabilized by both the D45-K326 salt-bridge as well as hydrophobic interactions between 

the CTD-tail amino acids and amino acids in the NTD loop.  

 The initial structure for the association runs, displayed in Figure 4.7a was taken 

from a frame in the SMD dissociation simulation in which the domains were separated. 

This dissociated structure contained the latch-like CTD (tail)-NTD (loop) hydrophobic 

interactions and the D45-K326 salt-bridge as shown in Figure S2. Even with the intact 

latch-like interaction, the timescales for domain association may still be greater than 

microseconds. In order to achieve domain association in a reasonable computational time, 

the initial separated structure was carefully chosen so that the residues in the flexible 

linker segment were minimally perturbed. Furthermore, only the 15 residues in the linker 

segment (residues 187-201) and the last seven residues (320-326) in the CTD tail were 

allowed to be fully flexible and all other residues in both domains were harmonically 

restrained.   Figure 4.7b displays the final frame of the association run at 100 ns, along 

with the superimposed native structure of the closed-form as a reference to display the 

good similarity. The associated structure was within 2.6Å rmsd compared to the native 

structure. The time course of the distance dcm between the center-of-mass (cm) of the 

NTD and the cm of the CTD in Figure 4.7c gives the approximate time of association. At 
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approximately 12 ns, the distance is ~25 Å, which is the NTD(cm)-CTD(cm) distance in 

the WT VP40.  

 

Figure 4.7 (a) Initial structure of the open-form of the VP40 used in the association MD 
simulations. (b) The final closed-formed structure at the end of the 100-ns association 
simulation, along with the PDB structure of the closed-form for reference. (c) Separation 
between the NTD center of mass (cm) and the CTD cm. The horizontal line at 
approximately 25Å represents the cm separation in the WT. (d) Time course of the 
separation between the amino acids that make each of the three important salt-bridges 
during domain-domain association. 

	
 I investigated the role played by the three salt-bridges that I found to be especially 

important in domain association or in stabilizing the closed-form: R148-D312, E76-K291 

and D45-K326. Figure S4 (109) shows that initially in the dissociated form, only the 

D45-K326 salt-bridge is intact to guide the early stages of association.  During the 

association, the D45-K326 salt-bridge is broken, but the E76-K291 and R148-D312 salt-

bridges have formed to finalize association and stabilize the closed-form structure. 
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 More detailed information of the time course of these three salt-bridges is given in 

Figure 4.7d. The D45-K326 salt-bridge provides initial specificity for association when 

the domains are fully separated and starting to approach each other. This D45-K326 salt-

bridge breaks at 4 ns, which from Figure 4.7a is at a stage in which the domains are 

almost in contact, but still separated by 4Å compared to the fully associated 

conformation. At this stage, the domains are close enough that the other two salt-bridges, 

E76-K291 and R148-D312, have already started to form. These two salt-bridges are 

critical for guiding the domains during the middle stage of the association process after 

the D45-K326 salt-bridge has broken, but before short range interdomain interactions are 

active. For the CTD, I computed the average Cα rmsf when the latch with the D45-K326 

salt-bridge was intact, and compared it to the rmsf of the CTD in when the latch is 

broken. As can be seen in Figure S5 (111), the rmsf values of the CTD residues that are at 

the domain interface are smaller and therefore the CTD is more constrained when the 

CTD tail makes the salt-bridge with the NTD loop.  

 The importance of other interactions in the association process was studied by 

comparing the SASA during dissociation and association as displayed in Figure S6 (ref. 

(111)). The SASA during the association begins to significantly drop around 8 ns, which 

is well after the D45-K326 guiding salt-bridge has broken. At 8 ns, the domains are very 

near each other but not yet fully associated. Therefore, as expected for the short-range 

hydrophobic interactions, they are helpful for guiding the final stages of association and 

are important for stabilizing the closed-form structure. The guidance from hydrogen 

bonds and hydrophobic interactions only at the latter stages of association highlights the 

importance of salt-bridges in the early and intermediate stages of the association process.   
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5. THE VP40 DIMER AND HEXAMER INTERACTIONS WITH THE PM  

5.1 Association of VP40 Dimer with the PM 

 A recent study revealed that the binding of the human antibody HuScFv inhibited 

egress of Ebola VLPs from mammalian cells. One of the predicted interfaces between the 

antibodies and eVP40 was the shorter helix (H1) (residues 265-272) in the c-terminal 

domain (CTD) (129), suggesting that the shorter helix H1 plays a critical role in the 

Ebola virus life cycle. Investigations on other systems have shown that helices can 

mediate interactions between a protein and a membrane. Prakash et. al. (130) performed 

AAMD simulations that showed that the oncogenic mutant K-Ras interacts with anionic 

lipids with a preferred helix orientation that was parallel to the PM. Another study 

pointed out the important role of a CTD α-helix in the binding of the heterodimer actin-

capping protein (CP) to a membrane (131). Combined molecular dynamics and 

experimental studies (132) on the peripheral membrane protein Osh4 in yeast 

Saccharomyces cerevisiae revealed a membrane binding region, an amphipathic lipid 

packing sensor (ALPS)-like motif consisting of a helix, with a major role in stabilizing 

the protein membrane interactions.  In this work, I sought to understand the role of helix 

H1 and other residues in the binding of the eVP40 dimer with the PM using all-atom 

molecular dynamics (AAMD) simulations. To elucidate the atomic-level details of the 

association mechanism of eVP40 with the plasma membrane, I performed simulations 

with membranes consisting of different combinations of POPS, PI(4,5)P2 (i.e. PIP2), and 

POPI lipids. I found that lysine residues in loop regions of the dimer play an important 

role in the association process and interact with select lipids in the PM. The eVP40 dimer 
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easily associated with a PM consisting of anionic lipids POPS, POPI, and PIP2. Our 

results also showed that after the initial association, the H1 α-helix that is in contact with 

the membrane can reorient itself so that it is aligned parallel to the PM. This parallel 

orientation can then facilitate oligomerization into hexamers that can change the shape of 

the membrane. In contrast, for a membrane without POPS, POPI, or PIP2, the dimer is 

only transiently attached to the PM and in an orientation that does not encourage 

hexamerization.  

 Figure 5.1 below illustrates the eVP40 dimer. Residues that have been 

experimentally suggested as important for interactions with the PM (K224, K225, K270, 

K274, K275) are colored in blue. The CTD helix H1 on each monomer consisting of 

residues 265-272 is colored in red and I investigated its alignment with respect to the 

membrane. In addition to these residues, our MD study revealed that polar residues 

colored in green and lysine residues K221 and K236 are also important in the formation 

of the eVP40-PM complex. Chemical interventions that perturb the above mentioned 

orientation of the eVP40 dimer relative to the PM might disrupt VLP formation. 
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Figure 5.1 The eVP40 dimer with the H1 helices on each monomer highlighted in red. 
Lysine residues that are important in associating with the PM are colored in blue and 
important polar residues are colored in green. 

	
 For the POPS/POPI and the POPS/PIP2 systems, the MD results agree with the 

previous experimental result (12) that suggested the strong electrostatic interactions 

between the positively charged lysine residues of the eVP40 dimer and negatively 

charged head groups of the PM are the major force in binding the eVP40 dimer to the 

PM. Figure 5.2 below displays snapshots of the time evolution of the systems. Figure 5.2 

shows the initial and configurations of the dimer relative to the membrane for membrane 

systems a) POPS/POPI b) POPS/PIP2 and c) no POPS/POPI/PIP2. Initially, the eVP40 

dimer was placed ~10Å below the lower leaflet of the PM so that at t=0 ns there are only 

weak interactions between the protein and the membrane. Figure 5.2a and 5.2b shows the 

orientation of the dimer when it has associated with the membranes containing 

POPS/POPI and POPS/PIP2 respectively. Supplemental movie S1 (148) shows the dimer 

approaching and associating with the membrane. Important lysine residues on the dimer 

and important POPS and POPI lipid molecules in the membrane are highlighted, and 
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discussed below. In contrast, Figure 5.2c shows the orientation of the dimer when it has 

weakly associated with the membrane containing no POPS/POPI/PIP2. Supplemental 

movie S2 (148) shows the dimer approaching the membrane with no POPS/POPI/PIP2 

and weakly associating at one end in the configuration depicted in Figure 5.2c. 

 

Figure 5.2 MD Snapshots of the eVP40 dimer and plasma membrane show the initial and 
final configurations of the dimer relative to the membrane for membrane systems a) 
POPS/POPI  b) POPS/PIP2 and c) no POPS/POPI/PIP2 

 
5.1.1 eVP40-PM association kinetics 

 In order to investigate the atomic-level details of the association process, I 

calculated the time dependence of two different parameters as displayed in Figure 5.3 that 

provide information on the approach of the dimer towards the membrane. The parameter 

dcm represents the separation distance between the center-of-mass (cm) of the dimer and 
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the membrane. The Cα atoms in eVP40 were used to calculate the cm of the dimer, and 

the phosphorous (P) atoms in the lower leaflet of the PM were used to calculate the cm of 

the membrane. Initially, dcm ~40Å, which is equivalent to a separation of ~10Å between 

the membrane and the nearest atoms of the dimer. For the systems with membranes 

containing POPS/POPI or POPS/PIP2, dcm decreased by approximately 10Å during the 

first 20 ns of the MD simulation as the dimer approached the membrane. Once the dimer 

associated with the membrane in the orientation shown in Figure 5.2a and 5.2b, dcm 

remained stable at ~30Å. In contrast, the system containing the membrane without 

POPS/POPI/PIP2 had a dcm that never decreased. The orientation of the dimer shown in 

Figure 5.2c requires the dimer to rotate significantly compared to its original orientation. 

This rotation occurs over 60ns and moves the cm of the dimer farther from the 

membrane, which explains why dcm increases for this system. Similar, timescales are 

displayed in Figure 5.3b, which shows small-scale rearrangement of atoms in the dimer 

due to interactions with the membrane. Figure 5.3b shows the root-mean-square-

difference (rmsd) in position, compared to their initial position after minimization, 

averaged over all Cα in the dimer, as a function of time. The protein rmsd is calculated 

with rotations and translations subtracted out. For the systems with membranes 

containing POPS/POPI or POPS/PIP2, the rmsd underwent major changes in the first 20 

ns. For the system with the membrane without POPS/POPI/PIP2, the rmsd changed more 

gradually and stabilized after 60 ns.  
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Figure 5.3. MD timescales for association of the eVP40 dimer with the plasma 
membrane. a) The parameter dcm represents the separation distance between the center-
of-mass of the Cα atoms in eVP40 and the P atoms in the lower leaflet of the PM. b) For 
the dimer, the rmsd averaged over all Cα as a function of time. Translations and rotations 
of the dimer are subtracted out. 

	
The association of the dimer with the membrane involves interactions of lysine 

residues in the loop segments with specific lipids in the PM. I discuss the details of these 

interactions in the next section. After that section, I discuss additional binding involving 

the H1 helix, which occurs on longer time-scales. The information on the H1 helix re-

orientation discussed later is derived from an 850 ns simulation that I performed on the 

system with POPS/POPI.  

 

5.1.2 eVP40-PM interactions 

 As hypothesized experimentally (12), I found that the association of the eVP40 

dimer with the PM was dominated by electrostatic interactions. The initial docking was 

primarily due to the interaction of positively charged lysine residues in the CTD loop 

regions with the anionic heads of POPS, POPI, and PIP2 lipids in the membrane. This is 

followed by the interaction of other residues in the CTD with the membrane. The number 
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of hydrogen bonds between eVP40 and the PM as a function of time are plotted in Figure 

5.4. For the strongly associating POPS/POPI and POPS/PIP2 systems, during the first 20 

ns there was a sharp increase in the number of hydrogen bonds. The weakly associating 

no POPS/PIPI/PIP2 system makes few hydrogen bonds. Our results on the protein-

membrane bonding are consistent with the work on the peripheral membrane protein 

Osh4 in yeast Saccharomyces cerevisiae that showed hydrogen bonded interactions 

between protein and anionic lipids POPS/POPI stabilized the protein membrane complex. 

 

Figure 5.4. The time evolution of the number of hydrogen bonds between the eVP40 
dimer and the PM. 

	
 There is strong electrostatic binding of the dimer with the membrane for the 

systems with POPS/POPI and POPS/PIP2. The attractive interaction energy between the 

protein and PM is almost two-fold stronger when the dimer is associated with the 

membrane containing POPS/PIP2 compared to when the dimer is associated with the 

POPS/POPI membrane. In the absence of these anionic lipids (system without 

POPS/POPI/PIP2), the system displays very little interaction energy, which implies that 
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the dimer is barely associated with the membrane. The selectivity of the dimer for 

interacting with POPS, POPI, or PIP2 lipid molecules is explored in the next section. 

 

5.1.3 Protein-lipid selectivity 

 Figure 5.5 displays the selectivity of the eVP40 dimer for different lipid types. 

Specifically, Figure 5.5 depicts the number of heavy atoms of lipids within 3.5 Å of any 

atom of the eVP40 dimer. The number of contact of POPS lipid atoms with the eVP40 

dimer in Figure 5.5b increases as the eVP40 dimer approaches the PM in the system with 

POPS/POPI. The increase is sharp during the first 20 ns as the dimer approaches the 

membrane, and then increases more slowly until 100 ns as the dimer undergoes small-

scale structural rearrangements in loop segments and helix H1.  This agrees with the 

experimental result that eVP40 selectively binds with the POPS lipids in the PM (133) 

(109), (118), (115). In the absence of anionic lipids (no POPS/POPI/PIP2), there was little 

selectivity of lipid molecules, as shown in Figure 5.5a. The eVP40 dimer displays the 

highest preference for the highly negatively-charged (-4) PIP2 molecules, as shown in 

Figure 5.5c. The strong contacts between the dimer and PIP2 molecules reduce the 

number of contact with other lipids such as POPS. This is consistent with the 

experimental work of Johnson et al. (118) which highlighted PIP2 lipids that are crucial 

for eVP40 oligomerization, and also consistent with our coarse-grained MD study that 

observed enhanced selectivity of the dimer for PIP2 lipids in the presence of a VP40 

hexamer (134). Similarly, MD studies (135), (136) on membrane interactions of the 

auxilin-1 Phosphatase and Tensin Homolog (PTEN) have reported nanoclustering of PIP2 

lipids, which enhances the binding of auxilin to the lipid bilayer.  
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Figure 5.5 The number of heavy atoms in molecules of different lipid atoms within 3.5Å 
of the dimer for different membranes. a) Without POPS/POPI/PIP2, b) With POPS/POPI, 
c) with POPS/PIP2. Color scheme: blue-POPC, magenta-POPE, cyan-PSM, yellow-CHL. 

	
 I found that flexible loop regions of the dimer that contain positively charged 

lysine residues were especially important for interacting with the anionic POPS, POPI, or 

PIP2 molecules. This is shown in Figure 5.6, which is a snapshot from the MD simulation 

with the POPS/PIP2 membrane. Figure 5.6 shows that flexible loop regions in each 

monomer that contain positively charged lysine residues make strong contacts with 

regions of the membrane containing high concentrations of PIP2 molecules. The 

dynamics of these flexible loop regions are investigated in the next section. 
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Figure 5.6 A snapshot from the MD simulation with the POPS/PIP2 membrane showing 
that loop regions (orange) in the dimer that contain positively charged lysine residues 
interact strongly with negatively charged PIP2 molecules (blue). 

 
5.2 Conformational changes in the VP40 Dimer due to the PM Binding 

 To further understand the eVP40-PM association dynamics and complex stability, 

I continued our simulation system with POPS/POPI until 850ns. I explored the dynamics 

of the loop residues in the eVP40 dimer when interacting with the PM.  The two loops are 

labelled as Loop-1 and Loop-2 as shown in Figure 5.7a. Loop-1 consists of residues 219-

233 and includes two important lysine residues, K224 and K225.  Loop-2 includes 

residues 274-283 and contains two important lysine residues, K274 and K275. 

Experimental studies found that deletion of these loop residues hindered VLP formation 

(12). Our MD investigations studied the difference in the flexibility of these loops during 

the dimer-PM association.  

 The positively charged lysine residues on Loop-1 and Loop-2 interact with 

negatively charged POPS and POPI molecules in the membrane. Despite the relatively 
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small fraction of POPS and POPI in the membrane (26%, Table S2), the eVP40 dimer 

manages to increase the probability of occurrence of favorable interactions between the 

protein and the membrane. During the initial association process in the first 50 ns, the 

rmsf is much larger than at later times. Therefore, as the dimer approaches the PM, the 

loops are flexible enough to allow lysine residues some freedom to be attracted to anionic 

lipid molecules. As shown in Figure 5.7b and 5.7c, the rmsf of the Cα atoms of the CTDs 

of chain A and chain B decrease after they interact with the PM. Thus, once the dimer is 

in contact with the PM, the loops regions become relatively fixed in place, which helps to 

maintain strong interactions of the dimer in the membrane. 

 

Figure 5.7 a) Two important loop regions in the eVP40 dimer that contain lysine residues 
that interact with the PM (Loop-1, residues 219-233 and Loop-2, residues 274-283) b) 
RMSF of the Cα atoms of the CTDs of the eVP40 dimer; the higher dashed bar 
represents Loop-1, and the shorter represents Loop-2. 

	
5.3 Orientation of CTD helices in VP40 Dimer  

 The eVP40 dimer has an α-helix (H1) in each CTD (colored red in Figure 5.1) 

that can interact with the PM. Investigations on other systems have shown that helices 

can mediate interactions between a protein and a membrane (130), (131), (132). Here, I 

investigated the behavior of the eVP40 dimer’s helices upon membrane association.  
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 In the 850 ns simulation trajectory of the POPS/POPI system, I monitored the 

orientation of the H1 helices in each CTD of the dimer. The orientation of a helix with 

respect to the membrane is given by the tilt-angle ψ. The tilt-angle ψ is calculated as 

ψ≡(90 - q), where the complimentary angle q is the angle between the normal of the 

PM’s lower leaflet and the vector along the helix. A parallel orientation of the helix with 

respect to the inner leaflet of the membrane would have ψ=0. Figure 5.8a displays frames 

with the CTD helices (colored red) in various orientations. Figure 5.8b shows that over a 

period of 850 ns, the H1 helices in both Chain A and Chain B reorient themselves to 

approach a parallel orientation.  

 

 

Figure 5.8 Orientation of the CTD helices (red) with respect to the membrane. a) MD 
frames showing the helices in various orientations at different times. b) Helix-tilt angle 
for the helix relative to the membrane. During the 850 ns MD simulation, helices in both 
Chain A and Chain B reorient themselves to approach an orientation parallel to the 
membrane. 

	
 The helix H1 consists of residues T266, L267, V268, H269, K270, L271 and 

T272. In examining later MD frames with ψ~10o, I found that an H1 parallel orientation 

allowed stronger interactions between POPS and POPI lipids in the membrane and polar 
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residues T266, H269, T272 and charged residue K270, as shown in Figure 5.9. As the 

helix approaches a parallel orientation at later times, the number of bonds, especially for 

K270 increases. This rearrangement of the helix is a conformational change of the eVP40 

dimer that further stabilizes the eVP40-PM complex in an orientation that facilitates 

subsequent hexamerization.    

 

Figure 5.9 a) When helix H1 is aligned parallel to the membrane at later times, residues 
T266, H269, K270, can interact strongly with anionic membrane lipids POPS and POPI. 
b) The time evolution of the number of hydrogen bonds formed between T266, H269, 
K270 and membrane lipids. 

 
5.4 The hydrophobic residue V276 inserts into a membrane defect  

	
 Our MD studies also showed a possible mechanism for membrane penetration of 

amino acids in the dimer. The electrostatic interactions between cationic protein residues 

and lipid polar/charged groups can create membrane defects that allow insertion of 

hydrophobic residues into the hydrophobic inner region of the membrane and increase the 
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binding. There is evidence for this in other systems. Lai et al. (137) proposed that 

electrostatic interactions between the GRP1 PH domain and lipids on the membrane were 

crucial to the stabilization of the equilibrium membrane binding structure of the PH 

domain. Their findings suggested that arginine and lysine residues (R277, K279) 

interacting with the charged phosphate groups on the membrane surface created transient 

lipid defects that allowed a hydrophobic residue (V278) to insert into the bilayer head 

group region and helped to bind the PH domain. The same effect was seen in combined 

MD and experimental studies of the binding of RecA protein at the surface of anionic 

membranes (138). 

 In our eVP40 dimer system, the hydrophobic residue V276 is close to the 

positively charged lysine residues K274 and K275 that strongly interact with the 

membrane. In our simulations, I observed that the electrostatic interactions between these 

lysine residues and the charged heads of the anionic POPS and POPI lipids created 

transient membrane defects which allowed the hydrophobic residue V276 to partially 

insert into the hydrophobic inner region of the membrane. These interactions might add 

extra stability to the protein membrane complex. Figure 5.10 illustrates a small 

membrane defect created by lysine residues and a partial penetration of V276 inside the 

membrane.  
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Figure 5.10 The hydrophobic V276 residue can partially penetrate the membrane at a 
small membrane defect created by lysine residues interacting with POPS and POPI 
molecules. 

 
5.5 Clustering of PIP2 Lipids in the Lower Leaflet of the PM 

5.5.1 Hexamer and PM model 

 The initial x-ray crystal structure of the VP40 hexamer was taken from the protein 

data bank (PDB) [PDB entry 4ldd].  The hexamer is formed by three dimers that join via 

their N-terminal domain (NTD) interfaces. The C-terminal domains (CTD) of VP40 at 

the two ends are intact but the other four CTDs are missing in the crystal structure. Based 

on the orientations of the dimers in the hexameric structure2, two of the middle CTDs 

point towards and interact with the membrane, whereas the other two CTDs point 

towards the cytoplasm. The missing CTDs that interact with the membrane were inserted 

using Modeller (139). These CTDs were oriented in such a way that the hydrophobic 

residues that are known to penetrate the membrane face towards the membrane (36), 

(117).   

The membrane-VP40 hexamer system was generated using the Charmm-GUI (71) web 

server. An asymmetric lipid bilayer was generated in accordance with the high 
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complexity of the plasma membrane composition (140), (141). The percentage of various 

lipids (POPC:POPE:PSM:POPS:PIP2:CHOL) in the modeled membrane were 

(41:8:23:4:4:20) in the outer (or upper) leaflet and (11: 37: 5: 16: 10: 21) in the inner (or 

lower) leaflet. The lipid-bilayer is generated large enough to accommodate the hexamer. 

The solvated membrane-protein system contained >600,000 atoms in the all-atom 

representations, but in the coarse-grained set up, the numbers were significantly reduced 

as described below. The lipid bilayer without protein was composed with the same ratios 

of the phospholipid mixture as described above for the bilayer with protein.  

 In order to investigate the VP40-membrane interactions, I prepared the hexamer-

membrane system with the middle two CTDs facing the lower leaflet of the membrane so 

that the hydrophobic residues Leu213, Ile293, Leu295, and Val298 in a loop region were 

in direct contact with the membrane, as predicted by experiments (36), (117). The all-

atom as well as coarse-grained representations of the system are displayed in Figure 5.11. 

The all-atom representation in Figure 5.11a includes the lower CTDs that interact with 

VP35 proteins that are involved in packaging and incorporating the viral RNA into VLP 

(142). As they do not influence the membrane binding, the lower CTDs were not 

included in the CGMD simulations (Figure 5.11b) to further reduce computational time.  
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Figure 5.11 VP40 hexamer-membrane system. a) All-atom representation of VP40 
hexamer at the PM lower-leaflet, side view. b) Coarse-grained representation, side view 
c) Distribution of various lipids in the initial setup, as viewed from the bottom. Lipids are 
colored as Light-Blue: PIP2, Green: POPC, White: POPE, Gray: PSM, Pink: POPS, 
Purple: CHOL. 

	
 I performed a 10-µs CGMD simulation and monitored the dynamics of the VP40 

hexamer-membrane interactions. The initial setup has several amino acids in the middle 

two CTDs interacting with the membrane. The protein center-of-mass was initially set 

approximately 54 Å below the membrane, measured from the z-coordinate of the center 

of mass of the lipid bilayer. During the MD simulations, the protein diffuses laterally 

around the lower leaflet and also increases the protein-membrane contacts. After ~ 3 µs, 

the CTDs at the two ends interact more strongly with the membrane. Figure 5.12a shows 

the relative distance between the lipid and protein center of masses (zcm) as a function of 

time.  As the two CTDs at the end start to interact strongly with the membrane, zcm is 

significantly reduced.  

 In Figure 5.12b, I display the number of each type of lipid near the VP40 hexamer 

as a function of time. The normalized count for a lipid type is calculated as the number of 

that lipid type within 7Å of the protein divided by the total number of that lipid type in 

the lower leaflet of the PM.  Interestingly, PIP2 is the only lipid type that shows 

significant crowding around the protein. The normalized count for PIP2 increases steadily 

until ~3 µs and plateaus to a much larger value (~25%) than the normalized counts of the 

other lipid types (<10%). It is worth noting that the reduction in zcm in Figure 5.12a 

occurs after the occurrence in Figure 5.12b of significant PIP2 crowding around the 
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protein. I further investigated the crowding of PIP2 by exploring the lipid clustering in the 

membrane with or without protein, as discussed below.  

 Figure 5.12c shows a noticeable bulging or bending in the PM. This is because an 

increase in the number of contacts between the membrane and the end-CTDs cause the 

hydrophobic residues Leu213, Ile293, Leu295, and Val298 to penetrate further into the 

membrane. 

 

 

 

Figure 5.12 a) distance between the lipid and protein center of masses (zcm), b) 
Normalized count of various lipids within 7Å of the VP40 hexamer as a function of time, 
c) Bending (or bulging) of the membrane due to enhanced lipid-protein interactions. 

	
5.5.2 Lipid Clustering in the PM With and Without VP40 Hexamer 

 Different types of mammalian cell plasma membranes have different lipid 

compositions and the differences in lipid compositions can affect how proteins interact 

with the membranes (143). Through coarse-grained MD simulations, it has been shown 

that certain lipid types tend to cluster in the membrane (68). Especially important, the 

local lipid composition caused by clustering was found to directly affect the membrane 

curvature (68). Since membrane bending is important for VLP formation, I investigated 
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changes in the local lipid composition due to lipid clustering in the presence of the 

protein. 

 I investigated the distribution of PIP2 in the lower leaflet of the plasma membrane 

in the presence of the VP40 hexamer and compared it with the distribution of PIP2 

without the protein. The top panel of Figure 5.13a, displays the VP40 hexamer-

membrane systems as viewed from below (cytoplasmic side) at different times. The 

bottom panel of Figure 5.13a displays the same system as in the top panel but with the 

protein removed to better show the lipid distribution in the membrane. In the beginning 

(0 µs), the PIP2 lipids are randomly distributed (as generated by Charmm-GUI). By 3 µs, 

a significant clustering of PIP2 is observed, mostly in the periphery of the protein. 

Besides PIP2, no other lipid type showed such clustering behavior. To compare the 

behavior of the lipids in the absence of protein, I performed a 10 µs simulation with only 

the membrane and display the results in Figure 5.13b. Initially (0 µs), the PIP2 lipids are 

randomly distributed as in Figure 5.13a. By the end of the 10 µs simulation, PIP2 shows 

some clustering but to a significantly lesser extent compared to the clustering in the 

presence of the protein (Figure 5.13a). 



	 94 

 

Figure 5.13 Distribution of lipids (PIP2: Green) in the lower leaflet of the PM. a) Results 
of the CGMD simulation with the presence of the VP40 hexamer. The top row shows the 
VP40 hexamer (Yellow), the row below are the same snapshots with the VP40 hexamer 
removed so that the lipids are visible. b) Results of the CGMD simulation in the absence 
of a protein. 

	
 Upon closer inspection of the PIP2 clusters in the periphery of the protein, I 

observed that the PIP2 head groups interact strongly with the basic and polar residues in 

VP40 as shown in Figure 5.14a. Since some of the CTD residues penetrate the 

membrane, the locations of the CTDs are noticeable in Figure 5.14b as gray areas 

surrounded by PIP2 lipids (green). I calculated the radial pair distribution function g(r) for 

the various lipid types relative to the VP40 hexamer. The g(r) quantifies the relative 

abundance of a specific lipid type around the protein. As shown in Figure 5.14c, PIP2 

molecules significantly cluster around the protein, compared to other lipid types. Lipid 
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types POPE, POPS and CHOL show only a weak preference to be in contact with the 

protein, and POPC seems to have the least preference.  

 

Figure 5.14 Distribution and clustering of PIP2 lipids a) Distribution of the PIP2 lipids 
near the VP40 hexamer at 0 µs and 5 µs showing the negatively charged lipid head 
groups interacting with the positively charged or polar residues on the protein. b) 
Clustering of PIP2 lipids due to VP40. The VP40 was present in the simulation but is 
removed from the image to allow full view of the membrane. PIP2 molecules cluster 
around gray regions that are the location of the VP40 CTDs. c) Radial pair distribution 
functions for various lipid types relative to the VP40 hexamer. 

	
5.5.3 Quantification of Lipid Clustering  

 To quantitatively compare the distribution and clustering of the lipid molecules 

with and without VP40, I calculated the fractional interaction matrix (68) for the lipids in 

the lower leaflet of the PM. The fractional interaction matrix, also known as the 

preferential partitioning of membrane components represents the normalized number of 
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contacts with a specific lipid type and has been used to study lipid phase separation into 

ordered and disordered domains in various bilayer systems containing peripheral and 

transmembrane proteins (144), as well as phase separations (69) and lipid clustering and 

membrane curvature in various bilayer systems (68). The fractional interaction matrix is 

calculated as 

pij = 
j][/l[
j]`/l``

      (5.5.3.1) 

Here, the preferential partitioning pij represents the number of contacts of the lipid type i 

relative to the lipid type j, normalized over the number of all lipid contacts with the lipid 

type i.  The number of contacts cij is calculated based on the distance between the 

glycerol ester moiety (GL1/GL2 beads) of POPE, POPC, POPS, PIP2 or amino alcohols 

(AM1/AM2 beads) of PSM or cholesterol ROH.  

 Figure 5.15a displays the fractional interaction matrix for the five different types 

of lipids in the lower leaflet of the bilayer at 10 µs in the presence of the VP40 hexamer. 

Two lipids are counted as being in contact if they are within 11 Å, which includes both 

the first and second solvation shells. The fractional interactions of each lipid type with all 

lipid types are given in the rows, and the values are normalized horizontally. If all five 

lipid types are randomly distributed, the entries would be 0.20. The fractional interaction 

for PIP2 with itself (first entry, Row 5) is found to be 0.40, which means that about 40% 

of the PIP2 contacts are with PIP2 itself and represents clustering. The fractional 

interactions for any other lipid type (Rows 1-4) are approximately 0.20, indicating 

randomly distributed lipid contacts. This means that lipid types such as POPE, POPC and 
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PSM each have about the same probability to be in contact with themselves or with other 

lipid types. POPS is found to have the least preference to be surrounded by PIP2. 

 To assess any enhancement in lipid clustering due to the VP40 hexamer, I 

compared the fractional interaction matrices for bilayers systems with and without the 

protein. Figure 5.15b displays the fractional interaction matrix for the lipids in the lower 

leaflet of the membrane-only bilayer system in the absence of VP40. In the absence of the 

protein, the PIP2-PIP2 fractional contact is 0.30, compared to 0.40 Figure 5.15a in the 

presence of protein. This suggests that the presence of the VP40 hexamer enhances the 

PIP2 clustering by 33%. Such enhancement in PIP2 clustering by VP40 can be 

functionally important in the viral life-cycle since local clustering of PIP2 in the lower 

leaflet has been shown to result in curvature of the membrane (68).  

 

Figure 5.15 Fractional interaction matrix of lipids in the lower leaflet of the plasma 
membrane. a) With the VP40 hexamer. b) Without the VP40 hexamer. 

 
5.5.4 Mechanism of Lipid Clustering 

 PIP2-PIP2 clustering can occur in the plasma membrane due to formation of 

hydrogen bond networks (145) with water molecules and/or Ca2+ that balance the 



	 98 

electrostatic repulsion between negatively charged head groups (146). I explored the 

molecular details of the PIP2 interactions leading to PIP2 clustering around VP40 and 

found that the repulsion between negatively charged phosphate head groups (P1 or P2 

beads) can be balanced by the electrostatic attraction mediated by positively charged 

protein side chains (SC2 bead of Lys and Arg). Figure 5.16a shows a network of 

alternating Lys-PIP2 interactions. When a cationic side chain mediates two PIP2 head 

groups from either side as shown in Figure 5.16b, cholesterol molecules are found to fill 

the space thus created. This also explains why PIP2 has higher self-clustering in the 

second solvation layer. I calculated the radial pair distribution of PIP2 against all other 

lipid types and found that cholesterol is the most abundant lipid type around PIP2, 

followed by POPE. This is reflected in Figure 5.16c by the high radial pair distribution 

for PIP2-CHOL. In addition to cholesterol, PIP2 is also significantly surrounded by 

POPE, due partly to the high percentage of POPE in the membrane, giving a high radial 

pair distribution for PIP2-POPE (Figure 5.16c). This also helps in forming a higher PIP2-

PIP2 distribution in the second solvation layer. 



	 99 

 

Figure 5.16 Illustration of the role of lysine residues in PIP2 clustering. a) The network of 
interacting Lys and PIP2. b) Lysine side chains mediating PIP2-PIP2 interactions c) 
Radial pair distribution function of other lipids around PIP2 lipids 

 

6. CONCLUSIONS 

 I performed molecular dynamics simulations to investigate the molecular and 

atomic level dynamics of large-scale structural changes in transformer proteins. I focused 

my investigations on RfaH and Ebola VP40. I first studied the mechanisms of the all-α to 

all-β conformational changes in the RfaH-CTD. In order to facilitate a faster structural 

conversion, I used an implicit solvent EEF1 force-field with the replica exchange 

molecular dynamics (REMD) technique.  I explored the free-energy landscape of the 

conformational space of the RfaH-CTD that spanned the α-helix and β-configurations. I 

used detailed all-atom simulations to refine the structure of the replica which is closest to 

the experimentally observed RfaH-CTD β-structure. I analyzed the time evolution during 
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the all-α to all-β transformation of various structural parameters such as rmsd, number of 

H-bonds, and secondary structure formation. The early onset of the loss of helicity of the 

CTD Helix I as compared to Helix II in the absence of the NTD sheds light on the 

importance of interfacial interactions between the two domains of RfaH. Results suggest 

that the folding into the β-scaffold proceeds with formation of an antiparallel β-hairpin 

structure. Through information transfer entropy calculations, I identified major driver-

responder residues that are involved in helix unfolding as well as β-scaffold folding. 

Future investigations of the RfaH-CTD with detailed all-atom simulations for all steps in 

the α-helix to β-structural conversion process will allow a better understanding of the 

dynamics of this transformer protein, which may serve as a good model system for 

investigating protein structural transformations in general. 

 I continued my research to a full RfaH molecule and investigated the mechanisms 

of the structural transformation of the CTD in the full RfaH using various molecular 

dynamics techniques. Through dynamic network analysis, I determined the communities 

of amino acids that are involved in interdomain and intradomain communications. 

Examination of these communities showed that amino acid F126 in the CTD shows 

correlated motions with the NTD amino acids I93, S97, and L96. F126 also affects the 

RNAP binding site through interaction with I93, making it a possible functionally 

relevant residue.  

 Using targeted MD, I investigated the aàb as well as the bàa structural 

transformation of the CTD in the full RfaH. The observed folding and unfolding 

pathways are different for the forward and back conversions. The observed mechanism 

for the folding of the CTD into the b-barrel structure is consistent with those from 
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previous computational studies of the isolated CTD. In the presence of the NTD, 

however, the CTD helix unfolding process leading to the initiation of the b-structure is 

different. Instead of going through a completely unfolded random coil state, the a-helix 

to b-structure transition occurs through a collapsed globular state in which significant 

residual hydrophobic interactions are present. Also, the order of the unfolding of the CTD 

helices is reversed due to interactions with the NTD. I used the Adaptive Biasing Force 

method to calculate the free-energy profile for the structural transformation. I find that 

the CTD-NTD interdomain interactions constitute the main barrier in the CTD α-helix to 

β-barrel structural conversion. Once the interfacial interactions are broken, the structural 

conversion of the CTD is relatively easy. SMD calculations elucidated specific amino 

acids at the interdomain coupling between movement of the CTD helices and the NTD 

helix, and show how solvent accessible surface area is affected at the RNAP binding site. 

 Using various molecular dynamics simulations, I investigated the dynamics of the 

association and the dissociation processes of the NTD and CTD domains in the Ebola 

virus VP40 transformer protein. MD simulations reveal a novel interdomain salt-bridge 

interaction between D45-K326 as part of the NTD-CTD latch that was shown to be 

important for regulating VP40 oligomerization. The results suggest that the salt-bridge 

interaction between D45-K326 is helpful in guiding domain-domain association, whereas 

the E76-K291 interaction stabilizes the closed-form structure. VLP analysis demonstrated 

that some of these salt-bridges may be significant in forming the correct VP40 assembly 

structure for significant scission and VLP formation.  For instance, mutation of the D45-

K326, R148-D312, and E160-K212 salt-bridges led to a statistically significant reduction 

in VLPs. Live cell imaging using an EGFP-tagged VP40 system revealed that the 
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mutation K291E shows an enhanced PM localization. This may be because the K291E 

mutation that abrogates the salt-bridge allows easier domain dissociation, which is an 

important step in VP40 hexamerization at the plasma membrane leading to VLP 

formation. These computational and experimental live cell mutational analyses illustrate 

the differential functions of salt-bridge networks in VP40 conformational regulation and 

open the door to large-scale molecular, membrane, cellular and in vitro analysis, and 

computational studies of VP40 conformational dynamics. Further experiments are 

necessary to investigate the time-dependency of plasma membrane localization and the 

biophysics of assembly of VP40. For instance, VP40 localization, trafficking and 

oligomerization may need to be studied from initial stages of VP40 protein expression to 

scission of mature VLPs detectable at early stages of infection. 

 I also investigated the Ebola virus protein VP40 dimer interactions at the lower 

leaflet of the PM for different lipid compositions of the membrane. For the POPS/POPI 

and the POPS/PIP2 systems, the strong electrostatic interactions between the positively-

charged lysine residues of the eVP40 dimer and negatively-charged head groups of the 

PM are found to be the major driving force in binding the eVP40 dimer to the PM. 

During association with a membrane containing anionic POPS, POPI, or PIP2, several 

different lysine residues in loop regions of the dimer interact with the anionic lipid 

molecules in the membrane. Subsequent to the initial association, CTD helices of the 

dimer reorient to add additional stabilizing interactions. The helix orientation that most 

enhanced the binding is when H1 helix is aligned parallel to the PM. This alignment of 

helix H1 allows electrostatic interactions between lysine K270 as well as polar residues 

H269, T272, T266 of the protein with the anionic lipids of the membrane.  
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 Our MD simulations revealed an additional stabilizing effect due to penetration of 

the hydrophobic residues into the PM. The lysine residues can interact with anionic lipid 

molecules to create defects in the membrane and these defects allow hydrophobic 

residues such as V276 to partially insert into the membrane. The bound eVP40-

membrane complex with partial insertion of hydrophobic residues into the membrane not 

only provides dimer stability but may also affect the lateral diffusion (137), (147) of the 

dimer at the PM. Our investigations provide a molecular level detail of the eVP40 dimer 

localizations at the lower leaflet of the PM and understanding these lipid-protein 

interactions can be helpful in designing chemical interventions that disrupt VLP 

formation. 

 To investigate the protein-lipid interactions for the Ebola virus protein VP40 

hexamer at the lower leaflet of the plasma membrane, I used CGMD simulations. The 

PIP2 lipid is found to have a tendency to cluster in general, but this clustering is 

significantly enhanced in the presence of the VP40 hexamer. PIP2 was found to cluster 

around two CTDs of the VP40 hexamer. Each CTD has a hydrophobic loop that 

penetrates the membrane bilayer and lies adjacent to a cationic patch rich in Lys residues.  

It is found that the electrostatic interactions of negatively charged PIP2 head groups with 

cationic Lys side chains mediate the PIP2 clustering, with cholesterol filling the space 

between the PIP2s.  The overall mechanism is consistent with the hypothesis that PIP2 

stabilizes VP40 oligomers (118). PIP2 is likely important for the initial association of 

VP40 to the plasma membrane bilayer, including formation of VP40 hexamers and larger 

oligomers from VP40 dimers (115). PIP2 then becomes exposed on the plasma membrane 

outer leaflet as VP40 accumulates on the inner leaflet through a yet to be determined 
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mechanism (115). Clustering of PIP2 would provide a mechanism to further concentrate 

VP40 oligomers and stabilize the underlying VP40 matrix layer, and to promote viral 

budding by causing membrane bending. Further biophysical investigation is warranted to 

determine if and how VP40 induces PIP2 clustering in vitro and in cells, how PIP2 

contributes to membrane bending, and if cholesterol distribution in the plasma membrane 

affects VP40 assembly and budding. These studies may also prove useful in determining 

pharmacological strategies for inhibiting budding of the Ebola virus from the plasma 

membrane. For instance, therapeutic agents that can modulate membrane curvature or 

alter membrane fluidity in such a way to reduce plasma membrane bending may be 

sufficient to slow down the spread of the virus. 

 

Overall Summary 

Moonlighting proteins uses their same fold to perform two or more distinct biophysical or 

biochemical functions (Jefferry, 2015, J of Proteomics, 2009 , molecular biosystems). On 

the other hand, Metamorphic proteins possess structural plasticity from the same 

sequence of amino acid residues (Murzin, Biochemistry). Recently, a newly class of 

proteins is defined as “Transformer proteins” that carries the properties of moonlighting 

and metamorphic proteins and can undergo conformational change to perform different 

functions (Knauer, 2012, cell cycle). These proteins are rare in nature and some examples 

are transcription factor RfaH and Ebola virus protein VP40 (Bornholdt, 2013, GC 2015, 

2016). The Carboxy-terminal domain of RfaH (RfaH-CTD) folds and refolds from all-a 

to all-b form to carryout different functions. However, the homolog NusG has 

structurally similar NTDs and possess 17% sequence identity on both domains has only 
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all-b form of CTD. The all-a form of RfaH-CTD masks the binding site of RNAP and 

inhibits the transcription process. The all-a form transform into all-b form after it is 

activated by the OPS element of ntDNA. The all-b form of RfaH-CTD enhances the 

translation by recruiting S10 ribosomes. Another example of a transformer protein is the 

Ebola virus protein VP40, which exists in different conformations depending on the 

required function: a butterfly shaped dimer is trafficked to the lower leaflet of the 

membrane, a hexamer to form the viral matrix, and an octamer ring structure to bind to 

RNA and regulate viral transcription.  

 The structural conversions in these transformer proteins are interesting from the 

protein folding point of view. Instead of a single native state and a unique function, these 

proteins have different native states with different functions which deviates from the 

common principle of protein folding.  These proteins are also important in designing 

molecular switch that can be used as biosensors or smart Biomaterials used in biology, 

biomedicine and biotechnology (Ha and Loh , Chemistry, 2012). 

 I investigated the structural conversion in transformer proteins, transcription 

factor RfaH and Ebola virus protein VP40 using molecular dynamics simulations. 

Experiments (Burmann et. al) suggested that the expression of RfaH-CTD alone will 

spontaneously refold from all-a to all-b form. Using replica exchange MD (REMD), I 

investigated the all-a to all-b structural change in RfaH-CTD in isolated form. During 

REMD simulations of isolated RfaH-CTD, the structural integrity of shorter helix H1 was 

compromised and was unfolded faster compared to longer helix H2. The residues in the 

H1 were responders in the helix unfolding and were quantified using transfer entropy. 
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The formation of b-barrel structure were driven by residues in b3 and b4 hairpins that 

were formed first in the nucleation process. After investigating the molecular details of 

the structural conversion isolated RfaH-CTD, I performed simulations on full length 

RfaH where I used targeted MD simulations, Steered MD simulations (SMD) to 

understand the structural change of RfaH-CTD in the presence of tertiary contact with the 

NTD of RfaH. The NTD-CTD interdomain interactions was observed as a major barrier 

in the structural change of RfaH-CTD. Once the barrier is broken, the all-a to all-b of 

RfaH-CTD was found to be easier. Using SMD, I highlighted the interdomain saltbridge 

between E48-R138 as a major interaction. These results support the experiments (Burman 

et. al 2012) that the E48S mutant was readily detached from the NTD and was converted 

to b-barrel structure. 

 In the mean time when I was investigating a Transformer protein RfaH, there was 

an Ebola outbreak that caused many deaths and surprisingly one of the proteins in Ebola 

virus is a Transformer protein. The Ebola virus protein VP40 exists in different 

conformations depending on the required function: a butterfly shaped dimer is trafficked 

to the lower leaflet of the membrane, a hexamer to form the viral matrix, and an octamer 

ring structure to bind to RNA and regulate viral transcription. The common structural 

change in these pathways is the domain rearrangement which is VP40’s transformer 

properties. I performed simulations to understand the domain rearrangement of Ebola 

VP40 monomer and highlighted important saltbridges in the interdomain region. The 

D45-K326 saltbridge was observed to be important in the domain dissociation and 

association. The force profiles showed mutants required less force to separate domains. 

Experiments performed showed a 20% increase in the plasma membrane localization of 
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mutant K291E which was due to easy detachment of the domain required for the 

formation of oligomers in the plasma membrane. 

 Ebola virus is a lipid-enveloped virus. As the virus enters the human cell, it 

hijacks the host cell machinery and replicate itself. Once the protein VP40 is encoded by 

its negative sense ssRNA, VP40 convert into dimer and is trafficked in the lower leaflet 

of the plasma membrane. Three dimers assemble in the membrane and undergo 

membrane rearrangement to form a hexamer. I performed simulation on the VP40 dimer 

and membrane systems and observed the electrostatic interaction as a major driving force 

in the association kinetics. The positive charged lysine residues in the VP40 dimer was 

found interacting with the negatively charged anionic lipids such as POPI, POPS and 

PIP2. In the absence of these anionic lipids, VP40 dimer was associated weakly with the 

membrane. In addition to the electrostatic interaction, the additional stability of the 

protein-membrane complex was found to be due to the helix H1 alignment parallel to the 

lower leaflet for the membrane. This alignment allowed the efficient hydrogen bonded 

interactions between the protein and the membrane. I also observed a slight insertion of 

hydrophobic residues V276 inside the hydrophobic core of the membrane which might be 

important in the diffusion kinetics of VP40. 

 Finally, I investigated the VP40 hexamer and plasma membrane interactions 

using coarse grained MD (CGMD) simulations. Experiments performed by Johnson et al. 

highlighted the role of PIP2 lipids in the oligomerization of VP40. Since POPS lipids was 

found exposed to the outer leaflet of the plasma membrane at the budding site, PIP2 lipids 

are important at the interaction site of VP40 oligomers and the membrane. A 

computational study by Koldso et. al. on the unrelated membrane system showed a 
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correlation between the membrane curvature and the enrichment of PIP2 lipids in the 

lower leaflet of the plasma membrane. This resulted in the membrane bending with 

concave upward. I performed CGMD on hexamer and membrane system and observed 

the enhanced clustering of PIP2 lipids in the lower leaflet of the plasma membrane. This 

clustering helped in a slight bulging of the membrane at the interaction site. There is a 

general tendency of PIP2  lipids  to self-cluster, but I observed the 30% increase in the 

clustering of PIP2  due to the VP40 hexamer. The radial pair distribution function of PIP2 

lipids is greater near the VP40 hexamer. I observed an extensive ionic interaction 

between the SC2 bead of lysine residues in the VP40 hexamer and P2 beads of PIP2 lipids 

and the void between lipids is filled with the cholesterol. 
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